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THE QUASI-RELEVANT

3-VALUED LOGIC RM3

AND SOME OF ITS SUBLOGICS

LACKING THE VARIABLE-SHARING

PROPERTY

A b s t r a c t. The logic RM3 is the 3-valued extension of the logic

R-Mingle (RM). RM (and so, RM3) does not have the variable-

sharing property (vsp), but RM3 (and so, RM) lacks the more

“offending” “paradoxes of relevance”, such as A → (B → A) or

¬A→ (A→ B). Thus, RM and RM3 can be useful when “some

relevance”, but not the full vsp, is needed. Sublogics of RM3 with

the vsp are well known, but this is not the case with those lacking

this property. The first aim of this paper is to define an ample

family of sublogics of RM3 without the vsp. The second one is

to provide these sublogics and RM3 itself with a general Routley-

Meyer semantics, that is, the semantics devised for relevant logics

in the early seventies of the past century.
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.1 Introduction

The first aim of this paper is to define an ample family of sublogics of RM3

without the variable-sharing property. The second one is to endow these

sublogics and RM3 itself with a general Routley-Meyer semantics.

As it is well known (cf. [1]), a necessary property of any relevant logic

S is the following:

Definition 1.1 (Variable-sharing property – vsp). If A → B is a the-

orem of S, then A and B share at least a propositional variable.

In [1] (§22.1.3), it is shown that the logic of relevance R, and so any

logic included in it (as, for example, the logic of entailment E or the logic

of ticket entailment T), has the vsp. There is, however, an interesting logic

related to R, the logic R-Mingle (RM), that does not have the vsp. The

logic RM is axiomatized by adding the axiom mingle A→ (A→ A) to the

logic of relevance R (the axiom mingle is labelled A9 below; cf. Definition

2.6). In RM “paradoxes of relevance” (i.e., conditionals in which antecedent

and consequent do not share propositional variables) are almost immediate

(cf. [1], §29.5). But, despite this fact, RM has been given considerable

attention in volume 1 of Entailment (cf. [1], §29.3) because it lacks the

most “offensive” paradoxes of relevance (A→ (B → A) or ¬A→ (A→ B),

for example) and, in fact, it has the following property, akin to the vsp (cf.

[1], p. 417):

Definition 1.2 (Quasi-relevance property). If A → B is a theorem,

then either (1) A and B share at least a propositional variable or (2) both

¬A and B are theorems.

(Cf. Definition 2.1. below on the logical languages used in the paper.)

Thus, as Meyer puts it (cf. [1], p.393): “Sometimes one doesn’t need the

whole relevance principle and, in those occasions, RM is good enough, when

some relevance is desirable.” (By the ‘whole relevance principle’, Meyer

refers to the vsp.)

The logic RM3 is the 3-valued extension of RM and its has some of the

more important properties of the latter logic such as the quasi-relevance

property (cf. Section 4 of the appendix). The logic RM3 can be axiomatized

by adding any of the axioms A ∨ (A → B) or ¬A → [A ∨ (A → B)]

to RM. (These axioms are labelled t18 and A11, respectively, below. Cf.
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Proposition 4.1.) So, RM3 can be axiomatized by adding A9 A→ (A→ A)

and either t18 A∨(A→ B) or A11 ¬A→ [A∨(A→ B)] to R (cf. Section 3

of the appendix). Concerning these axioms, it should be noted that t18 can

be added to R, the vsp being preserved, as shown in the 5-valued relevant

logic CL, one axiom of which is t18. The logic CL is an extension of R

axiomatizing Meyer’s Crystal lattice CL, and it has the vsp (cf. [5], p. 114,

ff.). The axiom mingle A9, however, causes the breaking of the vsp when

added to weak systems with this property (cf. [12]). RM3 has been given

an algebraic semantics in [7] (cf. also [1], §29.4). Also, it has been endowed

in [2] with a Belnap-Dunn “bivalent” type semantics as well as a 2 set-up

model structure of the kind defined in Routley-Meyer semantics (cf. [14]

and references therein).

Next, we describe the aims of the paper. Sublogics of RM and RM3

with the vsp are well known: they include the logic of relevance R and their

sublogics such as the logic of entailment E, the logic of ticket entailment

T, not to mention weak relevant logics among which Brady’s logic DR

and its sublogics are undoubtedly the more important (cf. [3], [4], [6]).

Nevertheless, sublogics of RM3 without the vsp have not been studied yet,

as far as we know. But these logics are interesting and useful, since, as

remarked above, there are situations where we need “some relevance”, but

not necessarily the full vsp. Consequently, the first aim of this paper is to

define an ample family of sublogics of RM3 without the vsp. The minimal

logic among these is the result of adding to Routley and Meyer’s basic

logic B (cf. [14]; cf. Definition 2.5 below) the characteristic axioms of

RM3, A9 and A11, referred to above, together with the auxiliary axiom

A10 (A ∧ ¬A) → (B ∨ ¬B) labeled “safety” in its rule form in [8], p.

14. The second aim of this paper is to endow these sublogics of RM3

and RM3 itself with a general Routley-Meyer semantics (RM-semantics),

the semantics devised for relevant logics in the early seventies of the past

century (cf. [14]). In this sense, we remark that although there is more

than one semantical approach to RM3, as it was pointed above, we do not

have a general Routley-Meyer semantics for RM3 or any of its sublogics

without the vsp yet, as far as we know.

The paper is organized as follows. In Section 2, the logic BRM3 is

defined, a Routley-Meyer semantics for BRM3 is provided and soundness

is proved w.r.t. this semantics. The label BRM3 stands for ‘Basic non-

relevant logic included in RM3’. In Section 3, it is proved that BRM3 is
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complete w.r.t. the semantics defined in the previous section, by using a

canonical model construction. In Section 4, we define an ample family of

sublogics of BMR3 without the vsp and endow each one of them with a gen-

eral RM-semantics. The section is ended by providing two alternative ways

of defining models for RM3 in the RM-semantics. In Section 5, we draw

some conclusions from the results obtained and suggest some directions for

further work on the same topic. Finally, we have included an appendix

recording some matrices upon which some proofs in the preceding sections

are based and some other additional material.

.2 The logic BRM3 and its semantics

Definition 2.1 (Languages, logics). The propositional language con-

sists of a denumerable set of propositional variables p0, p1, ..., pn, ... and

some or all of the following connectives → (conditional), ∧ (conjunction),

∨ (disjunction), and ¬ (negation). The biconditional (↔) and the set of

wffs are defined in the customary way. A,B,C, etc., are metalinguistic vari-

ables. From the proof-theoretical point of view, we shall consider proposi-

tional logics formulated in the Hilbert-style way, that is, logics axiomatized

by means of a set of axioms (actually, axiom schemes) and a set of rules

of derivation. The notions of ‘proof’ and ‘theorem’ are understood as it is

customary in Hilbert-style axiomatic systems. By `S A, it is indicated that

A is a theorem of S.

