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A bstract. Weintroduce the variety of Hilbert algebras with a
modal operator [, called H-algebras. The variety of H[J-alge-
bras is the algebraic counterpart of the {—, O}-fragment of the
intuitionitic modal logic IntK5. We will study the theory of
representation and we will give a topological duality for the va-
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that the basic implicative modal logic Int K and some axiomatic
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ple and subdirectly irreducible algebras in some subvarieties of
H-algebras.
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1. Introduction

We understand by an intuitionistic modal logic any subset of formulas in
a propositional language £, endowed with a set of unary modal operators
M containing all the theorems of intuitionistic propositional logic Int, and
closed under the rules of Modus Ponens, substitution and the regularity rule
¢ — a/meo — ma, for each unary operator m € M. In the literature exist
several intuitionistic modal logics. There are logics with a necessity modal
operator [, as the basic intuitionistic modal logic IntKp (see [19] or [26]).
Extensions of IntKp was studied in [16], [19], [20], and [22]. Also we have
a basic intuitionistic modal logic IntK, in the language L, and defined
as the smallest logic to contains the axioms ¢(p V q) <> Op V Qg and =) L.
Extensions of IntK( was studied in [12], [19], [20], and [26]. We can also
define a logic IntKp, with the modal operators [J and ¢, as the smallest
logic in the language Lo containing both IntKp and IntK. Extensions
of IntKp, was studied in [1], [2], [14], [13], [19], and [20]. Just as Heyting
algebras are the algebraic counterpart of Int, Heyting algebras with modal
operators are the algebraic counterpart of the intuitionictic modal logics
IntKp, IntK, and IntKpq.

It is known that the variety Hil of Hilbert algebras is the algebraic
semantic of the positive implicative fragment Int™ of the intuitionistic
propositional calculus Int (see [11], [18] or [24]). So, it is natural to ask
for the implicative reducts of some intuitionistic modal logics. Again here
we have multiple possibilities. For example, we can studied the fragments
{—,0} and {—, V, O} of the intuitionistic modal logics IntKg and IntKy,
respectively. Another interesting possibility is to study some {—,V, [, 0 }-
fragments of IntKn,, or the intuitionitic modal logic FSny defined by
Fischer-Servi in [14]. In this paper we will start studying the algebraic
semantic of the {—,O}-fragment of the intuitionistic normal modal logic
IntKp. This fragment is denoted by Int K. The class of algebras associate
with IntK7 is the variety Hilg of Hilbert algebras with a necessity modal
operator [1. We note that the variety of modal Tarski algebras studied in
[5] is the algebraic semantics of the {—, [0}-fragment of the classical modal
logic K, and thus is a subvariety of Hilg.

The paper is organized as follows. In Section 2 we will recall the defi-
nitions and some basic properties of Hilbert algebras and we will recall the
topological representation and duality for Hilbert algebras developed in [9].
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Also, we will recall the relational semantic of the implicational fragment
of intuitionistic logic defined by R. Kirk in [21]. In Section 3 we will in-
troduce the Hilbert algebras with a unary operator [, or H[l-algebras for
short. We will develop the topological representation and duality for H[J-
algebras using the simplified representation given in [9]. In Section 4 we
shall characterize the H[J-algebras that satisfy certain equations by means
of first-order conditions defined in the dual space. Each of these varieties
corresponds to an axiomatic extension of Int K. In Section 5 we will show
that some implicational modal logics are canonical. Finally, in Section 6,
we shall determine the simple and subdirectly irreducible algebras of some
varieties of H[J-algebras.

2. Preliminaries

In this section we will fix the terminology adopted in this paper.

Definition 2.1. [11] A Hilbert algebra is an algebra A = (A, —,1) of
type (2,0) such that the following axioms hold in A:

l.a—a=1,

2. 1> a=a,

3. a—=(b—c)=(a—b)—(a—c),

4. (@a—=b) = ((b—a) = a)=(b—a)— ((a— b) — b).

The variety of Hilbert algebras is denoted by Hil. It is easy to see that
the binary relation < defined in a Hilbert algebra A by a < b if and only if
a — b =1 is a partial order on A with greatest element 1.

Given a Hilbert algebra A and a sequence a,ayq,...,a, € A, we define:
(a s ) = a1 — a if n=1,
Do S 8 a; — (ag,...,ap;a) if n>1.

A subset F' C A is an implicative filter or deductive system of A if
1€ F,and if a,a — b € F then b € F. The set of all implicative filters of
a Hilbert algebra A is denoted by Fi(A). The implicative filter generated
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by a set X is (X) = ﬂ{F € Fi(A): X C F}. If X = {a}, then we write
(a) = {b € A:a<b}. The implicative filter generated by a subset X C A
can be characterized as the set

(Xy={acA:3{a1,...,an} C X : (a1,...,ap;a) =1}.

Let F € Fi(A) — {A}. We will say that F' is irreducible if and only if
for any Fi, Fy € Fi(A) such that F' = Fy N Fy, it follows that F' = F} or
I = F5. The set of all irreducible implicative filters of a Hilbert algebra A
is denoted by X (A). Let us recall that an implicative filter F' is irreducible
iff for every a,b € A such that a,b ¢ F there exists ¢ ¢ F such that a,b < ¢
(see [4], [11] or [24]). A subset I of A is called an order-ideal of A if b€ I
and a < b, then a € I, and for each a,b € I there exists ¢ € I such that
a < c and b < c¢. The set of all order-ideals of A will denoted by Id(A).

The following is a Hilbert algebra analogue of Birkhoff’s Prime Filter
Lemma and it is proved in [6]. We note that in [21] is used a similar theorem
(see also [27]), but with the notion of a-maximal filter. It is not difficult
to check that every a-maximal filter is irreducible, but the converse is not
generally valid.

Theorem 2.2. Let A be a Hilbert algebra. Let F € Fi(A) and let
I € 1d(A) such that F NI = (. Then, there exists v € X(A) such that
FCxandxznI=0.

A bounded Hilbert algebra is a Hilbert algebra A with an element 0 € A
such that 0 — a = 1, for every a € A. The notation —a means ¢ — 0. The
variety of bounded Hilbert algebras is denoted by Hil®.

Lemma 2.3. Let A € Hil’. Then,
1. If a € x, then —a ¢ x, for every v € X(A).

2. If —a ¢ y then there exists v € X(A) such that y C x and a € x, for
ally € X(A).

Proof. (1) Suppose that —a € z. So, a — 0 € z. As a € z, we get that
0 € z, which is impossible because z is a proper implicative filter. (2) This
is an immediate consequence of Theorem 2.2. O

For a partially ordered set (X, <) and Y C X, let

Y)={zeX:JyeY :y<azx}
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and
Y]={zeX:yeY: :z<y}.

If YV is the singleton {y}, then we write [y) and (y] instead of [{y}) and
({y}], respectively. We call Y an upset (resp. downset) if Y = [Y') (resp.
Y = (Y]). The set of all upset subsets of X is denoted by Up (X). It is
known that (Up (X),=<,X) is a Hilbert algebra where the implication
=< is defined by

U=<V=UnNVI={z:[x)nUCV} (1)

for U,V € Up (X).

An H-set or expanded Kripke frame (in the terminology of Kirk in [21])
is a triple (X, <,K) where (X, <) is a poset and ) # K C P (X). Every
H-set defines a structure Hy (X) as follows:

He(X)={UeP(X):IWeKand3aVCW (U=W=<V)}. (2)

As is proved in [21] and [7] the triple Hx (X) = (Hx(X),=<,X) is
a Hilbert algebra and a subalgebra of (Up(X),=<,X). The algebra
Hy (X) is called the dual Hilbert algebra of (X, <,K).

