REPORTS ON MATHEMATICAL LOGIC 46 (2011), 75–90

Manuel ABAD, Juan Manuel CORNEJO¹ and José Patricio DÍAZ VARELA 2

THE VARIETY OF SEMI-HEYTING ALGEBRAS SATISFYING THE EQUATION $(0 \to 1)^* \vee (0 \to 1)^{**} \approx 1$

A b s t r a c t. In [4, Definition 8.1], some important subvarieties of the variety \mathcal{SH} of semi-Heyting algebras are defined. The purpose of this paper is to introduce and investigate the subvariety ISSH of \mathcal{SH} , characterized by the identity $(0 \to 1)^* \vee (0 \to 1)^{**} \approx 1$. We prove that $\mathcal{I}\mathcal{S}\mathcal{S}\mathcal{H}$ contains all the subvarieties introduced by Sankappanavar and it is in fact the least subvariety of $S\mathcal{H}$ with this property. We also determine the sublattice generated by the subvarieties introduced in [4, Definition 8.1] within the lattice of subvarieties of semi-Heyting algebras.

1 I wish to dedicate this work to my father Francisco Cornejo.

 $^2 \mathrm{The}$ support of CONICET is grateful acknowledged *Received 10 September 2009*

.1 Introduction and preliminaries

In [4], Sankappanavar introduced a new equational class \mathcal{SH} of algebras, which he called "*Semi-Heyting Algebras*", as an abstraction of Heyting algebras. This variety includes Heyting algebras and share with them some rather strong properties. For example, the variety of semi-Heyting algebras is arithmetical, semi-Heyting algebras are pseudocomplemented distributive lattices and their congruences are determined by filters. Sankappanavar introduced in his work several subvarieties of \mathcal{SH} , for instance, the variety \mathcal{SH}^S of Stone semi-Heyting algebras, the variety \mathcal{SH}^B of Boolean semi-Heyting algebras, the variety \mathcal{QH} of quasi-Heyting algebras, the variety \mathcal{SH}^C generated by semi-Heyting chains, investigated in [1], the variety \mathcal{FTT} in which $0 \to 1 \approx 1$, the variety \mathcal{FTF} in which $0 \to 1 \approx 0$, and so on. These new varieties seem to be of interest from the point of view of non-classical logic, since they can provide a new interpretation for the implication connective.

The purpose of this paper is to introduce and investigate the subvariety ISSH of semi-Heyting algebras satisfying the equation $(0 \rightarrow 1)^* \vee (0 \rightarrow$ 1 ^{**} ≈ 1. Clearly, the variety of Stone semi-Heyting algebras is contained in $ISSH$. Moreover, $ISSH$ contains all the subvarieties introduced in [4], and it is in fact the least subvariety of $S\mathcal{H}$ that contains all the subvarieties of Sankappanavar.

We start by recalling some definitions and basic results ([2], [3] and [4]).

A semi-Heyting algebra is an algebra $\mathbf{L} = \langle L, \vee, \wedge, \to, 0, 1 \rangle$ such that

- (SH1) $\langle L, \vee, \wedge, 0, 1 \rangle$ is a lattice with 0 and 1,
- $(SH2)$ $x \wedge (x \rightarrow y) \approx x \wedge y$,
- (SH3) $x \wedge (y \rightarrow z) \approx x \wedge [(x \wedge y) \rightarrow (x \wedge z)].$
- $(SH4)$ $x \rightarrow x \approx 1$.

Semi-Heyting algebras are pseudocomplemented distributive lattices, with the pseudocomplement given by $x^* = x \rightarrow 0$ (see [4]). Nevertheless, the operation \rightarrow on semi-Heyting algebras does not enjoy several nice properties of the implication on Heyting algebras or even on BCK-algebras. For example, the order on a semi-Heyting algebra is not determined by the operation of implication. Some of the properties of \rightarrow in \mathcal{SH} are contained in the next lemma.

Lemma 1.1. [4] *Let* $L \in \mathcal{SH}$ *and* $a, b \in L$ *.*

- (a) If $a \rightarrow b = 1$ then $a \leq b$.
- (b) If $a \leq b$ then $a \leq a \rightarrow b$.
- (c) $a = b$ *if and only if* $a \rightarrow b = b \rightarrow a = 1$.
- (d) $1 \rightarrow a = a$.

Proof. From $a \to b = 1$ and (SH3), we get $a \wedge 1 = a \wedge b$, that is $a = a \wedge b$, and we have (a). For (b), by (SH3) and since $a \leq b$ it follows that $a = a \wedge (a \rightarrow b) \le a \rightarrow b$. Property (c) is clear. To prove (d), observe that $a = 1 \wedge a = 1 \wedge (1 \rightarrow a) = 1 \rightarrow a$.

