
RELBENCH: A Benchmark for Deep Learning
on Relational Databases

Joshua Robinson1∗, Rishabh Ranjan1∗, Weihua Hu2∗, Kexin Huang1∗,
Jiaqi Han1, Alejandro Dobles1, Matthias Fey2, Jan E. Lenssen2,3,

Yiwen Yuan2, Zecheng Zhang2, Xinwei He2, Jure Leskovec1,2
1Stanford University 2Kumo.AI 3Max Planck Institute for Informatics

https://relbench.stanford.edu

Abstract
We present RELBENCH, a public benchmark for solving predictive tasks over
relational databases with graph neural networks. RELBENCH provides databases
and tasks spanning diverse domains and scales, and is intended to be a founda-
tional infrastructure for future research. We use RELBENCH to conduct the first
comprehensive study of Relational Deep Learning (RDL) (Fey et al., 2024), which
combines graph neural network predictive models with (deep) tabular models that
extract initial entity-level representations from raw tables. End-to-end learned RDL
models fully exploit the predictive signal encoded in primary-foreign key links,
marking a significant shift away from the dominant paradigm of manual feature
engineering combined with tabular models. To thoroughly evaluate RDL against
this prior gold-standard, we conduct an in-depth user study where an experienced
data scientist manually engineers features for each task. In this study, RDL learns
better models whilst reducing human work needed by more than an order of mag-
nitude. This demonstrates the power of deep learning for solving predictive tasks
over relational databases, opening up many new research opportunities enabled by
RELBENCH.

1 Introduction
Relational databases are the most widely used database management system, underpinning much of
the digital economy. Their popularity stems from their table storage structure, making maintenance
relatively easy, and data simple to access using powerful query languages such as SQL. Because of
their popularity, AI systems across a wide variety of domains are built using data stored in relational
databases, including e-commerce, social media, banking systems, healthcare, manufacturing, and
open-source scientific repositories (Johnson et al., 2016; PubMed, 1996).

Despite the importance of relational databases, the rich relational information is typically foregone,
as no model architecture is capable of handling varied database structures. Instead, data is “flattened”
into a simpler format such as a single table, often by manual feature engineering, on which standard
tabular models can be used (Kaggle, 2022). This results in a significant loss in predictive signal, and
creates a need for data extraction pipelines that frequently cause bugs and add to software complexity.

To fully exploit the predictive signal encoded in the relations between entities, a new proposal is to
re-cast relational data as an exact graph representation, with a node for each entity in the database,
edges indicating primary-foreign key links, and node features extracted using deep tabular models,
an approach termed Relational Deep Learning (RDL) (Fey et al., 2024). The graph representation
allows Graph Neural Networks (GNNs) (Gilmer et al., 2017; Hamilton et al., 2017) to be used as
predictive models. RDL is the first approach for an end-to-end learnable neural network model with
access to all possible predictive signal in a relational databases, and has the potential to unlock new

∗Equal contribution, order chosen randomly. First authors may swap the ordering for professional purposes.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://relbench.stanford.edu


RelBench
Relational 
Databases

RelBench
Data, Task, 

Graph Loaders

Your 
Relational DL 

Model

RelBench
Evaluator

RelBench
Leaderboard

Figure 1: RELBENCH enables training and evaluation of deep learning models on relational databases.
RELBENCH supports framework agnostic data loading, task specification, standardized data splitting,
standardized evaluation metrics, and a leaderboard for tracking progress. RELBENCH also includes a
pilot implementation of the relational deep learning blueprint of Fey et al. (2024).

levels of predictive power. However, the development of relational deep learning is limited by a
complete lack of infrastructure to support research, including: (i) standardized benchmark databases
and tasks to compare methods, (ii) initial implementation of RDL, including converting data to graph
form and GNN training, and (iii) a pilot study of the effectiveness of relational deep learning.

Here we present RELBENCH, the first benchmark for relational deep learning. RELBENCH is intended
to be the foundational infrastructure for future research into relational deep learning, providing a
comprehensive set of databases across a variety of domains, including e-commerce, Q&A platforms,
medical, and sports databases. RELBENCH databases span orders of magnitude in size, from 74K
entities to 41M entities, and have very different time spans, between 2 weeks and 55 years of training
data. They also vary significantly in their relational structure, with the total number of tables varying
between 3 and 15, and total number of columns varying from 15 to 140. Each database comes with
multiple predictive tasks, 30 in total, including entity classification/regression and recommendation
tasks, each chosen for their real-world significance.

In addition to databases and tasks, we release open-source software designed to make relational deep
learning widely available. This includes (i) the RELBENCH Python package for easy database and task
loading, (ii) the first open-source implementation of relational deep learning, designed to be easily
modified by researchers, and (iii) a public leaderboard for tracking progress. We comprehensively
benchmark our initial RDL implementation on all RELBENCH tasks, comparing to various baselines.

The most important baseline we compare to is a strong “data scientist” approach, for which we
recruited an experienced individual to solve each task by manually engineering features and feeding
them into tabular models. This approach is the current gold-standard for building predictive models
on relational databases. The study, which we open source for reproducibility, finds that RDL models
match or outperform the data scientist’s models in accuracy, whilst reducing human hours worked by
96%, and lines of code by 94% on average. This constitutes the first empirical demonstration of the
central promise of RDL, and points to a long-awaited end-to-end deep learning solution for relational
data.

Our website2 is a comprehensive entry point to RDL, describing RELBENCH databases and tasks,
access to code on GitHub, the full relational deep learning blueprint, and tutorials for adding new
databases and tasks to RELBENCH to allow researchers to experiment with their problems of interest.

2 Overview and Design
RELBENCH provides a collection of diverse real-world relational databases along with a set of
realistic predictive tasks associated with each database. Concretely, we provide:

• Relational databases, consisting of a set of tables connected via primary-foreign key relation-
ships. Each table has columns storing diverse information about each entity. Some tables also
come with time columns, indicating the time at which the entity is created (e.g., transaction date).

• Predictive tasks over a relational database, which are defined by a training table (Fey et al.,
2024) with columns for Entity ID, seed time, and target labels.The seed time indicates at which
time the target is to be predicted, filtering future data.

Next we outline key design principles of RELBENCH with an emphasis on data curation, data splits,
research flexibility, and open-source implementation.

2https://relbench.stanford.edu.

2

https://relbench.stanford.edu


Table 1: Statistics of RELBENCH datasets. Datasets vary significantly in the number of tables,
total number of rows, and number of columns. In this table, we only count rows available for test
inference, i.e., rows upto the test time cutoff.

Name Domain #Tasks Tables Timestamp (year-mon-day)

#Tables #Rows #Cols Start Val Test

rel-amazon E-commerce 7 3 15,000,713 15 2008-01-01 2015-10-01 2016-01-01
rel-avito E-commerce 4 8 20,679,117 42 2015-04-25 2015-05-08 2015-05-14
rel-event Social 3 5 41,328,337 128 1912-01-01 2012-11-21 2012-11-29
rel-f1 Sports 3 9 74,063 67 1950-05-13 2005-01-01 2010-01-01
rel-hm E-commerce 3 3 16,664,809 37 2019-09-07 2020-09-07 2020-09-14
rel-stack Social 5 7 4,247,264 52 2009-02-02 2020-10-01 2021-01-01
rel-trial Medical 5 15 5,434,924 140 2000-01-01 2020-01-01 2021-01-01

Total 30 51 103,466,370 489 / / /

Data Curation. Relational databases are widespread, so there are many candidate predictive tasks.
For the purpose of benchmarking we carefully curate a collection of relational databases and tasks
chosen for their rich relational structure and column features. We also adopt the following principles:

• Diverse domains: To ensure algorithms developed on RELBENCH will be useful across a wide
range of application domains, we select real-world relational databases from diverse domains.

