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A sub-pixel automated shoreline detection method from images is presented > Errors are analysed using 1 

45 Landsat TM and ETM+ images over microtidal coast > Modelisation of errors allows to improve 2 

precision in shoreline location > Mean error ranges from 1.22 to 1.63 m and RMSE from 4.69 to 5.47 m > 3 

The method can be used to analyse coastal evolution trends in large temporal series. 4 
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 12 

Abstract 13 

A high geometric precision method for automated shoreline detection from Landsat TM and ETM+ 14 

imagery is presented. The methodology is based on the application of an algorithm that ensures accurate 15 

image geometric registration, and a new algorithm for sub-pixel shoreline extraction, both at sub-pixel 16 

level. The analysis of the initial errors shows the influence of the differences in reflectance of land cover 17 

types over the shoreline detection, allowing us to create a model to substantially reduce these errors. 18 

Three correction models were defined attending to the type of gain used in the acquisition of the original 19 

Landsat images. Error assessment tests were applied on three straight coast segments artificially 20 

stabilized, all of them located in microtidal coastal areas. A testing set of 45 images (28 TM, 10 ETM 21 

high-gain and 7 ETM low-gain) was used. The mean error obtained in shoreline location ranges from 1.22 22 

to 1.63 m, and the RMSE from 4.69 to 5.47 m. Since the errors follow a normal distribution, then the 23 

maximum error at a given probability can be estimated. The results obtained show the possibility to apply 24 

this methodology over large coastal sectors in order to determine and analyse the evolution trend of these 25 

dynamic areas. 26 

 27 

Keywords:  shoreline subpixel detection, Landsat images, coastal processes, beach management. 28 

 29 

1. Introduction 30 

The recognition of changes in the position of the shore is crucial for understanding the dynamics of 31 

coastal areas and especially the shorelines. The position of the shore can change for two reasons: (i) more 32 

*Manuscript
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or less predictable short-term variations in sea level that critically depend on astronomical and 33 

meteorological factors (Lisitzin, 1974, Pugh 1996, 2004); and (ii) alterations in the shape and volume of 34 

sediments along the profile of the shore. These morphological changes are much less predictable because 35 

they are a response of the shore system to wave conditions.    36 

Morphosedimentary changes to shorelines can be of two types: (a) those that occur in the short-term 37 

(generally less than a year) and depend on whether the waves are pushing towards the land or sea; and (b) 38 

longer-term changes that can be detected after several years and are caused by accumulation or erosion.     39 

Both types of changes are important in the management of coastal areas (DGC, 2008) given that the first 40 

type of change reveals the magnitude of the variability over the course of a year and so enables a coastal 41 

management analyst to define and establish protected shore areas without worrying about specific 42 

changes that may occur after, for example, a major storm. The second type of change reveals a definite 43 

trend and is more important as it enables predictions to be made in the short or medium term about 44 

whether the shore could witness significant changes that may prevent some uses, or endanger spaces 45 

adjacent to the coast. On the Spanish Mediterranean coast, where a major tourism industry is established, 46 

recognition of the meaning and speed of changes may be strategically important because such information 47 

would enable corrective actions to be taken to avoid or minimise risk (Pérez-González, 2008). 48 

For this reason it has been standard practice for many decades to track the position of the shore using 49 

aerial photographs as the primary source (McCurdy, 1950; Stafford, 1971; MOPU, 1979; Leatherman, 50 

1983; Smith and Zarrillo, 1990; Pardo-Pascual, 1991, Thieler & Danforth, 1994; Jiménez et al., 1997). 51 

On a coast with virtually no tides – such as much of the Mediterranean coast – the visual recognition of 52 

the location of the shore from an aerial photograph is simple. The task is more complex in tidal areas 53 

since the location of the shore at a given instant is much less likely to reveal changes or trends. Many 54 

solutions have been proposed for this problem. Boak & Turner (2005) described up to 44 different 55 

indicators of the location of the shore as used by different authors from the 1950s until today. 56 

Satellite images have been seen as an extremely attractive option for monitoring shorelines. However, 57 

few applications took advantage of the optical spectral range until high spatial resolution satellites 58 

became available at the beginning of this century – as evidenced by a recent review by Gens (2010). 59 

Methodological solutions since the early 90s have focused primarily on the use of SAR images (Lee & 60 

Jurkevich, 1990, Mason and Davenport, 1996, Niedermeier et al., 2000; Yu & Acton, 2004). More 61 
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recently, LiDAR technology has been the focus of most of applications by various authors and this has 62 

led to increased work on the definition of shorelines with reference to specific contour lines – such as the 63 

mean water height line – rather than other visual signs. This new approach can be used in tidal and non-64 

tidal waters (Stockdon et al., 2002; White & Wang, 2003; Robertson et al., 2004; Morton et al., 2005) 65 

and is highly accurate (Liu et al., 2007). The information provided by the LiDAR or SAR images is 66 

especially useful because it enables a highly precise characterisation to be made of three dimensional 67 

processes that are difficult to describe using just two dimensions. Multispectral satellite imagery offers 68 

many advantages: such as a large number of data records, the provision of repeated images of a single 69 

place at different times, and the fact that virtually the entire planet is covered. As a result, multispectral 70 

imagery is potentially more useful than previous sources for recognising evolutionary trends in the 71 

medium and long-term. The Landsat images acquired by the TM and ETM + sensors on the Landsat 5 72 

and 7 series are the largest useable database of medium resolution images for studying the dynamics of 73 

coastal areas. Morever, since 2008 the US Geological Service (USGS) has freely provided all archived 74 

Landsat images, together with the newly acquired Landsat 7 ETM + SLC-off and Landsat 5 TM images 75 

with less than 40 percent cloud cover – and thereby enabling free access to multiple images of the same 76 

sectors. 77 

Until now this information has been relatively little used. This is because a 30 m spatial resolution is too 78 

coarse to detect most of the changes in the shoreline within the timescale required for coastal 79 

management (Pardo-Pascual & Sanjaume, 2001). However, several exceptions are worth mentioning and 80 

these are usually found in places such as deltas that show abrupt changes of great magnitude. 81 

Applications on the Nile delta (White & El-Asmar, 1999), the Maritsa delta on the Aegean coast of 82 

Turkey (Ekercin, 2007), or the Huanghe river (Yellow River) in China (Chu et al., 2006) are good 83 

examples. Landsat images have also been used to map the various environments within tidal flats and 84 

describe the three-dimensional nature of these domains by determining the various shorelines (Ryu et al., 85 

2002). A similar goal is found in applications on coral reef atolls in the Marshall Islands (Yamano et al., 86 

2006) where the aim is to describe the topography of the intertidal zone. Landsat TM and ETM + images 87 

have also been used in various studies to build digital lines of complex coastal regions such as Louisiana 88 

(Braud & Feng, 1998); locate wetlands in flood plains (Frazier and Page, 2000); detect changes in 89 

reservoirs (Manavalan et al. 1997); or monitor natural lakes such as the Rift Valley in Kenya (Ouma and 90 
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Tateish, 2006). In all of these cases, it was assumed that the level of accuracy produced by mapping the 91 

shoreline would always be worse than the 30 m resolution of the original images.  92 

There are many examples of automatic extraction of shorelines from high spatial resolution images, and 93 

some of these examples include: applications on the Ebro delta based on SPOT 3 (Rodriguez., 2001, 94 

Rodriguez et al., 2009); an analysis of the Spanish Andalusian coast based on ASTER imagery (Espinosa 95 

and Rodriguez, 2009); or the Spanish Valencian coast using IRS-Pan images with a 5.6 m spatial 96 

resolution (Brocal et al. 2001; Brocal et al., 2005); Ikonos images (Di et al., 2003a, b); and QuickBird 97 

images (Pardo-Pascual et al., 2008). The accuracy with which the shoreline was measured in all of these 98 

works is relative to the size of the pixel in the images used.  99 

Much of the effort made so far by researchers has been focused on defining an optimal method to reliably 100 

locate the position of the shore. Many types of solution have been proposed – from the use of a 101 

supervised classification (Hoeke et al., 2001, Pardo-Pascual et al., 2008, Espinosa and Rodriguez, 2009); 102 

unsupervised classified images (Ekercin, 2007; Guariglia et al. 2006); and various thresholding 103 

techniques (White and El-Asmar, 1999; Jishuang and Chao, 2002; Yamayo et al. 2006; Bayram et al., 104 

2008, Maiti and Bhattacharya, 2009). In any of these methods each of the pixels will ultimately be 105 

considered as sea or land and this means they cannot be used to monitor small changes to the shoreline 106 

(<10 m) unless high resolution images are used. Foody et al. (2005) propose the use of fuzzy logic to 107 

resolve this limitation inasmuch as the same pixel can be assigned partially for the sea and partially for 108 

land. Muslim et al. (2006, 2007) have been presenting in successive publications improved solutions to 109 

accurately determine how much of each pixel should be assigned to each of these two regions. To 110 

facilitate the evaluation of the method the authors in these works began from an IKONOS image from 111 

which the actual position of the shore could be fixed. The same image is then degraded to dimensions 112 

similar to those of the SPOT 3 with a 20 m pixel size (Foody et al. 2005; Muslim et al., 2006) or Landsat 113 

