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.1 Introduction and preliminaries

In [4], Sankappanavar introduced a new equational class SH of algebras,

which he called “Semi-Heyting Algebras”, as an abstraction of Heyting al-

gebras. This variety includes Heyting algebras and share with them some

rather strong properties. For example, the variety of semi-Heyting alge-

bras is arithmetical, semi-Heyting algebras are pseudocomplemented dis-

tributive lattices and their congruences are determined by filters. Sankap-

panavar introduced in his work several subvarieties of SH, for instance, the

variety SHS of Stone semi-Heyting algebras, the variety SHB of Boolean

semi-Heyting algebras, the variety QH of quasi-Heyting algebras, the vari-

ety SHC generated by semi-Heyting chains, investigated in [1], the variety

FT T in which 0 → 1 ≈ 1, the variety FT F in which 0 → 1 ≈ 0, and

so on. These new varieties seem to be of interest from the point of view

of non-classical logic, since they can provide a new interpretation for the

implication connective.

The purpose of this paper is to introduce and investigate the subvariety

ISSH of semi-Heyting algebras satisfying the equation (0 → 1)∗ ∨ (0 →

1)∗∗ ≈ 1. Clearly, the variety of Stone semi-Heyting algebras is contained

in ISSH. Moreover, ISSH contains all the subvarieties introduced in [4],

and it is in fact the least subvariety of SH that contains all the subvarieties

of Sankappanavar.

We start by recalling some definitions and basic results ([2], [3] and [4]).

A semi-Heyting algebra is an algebra L = 〈L,∨,∧,→, 0, 1〉 such that

(SH1) 〈L,∨,∧, 0, 1〉 is a lattice with 0 and 1,

(SH2) x ∧ (x → y) ≈ x ∧ y,

(SH3) x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)],

(SH4) x → x ≈ 1.

Semi-Heyting algebras are pseudocomplemented distributive lattices,

with the pseudocomplement given by x∗ = x → 0 (see [4]). Nevertheless,

the operation → on semi-Heyting algebras does not enjoy several nice prop-

erties of the implication on Heyting algebras or even on BCK-algebras. For
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example, the order on a semi-Heyting algebra is not determined by the op-

eration of implication. Some of the properties of → in SH are contained in

the next lemma.

Lemma 1.1. [4] Let L ∈ SH and a, b ∈ L.

(a) If a → b = 1 then a ≤ b.

(b) If a ≤ b then a ≤ a → b.

(c) a = b if and only if a → b = b → a = 1.

(d) 1 → a = a.

Proof. From a → b = 1 and (SH3), we get a ∧ 1 = a ∧ b, that is

a = a ∧ b, and we have (a). For (b), by (SH3) and since a ≤ b it follows

that a = a ∧ (a → b) ≤ a → b. Property (c) is clear. To prove (d), observe

that a = 1 ∧ a = 1 ∧ (1 → a) = 1 → a. 2

Since congruences in semi-Heyting algebras are determine by filters [4,

Th. 5.4], the subdirectly irreducible algebras in SH can be characterized

by the following result, which is essential for the rest of the paper.

Theorem 1.2. [4, Th. 7.5] Let L ∈ SH with |L| ≥ 2. Then the

following are equivalent:

(a) L is subdirectly irreducible.

(b) L has a unique coatom.

In particular, if L is a subdirectly irreducible semi-Heyting algebra, then

1 is join-irreducible.

A semi-Heyting algebra L = 〈L,∨,∧,→, 0, 1〉 is said to be a semi-

Heyting algebra with a Stone implication if it satisfies the identity (0 →

1)∗ ∨ (0 → 1)∗∗ ≈ 1.

We denote by ISSH the variety of semi-Heyting algebras with a Stone

implication.