• Diverse task types: Tasks cover a wide range of real-world use-cases, including three represen-
tative task types: entity classification, entity regression, and recommendation.

RELBENCH databases are summarized in Table 1, covering E-commerce, social, medical, and sports
domains. The databases vary significantly in the numbers of rows (i.e., data scale) the number of
columns and tables, as well as the time ranges of the databases. Tasks are summarized in Table 2,
each corresponding to a predictive problem of practical interest such as predicting customer churn,
predicting the number of adverse events in a clinical trial, and recommending posts to users.

Data Splits. Data is split temporally, with models trained on rows up to VAL_TIMESTAMP, vali-
dated on the rows between VAL_TIMESTAMP and TEST_TIMESTAMP, and tested on the rows after
TEST_TIMESTAMP. Our implementation carefully hides data after TEST_TIMESTAMP during in-
ference to systematically avoid test time data leakage (Kapoor and Narayanan, 2023), and uses an
elegant solution proposed by Fey et al. (2024) to avoid time leakage during training and validation
through temporal neighbor sampling. In general, it is the designers responsibility to avoid time
leakage. We recommend using our carefully tested implementation where possible.

Research Flexibility. RELBENCH is designed to allow significant freedom in future research
directions. For example, RELBENCH tasks share the same (VAL_TIMESTAMP and TEST_TIMESTAMP)
splits across tasks within the same relational database. This opens up exciting opportunities for
multi-task learning and pre-training to simultaneously improve different predictive tasks within
the same relational database. We also expose the logic for converting databases into graphs. This
allows future work to consider modified graph constructions, or creative uses of the raw data.

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

studies

nct_id numerical

start_date timestamp

target_duration text

study_type categorical

acronym text

baseline_population text

brief_title text

official_title text

phase categorical

enrollment numerical

enrollment_type categorical

source text

number_of_arms numerical

number_of_groups numerical

has_dmc categorical

is_fda_regulated_drug categorical

is_fda_regulated_device categorical

is_unapproved_device categorical

is_ppsd text

is_us_export categorical

biospec_retention categorical

biospec_description text

source_class categorical

baseline_type_units_analyzed text

fdaaa801_violation categorical

plan_to_share_ipd categorical

detailed_descriptions text

brief_summaries text

outcomes

id numerical

nct_id numerical

outcome_type categorical

title text

description text

time_frame text

population text

units text

units_analyzed text

dispersion_type text

param_type categorical

date timestamp

outcome_analyses

id numerical

nct_id numerical

outcome_id numerical

non_inferiority_type categorical

non_inferiority_description text

param_type text

param_value numerical

dispersion_type categorical

dispersion_value numerical

p_value_modifier text

p_value numerical

ci_n_sides categorical

ci_percent numerical

ci_lower_limit numerical

ci_upper_limit numerical

ci_upper_limit_na_comment text

p_value_description text

method text

method_description text

estimate_description text

groups_description text

other_analysis_description text

date timestamp

drop_withdrawals

id numerical

nct_id numerical

period text

reason text

count numerical

date timestamp

reported_event_totals

id numerical

nct_id numerical

event_type categorical

classification categorical

subjects_affected numerical

subjects_at_risk numerical

date timestamp

designs

id numerical

nct_id numerical

allocation categorical

intervention_model categorical

observational_model categorical

primary_purpose text

time_perspective categorical

masking categorical

masking_description text

intervention_model_description text

subject_masked categorical

caregiver_masked categorical

investigator_masked categorical

outcomes_assessor_masked categorical

date timestamp

eligibilities

id numerical

nct_id numerical

sampling_method categorical

gender categorical

minimum_age text

maximum_age text

healthy_volunteers categorical

population text

criteria text

gender_description text

gender_based categorical

adult categorical

child categorical

older_adult categorical

date timestamp

interventions

intervention_id numerical

mesh_term text

conditions

condition_id numerical

mesh_term text

facilities

facility_id numerical

name text

city text

state text

zip text

country text

sponsors

sponsor_id numerical

name text

agency_class categorical

interventions_studies

id numerical

nct_id numerical

intervention_id numerical

date timestamp

conditions_studies

id numerical

nct_id numerical

condition_id numerical

date timestamp

facilities_studies

id numerical

nct_id numerical

facility_id numerical

date timestamp

sponsors_studies

id numerical

nct_id numerical

sponsor_id numerical

lead_or_collaborator categorical

date timestamp

Figure 2: Example RELBENCH schema for rel-trial
database. RELBENCH databases have complex relational
structure and rich column features.

Open-source RDL Implementation.
As well as datasets and tasks, we pro-
vide the first open-source implemen-
tation of relational deep learning. See
Figure 2 of Fey et al. (2024) for a
high-level overview. A neural net-
work is learned over a heterogeneous
temporal graph that exactly represents
the database in order to make pre-
diction over nodes (for entity clas-
sification and regression) and links
(for recommendation). Our imple-
mentation is built on top of PyTorch
Frame (Hu et al., 2024) for extract-
ing initial node embeddings from raw
table features, and PyTorch Geomet-
ric (Fey and Lenssen, 2019) for GNN
modeling. See Section A for details.

3



Table 2: Full list of predictive tasks for each RELBENCH dataset (introduced in Table 1).

Dataset Task name Task type #Rows of training table #Unique %train/test #Dst
Train Validation Test Entities Entity Overlap Entities

rel-amazon

user-churn entity-cls 4,732,555 409,792 351,885 1,585,983 88.0 —
item-churn entity-cls 2,559,264 177,689 166,842 416,352 93.1 —
user-ltv entity-reg 4,732,555 409,792 351,885 1,585,983 88.0 —
item-ltv entity-reg 2,707,679 166,978 178,334 427,537 93.5 —
user-item-purchase recommendation 5,112,803 351,876 393,985 1,632,909 87.4 12,562,384
user-item-rate recommendation 3,667,157 257,939 292,609 1,481,360 81.0 7,665,611
user-item-review recommendation 2,324,177 116,970 127,021 894,136 74.1 5,406,835

rel-avito

ad-ctr entity-reg 5,100 1,766 1,816 4,997 59.8 —
user-clicks entity-cls 59,454 21,183 47,996 66,449 45.3 —
user-visits entity-cls 86,619 29,979 36,129 63,405 64.6 —
user-ad-visit recommendation 86,616 29,979 36,129 63,402 64.6 3,616,174

rel-event
user-attendance entity-reg 19,261 2,014 2,006 9,694 14.6 —
user-repeat entity-cls 3,842 268 246 1,514 11.5 —
user-ignore entity-cls 19,239 4,185 4,010 9,799 21.1 —

rel-f1
driver-dnf entity-cls 11,411 566 702 821 50.0 —
driver-top3 entity-cls 1,353 588 726 134 50.0 —
driver-position entity-reg 7,453 499 760 826 44.6 —

rel-hm
user-churn entity-cls 3,871,410 76,556 74,575 1,002,984 89.7 —
item-sales entity-reg 5,488,184 105,542 105,542 105,542 100.0 —
user-item-purchase recommendation 3,878,451 74,575 67,144 1,004,046 89.2 13,428,473

rel-stack

user-engagement entity-cls 1,360,850 85,838 88,137 88,137 97.4 —
user-badge entity-cls 3,386,276 247,398 255,360 255,360 96.9 —
post-votes entity-reg 2,453,921 156,216 160,903 160,903 97.1 —
user-post-comment recommendation 21,239 825 758 11,453 59.9 44,940
post-post-related recommendation 5,855 226 258 5,924 8.5 7,456

rel-trial

study-outcome entity-cls 11,994 960 825 13,779 0.0 —
study-adverse entity-reg 43,335 3,596 3,098 50,029 0.0 —
site-success entity-reg 151,407 19,740 22,617 129,542 42.0 —
condition-sponsor-run recommendation 36,934 2,081 2,057 3,956 98.4 533,624
site-sponsor-run recommendation 669,310 37,003 27,428 445,513 48.3 1,565,463