Definition 2.2 (Logical matrix). A (logical) matrix is a structure

(V, D, F) where (1) V is a (ordered) set of (truth) values; (2) D is a non-

empty proper set of V (the set of designated values); and (3) F is the set of

n-ary functions on V such that for each n-ary connective c (of the proposi-

tional language in question), there is a function fc ∈ F : Vn → V.

Definition 2.3 (M-interpretations, M-validity). Let M be a matrix

for (a propositional language) L. An M-interpretation I is a function from

the set of all wffs to V according to the functions in F. Then, �M A (A is

M-valid; A is valid in the matrix M) iff I(A) ∈ D for all M-intepretations I.

Definition 2.4 (The matrix MRM3). The propositional language con-

sists of the connectives→, ∧, ∨ and ¬. The matrix MRM3 is the structure
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(V, D, F) where (1) V is {0, 1, 2} and it is ordered as shown in the following

diagram:

0 1 2

(2) D = {1, 2}; (3) F = {f→, f∧, f∨, f¬} and these functions are defined

according to the following tables.

→ 0 1 2 ¬
0 2 2 2 2

1 0 1 2 1

2 0 0 2 0

∧ 0 1 2

0 0 0 0

1 0 1 1

2 0 1 2

∨ 0 1 2

0 0 1 2

1 1 1 2

2 2 2 2

The notions of an RM3-interpretation and RM3-validity are defined

according to the general Definition 2.3.

The logic RM3 axiomatizing the matrix MRM3 is recorded in section

3 of the appendix. (A logic S axiomatizes a matrix MS iff for every wff A,

`S A iff �MS A.) The logic BRM3 (the label intends to abbreviate ‘Basic

non-relevant logic included in RM3’) is defined from Routley and Meyer’s

basic logic B as follows.

Definition 2.5 (The logics B+ and B). Routley and Meyer’s basic pos-

itive logic B+ is formulated with the following axioms and rules of inference

(cf. [13] or [14]).

Axioms

A1. A→ A

A2. (A ∧B)→ A / (A ∧B)→ B

A3. [(A→ B) ∧ (A→ C)]→ [A→ (B ∧ C)]

A4. A→ (A ∨B) / B → (A ∨B)

A5. [(A→ C) ∧ (B → C)]→ [(A ∨B)→ C]

A6. [A ∧ (B ∨ C)]→ [(A ∧B) ∨ (A ∧ C)]

Rules of derivation

Modus Ponens (MP): A & A→ B ⇒ B

Adjunction (Adj): A & B ⇒ A ∧B

Suffixing (Suf): A→ B ⇒ (B → C)→ (A→ C)

Prefixing (Pref): B → C ⇒ (A→ B)→ (A→ C)
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Next, Routley and Meyer’s basic logic B is axiomatized when adding

the following axioms and rule to B+ (cf. [14]):

A7. A→ ¬¬A
A8. ¬¬A→ A

Contraposition (Con) A→ B ⇒ ¬B → ¬A

Definition 2.6 (The logic BRM3). The logic BRM3 is formulated by

adding the following axioms to B:

A9. A→ (A→ A)

A10. (A ∧ ¬A)→ (B ∨ ¬B)

A11. ¬A→ [A ∨ (A→ B)]

We record some theorems of BRM3 and a couple of facts about this

logic.

Proposition 2.7 (Some theorems of BRM3). The following are the-

orems and rule of BRM3 (a proof is sketched to the right of each one of

them)

T1. ¬A→ B ⇒ ¬B → A Con, A8

T2. ¬(A ∨B)↔ (¬A ∧ ¬B) A3, A4, Con; A3, A5, Con, A7

T3. ¬(A ∧B)↔ (¬A ∨ ¬B) A3, A4, T1; A3, A4, A8, Con

T4. A→ [B → (A ∨B)] A4, A9

T5. A→ [¬A ∨ (¬A→ B)] A7, A11

Proposition 2.8 (On the axiomatization of BRM3). The logic BRM3

is well axiomatized w.r.t. B+. That is, given the logic B+, A7, A8, A9,

A10, A11 and Con are independent of each other.

Proof. See the appendix. �

Remark 1 (On BRM3 and vsp). Axiom A10 (A ∧ ¬A) → (B ∨ ¬B)

clearly breaks the variable-sharing property (vsp). So, any extension of

BRM3 lacks the vsp whence all of them (BRM3 included) are not relevant

logics. (A logic is relevant in the minimal sense of the term if it has the

vsp.)
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Next, models and the notion of validity are defined. Then, the sound-

ness theorem is proved.

Definition 2.9 (BRM3-models). A BRM3-model is a structure (K,O,

R, ∗,�) where K is a set, O ⊆ K, R is a ternary relation on K and ∗ is a

unary operation on K subject to the following definitions and postulates

for all a, b, c ∈ K:

d1. a ≤ b =df (∃x ∈ O)Rxab

P1. a ≤ a

P2. (a ≤ b & Rbcd)⇒ Racd

P3. a ≤ a∗∗

P4. a∗∗ ≤ a

P5. a ≤ b⇒ b∗ ≤ a∗

P6. Rabc⇒ (a ≤ c or b ≤ c)

P7. a ≤ a∗ or a∗ ≤ a

P8. Rabc⇒ (b ≤ a or b ≤ a∗)

Finally, � is a relation from K to the set of all wffs such that the following

conditions (clauses) are satisfied for every propositional variable p, wffs A,

B and a ∈ K:

(i). (a ≤ b & a � p)⇒ b � p

(ii). a � A ∧B iff a � A and a � B

(iii). a � A ∨B iff a � A or a � B

(iv). a � A→ B iff for all b, c ∈ K, (Rabc and b � A)⇒ c � B

(v). a � ¬A iff a∗ 2 A

Definition 2.10 (Truth in a BRM3-model). A wff A is true in a BRM3-

model iff a � A for all a ∈ O in this model.

Definition 2.11 (BRM3-validity). A formula A is BRM3-valid (in sym-

bols, �BRM3 A) iff a � A for all a ∈ O in all BRM3-models.

Remark 2 (B-models). A B-model, that is, a model for Routley and

Meyer’s basic logic B (Definition 2.5) is defined similarly as a BRM3-model,

except that postulates P6, P7 and P8 are dropped (cf. [14], Chapter 4).
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Models for logics extending BRM3 are simply defined by adding to P1-

P8 the appropriate semantical postulates while defining ‘truth in a model’

and ‘validity’ similarly as in Definitions 2.10 and 2.11. In this way, an RM-

semantics for a wealth of extensions of BRM3 (RM3 included) is defined in

Section 4.

In order to prove soundness, the following lemmas are useful. (An

adequate version of these lemmas is immediate for each extension of BRM3

considered in this paper.)

Lemma 2.12 (Hereditary condition). For any BRM3-model, a, b ∈ K

and wff A, (a ≤ b & a � A)⇒ b � A.