30 m images. All of the tests have been conducted on a small 125 m section of the coast of Indonesia. The 114 

root mean square error (RMSE) of the shoreline predictions from the two-point histogram method – the 115 

method that obtains the best results – lays in the range 1.15-2.08 m and 1.71-5.11 m for imagery with a 16 116 

and 32 m spatial resolution, respectively (Muslim et al., 2007). While these results are extremely 117 

interesting, the fact that the tests have been performed on such small segments makes it difficult to assess 118 

whether they can be generally applied to wider areas. However, it is clear that only the subpixel approach 119 
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can detect the position of the shoreline from medium-resolution images with enough accuracy to be useful 120 

in coastal management.    121 

However, an efficient subpixel level extraction procedure of the shoreline is required for the method to be 122 

applied to the series of Landsat images available since 1984, as well as a method to very accurately 123 

superimpose the successive images. The aim of this paper is to propose a methodology to extract 124 

shorelines from successive Landsat images of the same place and also determine the level of precision 125 

that can be achieved. To achieve this we propose an algorithm for the extraction of the shoreline with 126 

subpixel precision to enable successive geo-referencing between images of the same place with subpixel 127 

precision – and also establish a method for assessing the degree of accuracy. Tests previously carried out 128 

using the process of extracting the shoreline with subpixel accuracy (Foody et al., 2005; Muslim et al., 129 

2006, 2007; Ruiz et al., 2007; Pardo-Pascual et al., 2008) used degraded high-resolution images to 130 

emulate medium resolution images – and Landsat images were not used. In this study, we work directly 131 

with Landsat images. This fact forces us to approach the question of how the result is affected by the type 132 

of image and the nature of the geography.   133 

 134 

2. Study area 135 

The study has focused on a section of the Spanish Mediterranean coast about 20 km in length that extends 136 

from the port of Castelló de la Plana and the immediate area of the port of Borriana (Fig. 1). It is a low-137 

lying area formed on the coastal ends of two alluvial fans: the river Millars to the north and the river 138 

Anna to the south (Sanjaume et al. 1996). Until recently, the entire segment was mostly formed of pebble 139 

beaches – with sand beaches in some areas (Sanjaume, 1985) but the area has been extensively developed 140 

in recent years.  141 

This is a microtidal coast and the average tidal range is less than 25 cm and the maximum positions of sea 142 

level over a year do not exceed 80 cm (Puertos del Estado, 2009). The average waves affecting the sector 143 

under study have relatively low energy levels (the average significant wave height is 0.7 m and the 144 

average peak wave period is 4.2 seconds). However, wave height during storms can reach up to 5 m and 145 

the peak period may extend to 15 seconds (wave data obtained from Spanish State Port Authority 146 

database: http://w3.puertos.es/es/oceanografia_y_meteorologia/banco_de_datos/oleaje.html). Most of the 147 

http://w3.puertos.es/es/oceanografia_y_meteorologia/banco_de_datos/oleaje.html
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storms in the sector come from the northeast and given the general orientation of the coast the result is a 148 

drift that carries coastal sediment to the south. Serra-Peris (1986) estimates a potential net southerly 149 

movement of 590,000 m
3
 annually. The construction of breakwaters at the ports of Borriana and Castelló 150 

de la Plana have disrupted this longitudinal movement and caused a major accumulation of sediments in 151 

the north and significant erosion in the south (Pardo-Pascual, 1991; Sanjaume & Pardo-Pascual, 2005). 152 

Artificial rock seawalls have been built over the past 50 years to stop such erosion around the downdrift 153 

piers and so stabilise the shoreline. In fact, some 11 km of 20 km of the surveyed shoreline have been 154 

artificially protected with rock seawalls (Fig. 1). 155 
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 156 

Figure 1. Seawalls in the study area.  157 

The fact that this part of the shoreline has been artificially stabilised is precisely why we have chosen this 158 

area for study. Our aim is to establish the level of accuracy that can be achieved in determining the 159 

position of the water line and, therefore, we have sought areas in which we can be sure that no changes 160 

have occurred in the position of the shore during the period of analysis (1984-2010).  161 

The analyses were focused on three coastal segments that during the period 1984-2010 were always 162 

artificially stabilised. The first segment, termed Seawall 1, is located immediately south of the port of 163 

Castelló de la Plana and extends 2.9 km. The port of Castellón was expanded after 2005 and a part of this 164 

breakwater was immersed in the port. Industrial facilities have been built on the coast and there are small 165 
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installations such as piers and loading points. As a result, the shoreline is not completely straight and 166 

appears curved in some places (an example can be seen in Figure 9). The second segment – termed 167 

Seawall 2 – is 2.4 km long and straight. Farmland borders the shoreline (Fig. 7). The third segment is 168 

2.73 km long and starts immediately south of the docks at Borriana. The shoreline is also straight and the 169 

adjacent land is urban in the north and farmland to the south. Importantly, in 2005 a detached groin was 170 

built and this has enabled the creation of a small beach (indicated with a circle in Figure 1).  171 

 172 

3. Data  173 

All images used are taken from the USGS database at: http://edcsns17.cr.usgs.gov/NewEarthExplorer/ 174 

and are catalogued by the Landsat program as L1T product (NASA, 2006). This product is georeferenced 175 

with a level of precision that is always better than 0.44 pixels (meaning 13.4 m). The images have been 176 

resampled using a cubic convolution method. Images have been taken using the TM (Landsat 5) and 177 

ETM + (Landsat 7) sensors. The radiance ranges are homogeneous for images acquired with the Landsat 178 

5 TM sensor; but the images taken with the Landsat 7 ETM + sensors may reveal high or low gain.  179 

We have worked with 45 images (see Table 1) corresponding to the 199-032 scene and covering the 180 

period September 1984 to July 2010.  181 

Table 1. Characteristics of images analysed. The image type column distinguishes between images taken 182 

by the TM sensor and those taken with the ETM high gain (ETM-H) and ETM low gain (ETM-L). 183 

Date  Type  Date  Type 

1984.09.21 TM 2002.04.24 ETM-H 

1984.10.07 TM 2002.05.26 ETM-L 

1984.10.23 TM 2002.06.19 TM 

1984.11.24 TM  2002.07.29 ETM-L 

1986.05.22 TM  2002.08.30 ETM-L 

1986.06.23 TM 2003.02.06 ETM-L 

1986.08.10 TM 2003.03.10 ETM-L 

1986.08.26 TM 2003.04.27 ETM-L 

1986.10.29 TM 2003.05.29 ETM-L 

1987.04.23 TM 2003.07.08 TM 

1987.06.26 TM  2003.08.25 TM 

1987.07.12 TM 2007.01.24 TM 

1987.08.13 TM 2007.02.09 TM 

1990.09.06 TM 2007.03.13 TM 

1999.07.21 ETM-H  2007.08.04 TM 

2000.01.29 ETM-H  2007.08.20 TM 

2000.03.01 ETM-H  2009.06.22 TM 

2000.08.08 ETM-H  2009.07.24 TM 

http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://landsathandbook.gsfc.nasa.gov/handbook/handbook_htmls/chapter11/chapter11.html%23section11.3#section11.3
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2000.09.09 ETM-H  2009.08.09 TM 

2000.10.27 ETM-H  2009.09.10 TM 

2001.07.26 ETM-H  2009.10.12 TM 

2001.10.30 ETM-H  2010.07.27 TM 

2002.02.19 ETM-H   

 184 

The distance and angle of each point was measured with regard to the actual position of the coastline in 185 

order to calibrate the accuracy with which the different shorelines can be obtained after applying the 186 

algorithm. To set the real position of the shoreline in the area near the seawalls, the positions were 187 

digitised from a series of aerial photos taken in July 2006 as part of the National Program for Aerial 188 

Orthophotography (PNOA in Spanish). These aerial photos have a spatial resolution of 0.5 m/pixel and 189 

use three spectral bands (IR, R, G). The digitisation of the shoreline was performed over a screen image 190 

at a scale of 1/2000 with an estimated error of ± 1 m. The uncertainty in the reference position of the 191 

shoreline is estimated at ± 1.3 m. These same aerial photos have been used as base material for 192 

georeferencing at subpixel level (as explained in paragraph 4.1).  193 

4. Methodology 194 

In this section the method for registering images at subpixel level is described in detail; an automatic 195 

algorithm for the extraction of the shoreline is proposed; and the specific way in which the methodology 196 

has been applied to Landsat images is also explained.  197 

4.1 Geo-referencing at subpixel level 198 

NASA has geo-referenced the Landsat images with great precision (better than 0.4 pixels) but given the 199 

objectives proposed in this paper, it was considered necessary to determine the variation in position 200 

between successive images at a subpixel level. This was achieved by applying a single-step discrete 201 