3 RELBENCH Datasets

RELBENCH contains 7 datasets each
with rich relational structure, providing a challenging environment for developing and comparing
relational deep learning methods (see Figure 2 for an example). The datasets are carefully processed
from real-world relational databases and span diverse domains and sizes. Each database is associated
with multiple individual predictive tasks defined in Section 4. Detailed statistics of each dataset can
be found in Table 1. We briefly describe each dataset.

rel-amazon. The Amazon E-commerce database records products, users, and reviews across
Amazon’s E-commerce platform. It contains rich information about products and reviews. Products
include the price and category of each, reviews have the overall rating, whether the user has actually
bought the product, and the text of the review itself. We use the subset of book-related products.

rel-f1. The F1 database tracks all-time Formula 1 racing data and statistics since 1950. It provides
detailed information for various stakeholders including drivers, constructors, engine manufacturers,
and tyre manufacturers. Highlights include data on all circuits (e.g.geographical details), and full
historical data from every season. This includes overall standings, race results, and more specific data
like practice sessions, qualifying positions, sprints, and pit stops.

rel-stack. Stack Exchange is a network of question-and-answer websites on different topics,
where questions, answers, and users are subject to a reputation award process. The reputation system
allows the sites to be self-moderating. The database includes detailed records of activity including
user biographies, posts and comments (with raw text), edit histories, voting, and related posts. In our
benchmark, we use the stats-exchange site.

rel-trial. The clinical trial database is curated from AACT initiative, which consolidates all
protocol and results data from studies registered on ClinicalTrials.gov. It offers extensive information
about clinical trials, including study designs, participant demographics, intervention details, and
outcomes. It is an important resource for health research, policy making, and therapeutic development.

rel-hm. The H&M relational database hosts extensive customer and product data for online
shopping experiences across its extensive network of brands and stores. This database includes

4



detailed customer purchase histories and a rich set of metadata, encompassing everything from basic
demographic information to extensive details about each product available.

rel-event. The Event Recommendation database is obtained from user data on a mobile app
called Hangtime. This app allows users to keep track of their friends’ social plans. The database
contains data on user actions, event metadata, and demographic information, as well as users’ social
relations, which captures how social relations can affect user behavior. Data is fully anonymized,
with no personally identifiable information (such as names or aliases) available.

rel-avito. Avito is a leading online advertisement platform, providing a marketplace for users
to buy and sell a wide variety of products and services, including real estate, vehicles, jobs, and
goods. The Avito Context Ad Clicks dataset on Kaggle is part of a competition aimed at predicting
whether an ad will be clicked based on contextual information. This dataset includes user searches,
ad attributes, and other related data to help build predictive models.

Data Provenance. All data is sourced from publicly available repositories with licenses permitting
usage for research purposes. See Appendix E for details of data sources, licenses, and more.

4 Predictive Tasks on RELBENCH Datasets

Table 3: Entity classification results (AUROC, higher is better) on
RELBENCH. Best values are in bold. See Table 6 in Appendix C
for standard deviations.

Dataset Task Split LightGBM RDL Rel. Gain
of RDL

rel-amazon
user-churn

Val 52.05 70.45 35.35 %
Test 52.22 70.42 34.86 %

item-churn
Val 62.39 82.39 32.06 %
Test 62.54 82.81 32.40 %

rel-avito
user-visits

Val 53.31 69.65 30.66 %
Test 53.05 66.20 24.78 %

user-clicks
Val 55.63 64.73 16.35 %
Test 53.60 65.90 22.96 %

rel-event
user-repeat

Val 67.76 71.25 5.15 %
Test 68.04 76.89 13.02 %

user-ignore
Val 87.96 91.70 4.25 %
Test 79.93 81.62 2.12 %

rel-f1
driver-dnf

Val 68.42 71.36 4.31 %
Test 68.56 72.62 5.93 %

driver-top3
Val 67.76 77.64 14.57 %
Test 73.92 75.54 2.20 %

rel-hm user-churn
Val 56.05 70.42 25.63 %
Test 55.21 69.88 26.59 %

rel-stack
user-engagement

Val 65.12 90.21 38.53 %
Test 63.39 90.59 42.91 %

user-badge
Val 65.39 89.86 37.43 %
Test 63.43 88.86 40.08 %

rel-trial study-outcome
Val 68.30 68.18 −0.19 %
Test 70.09 68.60 −2.13 %

Average Val 64.18 76.49 20.34 %
Test 63.66 75.83 20.48 %

RELBENCH introduces 30 new
predictive tasks defined over
the databases introduced in Sec-
tion 2. A full list of tasks is given
in Table 2, with high-level de-
scriptions given in Appendix B
(and our website) due to space
limitations. Tasks are grouped
into three task types: entity clas-
sification (Section 4.1), entity re-
gression (Section 4.2), and en-
tity link prediction (Section 4.3).
Tasks differ significantly in the
number of train/val/test entities,
number of unique entities (the
same entity may appear multiple
times at different timestamps),
and the proportion of test entities
seen during training. Note this
is not data leakage, since entity
predictions are timestamp depen-
dent, and can change over time.
Tasks with no overlap are pure in-
ductive tasks, whilst other tasks
are (partially) transductive.

4.1 Entity Classification

The first task type is entity-level
classification. The task is to pre-
dict binary labels of a given entity at a given seed time. We use the ROC-AUC (Hanley and McNeil,
1983) metric for evaluation (higher is better). We compare to a LightGBM classifier baseline over the
raw entity table features. Note that here only information from the single entity table is used.

Experimental results. Results are given in Table 3, with RDL outperforming or matching baselines
in all cases. Notably, LightGBM achieves similar performance to RDL on the study-outcome
task from rel-trial. This task has extremely rich features in the target table (28 columns total),
giving the LightGBM many potentially useful features even without feature engineering. It is an
interesting research question how to design RDL models better able to extract these features and
unify them with cross-table information in order to outperform the LightGBM model on this dataset.

5

https://relbench.stanford.edu/


Table 4: Entity regression results (MAE, lower is better) on RELBENCH. Best values are in bold. See
Table 7 in Appendix C for standard deviations.