Since congruences in semi-Heyting algebras are determine by filters [4, Th. 5.4, the subdirectly irreducible algebras in \mathcal{SH} can be characterized by the following result, which is essential for the rest of the paper.

Theorem 1.2. [4, Th. 7.5] *Let* $L \in \mathcal{SH}$ *with* $|L| \geq 2$ *. Then the following are equivalent:*

- (a) L *is subdirectly irreducible.*
- (b) L *has a unique coatom.*

In particular, if **is a subdirectly irreducible semi-Heyting algebra, then** 1 is join-irreducible.

A semi-Heyting algebra $\mathbf{L} = \langle L, \vee, \wedge, \to, 0, 1 \rangle$ is said to be a *semi*-*Heyting algebra with a Stone implication* if it satisfies the identity $(0 \rightarrow$ $1)$ ^{*} \vee $(0 \rightarrow 1)$ ^{**} ≈ 1.

We denote by \mathcal{ISSH} the variety of semi-Heyting algebras with a Stone implication.

In [4, Definition 8.1] Sankappanavar introduced the following subvarieties of \mathcal{SH} by providing defining identities within \mathcal{SH} for each of them:

Subvariety	Defining identity
	within $S H$
\mathcal{FTT} (False implies True is True)	$0 \rightarrow 1 \approx 1$
\mathcal{FTD} (False implies True is Dense)	$(0 \rightarrow 1)^* \approx 0$
QH (Quasi-Heyting algebras)	$y \leq x \rightarrow y$
H (Heyting algebras)	$(x \wedge y) \rightarrow x \approx 1$
\mathcal{SH}^S (Stone semi-Heyting algebras)	$x^* \vee x^{**} \approx 1$
\mathcal{SH}^B (Boolean semi-Heyting algebras)	$x \vee x^* \approx 1$
\mathcal{FTF} (False implies True is False)	$0 \rightarrow 1 \approx 0$
\mathcal{PTP} (Possible implies True is Possible)	$x \rightarrow 1 \approx x$
$com\mathcal{SH}$ (Commutative semi-Heyting algebras)	$x \rightarrow y \approx y \rightarrow x$

78 MANUEL ABAD, JUAN MANUEL CORNEJO AND JOSÉ PATRICIO DÍAZ VARELA

He also introduced the subvariety \mathcal{SH}^C of \mathcal{SH} generated by chains and the subvarieties $\mathcal{FTT}\cap\mathcal{SH}^C$, $\mathcal{QH}\cap\mathcal{SH}^C$, $\mathcal{FTF}\cap\mathcal{SH}^C$ and $com\mathcal{SH}\cap\mathcal{SH}^C$.

The objective of this work is to prove that these subvarieties are in fact subvarieties of $ISSH$. We study the relationships between them within ISSH and we determine the sublattice of SH generated by the above subvarieties. We also introduce and study new subvarieties of LSSH .

If **is a totally ordered semi-Heyting algebra we say that** $**L**$ **is a semi-**Heyting chain. The following results were proved in [1].

Theorem 1.3. An equational basis for \mathcal{SH}^C relative to \mathcal{SH} is given by *the identity*

$$
((x \lor (x \to y)) \to (x \to y)) \lor (y \to (x \land y)) \approx 1.
$$

Corollary 1.4. *Every subdirectly irreducible algebra of* SH^C *is a chain.*

Now we prove some simple properties of Stone semi-Heyting algebras.

Theorem 1.5. *If* L *is a subdirectly irreducible Stone semi-Heyting algebra, then* 0 *is* ∧*-irreducible.*

Proof. Suppose that there exist $a, b \in L$ such that $a \wedge b = 0$. Suppose that $a \neq 0$. Since **L** satisfies the Stone identity, $a^* \vee a^{**} = 1$, and since 1 is ∨-irreducible, $a^* = 1$ or $a^{**} = 1$. But $a^* \neq 1$, so $a^{**} = 1$. Then $a^* = 0$, and thus $0 = b \wedge a^* = b \wedge (a \to 0) \stackrel{(SH3)}{=} b \wedge [(b \wedge a) \to (b \wedge 0)] = b \wedge (0 \to 0) = b.$ \Box

Corollary 1.6. *If* L *is a finite subdirectly irreducible semi-Heyting algebra, the* L *is a Stone algebra if and only if* L *has a unique atom.*

Corollary 1.7. *If* L *is a subdirectly irreducible Stone semi-Heyting algebra and* $|L| \leq 5$ *, then* **L** *is a chain.*

In [4], the author proves that $\mathcal{PTP}^C = com\mathcal{SH}^C$, where \mathcal{PTP}^C denotes the subvariety $\mathcal{PTP} \cap \mathcal{SH}^C$, and he asks if it is true that $\mathcal{PTP} = comSH$ ([4, Problem 14.11]). Let us prove that in general $\mathcal{PTP} = com\mathcal{SH}$.