Consider a pair (X, K) where X is a set and () # K C P (X). We define
a relation <xC X x X by

x <yt VW € K(z ¢ W then y ¢ W). (3)

It is easy to see that <y is a reflexive and transitive relation. For each
Y C X, let
sat(Y)=N{W: Y CW & W € K}

and
AdY)=N{X-W:YnW=0&WeK}.

When K is a basis of a topology 7 defined on X, the relation <y is the
specialization dual order of X, sat(Y') is the saturation of Y, and cl(Y') is
the closure of Y. We note that <x can be defined in terms of the operator cl
as follows: =z <x yiff y € cl({z}) = cl(x). If X is T then the relation <g is
a partial order. Moreover, if X is Tj then cl(Y) = [Y) <., sat(Y) = (Y]<,,
and every open (resp. closed) subset is a downset (resp. upset) respect
to <g.
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Let X be a topological space. We recall that a subset ¥ C X is r-
reducible provided for any closed subsets Y7 and Y3, if Y = Y] U Y5 then
Y =Y] or Y =Y5. A topological space X is sober if, for every irreducible
closed set Y, there exists a unique x € X such that cl(z) =Y. Notice that
a sober space is automatically Ty. A topological space (X, T) with a base
K we will denoted by (X, Tx) or simply by (X, KC). Recall that the relation
<) defined in (3) is an order when the space is Tp. From now on, for every
sober topological space (X, K) we shall write < instead of <g.

Definition 2.4. [9] A Hilbert space or H-space is a topological space
(X, K) such that:

H1. K is a base of open and compact subsets for the topology T on X,
H2. For every A, B € K, sat(AN B€) € K,

H3. (X, K) is sober.

Let A be a Hilbert algebra. Let us consider the poset (X(A),C) and
the mapping ¢ : X(A) — Up (X (A)) defined by

ola) ={x € X(A):a€x}.

In [8] it was proved that the family K4 = {¢(a)°:a € A} is a basis for
a topology Tk, and the pair (X (A),K4) is an H-space, called the dual
space of A. If A is a bounded Hilbert algebra, then ¢(0) = (. So, X(A4) =
©(0)¢ € K4 and consequently the H-space (X (A),K4) is compact.

If (X,K) is an H-space, then for each x € X, the set

e(x)={UeD(X):xe€U}

belongs to X (D (X)), where D(X) = {U : U € K}. Thus, the mapping
e: X — X (D (X)) is well-defined and it is an homeomorphism between
the topological spaces (X, K) and <X(D(X)),ICD(X)>.

Let A and B be Hilbert algebras. A mapping h : A — B is a semi-
homomorphism if h(1) = 1, and h(a — b) < h(a) — h(b), for all a,b € A.
A mapping h : A — B is a homomorphism if h is a semi-homomorphism
such that h(a) — h(b) < h(a — b), for all a,b € A. Note that a semi-
homomophism is a monotone map.
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Lemma 2.5. Let A and B be Hilbert algebras. Let h : A — B be a
semi-homomorphism. If x € X(A), then (h(z®)] € I1d(B).

Proof. Assume that x € X(A). Let a,b € (h(z¢)]. Then there exist
¢,d ¢ x such that a < h(c) and b < h(d). Since z is irreducible, there exists
e ¢ x such that ¢,d < e, and as h is monotonic, a < h(e) and b < h(e). So,
h(e) € (h(z)], and thus (h(z°)] is an order-ideal. O

We denote by HilS the category of H-algebras and semi-homomorphisms
between Hilbert algebras. Similarly, we denote by HilH the category of H-
algebras and homomorphisms. Clearly, HilH is a subcategory at HilS.

Definition 2.6. Let (X1,K;) and (X9, 2) be H-spaces. Let us con-
sider a relation R C X x Xo. We say that R is an H-relation if R~Y(U) €
K1, for every U € Ky, and R(x) is a closed subset of X, for all x € X;.

An H-relation R C X x X5 is an H-functional relation if for each pair
(z,y) € R, there exists z € X1 such that x < z and R(z) = [y).

SR (SRF) denote the category whose objects are H-spaces and whose
morphisms are H-relations (H-functional relations). By Theorem 3.5 and
Theorem 3.7 in [8] we have that the categories SR (SRF) and HilS ( HilH)
are dually equivalents.

3. HUl-algebras: representation and duality

In this section we shall define the Hilbert algebras with a modal operator
of necessity [J.

Definition 3.1. A Hilbert algebra with a modal operator O, or H[J-al-
gebra for short, is a pair A = (A, ) where A is a Hilbert algebra and [J is a
semi-homomorphism defined on A, i.e., 01 = 1, and O(a — b) < Oa — Ob,
for all a,b € A.

We denote by Hilg the variety of H[l-algebras. The variety Hilg corre-
spond to the {{0, —}-reduct of the variety of Heyting algebras with a modal
operator [J (see, for example [10]). Moreover, the variety of Tarski modal
algebras introduced in [5] is a subvariety of Hilg.

Let A, B € Hilg. A map h : A — B is a O-semi-homomorphism
(O-homomorphism) if h is a semi-homomorphism (homomorphism) such
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that h(Oa) = O(h(a)), for all a € A. We denote by HilgS the category of
HU-algebras with [-semi-homomorphisms and by HilgH the category of
HU-algebras with [J-homomorphisms.
Let X be aset and ) a binary relation defined on X. Foreach U € P(X)
consider the set
Oo(U) = {z € X : Q) C U},

Example 3.2. [19] An intuitionistic modal Kripke frame is a relacional
structure F = (X, <, @), where (X, <) is a poset, and @ is a binary relation
defined on X such that < o) C Qo <, where o is the composition of
relations. It is easy to see that (Up (X),=<,N,U,0q,0, X) is a Heyting
algebra with a modal operator [J. Thus, (Up (X),=<,0g, X) € Hiln.

Definition 3.3. A triple (X, K, Q) is an HO-frame if (X, <) is a poset
and (< oQ) C (Qo <), where < is <g.
An HO-frame (X, K, Q) is a general HO-frame if:

1. sat(UNV¢) e K, for every U,V € K.
2. Q7Y(U) € K, for every U € K.
Lemma 3.4. If F = (X,K,Q) is a general HO-frame, then
A(F) = (Up (X),=<,0qg,X) € Hilm,
and (D(X),0¢q) is a subalgebra of A(F).

Proof. As (X, <) is a poset, we have that (Up (X), =<, X) is a Hilbert
algebra. We note that Og(U) € Up(X), for every U € Up(X), be-
cause (<oQ) C (Qo <). Moreover, as Og(U) = Q1 (U®)¢ we get that
Oo(U) € D(X), because Q~1(U¢) € K for every U € D(X). Finally, it
is immediate to see that (D(X),=<,,X) is a subalgebra of the Hilbert
algebra (Up (X),=<,,X). O

Let A € Hilg. For each n > 0, n € N, we define inductively the formula
O"a as 0% = a and 0" ta = O (0O"a). Let S be a subset of A. We define
the following sets:

O(S)={0acA:acS}and O(S)={ac A:0ac S}.

We note that O0-(F) € Fi(A), when F € Fi(A). We note also that by
Lemma 2.5 ((z¢)] is an order-ideal, when = € X (A).



HILBERT ALGEBRAS WITH A NECESSITY MODAL OPERATOR 59

Lemma 3.5. Let A € Hilg. Let F € Fi(A) and a € A. Then Ja ¢ F
iff there exists © € X (A) such that O"Y(F) Cz and a ¢ x.