Dataset Task Split Global
Zero

Global
Mean

Global
Median

Entity
Mean

Entity
Median LightGBM RDL Rel. Gain

of RDL

rel-amazon
user-ltv

Val 14.141 20.740 14.141 17.685 15.978 14.141 12.132 14.21 %
Test 16.783 22.121 16.783 19.055 17.423 16.783 14.313 14.72 %

item-ltv
Val 72.096 78.110 59.471 80.466 68.922 55.741 45.140 19.02 %
Test 77.126 81.852 64.234 78.423 66.436 60.569 50.053 17.36 %

rel-avito ad-ctr
Val 0.048 0.048 0.040 0.044 0.044 0.037 0.037 2.21 %
Test 0.052 0.051 0.043 0.046 0.046 0.041 0.041 −0.18 %

rel-event user-attendance
Val 0.262 0.457 0.262 0.296 0.268 0.262 0.255 2.65 %
Test 0.264 0.470 0.264 0.304 0.269 0.264 0.258 1.97 %

rel-f1 driver-position
Val 11.083 4.334 4.136 7.181 7.114 3.450 3.193 7.44 %
Test 11.926 4.513 4.399 8.501 8.519 4.170 4.022 3.56 %

rel-hm item-sales
Val 0.086 0.142 0.086 0.117 0.086 0.086 0.065 24.50 %
Test 0.076 0.134 0.076 0.111 0.078 0.076 0.056 26.90 %

rel-stack post-votes
Val 0.062 0.146 0.062 0.102 0.064 0.062 0.059 4.19 %
Test 0.068 0.149 0.068 0.106 0.069 0.068 0.065 4.11 %

rel-trial
study-adverse

Val 57.083 75.008 56.786 57.083 57.083 45.774 46.290 −1.13 %
Test 57.930 73.781 57.533 57.930 57.930 44.011 44.473 −1.05 %

site-success
Val 0.475 0.462 0.475 0.447 0.450 0.417 0.401 3.87 %
Test 0.462 0.468 0.462 0.448 0.441 0.425 0.400 5.86 %

Average Val 17.260 19.939 15.051 18.158 16.668 13.330 11.952 8.55 %
Test 18.299 20.393 15.985 18.325 16.801 14.045 12.631 8.14 %

4.2 Entity Regression

Entity-level regression tasks involve predicting numerical labels of an entity at a given seed time. We
use Mean Absolute Error (MAE) as our metric (lower is better). We consider the following baselines:

• Entity mean/median calculates the mean/median label value for each entity in training data and
predicts the mean/median value for the entity.

• Global mean/median calculates the global mean/median label value over the training data and
predicts the same mean/median value across all entities.

• Global zero predicts zero for all entities.
• LightGBM learns a LightGBM (Ke et al., 2017) regressor over the raw entity features to predict

the numerical targets. Note that only information from the single entity table is used.

Experimental results. Results in Table 4 show our RDL implementation outperforms or matches
baselines in all cases. A number of tasks, such as driver-position and study-adverse,
have matching performance up to statistical significance, suggesting some room for improvement.
We analyze this further in Appendix D, identifying one potential cause, suggesting an opportunity for
improved performance for regression tasks.

4.3 Recommendation

Finally, we also introduce recommendation tasks on pairs of entities. The task is to predict a list of
top K target entities given a source entity at a given seed time. The metric we use is Mean Average
Precision (MAP) @K, where K is set per task (higher is better). We consider the following baselines:

• Global popularity computes the top K most popular target entities (by count) across the entire
training table and predict the K globally popular target entities across all source entities.

• Past visit computes the top K most visited target entities for each source entity within the
training table and predict those past-visited target entities for each entity.

• LightGBM learns a LightGBM (Ke et al., 2017) classifier over the raw features of the source
and target entities (concatenated) to predict the link. Additionally, global popularity and past
visit ranks are also provided as inputs.

For recommendation, it is also important to ensure a certain density of links in the training data in
order for there to be sufficient predictive signal. In Appendix B we report statistics on the average
number of destination entities each source entity links to. For most tasks the density is ≥ 1, with the
exception of rel-stack which is more sparse, but is included to test in extreme sparse settings.

6



Table 5: Recommendation results (MAP, higher is better) on RELBENCH. Best values are in bold.
See Table 8 in Appendix C for standard deviations.

Dataset Task Split Global
Popularity

Past
Visit LightGBM RDL

(GraphSAGE)
RDL

(ID-GNN)
Rel. Gain
of RDL

rel-amazon

user-item-purchase
Val 0.31 0.07 0.18 1.53 0.13 397.55 %
Test 0.24 0.06 0.16 0.74 0.10 204.74 %

user-item-rate
Val 0.16 0.09 0.22 1.42 0.15 550.12 %
Test 0.15 0.07 0.17 0.87 0.12 395.92 %

user-item-review
Val 0.18 0.05 0.14 1.03 0.11 476.06 %
Test 0.11 0.04 0.09 0.47 0.09 313.07 %

rel-avito user-ad-visit
Val 0.01 3.66 0.17 0.09 5.40 47.37 %
Test 0.00 1.95 0.06 0.02 3.66 87.09 %

rel-hm user-item-purchase
Val 0.36 1.07 0.44 0.92 2.64 145.60 %
Test 0.30 0.89 0.38 0.80 2.81 214.49 %

rel-stack
user-post-comment

Val 0.03 2.05 0.04 0.43 15.17 640.05 %
Test 0.02 1.42 0.04 0.11 12.72 795.15 %

post-post-related
Val 0.47 0.00 1.62 0.00 7.76 378.26 %
Test 1.46 1.74 2.00 0.07 10.83 440.27 %

rel-trial
condition-sponsor-run

Val 2.63 8.58 4.88 3.12 11.33 32.05 %
Test 2.52 8.42 4.82 2.89 11.36 34.89 %

site-sponsor-run
Val 4.91 15.90 10.92 14.09 17.43 9.65 %
Test 3.75 17.31 8.40 10.70 19.00 9.74 %

Average Val 1.01 3.50 2.07 2.51 6.68 297.41 %
Test 0.95 3.55 1.79 1.85 6.74 277.26 %

Experimental results. Results are given in Table 5. We find that either the RDL implementation
using GraphSAGE (Hamilton et al., 2017), or ID-GNN (You et al., 2021) as the GNN component
performs best, often by a very significant margin. ID-GNN excels in cases were predictions are
entity-specific (i.e., Past Visit baseline outperforms Global Popularity), whilst the plain GNN excels
in the reverse case. This reflects the inductive biases of each model, with GraphSAGE being able to
learn structural features, and ID-GNN able to take into account the specific node ID.

5 Expert Data Scientist User Study

To test RDL in the most challenging circumstances possible, we undertake a human trial wherein a
data scientist solves each task by manually designing features and feeds them into tabular methods
such at LightGBM or XGBoost (Chen and Guestrin, 2016; Ke et al., 2017). This represents the prior
gold-standard for building predictive models on relational databases (Heaton, 2016), and the key
point of comparison for RDL.

We structure our user study along the five main data science workflow steps:

1. Exploratory data analysis (EDA): Explore the dataset and task to understand its characteristics,
including what column features there are, and if there is any missing data.

2. Feature ideation: Based on EDA and intuition from prior experiences, propose a set of entity-
level features that the data scientist believes may contain predictive signal for the task.

3. Feature enginnering: Using query languages such as SQL to compute the proposed features,
and add them as extra columns to the target table of interest.

4. Tabular ML: Run tabular methods such as LightGBM or XGBoost on the table with extra
features to produce a predictive model, and record the test performance.

5. Post-hoc analysis of feature importance (Optional): Common tools include SHAP and LIME,
which aim to explain the contribution of each input feature to the final performance.