Fourier transform (DFT) algorithm (Guizar-Sicairos et al., 2008). This algorithm is based on the use of 202 

cross-correlation within the space of the frequencies of two overlapped images. The single-step DFT 203 

method is based on increasing the resolution of the original image (increased by a factor of k) and so 204 

providing spectral information of the original image. Given the Fourier transformation of an image, it is 205 

possible to ‘embed’ these frequency values in a matrix of zeros. The inverse transformation will have the 206 

dimensions of the new matrix with the spectral information of the original image. The cross-correlation 207 

localises the maximum correlation peak at a higher resolution than the original image and so the 208 
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displacement can be measured with sub-pixel accuracy. A precision of 1/k pixels is obtained – depending 209 

on the k factor of the increase applied. 210 

This method determines the magnitude of displacement on the x and y axes when comparing two images 211 

of the same place. This is achieved without using ground control points. In our case, given that we aim to 212 

achieve highly accurate geo-referencing, a mosaic of IR band aerial photographs with a resolution of 0.5 213 

m is taken as reference. This mosaic has been degraded to a resolution of 30 m in order to produce the 214 

same pixel size as the Landsat TM images. Subsequently, we applied the single-step DFT algorithm with 215 

which it is possible to calculate the amount of displacement for x and y in each image in comparison with 216 

the aerial photographs degraded to 30 m per pixel. Table 2 shows the displacements applied to register 217 

successive images at subpixel level. It can be seen that we are dealing with relatively small variations – 218 

the average being 2.4 m for both x and y axes. Nevertheless, these steps are necessary to achieve the 219 

maximum accuracy in the process of extracting results.  220 

 221 

4.2. Automatic extraction of the shoreline at subpixel level  222 

The proposed method is based on the different spectral response of water and land, especially in the 223 

infrared bands – and the fact that the shoreline under study tends to have a homogenous shape. Based on 224 

these circumstances, the developed algorithm attempts to approximate the most likely position of the 225 

shoreline (or the separation between water and land). The algorithm has been developed in two phases: in 226 

the first phase a line is extracted at the pixel scale (Figure 2); and in the second phase a new position 227 

based on the initial line is calculated at subpixel level. 228 

 229 
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Figure 2. The figure illustrates the scheme of the first phase: an approximation of the positioning of the 230 

coast at pixel level.  231 

In the first phase an approximation based on a binarisation of the original image is obtained by 232 

determining the best threshold for distinguishing the two areas in the infrared image. A significant sample 233 

of the areas of sea and land is made and the histograms are studied. It is assumed that both histograms 234 

show a normal distribution, and this enables a characterisation to be made using the average parameters 235 

and standard deviation. The point of intersection between the two distributions (Fig. 2) is modeled and 236 

automatically determined. This thresholding requires post-filtering since there are often pixels or small 237 

areas on the land that are confused as sea. To address these small areas, the land area is bounded and 238 

made solid. In general, the sea is correctly defined by the initial thresholding. Once the correction has 239 

been made the land area is dilated and the previous thresholding is subtracted. While this process may 240 

move the line one pixel towards the sea, this effect will have no practical significance because the line is 241 

only used to approximately define the neighbourhood in the subsequent analysis.    242 

Once the approximate line of separation between the land and sea has been obtained, the next step is to 243 

extract the position of the shoreline at subpixel level. The assumption underlying the algorithm is that the 244 

real separation between water and land will be where the gradient of digital levels on an infrared image is 245 

greatest. As the aim is to locate this border at a level of detail greater than a pixel; the proposed solution is 246 

to calculate the position on a mathematically modelled surface (enabling any desired level of detail to be 247 

achieved) which has been produced from data provided by the infrared image. Accordingly, a 248 

mathematical function is adjusted to model this sudden change in the spectral response at the interface of 249 

water and land in the neighbourhood of the approximate line that was initially obtained (Fig. 3). To 250 

achieve this we studied various options and eventually selected a robust solution consisting of adjusting 251 

by least squares with a fifth order polynomial. For this approach it was necessary to initially resample the 252 

original image by a factor of four using bicubic interpolation, and then make adjustments on a sufficiently 253 

large area of the image (applied on a 7x7 neighbourhood of pixels around each pixel of the approximate 254 

line).  255 

a) b) c)
 256 
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Figure 3. Basic scheme of the calculation procedure for the shoreline position: a) the neighbouring pixels 257 

of the approximate line are selected; b) resampling is performed to produce a greater density of points for 258 

the mathematical function; c) the function and its line of inflection is mathematically obtained. 259 

Once a suitable mathematical function is obtained the position in the gradient where the perpendicular 260 

direction to the initial line is maximum is analytically determined – and points corresponding to the 261 

shoreline for each iteration are established. The position of the maximum gradient is determined by 262 

performing successive profiles on each of the resampled pixels in the image. Thus, after resampling an 263 

image with a resolution of 30 m a profile is obtained for approximately every 7.5 m. Since the process is 264 

performed for each pixel in the approximate line and a 7x7 neighbourhood is used, the same pixel is 265 

usually processed in several neighbourhoods, so that each time the neighbourhood is changed the function 266 

changes and different positions are calculated for each approximation – producing in this way seven 267 

solutions for each given position. The final position is determined by a weighted averaging of the seven 268 

defined positions. Figure 4 shows the approximate line in blue; and the different solutions in white for 269 

each neighbourhood that has included the pixel; and finally, the line shown in yellow is obtained by 270 

averaging the position of the lines from these neighbourhoods. 271 
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 272 

Figure 4.  Approximate line at pixel level (in blue); the white dots show the calculations made for each 273 

analysed profile; and the yellow line indicates the averaged position of the multiple solutions determined 274 

by the various profiles and the calculated shoreline.   275 

This algorithm was initially tested on high-resolution images (QuickBird) resampled to 28.8 m to 276 

simulate the approximate resolution of Landsat TM images; and the results were compared with the 277 

position previously extracted using the original image in the panchromatic band (with a resolution of 0.6 278 

m). When this method was applied on a segment of about 11 km of sandy beach with almost no tide 279 

(using a QuickBird infrared band image taken on 17 November 2004) and re-sampled to 28.8 m, an mean 280 

error in the position of -3.98 m (negative value indicates the prevalence of landward errors) and a 281 
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standard deviation of 4 m was obtained. These results suggest the possibility of extracting from Landsat 282 

data the position of the shoreline with sufficient precision to recognise seasonal variability and annual 283 

trends. 284 

4.3. Use of Landsat images, selection of the optimum band, and evaluation method  285 

The method has been applied on tiles of 1000 x 1000 pixels from Landsat (199-032) so that the algorithm 286 

could be more efficiently managed. To extract the shoreline before applying the algorithm, the image was 287 

normalised according to the maximum and minimum in order to avoid large differences that could reduce 288 

the consistency of the method. After applying the algorithm to extract the shoreline, a series of successive 289 

points are obtained. The x and y movements reflect the calculations made during subpixel geo-290 

referencing. The final result is a series of points indicating the shoreline and spaced about 7.5 m apart 291 

along the coast (Fig. 5).  292 

50 m50 m

 293 

Figure 5. Example of the result for a segment of shoreline that has been artificially stabilised. Yellow dots 294 

show the position of the shoreline image obtained from Landsat 5 (2000-03-01). The red line shows the 295 

reference shoreline taken from the aerial photo with an underlying resolution of 0.5 m.  296 

To assess the general validity of the results, the minimum distance to the reference shoreline was 297 

measured – given that this distance represents the error at each point. This error could have a positive 298 

value (if the point is found seaward of its true position) or negative (if found landward). Analyses were 299 

always performed on areas where it was certain that no change had occurred during the study period. 300 
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The near-IR bands theoretically reveal a greater change in reflectance between the sea and land. Tests 301 

were conducted on seven images to select the optimum spectral band. It was observed that in band 5 in 302 

six of the tests, the mean error (about 1.3 m on average) and the standard deviation (0.75 m on average) 303 

were lower than those obtained with band 4. These results are consistent with those observed by other 304 

authors (such as Frazier & Page, 2000) who found fewer errors in determining the position of wetlands 305 

when thresholding on band 5 in comparison with bands 4 and 7. Based on these results it was decided to 306 

perform the rest of the analysis only on band 5.  307 

Initial tests were conducted on a set of 23 images that were geo-referenced at subpixel level and then the 308 

algorithm to extract the shoreline was applied. Once the 23 shorelines were extracted the differences were 309 

evaluated between the position calculated using Landsat imagery and the reference shoreline. To test the 310 

validity of the proposed method, the three segments of the reference shoreline included three artificially 311 

stabilised seawalls (8026 m in length) that were in existence during the entire period for which images are 312 

available.  313 

When assessing the robustness of the method it is important to determine whether the magnitude and 314 

direction of the errors are homogeneous in space and time and with the various types of Landsat images. 315 

To evaluate the temporal response it was ensured that the 23 images covered the 26 years between 1984 316 

and 2010 (Table 2). To analyse the possible spatial differences, assessment tests were made on three 317 

segments of seawalls in the area. The seawalls were similarly sized but had substantial differences in the 318 

landside surface covering, which generated significant differences in spectral response that may have 319 

affected the efficiency of the method. To evaluate the response according to the type of image, a 320 

differentiation of the images into three basic types was made according to radiance gain: those taken with 321 

the TM sensor; those taken with the ETM+ high gain sensor (ETM-H); and those taken with the ETM+ 322 

low gain sensor (ETM-L). 323 

5. Initial results and error analysis 324 

Table 2 presents a summary of the error statistics obtained for each of the dates analysed and Figure 6 325 

shows the mean error recorded over time. The table shows the number of points for which the error has 326 

been checked, as well as the maximum seaward deviation,and the maximum landward deviation. The 327 

mean error is obtained by averaging all the errors and interpreting the level of bias toward land or sea. 328 