Proof. Induction on the length of A. The conditional case is proved

with P2 and the negation case with P5. �

Lemma 2.13 (Entailment lemma). For any wffs A, B, �BRM3 A→ B

iff (a � A⇒ a � B, for all a ∈ K) in all BRM3-models.

Proof. From left to right: by P1; from right to left: by Lemma 2.12.�

We can now prove soundness.

Theorem 2.14 (Soundness of BRM3). For each wff A, if `BRM3 A,

then �BRM3 A.

Proof. Axioms A1-A8 and the rules MP, Adj, Suf, Pref and Con are

proved as in B-models (cf. Remark 2; cf. [14]). Then, it remains to

prove that A9, A10 and A11 are BRM3-valid. We proceed by ‘reductio ad

absurdum’ (by clauses ii-v, we refer to those in Definition 2.9; the proofs

are simplified by leaning on Lemma 2.13).

(a) A9 A → (A → A) is BRM3-valid: Suppose that there is a ∈ K

in some BRM3-model and wff A such that (1) a � A but a 2 A → A.

Then, (2) b � A, c 2 A for b, c ∈ K such that Rabc (clause iv). By P6, (3)

a ≤ c or b ≤ c. By applying Lemma 2.12 to 1, 2 and 3, we get (4) c � A,

contradicting 2.

(b) A10 (A ∧ ¬A) → (B ∨ ¬B) is BRM3-valid: Suppose that there is

a ∈ K in some BRM3-model and wffs A, B such that (1) a � A ∧ ¬A but

(2) a 2 B ∨ ¬B. Then, (3) a � A, a∗ 2 A (i.e., a � ¬A), a 2 B, a∗ � B

(i.e., a 2 ¬B) by clauses ii, iii and v. By P7, (4) a ≤ a∗ or a∗ ≤ a. So, (5)

either a∗ � A or a � B (3, 4, Lemma 2.12), a contradiction.
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(c) A11 ¬A → [A ∨ (A → B)] is BRM3-valid: Suppose that there is

a ∈ K in some BRM3-model and wffs A, B such that (1) a � ¬A but

a 2 A∨ (A→ B), i.e., a 2 A and a 2 A→ B (clause iii). Then, (2) a∗ 2 A,

a 2 A, b � A, c 2 B for b, c ∈ K such that Rabc (clauses iv, v). By P8, (3)

b ≤ a or (4) b ≤ a∗. But if 3 is the case, b 2 A follows (2 and Lemma 2.12),

contradicting 2; and if 4 is the case, then we have a∗ � A (2 and Lemma

2.12), also contradicting 2. �

In the next section, we prove the completeness of BRM3 w.r.t. the

RM-semantics for this logic developed in the present section.

.3 Completeness of BRM3

We begin by defining some preliminary concepts necessary in order to define

the canonical model (cf. [14], Chapter 4).

Definition 3.1 (BRM3-theories). A BMR3-theory (theory, for short)

is a set of formulas closed under Adjunction (Adj) and BRM3-implication

(BRM3-imp). That is, a is a theory if whenever A,B ∈ a, A ∧ B ∈ a; and

if whenever A→ B is a theorem of BRM3 and A ∈ a, B ∈ a.

Definition 3.2 (Classes of theories). Let a be a theory. We set (1) a

is prime iff whenever A ∨B ∈ a, then A ∈ a or B ∈ a; (2) a is empty iff it

contains no wffs; (3) a is regular iff a contains all theorems of BRM3; (4)

a is trivial iff every wff belongs to it.

Next, the canonical model is defined.

Definition 3.3 (The canonical BRM3-model). Let KT be the set of

all theories and RT be defined on KT as follows: for all a, b, c ∈ KT and

wffs A,B, RTabc iff (A → B ∈ a & A ∈ b) ⇒ B ∈ c. Now, let KC be

the set of all non-trivial, non-empty prime theories and OC be the subset

of KC formed by the regular theories. On the other hand, let RC be the

restriction of RT to KC and ∗C be defined on KC as follows: for each

a ∈ KC , a∗ = {A | ¬A /∈ a}. Finally, �C is defined as follows: for any

a ∈ KC and wff A, a �C A iff A ∈ a. Then, the canonical model is the

structure (KC , OC , RC , ∗C ,�C).
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The canonical model for any extension S of BRM3 is defined in a similar

way but referring its items to S-theories.

Before proceeding into the completeness proof, let us note an important

fact.

Remark 3 (On canonical relevant models). There is an important fea-

ture distinguishing the canonical BRM3-model (and those for the extensions

of BRM3 considered in this paper) from the canonical models for standard

relevant logics such as E (the logic of entailment) or R (the logic of relevant

conditional). Namely, in the former, theories need to be non-empty and

non-trivial, unlike in the latter. This fact permeates the entire complete-

ness proof sharply distinguishing it from standard proofs for E, R or their

subsystems: each time a theory is built, one has to show that it contains

(and lacks) at least one wff. In this sense, A9 and A11 are essential. On the

other hand, the canonical model for BRM3 (and those for its extensions) is

differentiated from those (in the RM-semantics) for  Lukasiewicz’s 3-valued

logic  L3 (cf [11]) or 3-valued logic G3 L (cf. [9]), say, in the following re-

spect: unlike in BRM3 and its extensions included in RM3, non-triviality

is equivalent to weak consistency (absence of the negation of any theorem;

cf. [10] on this notion )in  L3 and G3 L. Actually, as shown in Proposition

A6, there are regular, non-trivial, prime theories containing the negation

of a theorem.

We proceed into the completeness proof. Firstly, a series of lemmas

is proved leaning on which it will be shown that the structure defined in

Definition 3.3 is indeed a BRM3-model.

Lemma 3.4 (Defining x for a, b in RT ). Let a, b be non-empty theories.

The set x = {B | ∃A[A → B ∈ a & A ∈ b]} is a non-empty theory such

that RTabx.

Proof. Assume the hypothesis of Lemma 3.4 and define x as indicated.

It is easy to show that x is a theory. Then, RTabx is immediate by definition

of RT (Definition 3.3). Moreover, x is non-empty. Let A ∈ a, B ∈ b. By

T4, A→ [B → (A ∨B)]. So, B → (A ∨B) ∈ a and thus, A ∨B ∈ x. �

Lemma 3.5 (Extending a in RTabc to a member in KC). Let a, b be

non-empty theories and c be a non-trivial prime theory such that RTabc.

Then, there is a non trivial (and non-empty) prime theory x such that a ⊆ x

and RTxbc.
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Proof. Given the hypothesis of Lemma 3.5, we can build a non-empty

prime theory x such that a ⊆ x and RTxbc, following [14], Chapter 4.

(The proof works for almost any logic including B+ —cf. Definition 2.5.)