Consider for example the rel-hm dataset (schema in Appendix E) and the task of predicting
customer churn. Here the CUSTOMER table only contains simple biographical information such as
username and joining date. To capture more predictive information, additional features, such as time
since last purchase, can be computed using the other tables, and added to the CUSTOMER table. We
give a detailed walk-through of the data scientist’s work process for solving this specific task in
Appendix D. We strongly encourage the interested reader to review this, as it highlights the significant
amount of task-specific effort that this workflow necessitates.

7



50 60 70 80 90
AUROC

user-engagement
user-badge

user-churn (amazon)
item-churn

driver-dnf
driver-top3

user-churn (hm)
study-outcome

0.6 0.8 1.0
Normalized MAE

user-votes

user-ltv

item-ltv

item-sales

driver-position

study-adverse

site-success

RDL Data Scientist

Figure 3: RDL vs. Data Scientist. Relational Deep Learning matches or outperforms the data
scientist in 11 of 15 tasks. Left shows entity classification AUROC, right shows entity regression,
reporting MAE normalized so that the RDL MAE is always 1.

Limitations of Manual Feature Engineering. This workflow suffers from several fundamental
limitations. Most obviously, since features are hand designed they only capture part of the predictive
signal in the database, useful signal is easily missed. Additionally, feature complexity is limited
by human reasoning abilities, meaning that higher-order interactions between entities are often
overlooked. Beyond predictive signal, the other crucial limitation of feature engineering is its
extremely manual nature—every time a new model is built a data scientist has to repeat this process,
requiring many hours of human labor, and significant quantities of new SQL code to design features
(Zheng and Casari, 2018). Our RDL models avoid these limitations (see Section 5).

Data Scientist. To conduct a thorough comparison to this process, we recruit a high-end data scientist
with Stanford CS MSc degree, 4.0 GPA, and 5 years of experience of building machine learning
models in the financial industry. This experience includes a significant amount of time building
machine learning models in exactly above five steps, as well as broader data science expertise.

User Study Protocol.
Because of the open-ended nature of feature engineering and model development, we follow a specific
protocol for the user study in order to standardize the amount of effort dedicated to each dataset and
task. Tracking the 5 steps outlined above, we impose the following rules:

1. EDA: The time allotted for data exploration is capped at 4 hours. This threshold was chosen
to give the data scientist enough time to familiarize themselves with the schema, visualize
key relationships and distributions, and take stock of any outliers in the dataset, while
providing a reasonable limit to the effort applied.

2. Feature ideation: Feature ideation is performed manually with pen and paper, and is limited
to 1 hour. In practice, the data scientist found that 1 hour was plenty of time to enumerate
all promising features at that time, especially since many ideas naturally arise during the
EDA process already.

3. Feature engineering: The features described during the ideation phase are then computed
using SQL queries. The time taken to write SQL code to generate the features is uncon-
strained in order to eliminate code writing speed as a factor in the study. We do, however,
record code writing time for our timing benchmarking. This stage presented the most
variability in terms of time commitment, partly because it is unconstrained, but mostly
because the implementation complexity of the features itself is highly variable.

4. Tabular ML: For tabular ML training, we provide a standardized LightGBM training script
including comprehensive hyperparameter tuning. The data scientist needs only to feed the
table full of engineered features into this training script, which returns test performance
results. However, there is some non-trivial amount of work required to transform the output
of the SQL queries from the previous section into the Python objects (arrays) required for
training LightGBM. Again, the time taken for this additional pre-preocessing is recorded.

5. Post-hoc analysis of feature importance: Finally, after successfully training a model, an
evaluation of model predictions and feature importance is carried out. This mostly serves as
a general sanity check and an interesting corollary of the data scientist’s work that provides
task-specific insights (see Appendix D). In practice, this took no more than a few minutes
per task and this time was not counted toward the total time commitment.

8



0 5 10 15
Hours Human Labor

user-engagement
user-badge

user-churn (amazon)
item-churn

driver-dnf
driver-top3

user-churn (hm)
study-outcome

0 5 10 15
Hours Human Labor

user-votes

user-ltv

item-ltv

item-sales

driver-position

study-adverse

site-success

RDL Data Scientist

Figure 4: RDL vs. Data Scientist. Relational Deep Learning reduces the hours of human work
required to solve a new task by 96% on average (from 12.3 to 0.5 hours). Left shows node-level
classification, right shows node-level regression.

Reproducibility. All of the data scientist’s workings are released3 to ensure reproducibility and
demonstrate the significant lengths gone through to build as accurate models as possible. In Appendix
D we walk through a complete example for a single dataset and task, showing the data-centric
insights it yields. An important by-product is a close analysis of which features contribute to model
performance, which we believe will help inspire future well-motivated RDL research directions.

Results. As well as (i) raw predictive power, we compare the data scientist to our RDL models in
terms of (ii) hours of human work, and (iii) number of new lines of code required to solve each task.
We measure the marginal effort, meaning that we do not include code infrastructure that is reused
across tasks, including for example data loading logic and training scripts for RDL or LightGBM
models. Accordingly, we only compare model development, not data preparation/loading. Indeed
the data loading pipeline is shared between RDL and the data scientist, so RDL does not introduce
any significant overheads for data loading/preparation over a data scientist’s approach. We believe
that accelerating model development (apart from data loading) is valuable in many use cases where
engineers need to solve many different predictive tasks over a single database.

Summary. Figures 3, 4, and 5 show that RDL learns highly predictive models, outperforming
the data scientist in 11 of 15 tasks, whilst reducing hours worked by 96% on average, and lines of
code by 94% on average. On average, it took the data scientist 12.3 hours to solve each task using
traditional feature engineering. By contrast it takes roughly 30 minutes to solve a task with RDL. This
observation is the central value proposition of relational deep learning, pointing the way to unlocking
new levels of predictive power, and potentially a new economic model for solving predictive tasks on
relational databases. Replacing hand-crafted solutions with end-to-end learnable models has been
a key takeaway from the last 15 years of AI research. It is therefore remarkable how little impact
deep learning has had on ML on relational databases, one of the most widespread applied ML use
cases. To the best of our knowledge, is RDL the first deep learning approach for relational databases
that has demonstrated efficacy compared with established data science workflows. We highlight that
all RELBENCH tasks were solved with a single set of default hyperparameters (with 2 exceptions
requiring small modifications to learning rate, number of epochs, and GNN aggregation function).
This demonstrates the robustness of RDL, and that the performance of RDL in Figure 3 is not due to
extensive hyperparamter search. Indeed, the single set of RDL hyperparameters is compared to a
carefully tuned LightGBM, which was allowed to search over 10 sets of hyperparameters.

Predictive Power. Results shown in Figures 3. Whilst outperforming the data scientist in 11 of 15
tasks, we note that RDL best outperforms the data scientist on classification tasks, struggling more
on regression. Indeed it was necessary for us to apply a “boosting” to the RDL model to improve
performance (see Appendix D). Even with boosting, the data scientist model outperforms RDL in
several cases. One cause we identify is that the MLP output head of the GNN is poorly suited to
regression tasks (see Appendix D). This suggests an opportunity for improved output heads for
regression tasks. We stress that our RDL implementation is an initial demonstration. We believe there
is significant scope for new research leading to large improvements in performance. In particular,
ideas from graph ML, deep tabular ML, and time-series modeling are well suited to advance RDL.

Human Work. Results shown in Figure 4. In our user study RDL required 96% less hours work
to solve a new task, compared to the data scientist work flow. The RDL solutions always took less

3See https://github.com/snap-stanford/relbench-user-study.