Finally, the standard deviation indicates the variability around the mean error.  329 
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Table 2. Shows the application of subpixel geometric correction and a summary of errors found after 330 

applying the geometric correction and the algorithm to Landsat images. The error values are in meters. 331 

Columns d (x) and d (y) show the displacement in xy applied after geometric correction.  332 

Date d x (m) d y (m) Type  Maximun error Mean SD 

error 

 Landward Seaward  

1984.09.21 -2.91 -2.7 TM  -25.41  27.15  5.42 8.05 

1984.10.07 -2.61 -3.75 TM  -19.27  32.75  6.71 8.01 

1984.10.23 -4.17 -2.52 TM  -22.9  33.68  8.34 8.23 

1984.11.24 -4.32 -2.58 TM  -13.21  29.83  8.34 7.67 

1986.05.22 -0.48 -3.72 TM  -20.44  30.24  7.03 7.4 

1986.06.23 -1.14 -3.54 TM  -24.47  23.81  5.74 7.26 

1986.08.26 -3.45 -3.12 TM  -19.61  24.84  6.38 7.21 

1986.10.29 -4.2 -1.89 TM  -21.38  33.01  8.71 7.37 

1987.04.23 -1.65 -4.14 TM  -59.69  25.04  6.04 6.69 

1987.06.26 -2.82 -3.54 TM  -20.23  28.49  5.68 6.76 

2000.08.08 -4.41 -4.95 ETM-H -17.01  29.57  1.34 7.67 

2000.09.09 0.84 -3.84 ETM-H -21.42  27.43  1.7 7.61 

2000.10.27 -1.68 -0.87 ETM-H -23.18  27.87  7.19 7.08 

2001.07.26 -3.24 -1.17 ETM-H -22.55  33.45  2.62 7.88 

2001.10.30 -1.8 -0.09 ETM-H -17.41  32.16  5.67 8.26 

2002.02.19 -0.72 -1.08 ETM-H -24.82  36.75  5.21 8.28 

2002.04.24 1.17 -2.49 ETM-H -14.35  39.21  2.52 6.91 

2002.07.29 -1.05 -1.83 ETM-L -26.78  20.03  0.78 6.71 

2002.08.30 -2.7 -1.56 ETM-L -32.34  23.39  1.42 7.15 

2003.02.06 -6.21 0.12 ETM-L -41.48  30.83  2.72 8.88 

2003.04.27 -0.03 0.51 ETM-L -25.48  38.64  2.57 7.75 

2003.05.29 -0.45 -6.45 ETM-L -26.76  24.22  2.56 8.19 

2010.07.27 -4.23 0.51 TM  -22.63  17.03  1.15 6.42 

 333 

Analysis of these results shows that the mean error in all cases is positive – meaning that the applied 334 

method biases the position in a seaward direction. It can also be seen that the magnitude of the mean error 335 

is substantially higher for the TM image sensor than those produced by the more recent ETM + sensor 336 

(Fig. 6). However, an exception is the image taken in 2010 (taken with the TM sensor) which has a mean 337 

error of 1.15 m. Images taken before the 90s reveal anmean error ranging between 5.5 and 9 m. 338 
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 339 

Fig. 6. Mean error (a) and standard deviation detected (b) expressed in meters for each image according to 340 

the date when the image was taken and type of image. 341 

  342 

Figure 6 shows that for TM and ETM-H images the mean errors reveal a significant homogeneity 343 

between nearby dates. This suggests the possibility that changes in the type of land coverage are 344 

influencing the positioning of the shoreline. Figure 7 (a) shows that in a small sector there are two 345 

families of shorelines, one corresponding to images taken before March 2002 in which the shore is 346 

located about 16 m seaward, while in images taken after April 2002 the shore is located about 22 m 347 

landward. By comparing the images of February and April 2002 it can be seen that a major 348 

transformation in plant cover had occurred in the adjacent area. The natural vegetation was eliminated and 349 

the fields were ploughed – thereby causing a substantial change in the spectral response of the land. As a 350 

result, these differences in reflectance affected the algorithm performance. 351 

100 m 100 m

a)a) b)b)
 352 

Fig. 7 Examples of error. In (a) it can be seen that there are two families of shorelines (see explanation in 353 

the text) that appear to be related to a change in the landscape that significantly affected the intensity 354 

value (IV) the land. In (b) it can be seen that in this sector for all of the period studied the error was 355 

homogenous and the variability between the 23 shorelines was minimal. 356 

 357 
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Analysis of the standard deviations for the three types of images (Fig. 6b) shows that they have very 358 

similar values  (ranging between 7.3 and 7.7 m). This enables us to conclude, firstly, that the way in 359 

which the shoreline is detected is usually quite robust – meaning that it is constant and the standard 360 

deviation is around 25% of the size of a pixel. A typical example is shown in Figure 7 b where the type of 361 

error detected in the 23 images analysed is usually the same: an error of about 12 m seaward.  362 

An analysis of errors for each of the seawalls (Fig. 8b) shows that in every case Seawall 2 had a mean 363 

error that was significantly higher and clearly different to the errors seen for the other two seawalls. The 364 

size of this error on Seawall 2 is quite high – about 12 m for the TM images – and represents about 40% 365 

of the pixel size. Images taken with the ETM + sensor also clearly reveal a higher error for Seawall 2, 366 

although the error at 32% of a pixel is slightly lower than that obtained with TM images. Although the 367 

errors in the ETM-L images for Seawall 2 were also higher than the other seawall images they were less 368 

than 20% of pixel size. The magnitude of the mean errors for Seawalls 1 and 3 was substantially less in 369 

all cases – and in some cases near zero.  370 

Error variability (Fig. 8b) as indicated by standard deviations is fairly homogeneous, although Seawall 3 371 

shows minimum values of about 4 m while the other two seawalls are between 7 m and 9.6 m. It is 372 

noteworthy that Seawall 1 shows standard deviation values similar to or greater than those seen in 373 

Seawall 2, while the mean error was substantially higher in Seawall 2. What could explain this increased 374 

error variability in a sector despite the fact that the mean error is low? 375 
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 376 

Fig. 8 Mean error (a) and standard deviation (b) for each of the three seawalls  377 

The probable explanation is that there are curves in the shoreline near Seawall 1 due to the existence of 378 

small piers and this made modelling the land-water transition more difficult. Figure 9 reveals how 379 

alongside the sudden curves in the shoreline the algorithm shifts the calculated position of the shoreline 380 

some tens of meters to the north or south of the curve. This response of the algorithm can be explained if 381 
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we remember that the mathematical function is based on a 7 x 7 neighbourhood. Despite being fifth order, 382 

this function cannot directly adapt to such abrupt curves in the shoreline. However, if higher-level 383 

functions are used then false details are detected and unrealistic final lines are generated. We can 384 

conclude that this type of error is inherent to the method and therefore unavoidable. 385 

100 m100 m

 386 

Fig. 9. Example of localisation around Seawall 1. Evidence from these results suggests that the 387 

mathematical model for the extraction of the shoreline based on Landsat images usually works fairly well. 388 

However, errors are produced that seem to be directly related to the characteristics of the digital levels 389 

with which the extraction algorithm operates – meaning the 7 x 7 pixel neighbourhood.  390 

 391 

A systematic analysis of the errors found after applying the algorithm and the geometric correction 392 

enables us to calculate that there are at least two types of errors affecting the outcome. One is the 393 

limitation of the method when detecting the shoreline in places where there are significant curves. As a 394 

result, this tool is only useful when applied to shores that are basically homogeneous – or when applied to 395 

stretches of shore that are straight for at least 210 m (or 7 pixels).   396 

The second type of error results from how the positioning of the shoreline is affected by differences in the 397 

type of land cover. Figure 10 shows the relationship between the error in the positioning of the shoreline 398 

and two variables that describe the signal recorded in the image: the arithmetic mean of intensity values 399 

analysed in the neighbourhood of the 7x7 square of pixels used during the process of calculating the 400 

position of the shoreline; and the standard deviation of these digital levels. It can be seen that there is a 401 

clear relationship between the two variables; but neither, by themselves, can explain all the errors. The 402 
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fact, however, that both variables can be measured on the images suggests that it may be possible to 403 

model the errors and so establish a system for correcting the described method.  404 
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 405 

Fig. 10 (a) Relationship between the mean pixel intensity considered in the analysis and the error in the 406 

positioning of the shoreline in areas near seawalls. (b) shows the relationship between the standard 407 

deviation of the pixel intensity values (IV) in the analysis and errors. In both cases, the relationship shown 408 

is found on the 199-032 series of images taken by the ETM + high gain sensor (21 July 1999). 409 

 410 

6. Modelisation of the error and an improvement to the proposed 411 

algorithm 412 

The bias that these factors cause in the error has been modelled after studying the characteristics of the 413 

image, the mean and standard deviation of the intensity values of the pixels, and the error in the 414 

positioning of the shoreline. A sufficiently large sample has been selected that does not contain other 415 

known sources of error. Accordingly, we have chosen a significant and representative set of points 416 

extracted using the described method – specifically five TM images, seven ETM-H images, and five 417 