Suppose now that x is trivial and let A ∈ b and B be an arbitrary wff. As

x is trivial, A → B ∈ x. Then, B ∈ c (RTxbc, A → B ∈ x, A ∈ b and

definition of RT —cf. Definition 3.3), contradicting the non-triviality of c.

�

Lemma 3.6 (Extending b in RTabc to a member in KC). Let a and b

be non-empty theories and c be a non-trivial prime theory such that RTabc.

Then, there is a non trivial (and non-empty) prime theory x such that b ⊆ x

and RTaxc.

Proof. Similarly as in the preceding lemma, we build a non-empty

prime theory x such that RTaxc. Suppose that x is trivial and let A ∈ a

and B be an arbitrary wff. By T5, A→ [¬A∨(¬A→ B)]. So, ¬A∨(¬A→
B) ∈ a, whence, by primeness of a, either (1) ¬A ∈ a or (2) ¬A→ B ∈ a.

Let us first consider case 2. As x is trivial, ¬A ∈ x. But then B ∈ c

(RTaxc, ¬A → B ∈ a, ¬A ∈ x and definition of RT ), contradicting the a-

consistency of c. Let us now examine case 1. Firstly, notice that A∧¬A ∈ a.

Then, B∨¬B ∈ a, by applying A10 (A∧¬A)→ (B∨¬B). By hypothesis,

B /∈ a, so ¬B ∈ a. By A11,¬B → [B ∨ (B → B)] is a theorem. Thus,

B ∨ (B → B)] ∈ a, that is, B → B ∈ a because B /∈ a. But B ∈ x for x

is trivial. Then, B ∈ c (RTaxc, B → B ∈ a, B ∈ x and definition of RT ),

contradicting the a-consistency of c. �

Lemma 3.7 below shows that the canonical relation ≤C is just set in-

clusion between non-trivial and non-empty prime theories.

Lemma 3.7 (≤C and ⊆ are coextensive). For any a, b ∈ KC , a ≤C b

iff a ⊆ b.

Proof. From left to right, it is immediate. So, suppose a ⊆ b for

a, b ∈ KC . Clearly, RTBRM3aa (cf. Definition 3.1 and Definition 3.3).

Then, by using Lemma 3.5, there is some regular non-trivial theory x such

that BRM3 ⊆ x and RCxaa. By the hypothesis RCxab, i.e., a ≤C b, since

x ∈ OC . �

Lemma 3.8 (Primeness of ∗-images). Let a be prime theory. Then,

(1) a∗ is a prime theory as well; (2) for any wff A, ¬A ∈ a∗ iff A /∈ a.
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Proof. (Cf. [14], Chapter 4.) (1) a∗ is closed under BRM3-imp by

Con; a∗ is closed under Adj by T3; a∗ is prime by T2. (2) By A7 and A8.

�

Lemma 3.9 (∗C is an operation on KC). Let a be a non-trivial and

non-empty prime theory. Then, a∗ is a non-trivial and non-empty prime

theory as well.

Proof. By Lemma 3.8(1), a∗ is a prime theory. Next, it is shown that

if a is non-trivial and non-empty, then a∗ is also non-trivial and non-empty.

(1) a∗ is non-empty: as a is non-trivial, there is some wff A such that A /∈ a.

Then, ¬A ∈ a∗ by Lemma 3.8(2). (2) a∗ is non-trivial. As a is non-empty,

there is some wff A such that A ∈ a. Then, ¬A /∈ a∗ by Lemma 3.8(2). �

Concerning Lemma 3.9, we note the following remark.

Remark 4 (∗C is not an operation on OC). The canonical operation

∗C is not an operation on OC : a would have to be weak consistent in order

to prove that a∗ is regular (cf. Remark 3).

In what follows, we prove the following two facts: (1) postulates P1-P8

hold in the canonical model; and (2) �C is a (valuation) relation satisfying

clauses i-v in Definition 3.3.

Lemma 3.10 (P1-P8 hold canonically). Postulates P1-P8 hold in the

canonical BRM3-model.

Proof. The use of Lemma 3.7 will greatly simplify the proof. By

leaning on this lemma, P1-P5 are proved similarly as in [14], Chapter 4.

So, let us prove P6, P7 and P8. We proceed by ‘reductio ad absurdum’.

P6 (RCabc⇒ (a ≤C c or b ≤C c)) holds in the canonical BRM3-model:

suppose that there are a, b, c ∈ KC and wffs A,B such that (1) RCabc but

(2) A ∈ a, A /∈ c, B ∈ b and B /∈ c. By T4, (3) A → [B → (A ∨ B)]. So,

we have (4) B → (A∨B) ∈ a (by 2, 3) and (5) A∨B ∈ c (by 1, 2, 4). But

5 contradicts 2.

P7 (a ≤ a∗ or a∗ ≤ a) holds in the canonical RM3-model: suppose there

is a ∈ KC and wffs A,B such that (1) A ∈ a, A /∈ a∗ (i.e., ¬A ∈ a), B ∈ a∗

(i.e., ¬B /∈ a) and B /∈ a. By A10, (2) (A ∧ ¬A)→ (B ∨ ¬B). So, we have

(3) B ∨ ¬B ∈ a (by 1). But 3 contradicts 1.
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P8 (RCabc ⇒ (b ≤C a or b ≤C a∗)) holds in the canonical BRM3–

model: suppose that there are a, b, c ∈ KC and wffs A, B such that (1)

RCabc but (2) A ∈ b, A /∈ a, B ∈ b and B /∈ a∗ (i.e., ¬B ∈ a). By A11,

(3) ¬B → [B ∨ (B → C)] for arbitrary wff C. Then, (4) B ∨ (B → C) ∈ a

(by 2, 3) whence (5) B ∈ a or (6) B → C ∈ a. Let us consider the second

alternative, 6. By applying the definition of RC to 1, 2 (B ∈ b) and 6, we

have (7) C ∈ c, contradicting the non-triviality of c. So, let us consider the

first alternative, 5. We have (8) B∧¬B ∈ a (by 2, 5), whence (9) A∨¬A ∈ a

follows by A10 (B ∧ ¬B) → (A ∨ ¬A). Now, (10) ¬A ∈ a for A /∈ a by 2.

Next, again by A11, we have (11) ¬A→ [A∨ (A→ C)] for arbitrary wff C.

So, (12) A ∨ (A→ C) ∈ a and, since A /∈ a, then (13) A→ C ∈ a. Finally,

by 1, 2 and (13), C ∈ c, contradicting the non-triviality of c. �

Before showing that the clauses hold canonically, we prove the primeness

lemma.

Lemma 3.11 (Extension to prime theories). Let a be a theory and A

a wff such that A /∈ a. Then, there is a prime theory x such that a ⊆ x and

A /∈ x.

Proof. Cf. [14], Chapter 4, where it is shown how to proceed in an

ample class of logics including the logic B+ (cf. Definition 2.5). �

Lemma 3.12 (Clauses i-v hold canonically). Clauses i-v in Definition

2.9 are satisfied by the canonical BRM3-model.