Proof. The proof follows taking into account that O0~!(F) is an im-
plicative filter and Theorem 2.2. O

Let A be an HO-algebra. By the results given in [8], the binary relation
Qa C X(A) x X(A) given by

(z,y) € Qa if O (x) C y,

for x,y € X(A), is the H-relation associated with the modal operator [J.
So, QZI(U) € K4, for every U € K 4. Tt is easy to see that ()4 satisfies the
condition Q4 = (C oQ4) = (Q40 C). Moreover, by Proposition 2.1 in [§]
we have that if U,V € K4, then sat(U NV¢) € K4. Thus, the triple

F(A) = (X(A),Ka,Q4),

is a general H[-frame.
Now we shall define the H[-spaces, and we will see that its structures
are a particular class of general HU-frames.

Definition 3.6. A triple (X,K,Q) is an HO-space if (X,K) is an
H-space and Q C X x X is an H-relation.

As @ is an H-relation in every H-space (X, K, @), by Teorem 3.1.(1)
in [8] we get that (< oQ) = Q = (Qo <) is valid in any H-space. Conse-
quently, we have the following result.

Lemma 3.7. Fvery H-space is a general HO-frame.
Thus, if (X, K, Q) is an HO-space, then (D(X),0q) is an HO-algebra.

Theorem 3.8 (of Representation). For each HO-algebra (A,0) there
exists an HO-space (X, K, Q) such that (A,0) is isomorphic to (D(X),0g).

Proof. Since (X(A),K4) is an H-space and @4 is an H-relation, we
have that (X (A),Ka,Q4) is an HO-space. By Lemma 3.5, we have that
©(0a) =0g,(¢(a)), for each a € A. So, (D(X (A)),Oq,) is an HO-alge-
bra. By Theorem 2.1 in [8] we get that ¢ is a Hilbert isomorphism. Thus,
(A,0) is isomorphic to (D(X(A)),Og,). O
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Definition 3.9. Let (X;,K1, Q1) and (X2, K2, Q2) be HO-spaces and
R C X; x X9 be an H-relation. We say that R is an HU-relation if R
commutes with @, i.e., Q1 0o R = Ro Qs.

If R C X7 x X5 is an H-functional relation such that R commutes with
Q, then R is an HO-functional relation.

MpSR denote the category of H-spaces and H-relations. We will
prove that this category is dually equivalent to HilgS.

Let (X, KC) an H-space and consider the map € : X — X (D(X)) defined
by e(z) = {U € D(X):2 € U}. By Corollary 3.1 in [8] we get that the
relation e* C X x X (D(X)) given by

(x,P) e iff e(x) C P
is an H-relation. Now, we will prove that €* is a morphism of H[-spaces.

Theorem 3.10. Let (X, K, Q) an HO-space. Then, the mapping € is an
homeomorphism between the HO-spaces (X, K, Q) and (X(D(X)), Kp(x),
Qp(x)) such that

(z,y) € @ iff (e(x),2(y)) € Qpx),

where Qp(x) is the HO-relation associated with the modal operator Ug.
Moreover, the relation €* is a morphism of H-spaces.

Proof. As (X,K,Q) is an HO-space, (D (X),0q) is an HO-algebra
and by Theorem 3.8, the triple <X (D (X)), Kpx)s QD(X)> is an H[-space
where (F, P) € Qp(x) iff Dél(F) C P, for all F,P € X(D(X)). By The-
orem 2.2 in [8] we get that ¢ is an homeomorphism between the H-spaces
(X,K) and (X (D (X)),Kp(x)), being Kpx) = {@(U)*: U € D(X)}.

Let (7,y) € Q. We prove that (¢(x),e(y)) € Qp(x), i-e., Dél(s(x)) -
e(y). Let U € D(X) such that U € Dél(a(:c)). So, Q(x) C U and as
y € Q(z), we get that y € U. This is, U € €(y). Now, assume that
Dél (e(z)) C e(y) and suppose that (z,y) ¢ Q. As Q(z) is a closed subset
of (X, ), there exists U € D(X) such that Q(z) CU and y ¢ U. This is,
Ue Dél(a(a:)) and U ¢ £(y), which contradicts the assumption.

Now, we will prove that Q oe* = " o Qp(x). Let z € X and P €
X (D(X)) such that (z,P) € Q oe*. So, there exists y € X such that
(x,y) € Q and (y,P) € £*. This is, ¢(y) C P. As (z,y) € Q, we have
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(¢(2).=(s)) € Qpix). Lo g (e(a)) € <(y) € P. Thus, (@), P) € Qi)
It is clear that (v,e(v)) € €*. So, (z,P) € " o Qp(x). Thus, Qoe* C
e*oQp(x)- Assume that (z, P) € e*0Qp(x). So, there exists ' € X (D(X))
such that e(x) C F and Dél(F) C P. As e is onto, there exists f,p € X
such that F' = ¢(f) and P = ¢(p). So, Dél(e(az)) - Dél(s(f)) C e(p).
Then, (¢(7),e(p)) € @p(x) and consequently, (z,p) € Q. It is clear that
(p, P) € €*. So, (z,P) € Qoce*. O

In [8] it was proved that if (X;,K;) and (Xs, o) are H-spaces and
R C X; x Xg is an H-relation then the mapping hr : D(X2) — D(X;)
defined by
hr(U) ={z € X1 | R(z) CU}

is a semi-homomorphism.

Theorem 3.11. Let (X1,K1,Q1) and (X2,Kq,Q2) be HO-spaces and
R C X1 x X9 be an HO-relation. Then, hr is a morphism of HilpS.

Proof. We will prove that hr(Og,(U)) = Og, (hr(U)), for each U €
D(X3). Let z € X;. Then

z € hr(Uq,(U)) iff  R(x) CUo,(U) iff Q2(R(z)) U
iff R(Qi(z))CU iff VzeQi(x)(R(z) CU)
iff Ql(az) - hR(U) iff xe DQ1 (hR(U))

g

By the above Theorem and Theorem 3.7 in [8], we have the following
result.

Corollary 3.12. Let (X1,K1,Q1) and (X2, Ko, Q2) be HO-spaces and
R C Xj x X3 be an HO-functional relation. Then, hr is a morphism of
HilgH.

Let A, B be Hilbert algebras and h : A — B be a semi-homomorphism.
In [8] it was proved that the relation Ry C X (B) x X(A) defined by

(z,y) € Ry, iff h7l(z)Cy

is an H-relation. Now, we will study Rj when h is a semi-homomorphism
defined between H[J-algebras that commutes with .
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Theorem 3.13. Let A,B € Hilg and let h : A — B be a U-semi-
homomorphism. Then, Ry is a morphism of MpSR.

Proof. If we prove that R; o Q4 = Qg o Ry, the assertion follows.
Let z € X(B) and y € X(A) such that (z,y) € R, o Q4. So, there exists
z € X(A) such that z € Rp(x) and (2,y) € Qa, ie., h~(z) C z and
O071(2) C y. Consider the implicative filter (0~!(z) and the order-ideal
(h(y¢)] of B. Suppose that there exists a € O71(x) N (h(y°)]. So, Ta € x
and there exists b € y° such that a < h(b). As Oa < O(h(b)) = (D), we
get that h(0b) € x. Thus, b € z and so, b € y, which is a contradiction.
Thus, O~ (z) N (h(y)] = 0. So, there exists w € X (B) such that O0~!(x) C
w and (h(y®)]Nw = (). This is, there exists w € X (B) such that w € Qp(z)
and h=Y(w) C y, ie., (w,y) € Rp,. Therefore, y € R,(Qp(x)). Thus,
R;0Q4 C Qpo Ry The proof of the other inclusion is similar. 0

By Theorem 3.13 and Theorem 3.7 in [8] we have the following result.

Corollary 3.14. Let A, B € Hilg and let h : A — B be a O-homomor-
phism. Then Ry, is an HO-functional relation.