ETM-L images (see Table 4). These images include Seawalls 2 and 3 and the error has been linked with 418 

the mean pixel intensity and standard deviation of the neighbourhood – analysed using multiple 419 

regression for the location of each point. Because the image type (TM, ETM-H, ETM-L) affects the 420 

magnitude of the error, a specific model has been defined for each type of image. Below are the error 421 

adjustment functions for the three types of processed images, while Table 5 shows the results of the 422 

adjustment.  423 

 424 
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Error TM (E_TM)= 30.1399 – 1.54981Mean^0 * STD^1 + 0.0135352 * Mean^0 * STD^2 +  425 

0.251876*Mean^1*STD^0 + 0.00551167*Mean^1*STD^1 - 0.00456379*Mean^2*STD^0                     (1) 426 

Error ETM+High gain (E_ETM-H) = 24.3029 - 1.57048*MEAN^0*STD^1 + 0.0123342 * MEAN^0 427 

*STD^2 + 0.482115 * MEAN^1*STD^0 + 0.00129427*MEAN^1*STD^1 - 0.00351943 * MEAN^2 * 428 

STD^0                    (2) 429 

Error ETM+-Low gain (E_ETM-L)= 10.8645 - 1.20851 * MEAN^0 * STD^1 - 0.017857 * MEAN^0 * 430 

STD^2 + 0.824386 * MEAN^1 * STD^0 + 0.0362686 * MEAN^1*STD^1 - 0.0216562 * MEAN^2 * 431 

STD^0                    (3) 432 

Table 3. Basic statistics of the models obtained for the three types of images 433 

R2 Standard error Mean absolute  Confidence  

   estimate  error   level 
E_TM  0.45 5.34  4.03   99% 

E_ETM-H  0.58 4.71  3.56   99% 

E_ETM-L  0.33 6.28  4.72   99% 

 434 

The statistical models obtained are shown in Table 3 and reveal substantial improvement in the results 435 

given that the mean absolute error (meaning the average value of the residues) oscillates between 3.5 and 436 

4.7 m; and the standard estimate error (which shows the standard deviation of the residues) ranges from 437 

4.71 to 6.28 m. Logically, the models that show a better fit reveal lower mean absolute errors and so a 438 

substantial improvement in the positioning of the shoreline is to be expected, especially for ETM-H 439 

images and a little less so for the ETM-L images. 440 

The error adjustment functions have been used to correct the positions according to the characteristics of 441 

the images. Table 4 shows the statistical errors for each image recorded before and after the bias 442 

correction and resulting from differences in the reflectance caused by differing land uses. The table also 443 

includes images used to define the correction models.  444 

Table 4. Comparison of errors when using the algorithm in its original form and with the improvements 445 

after correcting for the effect associated with the characteristics of the image. The column Model indicates 446 

whether the image was used or not to define the applied correction models.  447 

Date Type First method Model Improved Method 

 Maximum Error Mean SD 

error 

 Maximum Error  Mean SD 

error 

 Landward    Seaward   Landward             Seaward  

84.09.21 TM -25.41  27.15 5.42 8.05 yes -19.03  18.24 1.14 6.32 

84.10.07 TM -19.27  32.75 6.71 8.01 no -23.05  24.71 2.58 6.15 
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84.10.23 TM -22.9  33.68 8.34 8.23 no -21.23  19.82 -1.25 5.01 

84.11.24 TM -13.21  29.83 8.34 7.67 yes -19.26  25.23 0.79 5.31 

86.05.22 TM -20.44  30.24 7.03 7.4 yes -19.38  19.45 3.30 5.80 

86.06.23 TM -24.47  23.81 5.74 7.26 yes -18.15  19.02 2.73 5.47 

86.08.26 TM -19.61  24.84 6.38 7.21 yes -16.89  19.80 3.46 5.68 

86.10.29 TM -21.38  33.01 8.71 7.37 no -14.80  17.55 2.31 4.63 

87.04.23 TM -59.69  25.04 6.04 6.69 no -15.31  15.69 -1.57 4.85 

87.06.26 TM -20.23  28.49 5.68 6.76 no -14.65  26.18 2.36 4.66 

99.07.21 ETM-H -19.95  32.05 0.67 7.13 no -19.80  18.14 0.11 5.00 

00.01.29 ETM-H -13.35  27.10 7.83 7.51 no -18.62  24.98 0.48 5.74 

00.03.01 ETM-H -13.42  30.70 3.96 7.36 no -17.21  27.32 0.62 5.13 

00.07.26 ETM-H -21.79  27.94 1.76 7.37 yes -18.04  19.16 2.59 5.79 

00.08.08 ETM-H -17.01  29.57 1.34 7.67 yes -19.61  19.85 1.16 5.18 

00.09.09 ETM-H -21.42  27.43 1.7 7.61 yes -19.75  17.15 -2.78 4.92 

00.10.27 ETM-H -23.18  27.87 7.19 7.08 yes -19.74  19.78 -0.38 4.62 

01.07.26 ETM-H -22.55  33.45 2.62 7.88 yes -19.65  19.96 -1.36 5.63 

01.10.30 ETM-H -17.41  32.16 5.67 8.26 yes -19.96  17.76 1.24 5.12 

02.02.19 ETM-H -24.82  36.75 5.21 8.28 yes -16.59  19.69 0.01 4.83 

02.04.24 ETM-H -14.35  39.21 2.52 6.91 no -23.95  30.32 1.46 5.72 

02.07.29 ETM-L -26.78  20.03 0.78 6.71 yes -28.18  24.99 -1.65 5.72 

02.08.30 ETM-L -32.34  23.39 1.42 7.15 yes -26.02  27.33 2.65 6.58 

03.02.06 ETM-L -41.48  30.83 2.72 8.88 yes -45.55  24.78 1.01 7.49 

03.04.27 ETM-L -25.48  38.64 2.57 7.75 no -33.55  13.09 -1.54 5.88 

03.05.29 ETM-L -26.76  24.22 2.56 8.19 yes -22.53  29.74 2.39 5.61 

03.05.29 ETM-L -26.76  24.21 2.56 8.18 yes -26.57  28.90 0.29 6.52 

10.07.27 TM -22.63  17.03 1.15 6.42 no -21.46  11.02 -1.32 5.14 

 448 

A comparison of the first method with the second method shows how the movement of the mean error 449 

towards the sea has been stopped and the errors are now centred on zero – see Figure 11a. As a result, the 450 

magnitude of the errors in all cases is reduced to around 3.5 m. The mean error before applying the 451 

described method was 4.6 m, and this error has now been reduced to 0.8 m. It is also worthwhile noting 452 

that the errors in the improved solution are basically stable over time, and are not especially affected by 453 

the type of image used. This can be seen clearly by comparing Figure 11a and Figure 6a..  454 

The standard error deviations have also improved. A comparison of Figure 11b and Figure 6b shows that 455 

errors are now between 4.7 m and 7.4 m. Interestingly, TM and ETM-H images reveal very similar 456 

deviations. However, the ETM-L errors are slightly greater. Another indication of the greater scatter in 457 

the data produced with the ETM-L images (in comparison with other two types of images) is given by an 458 

analysis of maximum and minimum errors: while the TM and ETM-H show an average minimum and 459 

maximum error of -18.5 m and 20.0 m; while for ETM-L the figures are -29.5 m and 25.6.  460 
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 461 

Fig. 11. Mean error and standard deviation of the error after applying the improved method. 462 

  463 

As previously mentioned, to define the models of correction for differences in reflectance a small number 464 

of images were used (5 for TM, 7 for ETM-H, 5 for ETM-L) and so it is worth asking if the model can be 465 

extrapolated for other images. To test this, we applied the correction models to a new batch of images (5 466 

TM, 3 ETM-H, and 2 ETM-L) and the results confirm that the error is corrected in a similar manner. 467 

Therefore, the standard deviation obtained with 5 TM images with which the model was made was 5.7 m 468 

and the standard deviation obtained with the confirmation images was 5.1 m. A similar result was 469 

obtained with the ETM-H images (with a mean standard deviation of 5.2 m for the images used in 470 

defining the model and 5.3 m for the confirmation images) and ETM-L (6.4 m average for the images 471 

used to define the equation and 5.8 for the confirmation images).   472 
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Fig. 12. Mean error (a) and standard deviation (b) of the errors for each of the evaluation zones. 474 

 475 
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It is also worthwhile analysing the responses for the three studied seawalls. Figure 12a shows the mean 476 

errors obtained near each seawall for each of the image types after the correction was applied, and Figure 477 

12b shows the standard deviations. When comparison is made with the results shown in Figure 8, it can 478 

be seen that the systematic error on Seawall 2 has disappeared. In fact, it is now at Seawall 1 where we 479 

find the greatest errors because of the unique curves in the shoreline at this sector. This differentiation can 480 

be seen more clearly in the TM and ETM-H images. In the case of ETM-L, the correction has been less 481 

efficient and is less evident. In fact, in these images the maximum standard error deviation can be seen in 482 

Seawall 2. 483 

  484 

7. Determination of the accuracy of the proposed method 485 

To determine the potential use of the shorelines extracted with the proposed method it is necessary to 486 

establish the fundamental limits of error. With this intention the sample was expanded for each type of 487 

image and error analyses in the control zone were made on 28 TM images, 10 ETM-H images, and 7 488 