Theorem 1.8. *Let* $L \in \mathcal{SH}$ *. The following conditions are equivalent:*

- (1) $\mathbf{L} \models x \rightarrow y \approx y \rightarrow x.$
- (2) $\mathbf{L} \models x \to 1 \approx x.$
- (3) $\mathbf{L} \models y \land (x \rightarrow y) \approx x \land y$.

Proof. (1) \Rightarrow (2) If $a \in L$, $a \rightarrow 1 = 1 \rightarrow a = a$. $(2) \Rightarrow (3)$ Let $a, b \in L$. Then $b \wedge (a \rightarrow b) = b \wedge [(b \wedge a) \rightarrow (b \wedge b)] =$ $b \wedge [(b \wedge a) \rightarrow b] = b \wedge [(b \wedge a) \rightarrow (b \wedge 1)] = b \wedge (a \rightarrow 1) = b \wedge a.$ $(3) \Rightarrow (1)$ Let $a, b \in L$. Then $(a \rightarrow b) \wedge (b \rightarrow a) = (a \rightarrow b) \wedge [((a \rightarrow b) \wedge b) \rightarrow$ $((a \rightarrow b) \land a)$] = $=(a \rightarrow b) \land [(a \land b) \rightarrow (a \land b)] = (a \rightarrow b) \land 1 = (a \rightarrow b).$ Thus $a \to b \leq b \to a$. Similarly, $b \to a \leq a \to b$. So $a \to b = b \to a$.

Corollary 1.9. $comS H = P \mathcal{T} P$.

Once we have studied the variety in which \rightarrow in commutative, it is natural to ask about the variety $asocS\mathcal{H}$ in which \rightarrow is associative. We will prove that in fact the identity $x \to (y \to z) \approx (x \to y) \to z$ characterizes the variety $V(\overline{2})$, where $\overline{2}$ is the 2-element semi-Heyting chain that satisfies $0 \to 1 \approx 0$, and $V(\overline{2})$ is the variety generated by $\overline{2}$.

Lemma 1.10. *If* $L \in asoc\mathcal{SH}$, then L *satisfies* $x \to 1 \approx x$ *.*

Proof. For $a \in L$, take $x = y = z = a$ in the identity $x \to (y \to z) \approx$ $(x \to y) \to z.$

Corollary 1.11. $ascS\mathcal{H} \subseteq comS\mathcal{H}$.

Theorem 1.12. $ascS\mathcal{H} = \mathcal{V}(\overline{2})$

80 MANUEL ABAD, JUAN MANUEL CORNEJO AND JOSÉ PATRICIO DÍAZ VARELA

Proof. It is clear that $\overline{2} \in asoc\mathcal{SH}$. So $\mathcal{V}(\overline{2}) \subseteq asoc\mathcal{SH}$.

Let **L** be a subdirectly irreducible algebra in $ascS\mathcal{H}$ with $|L| \geq 2$. Let $d \in L$ be the unique coatom in L and let us prove that $d = 0$. Suppose that $d \neq 0$. We have that

$$
0 \to (0 \to d) = (0 \to 0) \to d = 1 \to d = d.
$$

From Corollary 1.11, $0 \rightarrow d = d \rightarrow 0 = d^* = 0$. So $d = 0 \rightarrow (0 \rightarrow d) =$ $0 \rightarrow 0 = 1$, a contradiction. Thus $|L| = 2$. By commutativity, we have that $0 \to 1 = 0$, so $\mathbf{L} \simeq \overline{\mathbf{2}}$.

The following algebras will be used in section 2. It is routine to prove that they are subdirectly irreducible semi-Heyting algebras.

 L_1 1

In **L**₁, $(0 \t→ 1)^* = 1$, so **L**₁ ∈ ISSH. On the other hand, it is clear that $\mathbf{L}_1 \notin \mathcal{FTD}$.

 L_2 1

0

0

a

a

	$\boldsymbol{0}$	\boldsymbol{a}	
$\left(\right)$			
\boldsymbol{a}	$\boldsymbol{0}$		
	0	\boldsymbol{a}	

We have that L_2 is a Heyting algebra, and $\mathbf{L}_1 \notin \mathcal{FTD}$.

 L_3 1

It is clear that \mathbf{L}_3 satisfies $y \leq$ $x \to y$, so $\mathbf{L}_3 \in \mathcal{QH}$. Since $a = 0 \rightarrow a \neq 1, \mathbf{L}_3 \notin \mathcal{H}$.