In [4, Definition 8.1] Sankappanavar introduced the following subvari-

eties of SH by providing defining identities within SH for each of them:
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Subvariety Defining identity

within SH

FT T (False implies True is True) 0 → 1 ≈ 1

FT D (False implies True is Dense) (0 → 1)∗ ≈ 0

QH (Quasi-Heyting algebras) y ≤ x → y

H (Heyting algebras) (x ∧ y) → x ≈ 1

SHS (Stone semi-Heyting algebras) x∗ ∨ x∗∗ ≈ 1

SHB (Boolean semi-Heyting algebras) x ∨ x∗ ≈ 1

FT F (False implies True is False) 0 → 1 ≈ 0

PT P (Possible implies True is Possible) x → 1 ≈ x

comSH (Commutative semi-Heyting algebras) x → y ≈ y → x

He also introduced the subvariety SHC of SH generated by chains and

the subvarieties FT T ∩SHC , QH∩SHC , FT F∩SHC and comSH∩SHC .

The objective of this work is to prove that these subvarieties are in fact

subvarieties of ISSH. We study the relationships between them within

ISSH and we determine the sublattice of SH generated by the above

subvarieties. We also introduce and study new subvarieties of ISSH.

If L is a totally ordered semi-Heyting algebra we say that L is a semi-

Heyting chain. The following results were proved in [1].

Theorem 1.3. An equational basis for SHC relative to SH is given by

the identity

((x ∨ (x → y)) → (x → y)) ∨ (y → (x ∧ y)) ≈ 1.

Corollary 1.4. Every subdirectly irreducible algebra of SHC is a chain.

Now we prove some simple properties of Stone semi-Heyting algebras.

Theorem 1.5. If L is a subdirectly irreducible Stone semi-Heyting al-

gebra, then 0 is ∧-irreducible.

Proof. Suppose that there exist a, b ∈ L such that a ∧ b = 0. Suppose

that a 6= 0. Since L satisfies the Stone identity, a∗ ∨ a∗∗ = 1, and since 1 is

∨-irreducible, a∗ = 1 or a∗∗ = 1. But a∗ 6= 1, so a∗∗ = 1. Then a∗ = 0, and

thus 0 = b∧ a∗ = b∧ (a → 0)
(SH3)

= b∧ [(b∧ a) → (b∧ 0)] = b∧ (0 → 0) = b.

2
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Corollary 1.6. If L is a finite subdirectly irreducible semi-Heyting al-

gebra, the L is a Stone algebra if and only if L has a unique atom.

Corollary 1.7. If L is a subdirectly irreducible Stone semi-Heyting

algebra and |L| ≤ 5, then L is a chain.

In [4], the author proves that PT PC = comSHC , where PT PC denotes

the subvariety PT P ∩ SHC , and he asks if it is true that PT P = comSH

([4, Problem 14.11]). Let us prove that in general PT P = comSH.

Theorem 1.8. Let L ∈ SH. The following conditions are equivalent:

(1) L |= x → y ≈ y → x.

(2) L |= x → 1 ≈ x.

(3) L |= y ∧ (x → y) ≈ x ∧ y.

Proof. (1) ⇒ (2) If a ∈ L, a → 1 = 1 → a = a.

(2) ⇒ (3) Let a, b ∈ L. Then b ∧ (a → b) = b ∧ [(b ∧ a) → (b ∧ b)] =

b ∧ [(b ∧ a) → b] = = b ∧ [(b ∧ a) → (b ∧ 1)] = b ∧ (a → 1) = b ∧ a.

(3) ⇒ (1) Let a, b ∈ L. Then (a → b)∧(b → a) = (a → b)∧[((a → b)∧b) →

((a → b) ∧ a)] = = (a → b) ∧ [(a ∧ b) → (a ∧ b)] = (a → b) ∧ 1 = (a → b).

Thus a → b ≤ b → a. Similarly, b → a ≤ a → b. So a → b = b → a. 2

Corollary 1.9. comSH = PT P.

Once we have studied the variety in which → in commutative, it is

natural to ask about the variety asocSH in which → is associative. We will

prove that in fact the identity x → (y → z) ≈ (x → y) → z characterizes

the variety V(2), where 2 is the 2-element semi-Heyting chain that satisfies

0 → 1 ≈ 0, and V(2) is the variety generated by 2.

Lemma 1.10. If L ∈ asocSH, then L satisfies x → 1 ≈ x.

Proof. For a ∈ L, take x = y = z = a in the identity x → (y → z) ≈

(x → y) → z. 2

Corollary 1.11. asocSH ⊆ comSH.