9

https://github.com/snap-stanford/relbench-user-study


0 200 400 600 800 1000
Lines of Code

user-engagement
user-badge

user-churn (amazon)
item-churn

driver-dnf
driver-top3

user-churn (hm)
study-outcome

0 200 400 600 800
Lines of Code

user-votes

user-ltv

item-ltv

item-sales

driver-position

study-adverse

site-success

RDL Data Scientist

Figure 5: RDL vs. Data Scientist. Relational Deep Learning reduces the new lines of code needed
to solve a new task by 94%. Left shows entity classification, right shows entity regression.

than an hour to write, whilst the data scientist took 12 hours on average, with a standard deviation of
1.6 hours. We emphasize that this measures marginal effort, i.e., it does not include reusable code
that can be amortized over many tasks. RDL compares favorably to data scientist because a large
majority of RDL code is reusable for new tasks (a GNN architecture and training loop needs only
to be defined once) whereas a large portion of the data scientist’s code is task specific and must be
re-done afresh for every new task that needs to be solved.

Lines of Code. Results shown in Figure 5. For the RDL model, the only new addition needed to
solve a new task is the code describing how to compute the training supervision for the RDL, which is
stored in the training table. This requires a similar number of lines of code for each task, with 56 lines
of code on average, with standard deviation 8.8, with the data scientist requiring with 878± 77. The
minimum lines of code required by RDL is 44, compared to 734 for the data scientist, and maximum
is 84 compared to 1039 for the data scientist. Examples of the RDL code for rel-amazon tasks
can be viewed here. We record the number of lines of data scientist code for EDA and SQL files, and
the manipulations needed to format data to be fed into the pre-prepared LightGBM script.

6 Related Work

Graph Machine Learning Benchmarks. Challenging and realistic benchmarks drive innovation
in methodology. A classic example is the ImageNet (Deng et al., 2009), introduced prior to the
rise of deep learning, which was a key catalyst for the seminal work of Krizhevsky et al. (2017).
In graph machine learning, benchmarks such as the Open Graph Benchmark (Hu et al., 2020),
TUDataset (Morris et al., 2020), and more recently, the Temporal Graph Benchmark (Huang et al.,
2024) have sustained the growth and maturation of graph machine learning as a field. RELBENCH
differs since instead of collecting together tasks are already recognized as graph machine learning
tasks, RELBENCH presents existing tasks typically solved using other methods, as graph ML tasks.
As a consequence, RELBENCH significantly expands the space of problems solvable using graph ML.
Whilst graph ML is a key part of this benchmark, relational deep learning is a new problem, requiring
only need good GNNs, but also innovation on tabular learning to fuse multimodal input data with the
GNN, temporal learning, and even graph construction. We believe that advancing the state-of-the-art
on RELBENCH will involve progress in all of these directions.

Relational Deep Learning. Several works have proposed to use graph neural networks for learning
on relational data (Schlichtkrull et al., 2018; Cvitkovic, 2019; Šír, 2021; Zahradník et al., 2023).
They explored different graph neural network architectures on (heterogeneous) graphs, leveraging
relational structure. Recently, Fey et al. (2024) proposed a general end-to-end learnable framework
for solving predictive tasks on relational databases, treating temporality as a core concept.

7 Conclusion

We introduce RELBENCH, a benchmark for relational deep learning (Fey et al., 2024). RELBENCH
provides diverse and realistic relational databases and define practical predictive tasks that cover
both entity-level prediction and entity link prediction. In addition, we provide the first open-source
implementation of relational deep learning and validated its effectiveness over the common practice
of manual feature engineering by an experienced data scientist. We hope RELBENCH will catalyze
further research on relational deep learning to achieve highly-accurate prediction over complex
multi-tabular datasets without manual feature engineering.

10

https://github.com/snap-stanford/relbench/blob/main/relbench/tasks/amazon.py#L19


Acknowledgments and Disclosure of Funding

We thank Shirley Wu, Kaidi Cao, Rok Sosic, Yu He, Qian Huang, Bruno Ribeiro and Michi Yasunaga
for discussions and for providing feedback on our manuscript. We also gratefully acknowledge the
support of NSF under Nos. OAC-1835598 (CINES), CCF-1918940 (Expeditions), DMS-2327709
(IHBEM); Stanford Data Applications Initiative, Wu Tsai Neurosciences Institute, Stanford Institute
for Human-Centered AI, Chan Zuckerberg Initiative, Amazon, Genentech, GSK, Hitachi, SAP, and
UCB. The content is solely the responsibility of the authors and does not necessarily represent the
official views of the funding entities.

References
Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In ACM SIGKDD

Conference on Knowledge Discovery and Data Mining (KDD), pages 785–794, 2016.

Milan Cvitkovic. Supervised learning on relational databases with graph neural networks. ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In North American Chapter of the Association
for Computational Linguistics (NAACL), 2018.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. ICLR
2019 (RLGM Workshop), 2019.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Relational deep learning: Graph representation learning on
relational databases. ICML Position Paper, 2024.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning (ICML),
page 1263–1272, 2017.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, pages 18932–18943, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

James A Hanley and Barbara J McNeil. A method of comparing the areas under receiver operating
characteristic curves derived from the same cases. Radiology, 148(3):839–843, 1983.

Jeff Heaton. An empirical analysis of feature engineering for predictive modeling. In SoutheastCon
2016, pages 1–6. IEEE, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

Weihua Hu, Yiwen Yuan, Zecheng Zhang, Akihiro Nitta, Kaidi Cao, Vid Kocijan, Jure Leskovec,
and Matthias Fey. Pytorch frame: A modular framework for multi-modal tabular learning. arXiv
preprint arXiv:2404.00776, 2024.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph
benchmark for machine learning on temporal graphs. Advances in Neural Information Processing
Systems, 36, 2024.

11



Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Kaggle. Kaggle Data Science & Machine Learning Survey, 2022. Avail-
able: https://www.kaggle.com/code/paultimothymooney/
kaggle-survey-2022-all-results/notebook.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in machine-learning-
based science. Patterns, 4(9), 2023.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems (NeurIPS), volume 30, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pages 188–197, 2019.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

PubMed. National Center for Biotechnology Information, U.S. National Library of Medicine, 1996.
Available: https://www.ncbi.nlm.nih.gov/pubmed/.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In Aldo Gangemi, Roberto
Navigli, Maria-Esther Vidal, Pascal Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and
Mehwish Alam, editors, The Semantic Web, pages 593–607, Cham, 2018. Springer International
Publishing.

Gustav Šír. Deep Learning with Relational Logic Representations. Czech Technical University, 2021.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pages 165–174, 2019.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, pages 10737–10745,
2021.

Lukáš Zahradník, Jan Neumann, and Gustav Šír. A deep learning blueprint for relational databases.
In NeurIPS 2023 Second Table Representation Learning Workshop, 2023.

Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles and tech-
niques for data scientists. " O’Reilly Media, Inc.", 2018.

12

https://www.kaggle.com/code/paultimothymooney/kaggle-survey-2022-all-results/notebook
https://www.kaggle.com/code/paultimothymooney/kaggle-survey-2022-all-results/notebook
https://www.ncbi.nlm.nih.gov/pubmed/


A Relational Deep Learning Implementation

As part of RELBENCH, we provide an initial implementation of relational deep learning, based
on the blueprint of Fey et al. (2024).4 Our implementation consists four major components: (1)
heterogeneous temporal graph, (2) deep learning model, (3) temporal-aware training of the model,
and (4) task-specific loss, which we briefly discuss now.

