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Reconfigurable control scheme for a PV 
microinverter working in both grid connected and 

island modes. 
 

 
Abstract- In this paper a photovoltaic microinverter capable of 
operating in both island mode and grid connected mode by 
means of a reconfigurable control scheme is proposed. The main 
advantage of control reconfiguration is that in grid connected 
mode the microinverter works as a current source in phase with 
the grid voltage, injecting power to the grid. This is the 
operation mode of most commercial grid connected PV 
microinverters. The idea is to provide those microinverters with 
the additional functionality of working in island mode without 
changing their control algorithms for grid connected mode, 
which were developed and refined over time. It is proposed that 
in island mode the microinverter control is reconfigured to work 
as a voltage source using droop schemes. These schemes consist 
in implementing P/Q strategies in the inverters, in order to 
properly share the power delivered to the loads. The aim of the 
paper is to show that the proposed control reconfiguration is 
possible without dangerous transients for the microinverter or 
the loads. Simulation and experimental results on an 180W 
photovoltaic microinverter are provided to show the feasibility 
of the proposed control strategy. 

I. INTRODUCTION 

In the last years one of the priorities worldwide is 
developing alternative sources to produce electric energy, 
especially from renewable sources, which produce low 
environmental contamination levels. Those renewable energy 
sources play an important role in the long-term, and they will 
give rise to substantial changes in the technologic, 
environmental and organizational profile of the global energy 
system [1]. 

Besides, the possibility to produce energy close to the 
consumption points along with energy delivery problems in 
isolated and rural areas turn distributed generation (DG) [2] 
into an interesting and promising technological option. 

Accordingly to the expressed above, it is feasible to 
implement interfaces able to get connected to the grid in order 
to transfer the energy coming from renewable sources (grid 
connected mode), as well as to feed local loads when there is 
a lack of distribution grid (island mode). Those interfaces are 
known as microgrids [3]. 

A microgrid is able to flexibly import and export energy 
from and to the grid. It controls the flow of active and 
reactive power [4]. The inverters working in a microgrid must 
be able to work in grid connected mode, injecting power to 
the distribution grid, as well as in island mode, delivering a 
proper AC voltage quality to local loads [5]. 

Most commercial grid connected PV microinverters 
operate as a current source in phase with the grid voltage, 
injecting power to the grid [6]. The control algorithms for 
these microinverters have been developed and refined over 

time, being highly efficient for grid connected operation. 
Therefore, many microinverter manufacturing companies 
may be prone to keep their reliable grid connection control 
algorithms while incorporating new functions.  

The main contribution of this paper is to provide those 
microinverters with the additional functionality of working in 
island mode without changing their control algorithms for 
grid connected mode.  

There are several studies about the proper operation of 
inverters working in both grid connected and island modes. A 
possible solution is based on droop schemes. These schemes 
consist in implementing P/Q strategies in the inverters, in 
order to properly share the power delivered to the loads and 
avoid critical communication lines between inverter modules. 
In [4] and [7] the inverters are controlled by droop schemes in 
both operation modes. These inverters are controlled as 
voltage sources even if they are connected to the grid, so that 
experienced control algorithms that inject the inverter output 
current in phase with the grid voltage (current source 
algorithms) developed for commercial inverters in grid 
connection mode are discarded. 

In [8] it is described that under normal operation the 
inverter works in a constant current operation mode in order 
to provide a preset power to the grid. When the islanding 
situation happens, the inverter must detect it and switch to 
voltage mode operation. In this mode the islanded inverter 
will provide a constant voltage to the local load. Additionally, 
[8] proposes an intelligent load-shedding algorithm for 
intentional islanding and a synchronization algorithm for grid 
reconnection. However, the paper does not mention how to 
parallelize inverters. Furthermore, the reference imposed to 
the voltage controller has a fixed value. 