Proof. Clause i is immediate by Lemma 3.7 and clauses ii, iii and iv

from left to right are very easy. So, let us prove iv from right to left. For

wffs A, B and a ∈ KC , suppose A → B /∈ a (i.e., a 2C A → B). We

prove that there are x, y ∈ KC such that RCaxy, A ∈ x (i.e., x �C A)

and B /∈ y (i.e., y 2C B). Consider the sets z = {C |`BRM3 A → C} and

u = {C | ∃D[D → C ∈ a & D ∈ z]}. They are theories such that RTazu.

Now, A ∈ z (by A1) and B /∈ u (if B ∈ u, then A → B ∈ a, contradicting

the hypothesis). So, z is non-empty and u is non-trivial. Moreover, u is

non-empty by Lemma 3.4. Now, by applying Lemma 3.11, u is extended to

a non-trivial, non-empty prime theory y such that u ⊆ y, B /∈ y and RTazy.

Next, by using Lemma 3.6, z is extended to a non-trivial, non-empty prime

theory x such that z ⊆ x and RCaxy. Clearly, A ∈ x. Therefore, we have
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non-trivial and non-empty prime theories x, y such that A ∈ x, B /∈ y and

RCaxy, as was to be proved. �

After showing that the canonical model is indeed a model, we finally

prove completeness.

Lemma 3.13 (The canonical model is in fact a model). The canonical

BRM3-model is in fact a BRM3-model.

Proof. Since RC is clearly a ternary relation on KC , ∗C is an operation

on KC (Lemma 3.9) and KC is non-empty (Lemma 3.11: BRM3 is non-

empty and non-trivial), Lemma 3.13 follows by Lemma 3.10 and 3.12. �

Theorem 3.14 (Completeness of BRM3). For each wff A, if �BRM3 A,

then `BRM3 A.

Proof. Suppose 0BRM3 A. By Lemma 3.11, there is a non-trivial, non-

empty prime theory x such that BRM3 ⊆ x and A /∈ x. By Definition 3.3

and Lemma 3.13, x 2C A. Therefore, 2BRM3 A by Definition 2.11. �

.4 Extensions of BRM3 included in RM3

In this section, we provide an RM-semantics for a wealth of extensions of

BRM3 included in the logic RM3 among which RM3 itself is to be found.

Consider the theses recorded in the following proposition.

Proposition 4.1 (Theses provable in RM3). The theses and the rule

that follow are derivable in RM3. (In some cases some equivalent (w.r.t.
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BRM3) variants are remarked):

t1. (A→ B)→ [(B → C)→ (A→ C)]

t2. (B → C)→ [(A→ B)→ (A→ C)]

t3. [(A→ B) ∧ (B → C)]→ (A→ C)

t4. [A ∧ (A→ B)]→ B ( = ¬B → [¬A ∨ ¬(A→ B)])

t5. [A→ (A→ B)]→ (A→ B) ( = [A→ (B → C)]→ [(A ∧B)→ C])

t6. [A→ (B → C)]→ [(A→ B)→ (A→ C)]

t7. (A→ B)→ [[A→ (B → C)]→ (A→ C)]

t8. A⇒ (A→ B)→ B

t9. (A→ B)→ [[A ∧ (B → C)]→ C]

t10. (A ∧B)→ [[A→ (B → C)]→ C] ( = A→ [[A→ (A→ B)]→ B])

t11. [A ∧ (B → C)]→ [(A→ B)→ C)]

t12. A→ [(A→ B)→ B]

t13. [A→ (B → C)]→ [B → (A→ C)]

t14. B → [[A→ (B → C)]→ (A→ C)]

t15. (A→ B) ∨ (B → A)

t16. [(A ∧B)→ C]→ [(A→ C) ∨ (B → C)]

t17. [A→ (B ∨ C)]→ [(A→ B) ∨ (A→ C)]

t18. A ∨ (A→ B)

t19. (A→ B)→ (¬B → ¬A) ( = (A→ ¬B)→ (B → ¬A) =

(¬A→ B)→ (¬B → A) = (¬A→ ¬B)→ (B → A))

t20. ¬(A ∧ ¬A) ( = A ∨ ¬A)

t21. (A ∧ ¬B)→ ¬(A→ B) ( = (A→ B)→ (¬A ∨B))

t22. [(A→ B) ∧ ¬B]→ ¬A ( = A→ [B ∨ ¬(A→ B)])

t23. (¬A ∧B)→ (A→ B) ( = ¬(A→ B)→ (A ∨ ¬B))

t24. ¬(A→ B)→ (B → A)

t25. ¬A→ [¬B ∨ (A→ B)]

t26. (A ∨ ¬B) ∨ (A→ B)

t27. ¬A ∨ (B → A)

t28. A ∨ [A→ (B ∨ ¬B)]

t29. [¬(A→ B) ∧B]→ ¬B ( = B → [¬B ∨ (A→ B)])

t30. B → [(A ∧ ¬A)→ B]
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Proof. By the matrix MRM3 (cf. Definition 2.4): t8 preserves RM3–

validity and t1-t7, t9-t30 are RM3-valid. �

On the other hand, we have:

Proposition 4.2 (t1-t30 are not provable in BRM3). Theses t1-t30 are

not provable in BRM3.

Proof. See the appendix. �

Let now S be an extension of BRM3 axiomatized by any selection of

t1-t30. The aim of this section is to define an RM-semantics for S. The key

concept is “corresponding postulate (cp) to a thesis or rule”, which can be

rendered as follows (cf. [14], p. 301).

Definition 4.3 (Corresponding postulate —cp). Let ti be any of t1-

t30, and let pj be a semantical postulate. Then, given the logic BRM3

and BRM3-models, pj is the cp to ti iff (1) ti is true in any BRM3-model

in which pj holds; and (2) pj holds in the canonical BRM3-model if ti is

added as an axiom (or rule) to BRM3.

It must be clear that if, given the logic BRM3 and BRM3-semantics,

pj is the cp to ti, then the logic BRM3 + ti (i.e., BRM3 plus ti) is sound

and complete w.r.t. BRM3-models (i.e., BRM3-models where pj holds).