Theorem 1.12. asocSH = V(2)
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Proof. It is clear that 2 ∈ asocSH. So V(2) ⊆ asocSH.

Let L be a subdirectly irreducible algebra in asocSH with |L| ≥ 2. Let

d ∈ L be the unique coatom in L and let us prove that d = 0. Suppose

that d 6= 0. We have that

0 → (0 → d) = (0 → 0) → d = 1 → d = d.

From Corollary 1.11, 0 → d = d → 0 = d∗ = 0. So d = 0 → (0 → d) =

0 → 0 = 1, a contradiction. Thus |L| = 2. By commutativity, we have that

0 → 1 = 0, so L ≃ 2. 2

The following algebras will be used in section 2. It is routine to prove

that they are subdirectly irreducible semi-Heyting algebras.

s

s

s

0

a

1L1
→ 0 a 1

0 1 0 0

a 0 1 a

1 0 a 1

In L1, (0 → 1)∗ = 1, so L1 ∈

ISSH. On the other hand, it

is clear that L1 6∈ FT D.

s

s

s

0

a

1L2
→ 0 a 1

0 1 1 1

a 0 1 1

1 0 a 1

We have that L2 is a Heyting

algebra, and L1 /∈ FT D.

s

s

s

0

a

1L3
→ 0 a 1

0 1 a 1

a 0 1 1

1 0 a 1

It is clear that L3 satisfies y ≤

x → y, so L3 ∈ QH. Since

a = 0 → a 6= 1, L3 /∈ H.
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s

s

s

0

a

1L4
→ 0 a 1

0 1 a 1

a 0 1 a

1 0 a 1

It is that L4 ∈ FT T . Since

1 6= a → 1 = a, L4 /∈ QH.

s

s

s

0

a

1L5
→ 0 a 1

0 1 a a

a 0 1 a

1 0 a 1

We have that L5 ∈ FT D and

L5 /∈ FT T .

s

s

s

0

a

1L6
→ 0 a 1

0 1 0 0

a 0 1 1

1 0 a 1

Observe that a → 1 6= 1 → a,

so L6 /∈ comSH.

s

s

s

0

a

1L7
→ 0 a 1

0 1 1 a

a 0 1 1

1 0 a 1
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s

s

s

0

a

1L8
→ 0 a 1

0 1 a a

a 0 1 1

1 0 a 1

L8 ∈ FT D.

��
��

@@
@@

s

s

s s

s

s

0

a
b c

d
1

L9

→ 0 a b c d 1

0 1 1 1 1 1 1

a 0 1 1 1 1 1

b 0 c 1 c 1 1

c 0 b b 1 1 1

d 0 a b c 1 1

1 0 a b c d 1

Observe that L9 is a

Heyting algebra and it

satisfies x∗ ∨ x∗∗ ≈ 1, so

L9 ∈ HS.

��
��

@@
@@

s

s

s s

s

s

0

a
b c

d
1

L10

→ 0 a b c d 1

0 1 0 0 0 0 0

a 0 1 c b a a

b 0 c 1 a b b

c 0 b a 1 c c

d 0 a b c 1 d

1 0 a b c d 1

��
��

@@
@@

s

s s

s

s

0

a b

c
1

L11

→ 0 a b c 1

0 1 1 1 1 1

a b 1 b 1 1

b a a 1 1 1

c 0 a b 1 1

1 0 a b c 1

L11 is a Heyting

algebra.

��
��

@@
@@

s

s s

s

s

0

a b

c
1

L12

→ 0 a b c 1

0 1 b a 0 0

a b 1 0 a a

b a 0 1 b b

c 0 a b 1 c

1 0 a b c 1
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.2 Generating a sublattice of ISSH

The objective of this section is to determine the sublattice generated by

the subvarieties introduced in section 1 within the lattice of subvarieties of

SH.

Lemma 2.1. Let L ∈ SH.

(a) If L |= (x ∧ y) → x ≈ 1 then L |= y ∧ (x → y) ≈ y.

(b) If L |= y ∧ (x → y) ≈ y then L |= 0 → 1 ≈ 1.

(c) If L |= 0 → 1 ≈ 1 then L |= (0 → 1)∗ ≈ 0.