 $a \mid 1$

 $\begin{array}{|c|c|c|}\hline a & a \\ \hline 1 & a \\ \hline \end{array}$ $\overline{1}$ $a \mid 1$

$$
\begin{array}{c|c}\nL_5 & 1 \\
a & 0 \\
\hline\n0 & 1 \\
0 & 1\n\end{array}
$$

We have that $\mathbf{L}_5 \in \mathcal{FTD}$ and $\mathbf{L}_5 \notin \mathcal{FTT}$.

Observe that $a \to 1 \neq 1 \to a$, so $\mathbf{L}_6 \notin com\mathcal{SH}.$

 L_{7} 1 \bullet

a \mathbf{L}_8

$$
\mathbf{L}_8\in \mathcal{FTD}.
$$

s

0

 $0 \bullet$

 \rightarrow 0 a b c d 1

Observe that \mathbf{L}_9 is a Heyting algebra and it satisfies $x^* \vee x^{**} \approx 1$, so $\mathbf{L}_{9} \in \mathcal{H}^{S}.$

1

	$\boldsymbol{0}$	\boldsymbol{a}	\boldsymbol{b}	\overline{c}	
\Box					
\boldsymbol{a}	\boldsymbol{b}		\boldsymbol{b}		
\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}			
\mathcal{C}_{0}^{0}	0	\boldsymbol{a}	\boldsymbol{b}		
	ſ	\boldsymbol{a}	h	\mathcal{C}	

 L_{11} is a Heyting algebra.

2. Generating a sublattice of $ISSH$

The objective of this section is to determine the sublattice generated by the subvarieties introduced in section 1 within the lattice of subvarieties of SH.

Lemma 2.1. *Let* $L \in \mathcal{SH}$.

- (a) *If* $\mathbf{L} \models (x \land y) \to x \approx 1$ *then* $\mathbf{L} \models y \land (x \to y) \approx y$ *.*
- (b) *If* $\mathbf{L} \models y \land (x \to y) \approx y$ *then* $\mathbf{L} \models 0 \to 1 \approx 1$ *.*
- (c) *If* $\mathbf{L} \models 0 \rightarrow 1 \approx 1$ *then* $\mathbf{L} \models (0 \rightarrow 1)^* \approx 0$ *.*

Proof. $y \wedge (x \to y) \stackrel{(SH3)}{=} y \wedge ((y \wedge x) \to (y \wedge y)) = y \wedge ((y \wedge x) \to y) =$ $y \wedge 1 = y$, proving (a). (b) follows taking $x = 0$, $y = 1$. Finally, (c) is clear. \Box

Lemma 2.2. $\mathcal{H} \subsetneq \mathcal{QH} \subsetneq \mathcal{FTT} \subsetneq \mathcal{FTD} \subsetneq \mathcal{ISSH}$.

Proof. From Lemma 2.1, $H \subseteq QH \subseteq FTT \subseteq FTD$, and it is clear that $FTD \subseteq ISSH$. The algebras \mathbf{L}_3 , \mathbf{L}_4 and \mathbf{L}_5 prove that $\mathcal{H} \neq \mathcal{QH}$, $QH \neq FTT$ and $FTT \neq FTD$. The algebra $L_1 \in \text{LSSH} \setminus \text{FTD}$, so $\mathcal{FTD} \neq \mathcal{ISSH}.$

Lemma 2.3. $\text{comSH} \subsetneq \text{FTF} \subsetneq \text{ISSH}$.

Proof. Let $L \in com\mathcal{SH}$. In L , $0 \to 1 = 1 \to 0 = 0$, so $L \in \mathcal{FTF}$. It is clear that $\mathcal{FTF} \subseteq \mathcal{ISSH}$ and consequently, $com\mathcal{SH} \subseteq \mathcal{FTF} \subseteq \mathcal{ISSH}$. Taking into account the algebras L_6 and L_4 we have that $\text{com}\mathcal{SH} \neq \mathcal{FTF}$ and $\mathcal{FTF} \neq \mathcal{ISSH}.$

Let 2 be the 2-element semi-Heyting chain with universe $\{0,1\}$ that satisfies $0 \to 1 \approx 1$, that is, 2 is the 2-element Boolean algebra, and let \mathcal{T} denote the trivial variety. It is clear that $\mathcal{T} \subsetneq \mathcal{V}(2) \subsetneq \mathcal{H}$.