In [9] it is presented a practical single-phase inverter-based 
microgrid system that ensures smooth mode transfer between 
island and grid modes, while maintaining accurate current 
sharing and high-quality output waveforms. The complete 
system is implemented using robust CAN communications, 
including an upper level controller that assigns each inverter 
to run in voltage or current loop control, a current sharing 
control and a mode transfer algorithm. However, this system 
requires a communications bus to operate properly, which 
means an increased cost. 

In other studies like [10] and [11] reconfigurable control 
schemes are proposed, based on a very simple and effective 
type of control. This control is the multiloop linear PI control 
system. This method uses linear inner and outer PI control 
loops to regulate the system state variables. However, in these 



papers it is not clearly explained how inverters are 
parallelized sharing the load power. 

Given the above, this paper aims to show a reconfigurable 
control scheme based on multiloop control in both operation 
modes. Droop schemes are used in the island mode. The idea 
is to use “current source” control algorithms implemented in 
commercial microinverters for the grid connected mode, in 
which case an inner loop provides control of the AC grid 
injected current, whereas an outer loop regulates the DC 
voltage at the input of the inverter. In island mode, the inner 
current loop doesn`t change, but the aim of the outer loop is 
to regulate the inverter output voltage, i.e. a “voltage source 
algorithm”. The voltage controller follows the reference 
imposed by droop schemes. These schemes are well suited for 
parallel inverter operation without communication lines 
among the inverters sharing the load power.  

Besides, this paper presents the operation of the 
microinverter in island mode, without the need of additional 
energy storage systems, such as batteries and supercapacitors. 
The microinverter delivers the energy demanded by the load 
if enough energy is available from the PV panel. 

Additionally, in the paper it is shown that the proposed 
control reconfiguration is possible without dangerous 
transients for the microinverter or the loads. 

This paper is organized as follows. The second section 
presents the characteristics of a photovoltaic (PV) 
microinverter working in grid connected mode. The third 
section shows the method selected for island detection, which 
determines whether the microinverter is connected to the 
distribution grid or not. The fourth section presents the 
characteristics of the microinverter for island mode operation. 
The fifth section shows the transition between operation 
modes. Simulation results are provided in the sixth section to 
illustrate the feasibility of the proposed controllers. The 
seventh section shows the experimental results. Finally, 
conclusions are provided. 

II. PV MICROINVERTER SYSTEM DESCRIPTION IN GRID 
CONNECTED MODE 

Fig. 1 shows the scheme of the PV microinverter that has 
been implemented. The control configuration corresponds to 
grid connection mode. The microinverter is fed by a DC 
programmable source in which the I-V curve of a PV panel 
has been programmed. The panel voltage is in the range 26-
36.7V at the maximum power point (MPP), so that a DC-DC 
stage is needed to raise the voltage supplied by the panel to 
suitable levels (VDC=380 V) for grid connection of the power 
processing system. A push-pull DC-DC converter has been 
chosen for this purpose. For DC-AC conversion a current-
controlled H-bridge inverter with bipolar PWM [12] with an 
output LCL filter [13] has been chosen. Note that the use of a 
push-pull topology provides galvanic isolation without the 
need of bulky and heavy low frequency transformers. 

As it can be observed from Fig. 1, the control of the Push-
pull converter starts from a maximum power point tracker 
(MPPT), implemented by a P&O (perturb and observe) 
algorithm [14]. The output of the MPPT, Vg_ref, is the 

reference for the PV panel voltage, Vg. The error between 
both signals is amplified by a PI voltage controller whose 
output is the control voltage, Vc, of the peak current mode-
control loop (PCC) [15]. This control voltage limits the peak 
value of the current through the primary of the push-pull 
transformer, avoiding its saturation. The PCC control of the 
DC-DC converter transformer primary current combined with 
the control of its input voltage (the PV panel voltage) was 
proposed in [16] in the context of double-stage PV inverters.  