From Theorem 3.11, we conclude that the functor D : MgSR — HilgS
defined by

D(X) = (D(X),0q) if (X,K,Q) is an HO-space,
D(R) = hgr if R is an HO-relation.

is a contravariant functor. By Remark 3.1 in [8], Theorem 3.8 and Theorem
3.13, we conclude that the functor X : HilgS — MpSR defined by

X(A) = (X(A),K4,Q4) if Ais an H-algebra,
X(h) = Ry, if h is a OJ-semi-homomorphism

is a contravariant functor. From the Lemmas 3.4 and 3.5 in [8] and Theo-
rems 3.8 and 3.10, we give the following result.

Theorem 3.15. The categories HilpS and MpoSR are dually equiva-
lent.

Corollary 3.16. The category HilgH is dually isomorphic to the cate-
gory of H-spaces with HO-functional relations.
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4. Some subvarieties of H[l-algebras

The variety of H[-algebras generated by a finite set of identities I will
be denoted by Hilg 4+ {I'}. We shall consider some particular varieties of
H-algebras. These varieties are the algebraic counterpart of extensions
of the implicative fragments of the intuitionistic modal logic IntKg. Let
us consider the following identities:

S a— Oa~1,
S, a— % ~ 1,
T Ua —a=1,
4 Oa — O%a ~ 1,

wD D?a — Oa ~ 1,
(Oa — 0b) — O(0a — 0Ob) ~ 1,
0% — Oa =~ 1.

S G

Remark 4.1. It is not hard to prove that Hilg 4+ {5} and Hilg + {S}
are subvarieties of Hilg + {4}.

Following the standard notation, we shall identify two important sub-
varieties of Hilg:
HilpS4 = Hilg+ {T, 4},
Hil5pS5 = Hilg+ {T, 5}.

It is clear that HilgS5 is subvariety of Hil5S4. The variety Hil5S4 is a gen-
eralization of the topological o closure Boolean algebras, and the variety
HilgS5 is a generalization of the monadic Boolean algebras. Similar to the
proven in [5], each one of the previous identities are characterized by means
of first-order conditions.

Let @ be a binary relation defined on a set X. For each n > 0 we
define inductively the relation Q" as follows: (z,) € Q¥ iff x = ¥, and
(r,y) € Q" = Q" o Q, where o is the composition of relations. Also we
define the binary relation Q* =J{Q" : n > 0}.

The next result is a generalization of Lemma 3.5 applied to irreducible
implicative filters.

Lemma 4.2. Let A € Hilg and let (X,K,Q) be its dual space. Let
x € X and a € A. For each n € N, O"a ¢ x iff there exists y € X such
that (z,y) € Q" and a ¢ y.
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Proof. The proof is by induction on n. It is inmediatly for n = 0.
Assume that (0"a ¢ x implies that there exists y € X such that (z,y) € Q"
and a ¢ y. Suppose that (0""laq ¢ x. This is, 0 (0%) ¢ 2. By Lemma 3.5,
there exists y € X such that O0-!(z) C y and 0% ¢ y. By assumption,
there exists z € X such that (y,z) € Q™ and a ¢ z. Since (z,y) € Q and
(y,2) € Q™, we get that (z,2) € Q"1

Consider that if there exists y € X such that (z,y) € Q" and a ¢ vy,
then ("a ¢ x. Suppose that (z,y) € Q" and a ¢ x. So, there exists
z € X such that (z,2) € Q" and (z,y) € Q. Therefore, 0-!(z) C y and as
a ¢ y, we have that Oa ¢ z. Thus, (z,2) € @™ and Oa ¢ 2. By assumption,
O"tla ¢ x. O

Let (X, K, Q) be an HO-space. Following the notation used in [19], we
denote by ® and ®' the next first-order conditions:

® & VaVy[zQy AyQz = Jw(z < wAwQz AYVo(wQu = yQu))].
P & VaVy[zQuy AyQz = Jw(z < w AwQz A yQu)].

Remark 4.3. Let (X,K,Q) be an H-space. Note that ® (or ®)
implies the transitivity of Q). In fact. Let z,y,z € X such that zQy
and yQz. By @', there exists w € X such that z < w, wQz and yQuw.
By Lemma 3.7, (z,z) € Q. This result us allows to prove that if @ is
reflexive then, ® and ® are equivalent. For this is enough to show that
Vo(wQu = yQuv) & yQw. From left to right we use wQw. For the other
direction, suppose that yQw and wQuv, for every v € X and use that @&’
implies the transitivity of Q.

Theorem 4.4. Let A € Hilg and let (X, K, Q) be its dual space. Then:

AFa—Oa=x1 iff VaVy (2Qy = = C y).

AFa—O% =1 iff VaVy(xQ"y = x C y), with n € N.
AEOa — a=1iff Q is reflexive.

AEOa — D% ~ 1 iff Q is transitive.

AEPa — Oa ~ 1 iff Q is weakly dense, i.e.,

VaVy(xQy = Fz(zQz A 2Qy)).

6. AFO(0a — a) = 1 iff VaVy(xQy = yQy).

7. AE (Oa — 0Ob) — O(0a — 0Ob) = 1 iff (X, K, Q) satisfies D.

SR
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Proof. We will prove only the assertions (2), (5) and (7). The other
proofs are analogous.

(2) Let n € N. Suppose that there exist z,y € X such that (z,y) € Q"
and x ¢ y. Hence, there is an element a € x such that a ¢ y. As (z,y) € Q™
and a ¢ y, by Lemma 4.2, 0" ¢ x. Since a < "a, we have that a ¢ =,
which is a contradiction. Reciprocally, if there exists a € A such that
a £ O"a then, there exists € X such that a € x and 0" ¢ z. By Lemma
4.2, we get an irreducible implicative filter y € X such that (z,y) € Q"
and a ¢ y. By assumption,  C y and so, a ¢ x, which is impossible.

(5) Assume that (0?a < Oa for all a € A and let (z,y) € Q. Consider
the implicative filter (J~!(z) and the order-ideal (OJ(y¢)]. Suppose that
there exists a € O7Y(z) N (O(y°)]. So, Ja € z and there exists p € y°
such that ¢ < Op. Thus, Oa < O%p < Op and consequently, Op € z. So,
p € 071 (x). As (x,9) € Q, we have that p € y, which is impossible. So,
O-Y2) N (O(y®)] = 0. Thus, by Theorem 2.2, there exists z € X such that
O-!(z) € z and z N (O(y°)] = 0. This is, z € O(y°)¢ and so, O71(2) C y.
Thus, we have that there exists z € X such that (z,2) € Q and(z,y) € Q.
Reciprocally. Suppose that there exists a € A such that %a £« Oa. So,
there exists # € X such that (0%a € x and Oa ¢ z. By Lemma 4.2, there
exists y € X such that (z,y) € Q and a ¢ y. By assumption, (x,y) € Q?
and as a ¢ y, we get that (0%a ¢ z, which is a contradiction.