Given a BRM3-model M, consider the following definition and semanti-

cal postulates for all a, b, c, d ∈ K with quantifiers ranging over K (in some

cases, some equivalent (w.r.t. BRM3-models) variants are remarked):

d2. R2abcd =df ∃x(Rabx & Rxcd)

Pt1. R2abcd⇒ ∃x(Racx & Rbxd)

Pt2. R2abcd⇒ ∃x(Rbcx & Raxd)

Pt3. Rabc⇒ ∃x(Rabx & Raxc)

Pt4. Raaa ( = Ra∗a∗a∗)

Pt5. Rabc⇒ R2abbc

Pt6. R2abcd⇒ ∃x, y(Racx & Rbcy & Rxyd)

Pt7. R2abcd⇒ ∃x, y(Racx & Rbcy & Ryxd)
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Pt8. (∃x ∈ O) Raxa

Pt9. Rabc⇒ ∃x(Rabx & Rbxc)

Pt10. Rabc⇒ R2baac

Pt11. Rabc⇒ ∃x(Rbax & Raxc)

Pt12. Rabc⇒ Rbac

Pt13. R2abcd⇒ R2acbd

Pt14. R2abcd⇒ R2bcad

Pt15. (a ∈ O & Rabc & Rade)⇒ (b ≤ e or d ≤ c)

Pt16. (Rabc & Rade)⇒ ∃x[b ≤ x & d ≤ x & (Raxc or Raxe)]

Pt17. (Rabc & Rade)⇒ ∃x[x ≤ c & x ≤ e & (Rabx or Radx)]

Pt18. (a ∈ O & Rabc)⇒ b ≤ a

Pt19. Rabc⇒ Rac∗b∗

Pt20. a ∈ O ⇒ a ≤ a∗ ( = a ∈ O ⇒ a∗ ≤ a∗∗)

Pt21. Raa∗a ( = Ra∗aa∗)

Pt22. Ra∗aa ( = Raa∗a∗)

Pt23. Rabc⇒ (a ≤ c or b ≤ a∗)

Pt24. (Rabc & Ra∗de)⇒ (b ≤ e or d ≤ c)]

Pt25. Rabc⇒ (b ≤ a∗ or a∗ ≤ c)

Pt26. (a ∈ O & Rabc)⇒ (a∗ ≤ c or b ≤ a)

Pt27. (a ∈ O & Rabc)⇒ a∗ ≤ c

Pt28. Rabc⇒ (b ≤ a or c∗ ≤ c)

Pt29. Ra∗bc⇒ (a ≤ c or a∗ ≤ c)

Pt30. Rabc⇒ (a ≤ c or b ≤ b∗)

We have the following proposition:

Proposition 4.4 (Corresponding postulates to t1-t30). Given the logic

BRM3 and BRM3-models, ptk is the corresponding postulate (cp) to tk

(1 ≤ k ≤ 30).

Proof. The proof is similar to that provided in [14], Chapter 4, for

extensions of Routley and Meyer’s basic logic B (cf. Definition 2.5). Actu-

ally, t1-t8, t12, t13, t15, t16, t18, t19-t21 and t24 are among the theses and
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rules considered in [14]. However, notice that, as it was remarked above

(cf. Remark 3), any new theory introduced has to be shown non-empty and

non-trivial. Consequently, most of the proofs in [14] have to modified in the

context of the present paper. Nevertheless, the required modifications are

easy to get by using Lemmas 3.4-3.7, as actually shown above in the case

of postulates P6, P7 and P8. Anyway, let us prove a couple of examples

(we follow the pattern set on in Theorem 2.14 and Lemma 3.10).

(a) pt11 is the cp to t11. (ai) t11 is true in any BRM3 + pt11-model :

suppose that there is a ∈ K in some BRM3 + pt11-model and wffs A, B

such that (1) a � A ∧ (B → C) but (2) a 2 (A → B) → C. Then, (3)

a � A, a � B → C (clause ii, 1) and (4) b � A → B, c 2 C for b, c ∈ K

such that Rabc in this model (clause iv, 2). By pt11, we have (5) Rbax

and (6) Raxc for some x ∈ K. Then, we get (7) x � B (3, 4, 5, clause iv)

and, finally, (8) c � C (3, 6, 7, clause iv), contradicting 4. (aii) pt11 holds

in the canonical BRM3 + t11-model : for a, b, c ∈ KC , suppose (1) RCabc.

Consider now the following set y = {B | ∃A[A → B ∈ b & A ∈ a]}. By

Lemma 3.4, y is a non-empty theory such that (2) RT bay. Next, we show

that RTayc holds. Suppose (3) A → B ∈ a and (4) A ∈ y for wffs A, B.

We have to show that B ∈ c. By definition of y, we have (5) C → A ∈ b for

some wff C such that (6) C ∈ a. By t11, [C ∧ (A→ B)]→ [(C → A)→ B]

is a theorem. So, (7) (C → A)→ B ∈ a since C ∧ (A→ B) ∈ a (by 3, 6).

Then, (8) B ∈ c (by 1, 5, 7). Thus, we have a non-empty theory y such

that (9) RT bay and RTayc. By Lemma 3.6, y is extended to a non-trivial,

non-empty prime theory x such that y ⊆ x and RCaxc. Obviously, RCbax.

Therefore, we have x ∈ KC such that RCbax and RCaxc, as it was to be

proved.

(b) pt26 is the cp to t26. (bi) t26 is true in any BRM3 + pt26-model :

suppose that there is a ∈ O in some BRM3 + pt26-model and wffs A, B

such that (1) a 2 (A ∨ ¬B) ∨ (A → B), i.e., (2) a 2 A, (3) a∗ � B (i.e.,

a 2 ¬B by clause v) and (4) a 2 A→ B by applying clause iii to 1. Then,

(5) b � A and c 2 B for b, c ∈ K such that Rabc in this model (by clause

iv in 4). By pt26, (6) a∗ ≤ c or (7) b ≤ a. Suppose 6. Then, (8) c � B (by

3), contradicting 5. On the other hand, suppose 7. Then, (9) a � A (by

5), contradicting 2. (bii) pt26 holds in the canonical BRM3 + t26-model :

suppose that there are a ∈ OC and b, c ∈ KC and wffs A, B, C such that

(1) RCabc but (2) A ∈ a∗ (i.e., ¬A /∈ a by clause v), A /∈ c, B ∈ b and

B /∈ a. By t26, (3) (B ∨¬A)∨ (B → A) ∈ a. So, (4) B → A ∈ a follows by



THE QUASI-RELEVANT 3-VALUED LOGIC RM3 123

2 and 3. Finally, (5) A ∈ c (by 1, 2 and 4), contradicting 2. �

The section is ended by defining a general Routley-Meyer semantics for

RM3.

As pointed out in the appendix, following Anderson and Belnap, RM3

can be axiomatized by adding A9 (A→ (A→ A)) and t18 (A ∨ (A→ B))

to the logic of relevance R (cf. [1], pp. 469, ff.). Now, a model for R can

be defined as follows (cf. [14], Chapter 4).

Definition 4.5 (R-models). An R-model is structure (K,O,R, ∗,�)

where K,O,R, ∗ and � are defined similarly as in B-models (cf. Remark 2),

save for the addition of the following semantical postulates: pt1 (R2abcd⇒
∃x(Racx & Rbxd)), pt5 (Rabc⇒ R2abbc), pt12 (Rabc⇒ Rbac) and pt19

(Rabc⇒ Rac∗b∗).