 In the PCC PWM modulator an external stabilization ramp, 
of slope Se, is added to the sensed current through the 
transformer primary (of slope Sn). Fig. 2 shows the control 
structure of the PCC loop applied to the push-pull converter. 
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Fig.1. Block diagram of the PV microinverter. The control 

configuration corresponds to grid connection mode. 
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Fig.2. PCC scheme of the push-pull converter for grid connection 

mode operation. 
 
The PWM inverter has an inner current controller based on 

a harmonic compensator [17] in order to comply with the 
IEEE 929-2000 standard [18], in terms of the THD of the 
current injected to the grid. The amplitude, Iref_peak, is the sum 
the power-feedforward term, used to achieve a fast response 
of the inverter control to changes in the power generated by 
the panels [19], and the output of the PI controller of the 
inverter DC_link voltage, If. This amplitude is multiplied by 
cos(θINV) for synchronization with the fundamental 
component of the grid voltage. A synchronous rotating 
reference frame phase locked loop (dqPLL) [20] is used for 
grid synchronization. Fig. 3 shows the dqPLL block diagram. 
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Fig.3. Block diagram of the dqPLL. 

 
Table I shows the electrical parameters of the PV 

microinverter under study.  
 

TABLE I 
ELECTRICAL PARAMETERS OF THE PV MICROINVERTER UNDER STUDY 

Parameter Values 
Panel voltage variation (Vg) [24V – 36.7V] 
Injected power by panel (Ppv MPP) 180W 
DC_link voltage (VDC) 380V 
Inverter output voltage (VO RMS) 230VRMS 
Inverter output frequency (fg) 50Hz 
Push-pull inductance (LX) 11mH 
Push-pull input capacitance (CIN)  470μF 
Push-pull transformer turns ratio (N) 20 
Push-pull switching frequency (fs) 20kHz 
DC_link capacitance (CDC LINK) 1mF 
Inverter inductance (L) 19.1mH 
Inverter output capacitance (C) 600nF 
Damping resistance (Rd) 50Ω 
Inverter switching frequency (fsi) 20kHz 

 

Table II shows the expression of the chosen controllers for 
both, the inner current loops and the outer voltage loops, 
along with the corresponding crossover frequencies and phase 
margins both for the push-pull and for the H-bridge inverter 
in grid connection operation mode. In table II the term FM is 
the PWM modulator gain, which depends on Se and Sn. This 
value should be adjusted properly in order to guarantee the 
stability of the current loop [16]. Details about the adjustment 
of the inverter controllers in grid connected mode can be 
found in [21]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE II 
EXPRESSIONS OF THE CHOSEN CONTROLLERS, CROSSOVER FREQUENCIES AND 

PHASE MARGINS. GRID CONNECTED MODE. 
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III. ISLANDING DETECTION METHODS 

The condition of “islanding” in a distributed power 
generation system is an electrical phenomenon which occurs 
when the energy supplied by the power grid is interrupted and 
the distributed generators (DGs) continue energizing some or 
the entire load. Thus, the power grid stops controlling this 
isolated part of the distribution system, which contains both 
loads and generation, so that security, restoration of service 
and reliability of the equipment may be compromised [22] 
[23]. 

The main idea to detect an islanding situation is to supervise 
the DGs output parameters and/or other system parameters in 
order to determine if changes indicating an islanding 
condition have occurred. Islanding detection techniques can 
be divided into remote and local ones, whereas the latter 
techniques are divided into passive and active ones, as shown 
in Fig. 4 [24]. 

 
Fig. 4. Anti-islanding techniques classification. 

 
Before defining the different methods of islanding 

detection, it is important to highlight two key features in 
order to understand the islanding phenomenon. The first one 
is associated with the so-called “Non-detection zone” (NDZ). 
NDZ can be defined as the range (in terms of the power 
difference between DG inverter and load or load parameters) 
in which an islanding detection scheme under test fails to 
detect this condition [25]. The second one is associated with 
the type of loads (potential loads inside an isle), which can be 
modelled as a parallel RLC circuit. This circuit is primarily 
used because it raises more difficulties for islanding detection 
techniques than others. Generally, non-linear loads that 



produce current harmonics, or constant power loads do not 
represent difficulties for islanding detection [26]. 