(7) Consider that (Ha — 0b) < O(Oa — [Ob), for every a,b € A. Let
(z,y) € Q and (y,z) € Q. Note that the implicative filter (x UO(O"!(y)))
and the order-ideal ((J(z¢)] are disjoint. Indeed, suppose that there exists
a € A such that a € (zUO(O'(y))) and a € (O(z%)]. Thus, by the
characterization of implicative filter generated by a set given on page 50,
there exist b € z, c € 07 1(y), and d ¢ 2z such that b — (Oc — a) = 1 and
a < d. So, we have that 1 =b — (Oc — a) < b — (Oc — d). Then, b —
(Oc — 0d) =1 € z. Thus, Oc — Od € . As Oe — Od < O(0c¢ — Od),
we get that O(Oc — Od) € z. So, Oc — 0b € 07 !(x) and by assumption,
Oc - 0Od € y. As Uec € y, we get that Jd € y and so, d € z, which
is a contradiction. Thus, by Theorem 2.2 we can affirm that there exists
w € X such that z € w, O(07Y(y)) € w and O(2°) Nw = (. Hence,
O-Y(y) € O Y(w) and O~} (w) C 2. For every v € X such that (w,v) € Q,
we get that 07 1(y) € O~ Y(w) C v. So, (y,v) € Q. We have proved that
(X, K, Q) satisfies the condition ®.
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Conversely. Suppose that there exist a,b € A such that Oa — 0b &
O(a — 0Ob). So, there exists z € X such that Oa — 0Ob € x and
O(0a — Ob) ¢ . Then, there exists y € X such that 07 1(z) C y and
Oa — Ob ¢ y. By consequence of Theorem 2.2, there exists z € X such
that y C 2z, Oa € z and Ob ¢ 2. So, there exists w € X such that
O-(2) Cw and b ¢ w. Thus, (z,2) € Q and (z,w) € Q. By assumption,
there exists v € X such that x C v, (v,w) € @ and for all u € X such that
(v,u) € Q, we can affirm that (z,u) € Q. Since Ja — b € z, we have that
Oa — Ob € v. On the other hand, b ¢ w and so, b ¢ v. Thus, Ua ¢ v and
consequently, there exists u € X such that (v,u) € @ and a ¢ u. Hence,
(z,u) € Q, and so, Oa ¢ z, which is impossible. O

We shall say that an H-algebra (A, ) is bounded if the Hilbert algebra
A is bounded. The variety of bounded H[J-algebras is denoted by Hil.

Theorem 4.5. Let A € HilY and let (X, K, Q) be its dual space. Then,

1. AEDO0 — 0~ 1 iff Q is serial, i.e., VeIy(zQy).

2. If Q is reflexive and transitive, we have that A F —Ua — O-Ua ~ 1
iff Q C (CoQ71).

Proof. (1) Suppose that [J0 = 0. Since 0 ¢ z for all x € X, we get that
0 ¢ O~ !(z). Thus, for each x € X there exists y € X such that 0~ (z) C y
and 0 ¢ y. So, @ is serial. Conversely. Suppose that JO ¢« 0. There is
x € X such that (0 € z and 0 ¢ z. Hence, 0 € J~!(x) and by assumption,
there exists y € X such that 07! (2) C y. Thus, 0 € y, which is impossible.

(2) Let @ be reflexive and transitive. Assume that -Ca < O-Oa for
all a € A and let (z,y) € Q. Suppose that 0 € <xUD(D*1(y))>. So,
there exist a € z and b € O7!(y) such that a — (Ob — 0) = 1, this is,
a < =0b. Thus, =0b € z and so, O0-0b € x. Thus, =0b € O~ !(x) and
consequently, (b — 0 € y. As b € y, then 0 € y, which is impossible. So,
there exists z € X such that (zUO(O (y))) € z and 0 ¢ z. Hence, = C z
and O(O~!(y)) C 2. So, O7(y) € O71(2). As Q is reflexive, 071(2) C 2
and so, (y,z) € Q. Thus, (z,y) € (Q OQ_l).

Reciprocally. Assume that there is an element a € A such that -Oa £
O-Oa. So, there exist ,y € X such that -Oa € 2, 0-0a ¢ z, O~ (z) Cy
and —(a ¢ y. By Lemma 2.3, we have an irreducible implicative filter z
such that y C z and Oa € z. Thus, (z,2) € @ and Oa € z. By assumption,
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there exists w € X such that  C w and (z,w) € Q. As —Ua € z, we
have =(Ja € w. So, Oa ¢ w, implying that (0%a ¢ 2. As Q is transitive, by
Theorem 4.4, we have that Oa < [%a. So, Oa ¢ z, which is impossible. [J

We shall identify some subvarieties of Hil?, :

Hil2S5 = HilY + {T,5},
Hil2S5.1 = Hil} + {T,4,~0a — O0-0a ~ 1},
HilS5 = Hild + {5,000 - 0~ 1}.

Note that Hil%S5 is subvariety of Hil%S5.1 and Hil¥S5. Indeed. If
Ae HilODSS, we have that Ca — a =~ 1, in particular, 00 — 0 ~ 1. Thus,
A € Hil¥S5. Moreover, by Remark 4.1, Ja — (0% ~ 1 and as for all a € A,
1= (0a — 0) = O(0a — 0) = -0a — O-Ca , we get that A € Hil}S5.1.

It is clear that Hﬂ%S5.1 is subvariety of HilODS4 and consequently,
Hil%S5 is subvariety of Hil%S4.

Corollary 4.6. Let A € HilY and (X,K,Q) be its dual space. Then,
A € Hil%S5.1 iff Q is reflexive, transitive and @ C (C oQ™1).

Proof. By Theorem 4.4 and previous Theorem. O

5. Implicational modal logics

In this section we shall define the {—,}-fragment of the intuitionistic
normal modal logic IntKg and some of its extensions. Let £ be the propo-
sitional modal language with an infinite set of propositional variables Var,
a propositional constant T, the connective —, and the unary operator [I.
The set of all formulas of £, we denote by F'm.

The logic IntK7 is a logic in the language £ characterized by the
following list of axioms and rules:

L ¢— (v —9),
2. (0= (W —=a) = (¢ —=7) = (¢ = a)),

3. O(¢ = ¢) — (O — Oy),
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(up) 2222 )
It is clear that IntK7 is the {{J, —}-fragment of intuitionistic modal
logic IntKp. An implicational modal logic I is any extension of IntK7.
Let F = (X,K,Q) be an HO-frame or a general HO-frame (see Defi-
nition 3.3). A waluation on F is a function V : Var — Up(X) (V : Var —
D(X)) on the HO-frame (general HO-frame) F. As is usual, V is extended

recursively to algebra of all formulas F'm by means of the clauses

¢
O¢ — Oy

1. V(T) = X,
2. V(¢ =) =V(d) =<, V(¥) =sat(V(g) N V(¥))°, and
3. V(0¢) =Ug(¢) ={z € X : Q(z) S V(9)}.

By a general model we shall mean a structure (X, C,Q,V) where F =
(X, K, Q) is an HO-frame or a general HO-frame and V is a valuation on
F. We note that a function V is a valuation in an HU-frame or a general
HO-frame F iff it is a homomorphism between the algebra of all formulas
Fm and A(F) (D (X)). Then we get that a formula ¢ is valid in an HO-
frame (general HO-frame) F iff the equation ¢ ~ 1 is valid in the Hilbert
algebra A(F) (D (X)). Thus, we have that if F is an HO-frame (general
HO-frame),

FEQif AF)Egp~1(DX)EF¢p=1).

Let 7 be an implicational modal logic. Denote by Fr(Zg) the class of
all general HO-frames where the formulas of Z are valid. Let HSp(Zn) be
the class of all HO-spaces F = (X, K, Q) such that F F ¢, for all ¢ € Zn.
Clearly the class HSp(Zn) is a subclass of Fr(Zn).

We shall say that implicational modal logic 7 is characterized by a class
F of general HU-frames, when ¢ € Zg iff ¢ is valid in every general H[UI-
frame (X, K,Q) € F. Moreover, it is frame complete when ¢ € I iff ¢ is
valid in every general HO-frame F = (X, K, Q), for any F € Fr(Zn). It is
clear that an implicational modal logic Z is frame complete if and only if
it is characterized by some class of general H[J-frames.

Let Zg be an implicational modal logic. Consider the variety of Hilbert
modal algebras V(Zg) = {A€ Hilg: AF ¢ = 1, for all ¢ € ZIg}. Simple
arguments (as in classical modal logic) show that

F e HSp(I[]) iff D(X) € V(ID).
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Thus, we have the following result.

Proposition 5.1. Every implicational modal logic I is characterized
by the class HSp(Zn).

Let F = (X,K,Q) be a general HO-frame. As D(X) is a subalgebra
of A(F), every formula valid in A(F) is valid in D(X), but the converse in
general is not valid.