Let us consider now the following identities.

$$
[(x \vee x^*) \wedge (0 \to 1)] \vee [((x \to y) \leftrightarrow (y \to x)) \wedge (0 \to 1)^*] \approx 1
$$
 (E₁)

$$
[(0 \to 1)^* \wedge (x \vee x^*)] \vee [((x \wedge y) \to y) \wedge (0 \to 1)] \approx 1
$$
 (E₂)

84 MANUEL ABAD, JUAN MANUEL CORNEJO AND JOSÉ PATRICIO DÍAZ VARELA

$$
[((x \wedge y) \rightarrow y) \wedge (0 \rightarrow 1)] \vee [((x \rightarrow y) \leftrightarrow (y \rightarrow x)) \wedge (0 \rightarrow 1)^*] \approx 1 \quad (E_3)
$$

$$
[((x \wedge y) \rightarrow y) \wedge (0 \rightarrow 1)] \vee (0 \rightarrow 1)^* \approx 1
$$
 (E₄)

$$
(x \vee x^*) \vee (0 \to 1)^* \approx 1 \tag{E_5}
$$

$$
[(y \wedge (x \to y) \leftrightarrow y) \wedge (0 \to 1)] \vee [(x \vee x^*) \wedge (0 \to 1)^*] \approx 1
$$
 (E₆)

$$
[(y \wedge (x \to y) \leftrightarrow y) \wedge (0 \to 1)] \vee [((x \to y) \leftrightarrow (y \to x)) \wedge (0 \to 1)^*] \approx 1 \ (E_7)
$$

$$
[(y \wedge (x \to y) \leftrightarrow y) \wedge (0 \to 1)] \vee (0 \to 1)^{*} \approx 1
$$
 (E₈)

$$
(0 \to 1) \vee [(0 \to 1)^* \wedge (x \vee x^*)] \approx 1 \tag{E_9}
$$

$$
(0 \to 1) \vee [(0 \to 1)^* \wedge ((x \to y) \leftrightarrow (y \to x))] \approx 1
$$
 (E₁₀)

$$
(0 \to 1) \vee (0 \to 1)^* \approx 1 \tag{E_{11}}
$$

$$
(0 \to 1)^{**} \vee [(0 \to 1)^* \wedge (x \vee x^*)] \approx 1 \qquad (E_{12})
$$

$$
(0 \to 1)^{**} \vee [(0 \to 1)^* \wedge ((x \to y) \leftrightarrow (y \to x))] \approx 1
$$
 (E₁₃)

Let \mathcal{E}_j denote the subvariety of \mathcal{SH} defined by the identity (E_j) .

Lemma 2.4. $\mathcal{V}(\overline{2}) \subsetneq \mathcal{S} \mathcal{H}^B \subsetneq \mathcal{E}_2 \subsetneq \mathcal{E}_6 \subsetneq \mathcal{E}_9 \subsetneq \mathcal{E}_{12}$

Proof. Let $L \in \mathcal{E}_2$ be subdirectly irreducible. For $a, b \in L$,

$$
[(0 \to 1)^* \wedge (a \vee a^*)] \vee [((a \wedge b) \to b) \wedge (0 \to 1)] = 1.
$$

Then $(0 \to 1)^* \wedge (a \vee a^*) = 1$ or $((a \wedge b) \to b) \wedge (0 \to 1) = 1$.

If $((a \wedge b) \rightarrow b) \wedge (0 \rightarrow 1) = 1$ then $(a \wedge b) \rightarrow b = 1$ and $0 \rightarrow 1 = 1$. So $b \wedge (a \to b) = b$ and $0 \to 1 = 1$. Thus $\mathbf{L} \in \mathcal{E}_6$, that is, $\mathcal{E}_2 \subseteq \mathcal{E}_6$.

The other inclusions are similar.

Let us see that $\mathcal{E}_2 \neq \mathcal{E}_6$. The algebra \mathbf{L}_3 satisfies the identities $y \wedge (x \rightarrow$ $y) \approx y$ and $0 \to 1 \approx 1$. So $\mathbf{L}_3 \in \mathcal{E}_6$. But if we take $x = 0$ and $y = a$ in the identity (E_2) , we obtain $[(0 \rightarrow 1)^* \wedge (0 \vee 0^*)] \vee [(0 \rightarrow a) \wedge (0 \rightarrow 1)] =$ $0 \vee [a \wedge 1] = a \neq 1$. Thus $\mathbf{L}_3 \not\in \mathcal{E}_2$.

For the rest of the inequalities, it is enough to consider the algebras 2, \mathbf{L}_2 , \mathbf{L}_4 and \mathbf{L}_8 .

Lemma 2.5. $com\mathcal{SH} \subsetneq \mathcal{E}_1 \subsetneq \mathcal{E}_3 \subsetneq \mathcal{E}_7 \subsetneq \mathcal{E}_{10} \subsetneq \mathcal{E}_{13}$.

Proof. Let us prove that $\mathcal{E}_1 \subsetneq \mathcal{E}_3$. Let $\mathbf{L} \in \mathcal{E}_1$ be subdirectly irreducible and $a, b \in L$. If $(a \vee a^*) \wedge (0 \rightarrow 1) = 1$ then $a \vee a^* = 0 \rightarrow 1 = 1$. Then $a = 1$ or $a = 0$. In both cases, $(a \wedge b) \rightarrow b = 0 \rightarrow 1 = 1$. So $\mathbf{L} \in \mathcal{E}_3$.