The passive techniques are based on islanding detection 
through monitoring of parameters such as voltage, current, 
frequency and/or their characteristics. 

Those techniques interrupt the inverter operation when a 
transition occurs beyond the limits established for these 
parameters. They have the advantage of not worsening the   
quality of power, but exhibit a considerable Non Detection 
Zone (NDZ). The main passive techniques are: - Over/under-voltage and over/under-frequency [27] - Detection of voltage and current harmonics [28]. - Detection based on state estimators [29]. 

The active techniques intentionally introduce disturbances 
at the output of the inverter to determine if they affect 
voltage, frequency and impedance parameters, in which case 
it is assumed that the grid has been disconnected and the 
inverter is isolated from the load.  

Active techniques have the advantage of remarkably 
reducing or even eliminating the NDZ, but in order to achieve 
their purpose they may deteriorate the quality of the grid 
voltage or even cause instability. Among the active 
techniques can be found: - Harmonic injection/detection of impedance [30]. - Sandia Frequency Shift (SFS) Sandia Voltage Shift 

(SVS) [31]. - Variation of active power and reactive power [32].  - General Electric Frequency Schemes (GEFS) [33]. 
The method used in this work is the active method based on 

harmonic injection. This method has the particularity of 
monitoring changes in the grid impedance due to the injection 
of a particular harmonic or a sub-harmonic [34]. It is based on 
the idea that when grid is connected, the impedance of the 
grid at the injected harmonic frequency is lower than that of 
the load, so that and the current produced by this harmonic 
flows into the grid. When the grid is disconnected, the current 
produced by the injected harmonic flows through the load, 
producing a voltage harmonic which can be detected. 

In order to inject a second harmonic, the method based on 
PLL perturbation shown in [30] has been adopted in this 
work. The idea is to inject a harmonic current, in this case a 
second-order harmonic, to change the phase of the inverter 
current (cos(θINV) in Fig. 1). This is achieved by injecting a 
sinusoidal signal synchronized with the PLL phase which 
forces to smoothly modify the phase of the inverter current. A 
feedback signal is extracted from the point common coupling 
voltage (Vq component) as a result of the injected harmonic 
signal. When the grid is disconnected, a high second 
harmonic in Vq can be detected. 

Fig. 5 shows a block diagram of the adopted anti-islanding 
method based on the injection of a second harmonic and on 
the detection of grid impedance changes. 

 

Fig. 5. Block diagram of the adopted islanding detection method. 
 

IV. MICROINVERTER SYSTEM DESCRIPTION IN ISLAND 
MODE  

The control configuration proposed for the PV 
microinverter working in island mode is shown in Fig. 6. 

In island mode and without the use of backup energy 
storage elements, the microinverter should deliver the amount 
of energy demanded by the load, supposing that the PV 
generation capacity is not exceeded. In that case the supplied 
power should be limited to the maximum available one from 
the source. To achieve this, in [35] it is proposed regulate the 
input voltage (Vg) of the push-pull by means of a reference set 
by the addition of two components (see Fig. 6). The first one 
is the signal calculated by the maximum power point tracker, 
MPPT (Vref_MPPT), implemented by a P&O algorithm. The 
second component is obtained by closing an external voltage 
loop, which controls the output voltage (VDC) of the push-
pull, i.e., the DC input voltage of the inverter. Note that this 
voltage is usually controlled by the inverter in grid connected 
applications, because there is no need to regulate the inverter 
output AC voltage and, therefore, the inverter can adjust its 
input DC voltage by managing the amount of energy that is 
injected to the grid.  