Definition 5.2. We say that the variety V of H[J-algebras is canonical,
if A(F(A)) € V, when A € V. An implicational modal logic Zr is canonical
if the variety V(Z) is canonical.

An implicational modal logic Zr is H-persistent if A(F) € V(Zn), when
D(X) € V(In), for every H-space F = (X, K, Q).

The notion of implicational H-persistent modal logic is a generalization
of the notion of d-persistent modal logic of classical modal logic (see [3]
and [25]). By the results on duality between HJ-spaces and modal Hilbert
algebras, we can give the following result.

Proposition 5.3. An implicational modal logic I is H -persistent if
and only if it is canonical.

Proof. Suppose that Zg is H-persistent. Let A € V(Zn). As A is
isomorphic to D(X(A)), we have D(X (A)) € V(ZIn). As I is H-persistent
and taking into account that A(F((D(X(A))) is isomorphic to A(F(A)),
we get that A(F(A)) € V(Zg). So, Zr is canonical.

For the converse we take an H-space F = (X, K, @), and suppose that
D(X) € V(In). As F is an HO-space, X is homeomorphic (and also order-
isomorphic) to X(D(X)). Then Up (X) is isomorphic to Up(X(D(X))).
Thus the Hilbert modal algebras A(F) and A(F(D(X))) are isomorphic,
and consequently A(F) € V(In). O

Proposition 5.4. FEvery canonical implicational modal logic I is com-
plete with respect to Fr(Zn).

Proof. The proof is as in classical modal logic. We need to prove that
for each formula ¢ ¢ 7y there exists an HO-frame F of Z such that ¢ is
refuted in F. Let ¢ ¢ Zg. Then there exists a modal Hilbert algebra A
such that A ¥ ¢ ~ 1. Then there exists a homomorphism h : Fm — A
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such that h(¢) # 1. By Theorem 2.2 there exists x € X(A) such that
h(¢) ¢ x. Let F(A) = (X(A),Ka,Q4) be the HO-frame of A. As 7 is
canonical, A(F(A)) € V(In), i.e., F(A) is an HO-frame of Z. As the map
¢:A— D(X (A))is an one to one homomorphism, the composition poh is
a homomorphism from F'm into D (X (A)), i.e., ¢oh is a valuation based on
F(A). So, (poh) (6) = 9(h (6)) # p(1) = X (4), because = ¢ w(h (9)). So
the formula ¢ is refuted in the general model (X (A), K4, o h). Therefore,
¢ is refuted in the HO-frame F(A). O

Given the characterizations proved in the Section 4, we can ensure that
any variety of H[J-algebras axiomatized by some subset of the set of equa-
tions:

P={S,S,,T,wD,4,5,6,00 > 0~ 1,-0a - 0-0Oa ~ 1,0(0a — a) ~ 1}
is canonical. Therefore we obtain the following result.

Theorem 5.5. Any variety of HU-algebras axiomatized by formulas
belong to P are canonical. Therefore, the associated logics are canonical
and frame complete.

6. Simple and subdirectly irreducibles H[]-algebras

Denote by Con(A, —) the lattice of all congruences on a Hilbert algebra A
and call the set [1]g = {x € A : (x,1) € 0} the kernel of 0. If D € Fi(A)
then the binary relation 6p defined by

(a,b)efbp iff a—>beD and b—a€D

is a congruence on A such that [1]g, = D. Moreover, the lattices Fi(A) and
Con(A, —) are isomorphic under the mutually inverse mappings 0 — [1]g
and D — 6p (see [11], [15], or [18]).

Let A € Hilg. Denote by Con (A, —,0) the lattice of congruences of
A. Let F' € Fi(A). We said that F' is a O-implicative filter if Oa € F,
whenever a € F, i.e., F C O°Y(F). The set of all O-implicative filters of
an H[J-algebra A is denoted by Fig(A).

Let n € Ny. We define the symbol

(an(a);b) = (a,0a,...,0%a;b)
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for all a,b € A. For each non-empty subset X of A, we define the set (X)
as:

(X)g = {a€A: 3,z € X,n1,....,n, €Np
[(any (21); -5 (o (8); @))..) = 1]}
Note that if X = {a}, then
({a})g=(a)g={be A:3In e Ny : (an(a);b) =1}.

Remark 6.1. As any Hilbert algebra A satisfies the Change Law, i.e.,
a—(b—c)=b— (a—c)for all a,b,c € A, we get that any H-algebra
(A, ) satisfies the identity

(any (@); (an, (b); €)) = (ainy (b); (any (@); €))

for all a,b,c € A, ni,ns € Ny.
Moreover, note that if A € Hilg and a,b € A such that a < b, then
(an(x);a) < (apn(z);b), for all x € A, n € Ny.

Lemma 6.2. Let A € Hilg. Then,
z — O(ap(z);a) < (apt1(x);0a),
forall x,a € A, n € Ny.

Proof. By Definition 3.1,

O(an(z);a) = O(x,0z,..,0%;a)
< Oz - 00,..,0";a)
< Oz — (0?2 — (@2 — ...(O" Mz — Oa)...)).
Thus,

= O(ap(z);a) < 22— (0o — (%2 — ...(O0" 2 — Oa)...)))
= (ap41(z);Ua).

Corollary 6.3. Let A € Hilg. Then,

zp = (xp—1 = ... (z1 = O(an, (21); (. (o, (z1);0)) ..)]) ..) <
< (emg 41 (@1); (o (g (2r); Da)) ...

forallk € N,a,x1,...,x € A,nq,....,n € Ny .
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Proof. By Lemma 6.2,
2 = O(ang (24); @) < (@11 (2); D)

So, by above Remark,
(g1 (zh—1); (2 = O(ar(zr);a) ) < (ang_41(2k-1); (g1 (z2); Oa))
and by Chance Law,
= (any_y 1 (zp-1); O(ag(zr); @) < (ony_y+1(25-1); (ang41(2x); Oa)) -

By Lemma 6.2,

-1 — O (any_, (ze-1); (ar(zr); a)) < (o, 11(ze—1); Ol (21); a)) -

So,

T — (ka_l — O (ank,l(ifk—l); (Oék(fﬁk);a)))
< ap = (a1 (zr-1); O(ak(21); 0))

< (om_ 1 (@p—1); (41 (w); Oa)) -

Repeating this procedure we obtain that

zp = (Tp—1 = ... (z1 = O o, (x1); (.. (o, (z1); @) ..0)]) ) <
< (1 (02); (o (@1 (@), 0a)) )

g

Lemma 6.4. Let A € Hiln and X C A. Then, (X) is the smallest
O-implicative filter containing to X.

Proof. It is clear that (X) € Fi(A). Let a € (X). So, there exists
k € N and there exist x1, ...,z € X, n1,...,nx € Ny such that

(any (21); (amy (22); - ((amy (21); 0))..) = 1.

Hence, O(an, (21); (an, (x2); ...((an, (z1); @))...) = 01 = 1. So,

zp = (Th—1 = ... (21 = O(an, (z1); (... (an, (2)50)) ...)) ...) = 1.
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Thus, by above Corollary, 1 < (o, +1(21); (... (an+1(zx); Da)) ...) and con-
sequently,
(ny+1(21); (oo (@1 (z1); 0a)) ...) = 1,
with 1,...,2; € X and n1 + 1,...,n; + 1 € Ny. Consequently, Oa € (X)
and so, (X)5 € Fin(A).
Finally, it is easy to see that if F' € Fig(A) and X C F, then (X)5 C F.
O

In some subvarieties of Hilg we can give simplified expressions of (X).
If A € Hilg + {4}, then

(an(a); b) = (ai(a); b) (4)
for all a,b € A, and for all n € N. If A € Hil5S4, then,

(an(a);b) = Oa — b, (5)
for all a,b € A, and for all n € N.