Heterogeneous temporal graph. Given a set of tables with primary-foreigh key relations between
them we follow Fey et al. (2024) to automatically construct a heterogeneous temporal graph, where
each table represents a node type, each row in a table represents a node, and a primary-foreign-key
relation between two table rows (nodes) represent an edge between the respective nodes. Some node
types are associated with time attributes, representing the timestamp at which a node appears. The
heterogeneous temporal graph is represented as a PyTorch Geometric graph object. Each node in the
heterogeneous graph comes with a rich feature derived from diverse columns of the corresponding
table. We use Tensor Frame provided by PyTorch Frame (Hu et al., 2024) to represent rich node
features with diverse column types, e.g., numerical, categorical, timestamp, and text.

Deep learning model. First, we use deep tabular models that encode raw row-level data into initial
node embeddings using PyTorch Frame (Hu et al., 2024) (specifically, we use the ResNet tabular
model (Gorishniy et al., 2021)). These initial node embeddings are then fed into a GNN to iteratively
update the node embeddings based on their neighbors. For the GNN we use the heterogeneous
version of the GraphSAGE model (Hamilton et al., 2017; Fey and Lenssen, 2019) with sum-based
neighbor aggregation. Output node embeddings are fed into task-specific prediction heads and are
learned end-to-end.

Temporal-aware subgraph sampling. We perform temporal neighbor sampling, which samples a
subgraph around each entity node at a given seed time. Seed time is the time in history at which the
prediction is made. When collecting the information to make a prediction at a given seed time, it is
important for the model to only use information from before the seed time and thus not learn from
the future (post the seed time). Crucially, when sampling mini-batch subgraphs we make sure that all
nodes within the sampled subgraph appear before the seed time (Hamilton et al., 2017; Fey et al.,
2024), which systematically avoids time leakage during training. The sampled subgraph is fed as
input to the GNN, and trained to predict the target label.

Task-specific prediction head and loss. For entity-level classification, we simply apply an MLP on
an entity embedding computed by our GNN to make prediction. For the loss function, we use the
binary cross entropy loss for entity classification and L1 loss for entity regression.

Recommendation requires computing scores between pairs of source nodes and target nodes. For
this task type, we consider two representative predictive architectures: two-tower GNN (Wang et al.,
2019) and identity-aware GNN (ID-GNN) (You et al., 2021). First, the two-tower GNN computes
the pairwise scores via inner product between source and target node embeddings, and the standard
Bayesian Personalized Ranking loss (Rendle et al., 2012) is used to train the two-tower model (Wang
et al., 2019). Second, the ID-GNN computes the pairwise scores by applying an MLP prediction
head on target entity embeddings computed by GNN for each source entity. The ID-GNN is trained
by the standard binary cross entropy loss.

B Additional Task Information

For reference, the following list documents all the predictive tasks in RELBENCH.

1. rel-amazon
Node-level tasks:

(a) user-churn: For each user, predict 1 if the customer does not review any product in
the next 3 months, and 0 otherwise.

(b) user-ltv: For each user, predict the $ value of the total number of products they
buy and review in the next 3 months.

(c) item-churn: For each product, predict 1 if the product does not receive any reviews
in the next 3 months.

4Code available at: https://github.com/snap-stanford/relbench.

13

https://github.com/snap-stanford/relbench


(d) item-ltv: For each product, predict the $ value of the total number purchases and
reviews it recieves in the next 3 months.

Link-level tasks:
(a) user-item-purchase: Predict the list of distinct items each customer will pur-

chase in the next 3 months.
(b) user-item-rate: Predict the list of distinct items each customer will purchase and

give a 5 star review in the next 3 months.
(c) user-item-review: Predict the list of distinct items each customer will purchase

and give a detailed review in the next 3 months.
2. rel-avito

Node-level tasks:
(a) user-visits: Predict whether each customer will visit more than one Ad in the

next 4 days.
(b) user-clicks: Predict whether each customer will click on more than one Ads in

the next 4 day.
(c) ad-ctr: Assuming the Ad will be clicked in the next 4 days, predict the Click-

Through-Rate (CTR) for each Ad.
Link-level tasks:
(a) user-ad-visit: Predict the list of ads a user will visit in the next 4 days.

3. rel-f1
Node-level tasks:
(a) driver-position: Predict the average finishing position of each driver all races

in the next 2 months.
(b) driver-dnf: For each driver predict the if they will DNF (did not finish) a race in

the next 1 month.
(c) driver-top3: For each driver predict if they will qualify in the top-3 for a race in

the next 1 month.
4. rel-hm

Node-level tasks:
(a) user-churn: Predict the churn for a customer (no transactions) in the next week.
(b) item-sales: Predict the total sales for an article (the sum of prices of the associated

transactions) in the next week.
Link-level tasks:
(a) user-item-purchase: Predict the list of articles each customer will purchase in

the next seven days.
5. rel-stack

Node-level tasks:
(a) user-engagement: For each user predict if a user will make any votes, posts, or

comments in the next 3 months.
(b) post-votes: For each user post predict how many votes it will receive in the next 3

months
(c) user-badge: For each user predict if each user will receive in a new badge the next

3 months.
Link-level tasks:
(a) user-post-comment: Predict a list of existing posts that a user will comment in

the next two years.
(b) post-post-related: Predict a list of existing posts that users will link a given

post to in the next two years.
6. rel-trial

Node-level tasks:
(a) study-outcome: Predict if the trials in the next 1 year will achieve its primary

outcome.

14



Table 6: Entity classification results (AUROC mean±std over 5 runs, higher is better) on RELBENCH.
Best values are in bold along with those not statistically different from it.

Dataset Task Split LightGBM RDL

rel-amazon
user-churn

Val 52.05±0.06 70.45±0.06
Test 52.22±0.06 70.42±0.05

item-churn
Val 62.39±0.20 82.39±0.02
Test 62.54±0.18 82.81±0.03

rel-avito
user-visits

Val 53.31±0.09 69.65±0.04
Test 53.05±0.32 66.20±0.10

user-clicks
Val 55.63±0.31 64.73±0.32
Test 53.60±0.59 65.90±1.95

rel-event
user-repeat

Val 67.76±0.97 71.25±2.53
Test 68.04±1.82 76.89±1.59

user-ignore
Val 87.96±0.28 91.70±0.33
Test 79.93±0.49 81.62±1.11

rel-f1
driver-dnf

Val 68.42±1.14 71.36±1.54
Test 68.56±3.89 72.62±0.27

driver-top3
Val 67.76±2.75 77.64±3.16
Test 73.92±5.75 75.54±0.63

rel-hm user-churn
Val 56.05±0.05 70.42±0.09
Test 55.21±0.12 69.88±0.21

rel-stack
user-engagement

Val 65.12±0.25 90.21±0.07
Test 63.39±0.26 90.59±0.09

user-badge
Val 65.39±0.05 89.86±0.08
Test 63.43±0.12 88.86±0.08

rel-trial study-outcome
Val 68.30±0.53 68.18±0.49
Test 70.09±1.41 68.60±1.01

(b) study-adverse: Predict the number of affected patients with severe advsere
events/death for the trial in the next 1 year.

(c) site-success: Predict the success rate of a trial site in the next 1 year.

Link-level tasks:

(a) condition-sponsor-run: Predict whether this condition will have which spon-
sors.