On the contrary, in island mode the inverter feeds the local 
loads, offering similar waveform characteristics, both in 
voltage and frequency, as the distribution grid. As the inverter 
controls its output voltage in island mode, it is obvious that it 
cannot also regulate its input DC voltage. Apparently, the 
DC-DC converter could achieve this task in a conventional 
way, i.e., by closing a voltage control loop of its output 
voltage (i.e. the inverter input voltage) around the inner 
current loop. However, in that case the PV panels voltage 
would become uncontrolled and the extracted PV energy 
would not be efficiently managed. Thus, the maximum power 
point (MPP) or another power point demanded by the loads 
would not be reached. With the approach proposed in [35], 
the push-pull converter can regulate simultaneously both its 
output and input voltages. The input voltage is adjusted by 
closing a control loop around the inner current loop, whereas 
the output voltage is regulated by means of an additional 
control loop, as it is shown in Fig. 6. It is worth pointing out 
that the controller of VDC in Fig. 6 is a PI one with a negative 
sign in cascade with an integrator.  

Besides, it should be taken into account that the power 
provided by the microinverter is that required by the loads. 



For this reason, it is necessary to find the inverter voltage 
reference as a function of the active and reactive power 
consumed by the load. The droop method [36] is used to meet 
this goal.  

 
Fig. 6. Control configuration of the PV microinverter working in 

island mode.  
 
Table III shows the expressions of the chosen regulators for 

both the inner current loops and the outer voltage loops, along 
with the corresponding crossover frequencies and phase 
margins for the microinverter in island mode. Details about 
the adjustment of the controllers in island mode can be found 
in [35], [37]. 
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In order to establish the inverter voltage reference for the 
voltage controller, droop schemes [38] are applied. Such 
methods are based on the well-known concept of the power 
flow management in large-scale AC generators, which lies in 
reducing the frequency when the output power is increased 
[39].  

A scheme that represents the power flow through a 
transmission line is shown in Fig. 7. 
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Fig. 7. Power flow through a transmission line. 

 
where Z and θ represent the magnitude and phase of the 

output impedance, respectively, and δ represents the phase of 
the voltage between points A and B. 

 When the impedance of the transmission line has an 
inductive behavior (Z=jX), the active power (P) and reactive 
power (Q) supplied to the load can be expressed as: 

 

                                    δsin
X
VVP BA ⋅=                               (1) 

 

                                  X
VVVQ BBA

2−⋅⋅= δcos
                         (2) 

 
From (1) y (2), and considering small a phase difference 

between VA y VB (i.e. a small δ), it can be observed that P has 
a strong dependence on the angle δ, whereas Q depends on 
the amplitude difference between VA y VB.. 

The adopted droop scheme is depicted in Fig. 8.  
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Fig. 8. Static droop characteristics for inductive output impedance. 
 
The frequency (ω) and the voltage amplitude (E) of the 

inverter voltage reference can be expressed through equations 
(3) and (4). 

 

                                      Pm ⋅−= *ωω                  
(3) 

                                        QnEE ⋅−= *
                             (4) 

                                                                 
Being ω* and E* the frequency and amplitude of the inverter 

reference voltage at not load, whereas m and n represent the 
frequency and amplitude droop coefficients, respectively. 

The coefficients m and n can be chosen as in the 
conventional droop method to ensure steady state control 
objectives [40] as follows: 

                                   
maxP

m ωΔ=                                         (5) 

                                   
maxQ
En Δ=                                         (6) 

, where Pmax and Qmax are the maximum active and reactive 
powers that can be delivered by the inverter and Δω and ΔE 
are the maximum frequency and output-voltage amplitude 
deviations allowed. Hence, these two parameters can be fixed 
by the designer taking into account the tradeoff between the 



power sharing accuracy and the frequency and amplitude 
deviation. In this case m and n were set to 0.001.  