ETM-L images, or a total of 45 images from various dates (Fig. 13). 489 
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 490 

Figure 13. Number of images per year analysed to assess levels of precision using the developed method.  491 

 492 

Once the data set with the error magnitudes is collated it can be observed that the errors follow an 493 

approximately normal distribution (Fig. 14). The Kolmogorov-Smirnov test was applied and it was found 494 

that the distribution fits a normal curve with a confidence level of 95%. Accordingly, this distribution was 495 

used to determine the likely maximum error that could occur for each type of image. Table 5 shows the 496 
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mean error for each image type, ranging between -1.22 and -1.63, i.e. values close to zero but with a very 497 

small landward bias. The standard error deviation is also shown and since the mean error is very close to 498 

zero, the RMSE is used. It can be seen that in all cases it is very close to 5 m. From the adjustment 499 

distance to a normal curve the maximum error potential towards the sea or land was determined with 500 

three levels of confidence: for ETM-H images the maximum error in the position of the shoreline at one 501 

time may be, with 90% probability, 10.54 m (calculated by adding the maximum landward and seaward 502 

error with that level of confidence); with TM images the maximum error is 11.09 m; and with ETM-L 503 

images the maximum error is 13.24.  504 

This level of precision is good given that we are using images with a resolution of 30 m.   505 

 506 

Table 5. Basic error statistics obtained from analysis of 45 Landsat TM and ETM images of Seawalls 2 507 

and 3 in the study area. For each type of image the following information is given: the period when the 508 

image was taken; the number of images analysed; the number of points from which errors have been 509 

measured; the mean error for the whole sample (the negative value indicates that error is towards the 510 

land); the mean square error; and maximum errors to be expected with various confidence levels (shown 511 

in brackets).  512 

Image type   TM  ETM-H ETM-L 

Number of analysed images  28 10 7 

No. points used   26109 9230 6651 

Mean error (m)   -1.66 -1.57 -1.22 

RMSE (m)    4.96 4.69 5.47 

Max. seaward error (m) [99 %]  9.91 9.34 11.51 

Max. landward error (m) [99 %]  11.57 11.00 13.17 

Max. seaward error (m) [95 %]  6.52 6.14 7.78 

Max. landward error (m) [95 %]  8.18 7.80 9.44 

Max. seaward error (m) [90 %]  4.71 4.44 5.79 

Max. landward error (m) [90 %]  6.37 6.10 7.45 

 513 

 514 
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Fig. 14. Histogram of the frequency of errors found on ETM-H images and tracing the normal adjusted 515 

curve. 516 

 517 

8. Discussion and conclusions 518 

We have developed a method to automatically extract the position of the shoreline from successive 519 

Landsat TM and ETM+ images with subpixel precision. This has been achieved by applying an algorithm 520 

to automatically extract the shoreline – as well as a system of subpixel geo-referencing. Correction has 521 

been added for the effect caused by differences in radiometric levels in the land area. We assessed the 522 

accuracy of the method of extracting the shoreline from 45 Landsat TM and ETM+ images taken between 523 

1984 and 2010 in two coastal segments of 2.4 and 2.7 km. These segments of shoreline had been 524 

stabilised artificially by seawalls throughout the study period and comparisons were made with the 525 

position extracted manually from aerial photos taken with a spatial resolution of 0.5 m. By analysing each 526 

of the 41,990 automatically extracted points we have been able to calculate the statistical parameters of 527 

the error. The RMSE is around 5 m and the mean error is about -1.5 m.   528 

Given these results, what types of change can we expect to recognise in shorelines calculated with this 529 

method on microtidal coasts such as found in the Mediterranean? Firstly, this method can be used to 530 

measure erosion or accumulation trends in beaches over the medium and long term. Note that given the 531 

configuration of the errors (Fig. 14) the method usually locates the position of the shoreline with great 532 

precision. For example, the error obtained with a probability of 75% would range between 1.7 m seaward 533 

and 3.36 m landward. Therefore, most of the shorelines extracted reveal a high level of metric accuracy. 534 

In any case, it is also important to note that the main advantage of this application is that many lines can 535 

be drawn automatically. While accepting that some segments will be described with less precision it is 536 

clear that trends are defined without difficulty. Note, for example, that while the control area has been 537 

analysed using only images available on the USGS server, we have been able to use up to 45 different 538 

images recorded between 1984 and 2010.  539 

Another important issue is whether seasonal variability in the width of beaches on seas without tides can 540 

be derived from the data obtained. The coast in the study area has an average annual maximum sea level 541 

oscillation of 0.37 m and large sections of the beaches are gently sloped. Monitoring a segment of 9 km of 542 

beach at El Saler, south of Valencia, over the past five years has shown that the average beachface slope 543 
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is 3.7º (Pardo-Pascual et al., 2011). We can calculate that the movements of the shore due exclusively to 544 

factors related to the level of the sea measure about 5.7 m. The RMSE of the presented method – even for 545 

the worst performing ETM-L images – is better than the average oscillation of the shore due to changes in 546 

sea level – and therefore the precision achieved is sufficient for seasonal variability studies. The 547 

application of this tool may enable various positions of the shore to be identified in the same area during 548 

the period of a year. In fact, this study employs up to six images for each of the years 2002 and 2003. 549 

Another important question is whether this type of application could be used to calculate positions of the 550 

shoreline on macrotidal coasts. In the current state of development it is difficult to determine if the 551 

precision demonstrated could be repeated for tidal coasts. We have seen how differences in spectral 552 

response in areas near the coast clearly influence calculations regarding the position of the shoreline. The 553 

fact that a large landward area immediately adjacent to the water line appears wet can significantly alter 554 

the response of the algorithm that determines the shoreline. It would be necessary to establish which 555 

spectral region would be the most efficient in adequately determining the position. Ryu et al. (2002) 556 

showed that a coastline with tidal flows can be determined using NIR bands, however it was reported that 557 

this approach does not work well when the water is in a state of reflux – this is because of the confusion 558 

caused by the existence of wet areas immediately beside the shore. In any event, it remains to be 559 

confirmed to what extent the methodology outlined here could help calculate the shoreline in areas with 560 

large tides. Moreover, it has to be remembered that the complexity of determining the accuracy with 561 

which a shoreline is determined is further complicated by the very vagueness of the concept of a shoreline 562 

in areas with tides – as stated in the introduction. 563 

It is therefore concluded that in microtidal coastlines the shorelines obtained from Landsat TM and ETM+ 564 

images using the procedure described can be used to map intranual variability in the shoreline (since 565 

small changes can be recognised), as well as to quantify local erosion and /or accumulation trends in the 566 

medium term. Therefore, this may be a useful tool for the management of coastal areas. Because the 567 

whole process can be automated, the use of this methodology in the management of coastal areas may be 568 

both simple and efficient. 569 

 570 

 571 

 572 

 573 



 26 

9. Acknowledgements 574 

The authors appreciate the financial support provided by the Spanish Ministerio de Ciencia e Innovación 575 

and the Spanish Plan E in the framework of the Projects CGL2009-14220-C02-01 and CGL2010-19591. 576 

 577 

10. References 578 

 579 

Bayram, B., Acar, U. & Ari, A. (2008): A novel algorithm for coastline fitting through a case study over 580 

the Bosphorus, Journal of Coastal Research, 24 (4): 938-991. 581 

Boak, E.H. & Tunner, I.L. (2005): Shoreline definition and detection: a review, Journal of Coastal 582 

Research 21 (4): 688-703. 583 

Braud, D.H. & Feng, W. (1998): Semi-automaed construction of the Lousiana coastline digital 584 

land/water boundary using Landsat Thematic Mapper satellite imagery, Departament of 585 

Geography & Anthropology, Lousiana State University, Lousiana Applied Oil Spill Research 586 

and Development Program, OSTAPD Technical Report Series 97-002. 587 

Brocal, R., López-García, M.J. & Pardo-Pascual, J.E. (2001): Cambios en la línea de costa mediante 588 

fotografía aérea e imágenes IRS-Pan en el litoral valenciano: sector Cullera-Tavernes (1956-589 

1999), en J.I. Rosell & J.A. Martínez-Casanovas (eds.) Teledetección. Medio Abmiente  y 590 

Cambio Global, Universitat de Lleida, pp. 225-228. 591 

Brocal, R., López-García, M.J. & Pardo-Pascual, J.E. (2005): Análisis de la evolución de la línea de costa 592 

enel litoral valenciano mediante SIE e imágenes de satélite, El sector Cullera-Tavernes (1956-593 

1999), en E. Sanjaume & J.F. Mateu (eds.): Geomorfologia litoral i quaternari. Homenatge al 594 

professor Vicenç Mª Rosselló i Verger, Publicacions de la Universitat de València, pp. 73-86. 595 

Chu, Z.X., Sun, X.G., Zhai S.K. & Xu, K.H. (2006): Changing pattern of accretion/erosion of the modern 596 

Yellow River (Huanghe) subaerial delta, China: Based on remote sensing images, Marine 597 

Geology, 227: 13– 30. 598 

DGC, Spanish Coastal General Office (2008): Directrices sobre actuaciones en playas, Secretaria general 599 

para el Territorio y la Biodiversidad, Dirección General de Costas, Ministerio de Medio 600 