Definition 6.5. Let (X, K, Q) be an H[J-space. A subset closed Y of
X will be called Q-closed if Q(Y) = U {Qy):yeY}CY.

The set of all @Q-closed subsets of an HJ-space (X, K, Q) is denoted by
Co(X).

If L is a lattice, L is the lattice with the dual order. Let L; and Ly be
two lattices. If two lattices L1 and Lo are isomorphic we write L1 = Lo.

Proposition 6.6. Let A € Hilg and let (X,IC,Q) be its dual space.
Then,
Con (A, —,0) = Fin(A) = Co(X)%

Proof. Let 6 € Con (A, —,0). It is clear that [1]y € Fig(A). Now, let
F € Fig(A). We know that p € Con(A4,— ). If (a,b) € O then a —
b,b—a€F.So,0(a—b),00b—a)ecF. AsUO(a—b) <UOa — Ob, we
get that Oa — Ob € F. Analogously, Ob — Oa € F' and so, (Oa,0b) € 0p.
We will prove that Fin(A4) 2 Co(X)9. Let F € Fig(A). So,

§(F)={xeX:FCa}=(\{p(a)|acF},

is a closed subset of X. Let y € Q(6 (F')). So, exists z € ¢ (F') such that
y € Q(z). As F is a O-implicative filter, F C O~}(F) C O~ (z) C g, and



70 SERGIO A. CELANI AND DANIELA MONTANGIE

hence, y € 6 (F). Then §(F) is a Q-closed. Note that if F, H € Fig(A)
such that F' C H then § (H) C 0 (F).
Now, we will prove that 7 : Co(X) — Fig(A) given by

T(Y)={acA:Y Cy(a)}

is well-defined. It is clear that 7 (Y) € Fi(A). We prove that 7 (Y) is
a O-implicative filter. Let a € A such that Y C ¢ (a). As Y is Q-closed,
Q(Y) CY C ¢(a). Suppose that Y & ¢(0a). So, there exists z € YV
such that ¢ ¢(0Oa). Thus, Oa ¢ = and so, there exists y € X such that
y € Qr)and a ¢ y. Asz € Y, we get y € Q(Y). Thus, y € Y and
y ¢ ¢(a), which is a contradiction. So, 7 (Y) € Fig(A).

Next, we will prove that § and 7 are inverses of each other. Let Y €
Co(X). So,

s(n(Y)) = (el aer(¥)} = [ela)|Y Cp(a)}
cl(Y) = Y.

Now, let F' € Fig(A). Suppose that there exists
acm(0(F)={becA:5(F)Cpb)}

such that a ¢ F, this is, (a) N F = (. By Theorem 2.2, there exists
x € X such that FF C x and a ¢ z, which contradicts the assumed. So,
7 (0 (F)) € F. On the other hand, as § (F) = ﬂ{gp(a) |a € F} C ¢(b)
for every b € F, we have that ' C 7 (6 (F')). Thus, we deduce that ¢ is
a lattice anti-isomorphism. d

Let A € Hilg. Let us recall that A is subdirectly irreducible if and
only if there exists the smallest non trivial O-congruence relation 6 in A.
And A is simple if and only if A has only two [J-congruence relations. By
Proposition 6.6 we have that A is subdirectly irreducible iff there exists
the smallest non-trivial [l-implicative filter in A iff in its dual H[-space
(X, K, Q) there exists the largest Q-closed subset distinct from X. More-
over, A is simple iff Fig(A) = {{1}, A} iff Co(X) = {0, X}. Now, we give
a new characterization of simple and subdirectly irreducible algebras in the
variety Hilg.

Lemma 6.7. Let (X,KC,Q) be an HO-space. Then, V, = cl(Q*(z)) is
the smallest QQ-closed set containing the element .
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Proof. As Q* is reflexive and Q*(x) C cl(Q*(x)) for each x € X, we
get that z € cl(Q*(x)). In adittion, as cl(Q*(x)) is a closed subset of X,
only remains to prove that @ (cl(Q*(x))) C cl(Q*(x)) for each z € X. Let
y € X such that y € Q (cl(Q*(x))). So, there exists z € cl(Q*(z)) such
that (z,y) € Q. Suppose that y ¢ cl(Q*(x)), then there exists a € A such
that cl(Q*(z)) C ¢(a) and y ¢ ¢(a). Since @*(z) C cl(Q*(x)) C ¢(a), we
get that Q" (z) C ¢(a) for all n > 0. This is, a € w for all w € Q"(z).
By Lemma 4.2, 0" € x for all n > 0. On the other hand, as a ¢ y, we
get that Oa ¢ z and since z € cl(Q*(z)), result ¢ (Oa)® N Q*(z) # 0. So,
there exists v € X such that (z,v) € Q™ for some m > 0 and Oa ¢ v.
By Lemma 4.2, (O0™a ¢ x for some m > 0, which is impossible. Thus,
c(Q*(x)) € Co(X). Let V € Co(X) such that x € V. Then Q"(z) C V,
for all n > 0, because V is a Q-closed. So, Q*(z) = J{Q"(z) :n >0} C V.
Thus, cl(Q*(z)) Ccl(V) =V. O

We note that cl(Q*(x)) = ﬂ{V :Velp(X)and z € V}.
Let (X,K,Q) be an HO-space. Let us define the following subsets of
X:
Ix={xeX|V,=X}and Hy = X — Ix,
where V, = cl(Q*(x)).

Our first main result characterizes the simple algebras as the ones of
which the dual space is generated from each point.

Theorem 6.8. Let A € Hilg and let (X, K, Q) be its dual space. Then,
the following conditions are equivalent:

1. A is simple,
2. Ix=X,i.e,V, =X, for eachxz € X,
3. {a)g = A4, foralla e A—{1}.

Proof. (1) = (2) By Lemma 6.7.

(2) = (3) Suppose that there exists a € A — {1} such that (a)5 # A.
So, there exists b € A such that b ¢ (a)y. This is, (ap(a);b) # 1 for all
n > 0. So, there exists x € X such that 0"a € x foralln > 0and b ¢ z. As
c(Q*(z)) = X, we get that ¢(a)® N Q*(x) # 0. So, there exists z € Q*(x)
such that a ¢ z. Hence, there exists m > 0 such that (z,z) € Q™ and
a ¢ z. By Lemma 4.2, (0™a ¢ z, which is impossible.
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(3) = (1) Let F' € Fig(A). Let a € F such that a # 1. Then (a)5 =
A C F. Thus, F = A, and consequently Fig(A) = {{1},A}. Thus, A is
simple. O

We note that the previous Theorem affirms that A is an H[J-algebra
simple if and only if Hx = ().

Our second main result gives a similar characterization of the subdi-
rectly irreducible algebras.

Theorem 6.9. Let A € Hilg and let (X, K, Q) be its dual space. Then,
the following conditions are equivalent:

1. A is subdirectly irreducible.
2. Hx ={z € X |V, # X} € Co(X) — {X},

3. There exists a € A — {1} such that for all b € A — {1} there exists
n >0 such that (an(b);a) = 1.

Proof. (1) = (2) By assumption, there exists the largest V € Co(X) —
{X}. We will prove that V' = Hyx. It is clear that Hx C V. Let x € V.
As V € Co(X), by Lemma 6.7, V, C V. Since V # X, V,, # X and so,
r € Hy.

(2) = (3) Since Hx # X, there exists z € X such that © ¢ Hx.
As Hx is closed, there exists a € A — {1} such that Hx C ¢(a) and
x ¢ p(a). We will prove that for all b € A — {1} there exists n > 0 such
that (v, (b);a) = 1. On the contrary, suppose that there exists b € A — {1}
such that (a,(b);a) # 1 for all n > 0. So, there exists w € X such that
O" € wfor alln > 0 and a ¢ w. As w ¢ ¢(a), we get that w ¢ Hx and
consequently, cl(Q*(w)) = X. Thus, Q*(w)N¢(b)¢ # () and so, there exists
z € Q"(w) and b ¢ z. So, there exists m > 0 such that (w,z) € @™ and
b ¢ z. By Lemma 4.2, 0" ¢ w, which is impossible.