The algebra \mathbf{L}_2 belongs to \mathcal{E}_3 , but if we take $x = y = a$ in (E_1) , we obtain $(a \vee a^*) \wedge (0 \to 1) = a \neq 1$, so $\mathbf{L}_2 \not\in \mathcal{E}_1$. Consequently $\mathcal{E}_1 \subsetneqq \mathcal{E}_3$.

The other cases are similar and the corresponding inequalities follow considering the algebras \mathbf{L}_3 , \mathbf{L}_4 , \mathbf{L}_5 and the algebra 2.

Lemma 2.6. $\mathcal{FTF} \subsetneq \mathcal{E}_5 \subsetneq \mathcal{E}_4 \subsetneq \mathcal{E}_8 \subsetneq \mathcal{E}_{11} \subsetneq \mathcal{TSSH}$.

Proof. We only prove that $\mathcal{E}_5 \subsetneq \mathcal{E}_4$. Let $\mathbf{L} \in \mathcal{E}_5$ be subdirectly irreducible and let $a, b \in L$. We have that **L** satisfies $(x \vee x^*) \vee (0 \rightarrow 1)^* \approx 1$. If $0 \to 1 = 0$ we are done. If $0 \to 1 = 1$ then $a \vee a^* = 1$ and as in the previous proof, $(a \wedge b) \rightarrow b = 1$. Finally, the case $0 \rightarrow 1 = a$ with $a \notin \{0, 1\}$ is not possible, since otherwise we would have $(a \vee a^*) \vee (0 \rightarrow 1)^* = a \vee a^* \neq 1$. Therefore, $\mathbf{L} \in \mathcal{E}_4$.

The algebra \mathbf{L}_2 belongs to \mathcal{E}_4 , but if we take $x = a$ in (E_5) , we see that $\mathbf{L}_2 \notin \mathcal{E}_5$. Hence, $\mathcal{E}_5 \subsetneq \mathcal{E}_4$.

The other relations can be checked taking into account Lemma 2.1 and by using the algebras 2, \mathbf{L}_3 , \mathbf{L}_4 and \mathbf{L}_5 .

In a similar way the following relations can be proved.

Lemma 2.7.

- (1) $V(\overline{2}) \subsetneq com\mathcal{SH}$
- (2) $V(2) \subsetneq \mathcal{SH}^B \subsetneq \mathcal{E}_1 \subsetneq \mathcal{E}_5$
- (3) $\mathcal{H} \subsetneq \mathcal{E}_2 \subsetneq \mathcal{E}_3 \subsetneq \mathcal{E}_4$
- (4) $\mathcal{QH} \varsubsetneq \mathcal{E}_6 \varsubsetneq \mathcal{E}_7 \varsubsetneq \mathcal{E}_8$
- (5) $\mathcal{FTT} \subsetneq \mathcal{E}_9 \subsetneq \mathcal{E}_{10} \subsetneq \mathcal{E}_{11}$
- (6) $FTD \subsetneq \mathcal{E}_{12} \subsetneq \mathcal{E}_{13} \subsetneq \mathcal{ISSH}$

For a given variety \mathcal{V} , let \mathcal{V}^C denote the variety $\mathcal{V} \cap \mathcal{SH}^C$, and similarly, let $\mathcal{V}^{\mathcal{S}}$ denote the variety $\mathcal{V} \cap \mathcal{SH}^{\mathcal{S}}$.

Theorem 2.8. $\mathcal{SH}^C \subsetneq \mathcal{SH}^S \subsetneq \mathcal{ISSH}$

Proof. By Corollary 1.4, $\mathcal{SH}^C \subseteq \mathcal{SH}^S$, and it is clear that $\mathcal{SH}^S \subseteq$ ISSH.

The algebra $\mathbf{L}_9 \in S\mathcal{H}^S$. Since \mathbf{L}_9 is a subdirectly irreducible algebra which is not a chain, $\mathbf{L}_9 \notin \mathcal{SH}^C$ (Corollary 1.4).

Similarly, the algebra $\mathbf{L}_{11} \in \mathcal{ISSH}$, but $\mathbf{L}_{11} \notin \mathcal{SH}^S$, since it does not have a unique atom. \Box

Corollary 2.9.

- (a) $\mathcal{H}^C \subsetneq \mathcal{H}^S \subsetneq \mathcal{H}$
- (b) $\mathcal{QH}^C \subsetneq \mathcal{QH}^S \subsetneq \mathcal{QH}$
- (c) $\mathcal{FTT}^C \subsetneq \mathcal{FTT}^S \subsetneq \mathcal{FTT}$
- (d) $\mathcal{FTD}^C \subsetneq \mathcal{FTD}^S \subsetneq \mathcal{FTD}$

Corollary 2.10.