Ambiente de España 41 pp. In 601 

http://www.mma.es/secciones/acm/aguas_marinas_litoral/directrices/pdf/directrices_sobre_playa602 

s.pdf 603 

Di, D., Ma, R. & Li.R. (2003b): Geometric processing of Ikonos stereo imagery for coastal mapping 604 

applications, Photogrammetric Engineering & Remote Sensing, 69 (8): 873-879. 605 

Di, D., Wang, J., Ma, R. & Li.R. (2003a): Automatic shoreline extraction from high-resolution Ikonos 606 

satellite imagery, ASPRS 2003Annual Conference Proceedings, Anchorage, Alaska. 607 

Ekercin, S. (2007): Coastline change assessment at the Aegena Sea Coasts in Turkey using multitemporal 608 

Landsat imagery, Journal of Coastal Research 23 (3): 691-698. 609 

http://www.mma.es/secciones/acm/aguas_marinas_litoral/directrices/pdf/directrices_sobre_playas.pdf
http://www.mma.es/secciones/acm/aguas_marinas_litoral/directrices/pdf/directrices_sobre_playas.pdf


 27 

Espinosa Montero, V. & Rodríguez Santalla, I (2009): Evolución costera del tramo comprendido entre 610 

San Juan de los Terreros y playas de Vera (Almería), Revista de la Sociedad Geológica de 611 

España 22 (1-2): 3-12. 612 

Foody, G.M., Muslim, A.M. & Atkinson, P. M. (2005): Super-resolution maping of the waterline  frfom 613 

remotely sensed data, International Journal of Remote Sensing, 24: 5381-5392. 614 

Frazier, P.S. & Page, K.J., (2000): Water body detection and delineation with Landsat TM data, 615 

Photogrammetric Engineering & Remote Sensing, 66 (12): 1461-1467. 616 

Gens, R. (2010): Remote sensing of the coastlines: detections, extraction & monitoring, International 617 

Journal of Remote Sensing, 31 (7): 1819-1836. 618 

Guariglia, A., Buonamassa, A., Losurdo, A., Saladino, R., Trivigno, M.L., Zaccagnino, A. & Colangelo, 619 

A. (2006): A multisource approach for coastline mapping & identification of the shoreline 620 

changes, Annals of Geophysics, 49 (1): 295-304. 621 

Guizar-Sicairos, M., Thurman, S.T. & Fienup, J.R. (2008): Efficient subpixel image registration algorithms, 622 

Optics Letters, 33 (2): 156-158. 623 

Hoeke, R.K., Zarrillo, G.A. & Synder, M. (2001): A GIS based tool for extracting shorelines positions 624 

forma aerial imagery (BEACHTOOLS) Coastal Engineering Technical Note IV, Washington 625 

DC: US Army Corps of Engineers, 12 p. 626 

Jiménez, J.A., Sánchez-Arcilla, A., Bou, J. & Ortiz, M.A. (1997): Analysis short-term shoreline changes 627 

along the Ebro Delta (Spain) using aerial photographs, Journal of Coastal Research 13 (4): 628 

1256-1266. 629 

Jishuang, Q & Chao, W. (2002): A multi-thershold based mnorphological approach for extractin coastal 630 

line feature in remote sensed images, Pecora 15/L& Satellie Information IV Conference (Denver, 631 

Colorado), ISPRS Comission I/ FIEOS pp. 319-338. 632 

Leatherman, S.P. (1983): Historical and projected shoreline mapping, Proceedings of the Coastal 633 

Zone’83 (San Diego, California), pp. 2902-2910. 634 

Lee, J.S. & Jurkevich, I. (1990): Coastal detection and tracing in SAR images, IEEE Transactions on 635 

Geoscience and Remote Sensing 28: 662-668. 636 

Lisitzin, E. (1974): Sea level changes. Oceanography Series 8, Elsevier, Amsterdam, 286 pp. 637 

Liu, H., Sherman, D. & Gu, S. (2007): Automated extraction of shorelines from airbone light detection 638 

and ranging data and accuracy assessment based on Monte Carlo simulation, Journal of Coastal 639 

Research 23 (6): 1359-1369. 640 

Maiti, S. & Bhattacharya, A.K. (2009): Shoreline change analysis and its application to prediction: a 641 

remote sensing and statistics based approach. Marine Geology  57: 11–23 642 

Manavalan, P., Sathyanath, P. & Rajegowda, G.I. (1997): Digital image analysis techniques to estimate 643 

waterspread for capacity evaluation of reservoirs, Photogrammetric Engineering & Remote 644 

Sensing, 59 (9): 1389-1395. 645 

Mason,D.C. & Davenport, I.J. (1996): Accurate & efficient determination of the shorelinte in ERS-1 SAR 646 

images, IEEE Transactions on Geoscience & Remote Sensing, 34: 1243-1253. 647 

McCurdy, P.G. (1950): Coastal deliniation from aerial photographs, Photogrammetric Enginnering, 16 648 

(4), 550-555. 649 



 28 

MOPU, Ministerio de Obras Püblicas y Urbanismo (1979): Estudio de la dinámica litoral en la costa 650 

peninsular mediterránea y onubense. Provincias de Valencia, Castellón y Tarragona, 651 

Laboratorio de Puertos Ramón Iribarren, Dirección General de Costas. 652 

Morton, R.A., Miller, T. & Moore, L. (2005): Historical shoreline changes along the US Gulf of Mexico: 653 

a summary of recent shoreline comparisons and analyses, Journal of Coastal Research21 (4): 654 

704-709. 655 

Muslim, A.M., Foody, G.M. & Atkinson, P.M. (2006): Localized soft classification for super‐resolution 656 

mapping of the shoreline, International Journal of Remote Sensing, 27, (11): 2271-2285. 657 

Muslim, A.M., Foody, G.M. & Atkinson, P.M. (2007): Shoreline Mapping from Coarse-Spatial 658 

Resolution Remote Sensing Imagery of Seberang Takir, Malaysia, Journal of Coastal Research, 659 

23 (6):1399-1408. 660 

NASA (2006): Landsat 7 Science Data Users Handbook, (on-line), available on 661 

http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf (September, 2011). 662 

Niedermeier, A., Romaneessen, E. & Lehner, S. (2000): Detection of the coastlines in SAR images using 663 

wavelet methods, IEEE Transactions on Geoscience & Remote Sensing 38: 2270-2281. 664 

Ouma, Y.O.  & Tateish, R. (2006): A water index for rapid mapping of shoreline changes of five East 665 

African Rift Valley lakes: an empirical analysis using Landsat TM & ETM+ data, International 666 

Journal of Remote Sensing 27 (15): 3153-1381.  667 

Pardo-Pascual, J.E. & Sanjaume, E. (2001): Análisis multiescalar de la evolución costera, Cuadernos de 668 

Geografía, 69/70: 95-126. 669 

Pardo-Pascual, J.E. (1991): La erosión antrópica en el litoral valenciano, Conselleria d’Obres Públiques, 670 

Urbanisme i Transports, Generalitat Valenciana, 240 pp. 671 

Pardo-Pascual, J.E. , Ruiz, L.A., Palomar Vázquez, J.,  Calaf, X.., Colmenárez, G.R., Almonacid-672 

Caballer, J.  & Gracia, G. (2008): Teledetección, GPS y Lidar: Nuevas técnicas de análisis y 673 

evolución de la línea de costa y de los espacios playa-duna en Pardo-Pascual, J.E y Ruiz, L.A. 674 

(eds.): Actas de las Jornadas Técnicas “Las nuevas técnicas de información geográfica al 675 

servicio de la gestión de zonas costeras: Análisis de la evolución de playas y dunas”: 62-68. 676 

Servicio Publicaciones UPV. 677 

Pardo-Pascual, J.E., Palomar-Vázquez, J.M., García-Asenjo, L. & Garrigues-Talens, P. (2011): 678 

Determinación de la tendencia evolutiva de un segmento de playa basándose en múltiples 679 

levantamientos tridimensionales,  in Montoya, I., Rodríguez-Santalla, I. and Sánchez-García, 680 

M.J. (eds.): Avances en Geomorfología Litoral. Actas de las VI Jornadas de Geomorfología 681 

Litoral: 27-30. Ed. Universidad Rey Juan Carlos, Madrid. 682 

Pérez-González, L. (2008): La gestión de la costa desde la Administración General del Estado: Lineas de 683 

trabajo y perspectivas, en Pardo-Pascual, J.E y Ruiz, L.A. (eds.): Actas de las Jornadas Técnicas 684 

“Las nuevas técnicas de información geográfica al servicio de la gestión de zonas costeras: 685 

Análisis de la evolución de playas y dunas”: 44-48. Servicio Publicaciones Universitat 686 

Politècnica de València. 687 

Puertos del Estado, Spanish State Port Authority (2009): Remar red de mareógrafos de puertos del estado 688 

(Informe Anual 2009), 395 pp. Available on 689 

http://w3.puertos.es/export/download/oceanografia_mareografos_informes/infredmar2009.pdf  690 

(September, 2011). 691 

Pugh, D. (1996): Tides, surges & mean sea level, John Wiley & Sons, 472 pp. 692 

http://www.ingentaconnect.com/content/tandf/tres;jsessionid=egnetsg2m7fp4.alice
http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf
http://w3.puertos.es/export/download/oceanografia_mareografos_informes/infredmar2009.pdf