(3) = (1) By assumption, a € (b)5 for all b € A — {1}. As (b)5 €
Fig(A), we have that (a); C (b) for all b € A — {1}. As a # 1, we get
that (a)5 # {1}. We will prove that (a) is the smallest non-trivial O-
implicative filter. Let F' € Fin(A) — {1}. So, there exists b # 1 such that
be F. As (b); is the smallest O-implicative filter containing to b, we get
that (a)5 C (b) C F'. Thus, A is subdirectly irreducible. O

Now, we shall study the simple and subdirectly irreducible algebras in
the varieties HilgS4, Hil%S4, Hil%S5.1, and Hil¥S5.
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Remark 6.10. Let A € HilgS4 and let (X, KC, Q) be its dual space.

(1) By items 3 and 4 of Theorem 4.4, we get that @ is transitive and
reflexive. Thus, Q*(z) = Q(z), for each x € X, and as Q(z) is a closed
subset of X, we have that Q(z) =V, for each x € X.

(2) If Hx # 0, then Hy = | J{¢(Oa) : a € A — {1}}. Indeed:

r€Hx iff Q)=V,#X
iff eX:iyd¢Q)
iff JyeXJaeA:Q(x) Cyla) &y ¢ vla)
iff JyeXJaecA:xelg(ela)) =¢(a) &ady

iff a:EU{cp(Da):aeA—{l}}.

The following result is a simple consequence of Theorem 6.8, item (1)
of Remark 6.10 and the formula (5).

Proposition 6.11. Let A € HilgS4 and let (X, IC, Q) be its dual space.
Then, the following conditions are equivalent:

1. A is simple.
2. Q(z) =X, for each z € X.

3. (Oa) = A for alla € A—{1}. This is, A is bounded.

Proposition 6.12. Let A € HilgS4 and let (X, K, Q) be its dual space.
Then, the following conditions are equivalent:

1. A is subdirectly irreducible.
2. Hy € D(X) — {X}.
3. There exists a € A— {1} such that Ob < a, for allb e A —{1}.

Proof. (1) = (2) By Theorem 6.9, Hx € Co(X) — {X}. So, exists
z € X such that * ¢ Hx. Thus, there exists ¢ € A — {1} such that
Hx C ¢(c) and = ¢ ¢(c). As in the proof of Proposition 6.6, if Hx €
Co(X) and Hx C ¢(c) then, Hx C ¢(Oc). If Hx # 0, by Remark 6.10,
Hy = | J{e(@b):be A~ {1}}. Asc # 1, (0c) € Hy. Thus, Hx =
o(0c) € D(X) — {X}.
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(2) = (3) Let Hx € D(X)—{X}. So, there exists a € A—{1} such that
Hx = ¢(a). If Hy = 0, then Q(x) = X for all z € X and by Proposition
6.11, (Ob) = Aforall b e A—{1}. Let a € A— {1}. Then a € (Ob) for
allb € A—{1}. So, Ob < a, for all b € A — {1}. If Hx # (), by Remark
6.10, Hx = | J{(@b): b€ A~ {1}} = ¢(a). Therefore, o(Cb) C p(a)
and consequently, [0b < a for all b € A— {1}, because ¢ is an isomorphism.

(3) = (1) It is an immediate consequence of the formula (5) and Theo-
rem 6.9. O

Corollary 6.13. Let A € Hil%S4 and let (X,K,Q) be its dual space.
Then,

1. A is simple iff Oa =0, for alla € A—{1}.

2. A is subdirectly irreducible iff Hx € D(X) — {X} iff there exists
a€ A—{1} forallbe A— {1} such that Ob < a.

Proof. (1) As A is bounded, A = (0). Thus, by Proposition 6.11, A is
simple iff (Oa) = (0) fora € A — {1} iff Oa =0 for a € A — {1}.
(2) By Proposition 6.12. O

Proposition 6.14. Let A € Hil%S5.1. Then,
1. A is simple iff Oa = 0, for alla € A — {1}.

2. A is subdirectly irreducible not simple iff there exists a € A—{1} such
that Ob < a and -Oa = 0, for allbe A — {1}.

Proof. (1) By Corollary 6.13, because Hil}S5.1 is subvariety of Hil, S4.

(2) Let A be subdirectly irreducible. So, there exists a € A — {1}
such that b < a, for all b € A — {1}. It remains to prove that A is
not simple iff =[Ja = 0. If A is not simple then exists b # 1 such that
Ob # 0, i.e., Ob £ 0. This is, -0b # 1 and so, O0-0b < a. Thus, -0b < a
and hence, -Oa < ——[b. As any Hilbert algebra A satisfies (¢ — d) —
((d—=¢)—=c¢)=(d—c)— ((c—d) — d), replacing ¢ by 0 result -—d =
—d — d. Thus, -Oa < -0b — 0Ob < =0b — b and so, -Oa — (-0b —
b) = (-0a — —-0b) — (-Oa — b) = 1. As b # 1, we have b < a and so,
Ob = 0?0 < Oa . Thus, -0a — —0b = 1 and consequently, -Ha — b = 1.
As =Oa < b # 1, we get that =Ja # 1 and so, -[da < O-0Oa < a.
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Hence, (ap(—0a);a) = 1 and thus, a € (-Oa)y. As (-Oa)y € Fin(A4),
Oa € (-0a) and so, 0 € (-Oa)y. Thus, -0a = 0. Reciprocally, if there
exists a # 1 such that —Oa = 0, then Oa — 0 # 1. This is, Oa £ 0 and so,
Oa # 0. Thus, A is not simple. O

Lemma 6.15. Let A € Hil4S5. Then, (a)q = {b:a — (Oa — b) = 1}.

Proof. It is easy and left to the reader. O

Proposition 6.16. Let A € HilS5. Then,

1. A is simple iff Oa = 0, for alla € A — {1}.

2. A is subdirectly irreducible iff there exists a € A — {1} such that
(a1(b);a) =1 for allbe A—{1}.

Proof. Let A € Hil%S5. By Remark 4.1, Oa < 0%a for all a € A.

1. (=) Let a € A. As Oa < O2%a, we get that b € ((a) when b € (Oa).
Thus, (Oa) € Fig(A). As A is simple, (Ja) = A or (Ja) = {1}. This is,
Oa = 0 or Oa = 1. The proof is completed by showing that Ca = 1 iff
a = 1. Suppose that there exists a # 1 such that OJa = 1. As A is simple,
by Theorem 6.8, (a); = A. Note that (a); = (a). In fact, it is clear that
(a) C (a)g. Let b € (a)5. By Lemma 6.15 we have 1 = a — (Oa — b) =
a— (1 —b)=a—10b. So,be (a). Thus, A = (a), and consequently a = 0.
Thus, Oa = 0 which is impossible.

(<) It is clear that Oa € (a)5. So, (Ha) C (a); for all @ € A. By
assumption, A = (0) = (Ha) C (a)y for a € A — {1} and consequently
A = (a)g, for a € A— {1}. Then by Theorem 6.8, A is simple.

2. By Theorem 6.9, there exists a € A — {1} such that for all b €
A — {1} there exists n > 0 such that (a,(b);a) = 1. So, (ap(b);a) =1 or
(an(b);a) =1 for n € N. By (4), b < a or (a1(b);a) = 1. If b < a, as
a < 0Ob — a, result that b < b — a and so, (a1(b);a) = 1. The converse
is an immediate consequence of Theorem 6.9. O
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