Then, an RM3-model is defined as follows:

Definition 4.6 (RM3-models 1). An RM3-model is defined similarly

as an R-model, save for the addition of postulates: pt6 (Rabc⇒ (a ≤ c or

b ≤ c)) and pt18 ((a ∈ O & Rabc)⇒ b ≤ a).

But, on the other hand, following Brady, RM3 can be axiomatized as an

extension of the logic DW with the following axioms: A11, t4, t21 and t23

(cf. [2]; cf. the appendix). So, RM3-models can alternatively be defined as

follows (firstly, DW-models are defined).

Definition 4.7 (DW-models). A DW-model is defined similarly as a B-

model (cf. Remark 2), except that P5 is changed for pt19 (Rabc⇒ Rac∗b∗).

Definition 4.8 (RM3-models 2). An RM3-model is defined similarly as

a DW-model, save for the addition of the following semantical postulates:

P8 (Rabc ⇒ (b ≤ a or b ≤ a∗)), pt4 (Raaa), pt21 (Raa∗a) and pt23

(Rabc⇒ (a ≤ c or b ≤ a∗)).

Notice that in Definition 4.5 and 4.6, postulate P5 is derivable imme-

diately by pt19. Also, remark that P7 is not necessary in Definitions 4.6

and 4.8, since A10 is, of course, derivable in RM3 and P7 is the cp to A10

w.r.t. B-models (cf. Remark 2 and Lemma 3.10).
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.5 Conclusions

In this paper, we have provided an RM-semantics for an ample family of

sublogics of RM3 including the basic logic BRM3. Actually, in Section 4,

it has been shown that each one of t1-t30 can be added to BMR3 indepen-

dently, the resulting logic being characterized by an RM-semantics. And,

as pointed out in the introduction to this paper, these logics can be use-

ful when “some relevance”, but not the full vsp, is needed. Nonetheless,

we have not paused to discuss neither BRM3 nor any of its extensions.

So, future work on the topic could focus on this question or on proposing

alternative extensions of BRM3 not defined in this paper. On our part,

we will close these brief considerations by remarking that the matrices in

section 2 in the appendix provide a rough first selection of sublogics of

RM3. Thus, for example, M3 shows (when 1 is designated in addition to

2) that the characteristic axioms of RM3 (A9 and A11 together with A10)

can be added to ticket entailment logic, T (minus the reductio axiom t21,

but with the ‘Principium of tertium non datur’, t20), without the result

collapsing in RM3 (T is axiomatized when dropping t12 and adding t2 to

the formulation of R in Definition A3 in the appendix).

.A. Appendix

A.1. Independence in BRM3

The following matrices show that A7, A8, A9, A10, A11 and Con are in-

dependent of each other, given the logic B+ (cf. Proposition 2.5 on the logic

B+; cf. Definitions 2.2, 2.3 on the notion of a logical matrix. Designated

values are starred):

Matrix I. Independence of A7:

→ 0 1 ¬
0 1 1 0

*1 0 1 0

∧ 0 1

0 0 0

*1 0 1

∨ 0 1

0 0 1

*1 1 1

Falsifies A7 (A = 1).

Matrix II. Independence of A8:
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Same set as in matrix I (the positive classical truth tables), save for the

table for negation which is now as follows:

¬
0 1

*1 1

Falsifies A8 (A = 0).

Matrix III. Independence of Con:

→ 0 1 2 3 4 ¬
0 4 4 4 4 4 4

1 2 3 2 3 4 2

2 1 1 3 3 4 1

*3 0 1 2 3 4 3

*4 0 0 0 0 4 0

∧ 0 1 2 3 4

0 0 0 0 0 0

1 0 1 0 1 1

2 0 0 2 2 2

*3 0 1 2 3 3

*4 0 1 2 3 4

∨ 0 1 2 3 4

0 0 1 2 3 4

1 1 1 3 3 4

2 2 3 2 3 4

*3 3 3 3 3 4

*4 4 4 4 4 4

Falsifies Con (A = 1, B = 3).

Matrix IV. Independence of A9:

→ 0 1 2 ¬
0 2 2 2 2

*1 0 1 1 1

*2 0 0 1 0

∧ 0 1 2

0 0 0 0

*1 0 1 1

*2 0 1 2

∨ 0 1 2

0 0 1 2

*1 1 1 2

*2 2 2 2

Falsifies A9 (A = 2).

Matrix V. Independence of A10:

→ 0 1 2 3 ¬
0 3 3 3 3 3

1 0 3 0 3 1

*2 0 0 2 3 2

*3 0 0 0 3 0

∧ 0 1 2 3

0 0 0 0 0

1 0 1 0 1

*2 0 0 2 2

*3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3

1 1 1 3 3

*2 2 3 2 3

*3 3 3 3 3

Falsifies A10 (A = 2, B = 1).

Matrix VI. Independence of A11:

The tables for ∧, ∨, ¬ are as in Matrix IV, but the conditional table is

as follows:
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→ 0 1 2

0 1 1 2

*1 0 1 2

*2 0 0 2

Falsifies A11 (A = B = 0).

A.2. t1-t30 are not provable in BRM3

We prove that t1-t30 are not derivable in BRM3. We shall use eight

matrices. Each one of them verifies BRM3 and falsifies some subset of

t1-t30 (designated values are starred).

Matrix M1:

The tables for ∧, ∨, ¬ are as in Matrix IV in the preceding section, but

the conditional table is as follows:

→ 0 1 2

0 2 2 2

1 1 2 2

*2 0 0 2

Falsifies t1 (A = 1, B = C = 0); t2 (A = B = 1, C = 0); t4 (A = 1,

B = 0); t5 (A = 1, B = 0); t6 (A = B = 1, C = 0); t7 (A = B = 1, C = 0);

t9 (A = B = 1, C = 0); t19 (A = 1, B = 0); t20 (A = 1); t27 (A = 1,

B = 2).

Matrix M2:

The tables for ∧, ∨, ¬ are as in M1, but the conditional table is the

following:

→ 0 1 2

0 2 2 2

1 1 2 2

*2 0 1 2

Falsifies t3 (A = 2, B = 1, C = 0).

Matrix M3:

The tables for ∧, ∨, ¬ are as in M1, but the conditional table is as

follows:
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→ 0 1 2

0 2 2 2

*1 0 2 2

*2 0 0 2

Falsifies t8 (A = B = 1); t10 (A = B = C = 1); t11 (A = B = C = 1);

t12 (A = B = 1); t13 (A = 2, B = C = 1); t14 (A = 2, B = C = 1); t18

(A = 1, B = 0); t21 (A = B = 1).

Matrix M4:

The tables for ∧, ∨, ¬ are as in M1, but the conditional table is the

following:

→ 0 1 2

0 2 2 2

1 0 2 2

*2 0 1 2

Falsifies t22 (A = 2, B = 1).