Proof. y ∧ (x → y)
(SH3)

= y ∧ ((y ∧ x) → (y ∧ y)) = y ∧ ((y ∧ x) → y) =

y ∧ 1 = y, proving (a). (b) follows taking x = 0, y = 1. Finally, (c) is clear.

2

Lemma 2.2. H & QH & FT T & FT D & ISSH.

Proof. From Lemma 2.1, H ⊆ QH ⊆ FT T ⊆ FT D, and it is clear

that FT D ⊆ ISSH. The algebras L3, L4 and L5 prove that H 6= QH,

QH 6= FT T and FT T 6= FT D. The algebra L1 ∈ ISSH \ FT D, so

FT D 6= ISSH. 2

Lemma 2.3. comSH & FT F & ISSH.

Proof. Let L ∈ comSH. In L, 0 → 1 = 1 → 0 = 0, so L ∈ FT F . It

is clear that FT F ⊆ ISSH and consequently, comSH ⊆ FT F ⊆ ISSH.

Taking into account the algebras L6 and L4 we have that comSH 6= FT F

and FT F 6= ISSH. 2

Let 2 be the 2-element semi-Heyting chain with universe {0, 1} that

satisfies 0 → 1 ≈ 1, that is, 2 is the 2-element Boolean algebra, and let T

denote the trivial variety. It is clear that T & V(2) & H.

Let us consider now the following identities.

[(x ∨ x∗) ∧ (0 → 1)] ∨ [((x → y) ↔ (y → x)) ∧ (0 → 1)∗] ≈ 1 (E1)

[(0 → 1)∗ ∧ (x ∨ x∗)] ∨ [((x ∧ y) → y) ∧ (0 → 1)] ≈ 1 (E2)
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[((x ∧ y) → y) ∧ (0 → 1)] ∨ [((x → y) ↔ (y → x)) ∧ (0 → 1)∗] ≈ 1 (E3)

[((x ∧ y) → y) ∧ (0 → 1)] ∨ (0 → 1)∗ ≈ 1 (E4)

(x ∨ x∗) ∨ (0 → 1)∗ ≈ 1 (E5)

[(y ∧ (x → y) ↔ y) ∧ (0 → 1)] ∨ [(x ∨ x∗) ∧ (0 → 1)∗] ≈ 1 (E6)

[(y∧(x → y) ↔ y)∧(0 → 1)]∨ [((x → y) ↔ (y → x))∧(0 → 1)∗] ≈ 1 (E7)

[(y ∧ (x → y) ↔ y) ∧ (0 → 1)] ∨ (0 → 1)∗ ≈ 1 (E8)

(0 → 1) ∨ [(0 → 1)∗ ∧ (x ∨ x∗)] ≈ 1 (E9)

(0 → 1) ∨ [(0 → 1)∗ ∧ ((x → y) ↔ (y → x))] ≈ 1 (E10)

(0 → 1) ∨ (0 → 1)∗ ≈ 1 (E11)

(0 → 1)∗∗ ∨ [(0 → 1)∗ ∧ (x ∨ x∗)] ≈ 1 (E12)

(0 → 1)∗∗ ∨ [(0 → 1)∗ ∧ ((x → y) ↔ (y → x))] ≈ 1 (E13)

Let Ej denote the subvariety of SH defined by the identity (Ej).

Lemma 2.4. V(2) & SHB & E2 & E6 & E9 & E12

Proof. Let L ∈ E2 be subdirectly irreducible. For a, b ∈ L,

[(0 → 1)∗ ∧ (a ∨ a∗)] ∨ [((a ∧ b) → b) ∧ (0 → 1)] = 1.

Then (0 → 1)∗ ∧ (a ∨ a∗) = 1 or ((a ∧ b) → b) ∧ (0 → 1) = 1.

If ((a ∧ b) → b) ∧ (0 → 1) = 1 then (a ∧ b) → b = 1 and 0 → 1 = 1. So

b ∧ (a → b) = b and 0 → 1 = 1. Thus L ∈ E6, that is, E2 ⊆ E6.

The other inclusions are similar.