 29 

Pugh, D.T. (2004): Changing sea levels. Effects of tides, weather and climate. Cambridge University 693 

Press, 280 pp. 694 

Robertson, W.V., Whitman, D., Zhang, K.Q. & Leatherman, S.P. (2004): Mapping shoreline position 695 

using airborne laser altimetry, Journal of Coastal Research, 20 (3): 884-892. 696 

Rodríguez, I. (2001): Comparación de técnicas basadas en el tratamiento digital de imágenes de satélite 697 

para la obtención de la línea de costa  del Delta del Ebro, en J.I. Rosell & J.A. Martínez-698 

Casanovas (eds.) Teledetección. Medio Abmiente  y Cambio Global, Universitat de Lleida. Pp. 699 

205-208. 700 

Rodríguez, I., Sánchez, M.J. & Montoya, I. (2009): Estudios de erosión con satélite en costas 701 

sedimentarias micromareales, en J. Alcántara Carrió, I.D. Correa Arango, F.I. Isla Mendy, M. 702 

Alvarado Ortega, A.H.F. Klein, A. Cabrera Hernández y R. S&oval Barlow (Eds). Métodos en 703 

Teledetección Aplicada a la Prevención de Riesgos Naturales en el Litoral. Servicio de 704 

Publicaciones del Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, pp. 65-705 

78. 706 

Ruiz, L.A., Pardo-Pascual, J.E., Almonacid-Caballer, J.& Rodríguez, B. (2007): Coastline automated 707 

detection and multi-resolution evaluation using satellite images. Proceedings of Coastal Zone 708 

2007, 22 - 26 July, Portland.  709 

Ryu,J-H, Won, J-S, Min, K.M. (2002): Waterline extraction from Landsat TM data in a tidal flat: A case 710 

study in Gomso Bay, Korea Remote Sensing of Environment , 83 (3): 442-456. 711 

Sanjaume, E. & Pardo-Pascual, J.E. (2005): Erosion by human impact on the Valencian costline, Journal 712 

of Coastal Research, SI 49: 76-82. 713 

Sanjaume, E. (1985): Las costas valencianas. Sedimentología y morfología, Universitat de València, 505 714 

p. 715 

Sanjaume, E. Rosselló, V. Pardo-Pascual, J.E., Carmona, P. López, M. & Segura, F. (1996): Recent 716 

coastal changes in the Gulf of Valencia (Spain), Zeitschrift für Geomorphologie, 717 

Supplementbände, 102: 95-118. 718 

Serra-Peris, J. (1986): ‘Procesos litorales en la costa de Castellón’, PhD Thesis, Escuela Técnica Superior 719 

de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Valencia, 891 p. 720 

Smith, G.L. & Zarrillo, G.A. (1990): Calculating long-term shoreline recession rates using aerial 721 

photographic and beach profiling techniques, Journal of Coastal Research 6 (1): 111-120 722 

Stafford, D.B. (1971): An aerial photographic technique for beach erosion surveys in North Carolina, 723 

U.S. Army Coastal Engineering Research Center, Technical Memorandum, Nº 36, 115 pp. 724 

Stockdon, H.F., Sallenger, A.H., List, J.H. & Holman, R.A. (2002): Estimation of the shoreline position 725 

and change using airborn topographic lidar data, Journal of Coastal Research, 18 (3): 502-513. 726 

Thieler, E.R. & Danforth, W.W. (1994): Historical shoreline mapping (I): improving techniques and 727 

reducing positioning errors, Journal of Coastal Research 10 (3): 549-563. 728 

White, K & El Asmar, H. (1999): Monitoring changing position of coastlines using Thematic Mapper 729 

imagery, and example from the Nile Delta, Geomorphology, 29: 93-105. 730 

White, S.A. & Wang, Y. (2003): Utilizing DEMs derived from LIDAR data to analyze morphologic 731 

change in the North Carolina coastline, Remote Sensing of the Environment, 85: 39-47. 732 

http://cgat.webs.upv.es/../../miembros/index.php?id=10116885604482671904
http://cgat.webs.upv.es/../../miembros/index.php?id=1168854845101338285
http://cgat.webs.upv.es/../../bigfiles/CZ07Ruiz.pdf
http://cgat.webs.upv.es/../../bigfiles/CZ07Ruiz.pdf
http://www.sciencedirect.com/science/journal/00344257
http://www.schweizerbart.de/journals/zfg_suppl
http://www.schweizerbart.de/journals/zfg_suppl


 30 

Yamayo, H., Shimazaki, H., Matsunaga, T., Ishoda, A., McClennen, C., Yokoki, H. Fujita, K., Osawa, Y. 733 

& Kayanne, H. (2006): Evaluation of various satellite sensors for waterline extraction in a coral 734 

reef environment: Majuro Atoll, Marshall Islands, Geomorphology, 82: 398-411. 735 

Yu, Y. & Acton, S.T. (2004): Automated delineation of coastline from polarimetric SAR imagery, 736 

International Journal of Remote Sensing, 25: 3423-3438. 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 



 31 

List of figures 767 

Figure 1. Seawalls in the study area. 768 

Figure 2. The figure illustrates the scheme of the first phase: an approximation of the positioning of the 769 

coast at pixel level.  770 

Figure 3. Basic scheme of the calculation procedure for the shoreline position: a) the neighbouring pixels 771 

of the approximate line are selected; b) resampling is performed to produce a greater density of points for 772 

the mathematical function; c) the function and its line of inflection is mathematically obtained. 773 

Figure 4.  Approximate line at pixel level (in blue); the green crosses show the calculations made for each 774 

analysed profile; and the pink line indicates the averaged position of the multiple solutions determined by 775 

the various profiles and the calculated shoreline.   776 

Figure 5. Example of the result for a segment of shoreline that has been artificially stabilised. Yellow dots 777 

show the position of the shoreline image obtained from Landsat 5 (2000-03-01). The red line shows the 778 

reference shoreline taken from the aerial photo with an underlying resolution of 0.5 m.  779 

Fig. 6. Mean error (a) and standard deviation detected (b) expressed in meters for each image according to 780 

the date when the image was taken and type of image. 781 

 782 

Fig. 7 Examples of error. In (a) it can be seen that there are two families of shorelines (see explanation in 783 

the text) that appear to be related to a change in the landscape that significantly affected the intensity 784 

value (IV) the land. In (b) it can be seen that in this sector for all of the period studied the error was 785 

homogenous and the variability between the 23 shorelines was minimal. 786 

Fig. 8 Mean error (a) and standard deviation (b) for each of the three seawalls  787 

Fig. 9. Example of localisation around Seawall 1. Evidence from these results suggests that the 788 

mathematical model for the extraction of the shoreline based on Landsat images usually works fairly well. 789 

However, errors are produced that seem to be directly related to the characteristics of the digital levels 790 

with which the extraction algorithm operates – meaning the 7 x 7 pixel neighbourhood.  791 

 792 

Fig. 10 (a) Relationship between the mean pixel intensity considered in the analysis and the error in the 793 

positioning of the shoreline in areas near seawalls. (b) shows the relationship between the standard 794 

deviation of the pixel intensity values in the analysis and errors. In both cases, the relationship shown is 795 

found on the 199-032 series of images taken by the ETM + high gain sensor (21 July 1999). 796 

 797 

Fig. 11. Mean error and standard deviation of the error after applying the improved method. 798 

Fig. 12. Mean error (a) and standard deviation (b) of the errors for each of the evaluation zones. 799 

Figure 13. Number of images per year analysed to assess levels of precision using the developed method.  800 

Fig. 14. Histogram of the frequency of errors found on ETM-H images and tracing the normal adjusted 801 

curve. 802 
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Table 2. Shows the application of subpixel geometric correction and a summary of errors found after 810 
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Table 5. Basic error statistics obtained from analysis of 45 Landsat TM and ETM images of Seawalls 2 817 

and 3 in the study area. For each type of image the following information is given: the period when the 818 
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Relationship between IV mean and shoreline positional error
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Abstract 13 

A high geometric precision method for automated shoreline detection from Landsat TM and ETM+ 14 

imagery is presented. The methodology is based on the application of an algorithm that ensures accurate 15 

image geometric registration, and a new algorithm for sub-pixel shoreline extraction, both at sub-pixel 16 

level. The analysis of the initial errors shows the influence of the differences in reflectance of land cover 17 

types over the shoreline detection, allowing us to create a model to substantially reduce these errors. 18 

Three correction models were defined attending to the type of gain used in the acquisition of the original 19 

Landsat images. Error assessment tests were applied on three straight coast segments artificially 20 

stabilized, all of them located in microtidal coastal areas. A testing set of 45 images (28 TM, 10 ETM 21 

high-gain and 7 ETM low-gain) was used. The mean error obtained in shoreline location ranges from 1.22 22 

to 1.63 m, and the RMSE from 4.69 to 5.47 m. Since the errors follow a normal distribution, then the 23 

maximum error at a given probability can be estimated. The results obtained show the possibility to apply 24 

this methodology over large coastal sectors in order to determine and analyse the evolution trend of these 25 

dynamic areas. 26 
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