Matrix M5:

→ 0 1 2 3 ¬
0 3 3 3 3 3

1 2 3 3 3 2

2 0 0 3 3 1

*3 0 0 0 3 0

∧ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 2 2

*3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3

*3 3 3 3 3

Falsifies t23 (A = 2, B = 1); t26 (A = 2, B = 1); t29 (A = 3, B = 2).

Matrix M6:

→ 0 1 2 3 4 ¬
0 4 4 4 4 4 4

1 3 4 4 4 4 3

2 0 0 4 4 4 2

3 0 0 0 4 4 1

*4 0 0 0 0 4 0

∧ 0 1 2 3 4

0 0 0 0 0 0

1 0 1 1 1 1

2 0 1 2 2 2

3 0 1 2 3 3

*4 0 1 2 3 4

∨ 0 1 2 3 4

0 0 1 2 3 4

1 1 1 2 3 4

2 2 2 2 3 4

3 3 3 3 3 4

*4 4 4 4 4 4

Falsifies t28 (A = 3, B = 2); t30(A = 2, B = 1).
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Matrix M7:

→ 0 1 2 3 4 5 ¬
0 5 5 5 5 5 5 5

1 4 5 5 5 5 5 4

2 3 3 5 3 5 5 3

3 2 2 2 5 5 5 2

4 1 1 2 3 5 5 1

*5 0 0 0 0 0 5 0

∧ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 1 1 1 1

2 0 1 2 1 2 2

3 0 1 1 3 3 3

4 0 1 2 3 4 4

*5 0 1 2 3 4 5

∨ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 1 2 3 4 5

2 2 2 2 4 4 5

3 3 3 4 3 4 5

4 4 4 4 4 4 5

*5 5 5 5 5 5 5

Falsifies t15 (A = 3, B = 2); t16 (A = 3, B = 2, C = 1); t17 (A = 4,

B = 3, C = 2).

Matrix M8:

→ 0 1 2 3 4 5 6 ¬
0 6 6 6 6 6 6 6 6

1 5 6 5 6 6 6 6 5

2 4 4 6 6 6 6 6 4

3 3 4 5 6 6 6 6 3

4 0 0 0 0 6 0 6 2

5 0 0 0 0 0 6 6 1

*6 0 0 0 0 0 0 6 0

∧ 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 0 1 1 1 1

2 0 0 2 2 2 2 2

3 0 1 2 3 3 3 3

4 0 1 2 3 4 3 4

5 0 1 2 3 3 5 5

*6 0 1 2 3 4 5 6

∨ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 1 3 3 4 5 6

2 2 3 2 3 4 5 6

3 3 3 3 3 4 5 6

4 4 4 4 4 4 6 6

5 5 5 5 5 6 5 6

*6 6 6 6 6 6 6 6

Falsifies t24 (A = 5, B = 4); t25 (A = 5, B = 4).
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A.3. Axiomatization of RM3

We record the formulations of RM3 provided in [1] and in [2], respec-

tively.

Definition A.1 (The logic DW). The logic DW is axiomatized when

changing the rule Con for t19 in the formulation of Routley and Meyer’s

logic B (cf. Definition 2.5; Proposition 4.1; cf. [6] about DW and other

weak relevant logics).

Definition A.2 (Brady’s axiomatization of RM3). RM3 can be axiom-

atized by adding to DW the following axioms: A11, t4, t21 and t23 (cf. [2];

cf. Proposition 4.1).

Definition A.3 (The logic R). Anderson and Belnap’s logic of rele-

vance R can be axiomatized with the following axioms and rules: A1, A2,

A3, A4, A5, A6, A7, A8, t1, t5, t12, t19, MP and Adj (cf. [1]; Definition

2.5; Proposition 4.1).

Definition A.4 (Anderson and Belnap’s axiomatization of RM3). Ac-

cording to Anderson and Belnap (cf. [1], p. 469, ff.), RM3 can be ax-

iomatized by adding to R the following axioms: t18 (A ∨ (A → B)) and

A→ (¬A→ A).

Now, A → (¬A → A) and A9 (A → (A → A)) are easily shown

equivalent, given R. So, RM3 can be axiomatized by adding A9 and t18 to

R. Moreover, since t18 is immediate given R and A11 (¬A → [A ∨ (A →
B)]), RM3 can be axiomatized by adding A9 and A11 to R.

A.4. RM3 has the quasi-relevance property

We prove:

Proposition A.5 (RM3 is quasi-relevant). If A → B is a theorem of

RM3, then either (1) A and B share at least a propositional variable or (2)

both ¬A and B are theorems.

Proof. Suppose that A → B is a theorem of RM3, but A and B

do not share propositional variables and either 0RM3 ¬A or 0RM3 B. By

completeness w.r.t. MRM3-validity (cf. [2]), 2MRM3 ¬A or 2MRM3 B.
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Then, there are MRM3-interpretations I and I ′ such that I(¬A) = 0 or

I ′(B) = 0, that is, I(A) = 2 or I ′(B) = 0. Suppose (1) I(A) = 2. Let

I ′′ be exactly as I except that for each propositional variable pi in B,

I ′′(pi) = I ′(pi). Clearly, I ′′(B) = 0 and I ′′(A) = 2 since A and B do no

share propositional variables. Thus, I ′′(A→ B) = 0, whence 0RM3 A→ B

by soundness w.r.t. MRM3-validity (cf. [2]), contradicting the hypothesis.

Case (2) (I ′(B) = 0) is treated similarly. Consequently, we can conclude

that RM3 has the quasi-relevance property. �

A.5. There are weak-consistent theories that are non-trivial

Let S be any extension of BRM3 included in or equivalent to RM3. We

prove:

Proposition A.6 (w-inconsistent S-theories that are non-trivial). There

are regular, prime, w-inconsistent S-theories that are, nevertheless, non-

trivial.

Proof. Let pi, pm be propositional variables and consider the set y =

{B | ∃A[`S A & `S [A∧¬(pi → pi)]→ B]}. It is easy to prove that y is an

S-theory. Moreover, it is regular; but y is w-inconsistent: ¬(pi → pi) ∈ y.

So, y is inconsistent in the standard sense. Anyway, y is not trivial: for

any theorem A of RM3, [A ∧ ¬(pi → pi)]→ pm is falsified by any MRM3-

interpretation I such that I(pi) = 1 and I(pm) = 0. (Recall that if A is

a theorem of RM3, I(A) = 1 or I(A) = 2 for any MRM3-interpretation

I. Cf. Definitions 2.3, 2.4.) Consequently, for any theorem A of RM3,

[A∧¬(pi → pi)]→ pm is not provable in RM3 (by soundness of RM3 w.r.t.

MRM3, cf. [2]). Therefore, for any theorem A in S, [A∧¬(pi → pi)]→ pm
is not provable in S. Thus, pm /∈ S, and then S is not trivial. Finally, y

is extended to the required regular, non-trivial and prime theory, by using

Lemma 3.11. �
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