- (a) $com\mathcal{SH}^C \subsetneq com\mathcal{SH}^S \subsetneq com\mathcal{SH}$
- (b) $\mathcal{FTF}^C \subsetneq \mathcal{FTF}^S \subsetneq \mathcal{FTF}$

Proof. We shall prove item (a). By Theorem 2.8, $com\mathcal{SH}^C \subseteq com\mathcal{SH}^S \subseteq$ *comSH*. Now, the algebra $\mathbf{L}_{10} \in \text{com}S\mathcal{H}^S$. But, by Theorem 1.4, $\mathbf{L}_{10} \notin$ comSH^C. On the other hand, the algebra $L_{12} \in \text{comSH}$, while $L_{12} \notin$ $\text{com}\mathcal{SH}^S$ since it has no a unique atom.

Corollary 2.11. $\mathcal{E}_j^C \subsetneq \mathcal{E}_j^S \subsetneq \mathcal{E}_j, 1 \leq j \leq 13$

Proof. We prove only the case $j = 1$. By Theorem 2.8, $\mathcal{E}_1^C \subseteq \mathcal{E}_1^S \subseteq$ \mathcal{E}_1 . The algebra \mathbf{L}_{10} is commutative, so in particular, $\mathbf{L}_{10} \in \mathcal{E}_1^S$. Since $\mathcal{E}_1^C \subseteq \mathcal{SH}^C$, by Theorem 2.8, $\mathbf{L}_{10} \notin \mathcal{E}_1^C$. So $\mathcal{E}_1^C \subsetneq \mathcal{E}_1^S$. On the other hand, the algebra \mathbf{L}_{12} is commutative, an then $L_{12} \in \mathcal{E}_1$, but $a^* \vee a^{**} \neq 1$, so $L_{12} \notin S\mathcal{H}^S$. . ✷

The following lemma will be used in the rest of the section.

Lemma 2.12. *Let* $L \in \mathcal{SH}^C$ *be subdirectly irreducible. If* $0 \to 1 = c$ *with* $c \in L \setminus \{0,1\}$ *then* **L** *does not satisfy any of the identities* (E_1) *to* (E_{11}) .

Proof. If $L \in \mathcal{SH}^C$ is subdirectly irreducible, L is a chain. Since $0 \to 1 = c$ with $c \in L - \{0, 1\}$, $(0 \to 1)^* = 0$. The result follows if we take $x = y = c$ in any of he identities (E_1) to (E_{11}) .

In what follows we will find the join and the meet in the lattice of subvarieties of $ISSH$ of each pair of subvarieties previously defined. Observe that an equational basis for $V(2)$, modulo \mathcal{SH} , is given by $x \vee x^* \approx 1$ and $0 \rightarrow 1 \approx 1$ ([4, Corollary 9.3]), and an equational base for $V(\overline{2})$, modulo SH, is given by $x \vee x^* \approx 1$ and $0 \to 1 \approx 0$ ([4, Corollary 9.4]). Thus $V(2) = S\mathcal{H}^B \cap \mathcal{FTT}$ and $V(\overline{2}) = S\mathcal{H}^B \cap \mathcal{FTF}$

In [4] it is shown the following result, where $\mathcal{V}(A, B)$ (respectively $V(A, \mathcal{B})$ denotes the variety generated by the algebras A and B (respectively by the subvarieties A and B).

Lemma 2.13.

- (a) $V(2, \overline{2}) = \mathcal{SH}^B$.
- (b) $\mathcal{V}(2) \cap \mathcal{V}(2) = \mathcal{T}$.

Lemma 2.14.

(a) $H \cap S H^B = V(2)$

(b)
$$
V(H, S H^B) = \mathcal{E}_2
$$

Proof. It is clear that $2 \in \mathcal{H} \cap \mathcal{SH}^B$. Let $\mathbf{L} \in \mathcal{H} \cap \mathcal{SH}^B$ be subdirectly irreducible. By Lemma 2.13, $\mathbf{L} \simeq 2$ or $\mathbf{L} \simeq \overline{2}$. Since $\mathbf{L} \in \mathcal{H}$, $\mathbf{L} \simeq 2$. So we have (a).

In order to prove (b), let $\mathbf{L} \in \mathcal{E}_2$ be subdirectly irreducible. Suppose that $0 \to 1 = 0$. Then for $x \in L$, we obtain in (E_2) , $x \vee x^* \approx 1$. So $\mathbf{L} \in \mathcal{SH}^B$. If $0 \to 1 = 1$, then for $x, y \in L$ we obtain in (E_2) , $(x \wedge y) \to y \approx 1$, and consequently, $\mathbf{L} \in \mathcal{H}$. In addition, from Lemmas 2.4 and 2.7, $\mathcal{SH}^B \subseteq \mathcal{E}_2$ and $\mathcal{H} \subseteq \mathcal{E}_2$.