Let us see that E2 6= E6. The algebra L3 satisfies the identities y∧ (x →

y) ≈ y and 0 → 1 ≈ 1. So L3 ∈ E6. But if we take x = 0 and y = a in

the identity (E2), we obtain [(0 → 1)∗ ∧ (0 ∨ 0∗)] ∨ [(0 → a) ∧ (0 → 1)] =

0 ∨ [a ∧ 1] = a 6= 1. Thus L3 6∈ E2.

For the rest of the inequalities, it is enough to consider the algebras 2,

L2, L4 and L8. 2

Lemma 2.5. comSH & E1 & E3 & E7 & E10 & E13.
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Proof. Let us prove that E1 & E3. Let L ∈ E1 be subdirectly irreducible

and a, b ∈ L. If (a ∨ a∗) ∧ (0 → 1) = 1 then a ∨ a∗ = 0 → 1 = 1. Then

a = 1 or a = 0. In both cases, (a ∧ b) → b = 0 → 1 = 1. So L ∈ E3.

The algebra L2 belongs to E3, but if we take x = y = a in (E1), we

obtain (a ∨ a∗) ∧ (0 → 1) = a 6= 1, so L2 6∈ E1. Consequently E1 & E3.

The other cases are similar and the corresponding inequalities follow

considering the algebras L3, L4, L5 and the algebra 2. 2

Lemma 2.6. FT F & E5 & E4 & E8 & E11 & ISSH.

Proof. We only prove that E5 & E4. Let L ∈ E5 be subdirectly irre-

ducible and let a, b ∈ L. We have that L satisfies (x∨x∗)∨ (0 → 1)∗ ≈ 1. If

0 → 1 = 0 we are done. If 0 → 1 = 1 then a∨a∗ = 1 and as in the previous

proof, (a ∧ b) → b = 1. Finally, the case 0 → 1 = a with a 6∈ {0, 1} is not

possible, since otherwise we would have (a ∨ a∗) ∨ (0 → 1)∗ = a ∨ a∗ 6= 1.

Therefore, L ∈ E4.

The algebra L2 belongs to E4, but if we take x = a in (E5), we see that

L2 6∈ E5. Hence, E5 & E4.

The other relations can be checked taking into account Lemma 2.1 and

by using the algebras 2, L3, L4 and L5. 2

In a similar way the following relations can be proved.

Lemma 2.7.

(1) V(2) & comSH

(2) V(2) & SHB & E1 & E5

(3) H & E2 & E3 & E4

(4) QH & E6 & E7 & E8

(5) FT T & E9 & E10 & E11

(6) FT D & E12 & E13 & ISSH

For a given variety V, let VC denote the variety V ∩SHC , and similarly,

let VS denote the variety V ∩ SHS .

Theorem 2.8. SHC & SHS & ISSH
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Proof. By Corollary 1.4, SHC ⊆ SHS , and it is clear that SHS ⊆

ISSH.

The algebra L9 ∈ SHS . Since L9 is a subdirectly irreducible algebra

which is not a chain, L9 6∈ SHC (Corollary 1.4).

Similarly, the algebra L11 ∈ ISSH, but L11 6∈ SHS , since it does not

have a unique atom. 2

Corollary 2.9.

(a) HC & HS & H

(b) QHC & QHS & QH

(c) FT T C & FT T S & FT T

(d) FT DC & FT DS & FT D

Corollary 2.10.

(a) comSHC & comSHS & comSH

(b) FT FC & FT FS & FT F

Proof. We shall prove item (a). By Theorem 2.8, comSHC ⊆ comSHS ⊆

comSH. Now, the algebra L10 ∈ comSHS . But, by Theorem 1.4, L10 6∈

comSHC . On the other hand, the algebra L12 ∈ comSH, while L12 6∈

comSHS since it has no a unique atom. 2

Corollary 2.11. EC
j & ES

j & Ej, 1 ≤ j ≤ 13

Proof. We prove only the case j = 1. By Theorem 2.8, EC
1 ⊆ ES

1 ⊆

E1. The algebra L10 is commutative, so in particular, L10 ∈ ES
1 . Since

EC
1 ⊆ SHC , by Theorem 2.8, L10 6∈ EC

1 . So EC
1 & ES

1 . On the other hand,

the algebra L12 is commutative, an then  L12 ∈ E1, but a∗ ∨ a∗∗ 6= 1, so

L12 6∈ SHS . 2

The following lemma will be used in the rest of the section.