The active power (P) can be obtained by means of low pass 
filtering the inverter instantaneous output power. It is 
necessary take into account that the conventional droop 
scheme cannot satisfy the need for synchronization with other 
inverters or with the grid due to the frequency variation of the 
inverters, which produce a phase deviation. To obtain the 
required performance it is necessary to eliminate the DC 
component of the active power. In [41] is proposed include a 
high pass filter in series with the low pass filter. Therefore the 
resulting filter is a band pass filter. 

The reactive power (Q) is calculated in a similar way. 
However, in this case the output voltage measurement is 
delayed 90º and a low pass filter is used. The expressions of 
the chosen band pass filter, BPF(s), and of the low pass filter, 
LPF(s), are presented in equations (7) and (8), respectively. 
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V. TRANSITION BETWEEN OPERATION MODES 

In this section it is provided a brief description of the 
control configuration changes that occur in the transition 
between operation modes. 

 
A. Transition From Grid Connected Mode to Island Mode. 
 

In the transition from the grid connected mode to island 
mode it is necessary to change the voltage controller of the 
inverter, because in grid connected mode the voltage loop 
controls the DC_link voltage, VDC, whereas in island mode 
the load voltage, VO, is controlled. Furthermore, the reference 
for the voltage controller in island mode is provided by the 
droop scheme, whereas it is a constant value for the grid 
connected mode. In the same way, the push-pull voltage 
controller changes its control configuration to regulate the 
DC_link voltage and adjust the input voltage to the push-pull.   

In order to avoid abrupt transitions from one operation 
mode to the other, the final conditions of the controllers in a 
particular mode must be equal to the initial conditions of the 
controller in the new mode. It should be highlighted that the 
same output current controller for both push-pull and inverter 
are used in both operation modes [42]. 

 
B. Transition From Island Mode to Grid Connected Mode.  

 
When the microinverter is operating in island mode and the 

grid is reconnected it is possible to interconnect the 
microinverter to the grid. This is done by synchronizing the 
microinverter output phase with the grid phase. This action is 
accomplished by measuring the corresponding phases and 
doing their difference near to zero using a synchronization 
loop [41]. Fig. 9 shows the synchronization loop. 

 

Fig. 9. Block diagram of the droop scheme with synchronization 
loop. 

 
From Fig. 9 it can be found the expression of the inverter 

output frequency during the synchronization with the grid:  
( ) ϕϕωω Δ⋅−⋅⋅−= ksBPFPm )(*

              (9) 

 
, where Δφ is the phase difference (in radians) between the 

microinverter and the grid, and kφ is the frequency 
proportional constant. For this work the phase measurement 
was performed by means of two dqPLL. Once the angular 
difference becomes zero through the action of the 
synchronization loop, the switch reconnects the microinverter 
to the grid.  A value of kφ ≈0.2 was chosen to ensure a fast 
and suitable synchronization between the inverter and the grid 
without affecting the system stability.  

 

VI. SIMULATION RESULTS 

The results of the PV microinverter operating in grid 
connected mode and in island mode are shown in the 
following. The system has been simulated by means of PSIM 
7.0.5 simulation software [43]. Additionally, it has been 
considered a grid inductance (Lg) of 1.91mH, i.e. 10% of the 
inverter output inductor and 0,2% of the base inductance of a 
180 W PV inverter. 

Fig. 10 shows the main waveforms of the microinverter 
connected to the grid in the case of step variations of the 
current delivered by the PV source, Ipv. It is worth pointing 
out that irradiance variations on the PV panels cannot 
provoke so quick Ipv variations in a real case, but this 
simulation is a tough stability test for the microinverter 
control loops. In the experimental results to be shown in 
section VII, those Ipv steps can be achieved by means of a DC 
programmable source. In Fig. 10 it is observed that under 
variations of the PV source current, the output current is 
properly controlled, allowing the power injection to the grid 
according to the maximum available power. 
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