In a similar way, by using Lemma 2.12 and the previous results and examples, it can be proved that:

Lemma 2.15.

1. (a)
$$
\mathcal{SH}^B \cap \text{com}\mathcal{SH} = \mathcal{V}(\overline{2})
$$
 (b) $\mathcal{V}(\mathcal{E}_3, \mathcal{E}_5)$
(b) $\mathcal{V}(\mathcal{SH}^B, \text{com}\mathcal{SH}) = \mathcal{E}_1$ (c) $\mathcal{F}(\mathcal{TD} \cap \mathcal{E})$

- 2. (a) $\mathcal{QH} \cap \mathcal{E}_2 = \mathcal{H}$ (b) $V(QH, \mathcal{E}_2) = \mathcal{E}_6$
- 3. (a) $\mathcal{E}_2 \cap \mathcal{E}_1 = \mathcal{BSH}$ (b) $V(\mathcal{E}_2, \mathcal{E}_1) = \mathcal{E}_3$
- 4. (a) $\mathcal{E}_1 \cap \mathcal{FTF} = com\mathcal{SH}$ (b) $V(\mathcal{E}_1, \mathcal{FTF}) = \mathcal{E}_5$
- 5. (a) $\mathcal{E}_6 \cap \mathcal{FTT} = \mathcal{QH}$
	- (b) $V(\mathcal{E}_6, FTT) = \mathcal{E}_9$
- 6. (a) $\mathcal{E}_6 \cap \mathcal{E}_3 = \mathcal{E}_2$ (b) $V(\mathcal{E}_6, \mathcal{E}_3) = \mathcal{E}_7$
- 7. (a) $\mathcal{E}_3 \cap \mathcal{E}_5 = \mathcal{E}_1$
- $=\mathcal{E}_4$
- $\mathcal{E}_9 = \mathcal{FTT}$ (b) $V(\mathcal{FTD}, \mathcal{E}9) = \mathcal{E}_{12}$
- 9. (a) $\mathcal{E}_9 \cap \mathcal{E}_7 = \mathcal{E}_6$ (b) $V(\mathcal{E}_9, \mathcal{E}_7) = \mathcal{E}_{10}$
- 10. (a) $\mathcal{E}_7 \cap \mathcal{E}_4 = \mathcal{E}_3$ (b) $V(\mathcal{E}_7, \mathcal{E}_4) = \mathcal{E}_8$
- 11. (a) $\mathcal{E}_{12} \cap \mathcal{E}_{10} = \mathcal{E}_9$ (b) $V(\mathcal{E}_{12}, \mathcal{E}_{10}) = \mathcal{E}_{13}$
- 12. (a) $\mathcal{E}_{10} \cap \mathcal{E}_8 = \mathcal{E}_7$ (b) $V(\mathcal{E}_{10}, \mathcal{E}_8) = \mathcal{E}_{11}$
- 13. (a) $\mathcal{E}_{13} \cap \mathcal{E}_{11} = \mathcal{E}_{10}$ (b) $V(\mathcal{E}_{13}, \mathcal{E}_{11}) = \mathcal{I}\mathcal{S}\mathcal{S}\mathcal{H}$

Observe that $\mathcal{ISSH} \subsetneq \mathcal{SH}$, as the following example shows.

We have that **L** is a semi-Heyting algebra, but $(0 \rightarrow 1)^{**} \vee (0 \rightarrow 1)^*$ $a^{**} \vee a^* = b^* \vee b = a \vee b = c \neq 1$, so $\mathbf{L} \not\in \mathcal{ISSH}$.

Thus we have the following theorem.

Theorem 2.16. *The order relation between the subvarieties previously defined is the one depicted in the following figure.*

.References

- [1] M. Abad, J.M. Cornejo and J.P. Diaz Varela, *The Variety Generated by Semi-Heyting Chains*, submitted for publication.
- [2] R. Balbes and P.H. Dwinger, Distributive lattices, University of Missouri Press, Columbia, 1974.
- [3] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics 78, Springer-Verlag, New York, 1981.
- [4] H.P. Sankappanavar, *Semi-Heyting Algebras: An Abstraction From Heyting Algebras.* Actas del IX Congreso A. Monteiro, Bahía Blanca, 2007, pp. 33-66.

90 MANUEL ABAD, JUAN MANUEL CORNEJO AND JOSÉ PATRICIO DÍAZ VARELA

Departamento de Matemática Universidad Nacional del Sur 8000 Bahía Blanca (Argentina)

imabad@criba.edu.ar, usdiavar@criba.edu.ar, jmcornejo@uns.edu.ar