Lemma 2.12. Let L ∈ SHC be subdirectly irreducible. If 0 → 1 = c

with c ∈ L \ {0, 1} then L does not satisfy any of the identities (E1) to

(E11).
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Proof. If L ∈ SHC is subdirectly irreducible, L is a chain. Since

0 → 1 = c with c ∈ L− {0, 1}, (0 → 1)∗ = 0. The result follows if we take

x = y = c in any of he identities (E1) to (E11). 2

In what follows we will find the join and the meet in the lattice of sub-

varieties of ISSH of each pair of subvarieties previously defined. Observe

that an equational basis for V (2), modulo SH, is given by x ∨ x∗ ≈ 1 and

0 → 1 ≈ 1 ([4, Corollary 9.3]), and an equational base for V (2), modulo

SH, is given by x ∨ x∗ ≈ 1 and 0 → 1 ≈ 0 ([4, Corollary 9.4]). Thus

V (2) = SHB ∩ FT T and V (2) = SHB ∩ FT F

In [4] it is shown the following result, where V(A,B) (respectively

V(A,B)) denotes the variety generated by the algebras A and B (respec-

tively by the subvarieties A and B).

Lemma 2.13.

(a) V(2,2) = SHB.

(b) V(2) ∩ V(2) = T .

Lemma 2.14.

(a) H ∩ SHB = V(2)

(b) V(H,SHB) = E2

Proof. It is clear that 2 ∈ H∩SHB . Let L ∈ H∩SHB be subdirectly

irreducible. By Lemma 2.13, L ≃ 2 or L ≃ 2. Since L ∈ H, L ≃ 2. So we

have (a).

In order to prove (b), let L ∈ E2 be subdirectly irreducible. Suppose

that 0 → 1 = 0. Then for x ∈ L, we obtain in (E2), x∨x
∗ ≈ 1. So L ∈ SHB.

If 0 → 1 = 1, then for x, y ∈ L we obtain in (E2), (x ∧ y) → y ≈ 1, and

consequently, L ∈ H. In addition, from Lemmas 2.4 and 2.7, SHB ⊆ E2
and H ⊆ E2. 2

In a similar way, by using Lemma 2.12 and the previous results and

examples, it can be proved that:
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Lemma 2.15.

1. (a) SHB ∩ comSH = V(2)

(b) V(SHB, comSH) = E1

2. (a) QH ∩ E2 = H

(b) V(QH, E2) = E6

3. (a) E2 ∩ E1 = BSH

(b) V(E2, E1) = E3

4. (a) E1 ∩ FT F = comSH

(b) V(E1,FT F) = E5

5. (a) E6 ∩ FT T = QH

(b) V(E6,FT T ) = E9

6. (a) E6 ∩ E3 = E2

(b) V(E6, E3) = E7

7. (a) E3 ∩ E5 = E1

(b) V(E3, E5) = E4

8. (a) FT D ∩ E9 = FT T

(b) V(FT D, E9) = E12

9. (a) E9 ∩ E7 = E6

(b) V(E9, E7) = E10

10. (a) E7 ∩ E4 = E3

(b) V(E7, E4) = E8

11. (a) E12 ∩ E10 = E9

(b) V(E12, E10) = E13

12. (a) E10 ∩ E8 = E7

(b) V(E10, E8) = E11

13. (a) E13 ∩ E11 = E10

(b) V(E13, E11) = ISSH

Observe that ISSH & SH, as the following example shows.

�
�
�

�
�
�

@
@

@
@

@
@

s

s s

s

s

0

a b

c

1

L

→ 0 a b c 1

0 1 b a a a

a b 1 0 a a

b a a 1 1 1

c 0 a b 1 1

1 0 a b c 1

We have that L is a semi-Heyting algebra, but (0 → 1)∗∗ ∨ (0 → 1)∗ =

a∗∗ ∨ a∗ = b∗ ∨ b = a ∨ b = c 6= 1, so L 6∈ ISSH.

Thus we have the following theorem.

Theorem 2.16. The order relation between the subvarieties previously

defined is the one depicted in the following figure.
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