(b) site-sponsor-run: Predict whether this sponsor will have a trial in a facility.

7. rel-event
Node-level tasks:

(a) user-attendance: Predict how many events each user will respond yes or maybe
in the next seven days.

(b) user-repeat: Predict whether a user will attend an event(by responding yes or
maybe) in the next 7 days if they have already attended an event in the last 14 days.

(c) user-ignore: Predict whether a user will ignore more than 2 event invitations in
the next 7 days.

C Experiment Details and Additional Results

C.1 Detailed Results

Tables 6, 7 and 8 show mean and standard deviations over 5 runs for the entity classification, entity
regression and link prediction results respectively.

C.2 Hyperparameter Choices

All our RDL experiments were run based on a single set of default task-specific hyperparameters,
i.e. we did not perform exhaustive hyperparamter tuning, cf. Table 9. This verifies the stability
and robustness of RDL solutions, even against expert data scientist baselines. Specifically, all task
types use a shared GNN configuration (a two-layer GNN with a hidden feature size of 128 and
“sum” aggregation) and sample subgraphs identically (disjoint subgraphs of 512 seed entities with a

15



Table 7: Entity regression results (MAE mean±std over 5 runs, lower is better) on RELBENCH. Best
values are in bold along with those not statistically different from it.

Dataset Task Split Global
Zero

Global
Mean

Global
Median

Entity
Mean

Entity
Median LightGBM RDL

rel-amazon
user-ltv

Val 14.141 20.740 14.141 17.685 15.978 14.141±0.000 12.132±0.007
Test 16.783 22.121 16.783 19.055 17.423 16.783±0.000 14.313±0.013

item-ltv
Val 72.096 78.110 59.471 80.466 68.922 55.741±0.049 45.140±0.068
Test 77.126 81.852 64.234 78.423 66.436 60.569±0.047 50.053±0.163

rel-avito ad-ctr
Val 0.048 0.048 0.040 0.044 0.044 0.037±0.000 0.037±0.000
Test 0.052 0.051 0.043 0.046 0.046 0.041±0.000 0.041±0.001

rel-event user-attendance
Val 0.262 0.457 0.262 0.296 0.268 0.262±0.000 0.255±0.007
Test 0.264 0.470 0.264 0.304 0.269 0.264±0.000 0.258±0.006

rel-f1 driver-position
Val 11.083 4.334 4.136 7.181 7.114 3.450±0.030 3.193±0.024
Test 11.926 4.513 4.399 8.501 8.519 4.170±0.137 4.022±0.119

rel-hm item-sales
Val 0.086 0.142 0.086 0.117 0.086 0.086±0.000 0.065±0.000
Test 0.076 0.134 0.076 0.111 0.078 0.076±0.000 0.056±0.000

rel-stack post-votes
Val 0.062 0.146 0.062 0.102 0.064 0.062±0.000 0.059±0.000
Test 0.068 0.149 0.068 0.106 0.069 0.068±0.000 0.065±0.000

rel-trial
study-adverse

Val 57.083 75.008 56.786 57.083 57.083 45.774±1.191 46.290±0.304
Test 57.930 73.781 57.533 57.930 57.930 44.011±0.998 44.473±0.209

site-success
Val 0.475 0.462 0.475 0.447 0.450 0.417±0.003 0.401±0.009
Test 0.462 0.468 0.462 0.448 0.441 0.425±0.003 0.400±0.020

Table 8: Link prediction results (MAP mean±std over 5 runs, higher is better) on RELBENCH. Best
values are in bold along with those not statistically different from it.

Dataset Task Split Global
Popularity

Past
Visit LightGBM RDL

(GraphSAGE)
RDL

(ID-GNN)

rel-amazon

user-item-purchase
Val 0.31 0.07 0.18±0.07 1.53±0.05 0.13±0.00
Test 0.24 0.06 0.16±0.05 0.74±0.08 0.10±0.00

user-item-rate
Val 0.16 0.09 0.22±0.02 1.42±0.06 0.15±0.00
Test 0.15 0.07 0.17±0.01 0.87±0.05 0.12±0.00

user-item-review
Val 0.18 0.05 0.14±0.03 1.03±0.03 0.11±0.00
Test 0.11 0.04 0.09±0.01 0.47±0.05 0.09±0.00

rel-avito user-ad-visit
Val 0.01 3.66 0.17±0.01 0.09±0.01 5.40±0.02
Test 0.00 1.95 0.06±0.01 0.02±0.00 3.66±0.02

rel-hm user-item-purchase
Val 0.36 1.07 0.44±0.03 0.92±0.04 2.64±0.00
Test 0.30 0.89 0.38±0.02 0.80±0.03 2.81±0.01

rel-stack
user-post-comment

Val 0.03 2.05 0.04±0.02 0.43±0.08 15.17±0.15
Test 0.02 1.42 0.04±0.03 0.11±0.05 12.72±0.22

post-post-related
Val 0.47 0.00 1.62±0.36 0.00±0.01 7.76±0.20
Test 1.46 1.74 2.00±0.43 0.07±0.08 10.83±0.22

rel-trial
condition-sponsor-run

Val 2.63 8.58 4.88±0.13 3.12±0.24 11.33±0.04
Test 2.52 8.42 4.82±0.20 2.89±0.39 11.36±0.08

site-sponsor-run
Val 4.91 15.90 10.92±0.67 14.09±0.77 17.43±0.07
Test 3.75 17.31 8.40±0.70 10.70±1.10 19.00±0.12

maximum of 128 neighbors for each foreign key). Across task types, we only vary the learning rate
and the maximum number of epochs to train for.

Notably, we found that our default set of hyperparameters heavily underperformed on the node-level
tasks on the rel-trial dataset. On this dataset, we used a learning rate of 0.0001, a “mean”
neighborhood aggregation scheme, 64 sampled neighbors, and trained for a maximum of 20 epochs.
For the ID-GNN link-prediction experiments on rel-trial, it was necessary to use a four-layer
deep GNN in order to ensure that destination nodes are part of source node-centric subgraphs.

C.3 Ablations

We also report additional results ablating parts of our relational deep learning implementation. All
experiments are designed to be data-centric, aiming to validate basic properties of the chosen datasets
and tasks. Examples include confirming that the graph structure, node features, and temporal-
awareness all play important roles in achieving optimal performance, which also underscores the
unique challenges our RELBENCH dataset and tasks present.

16



Table 9: Task-specific RDL default hyperparameters.

Hyperparameter Task type
Node classification Node regression Link prediction

Learning rate 0.005 0.005 0.001
Maximum epochs 10 10 20
Batch size 512 512 512
Hidden feature size 128 128 128
Aggregation summation summation summation
Number of layers 2 2 2
Number of neighbors 128 128 128
Temporal sampling strategy uniform uniform uniform

Figure 6: Investigation on the role of leveraging primary-foreign key (pkey-fkey) edges for the GNN.
At the top row are three node classification tasks with metric AUROC (higher is better) while at the
bottom are three node regression tasks with metric MAE (lower is better), evaluated on the test set.
We find that our proposal of using pkey-fkey edges for message passing is vital for GNN to achieve
desirable performance on RELBENCH. Error bars correspond to 95% confidence interval.

Graph structure. We first investigate the role of the graph structure we adopt for GNNs on REL-
BENCH. Specifically, we compare the following two approaches of constructing the edges: 1.
Primary-foreign key (pkey-fkey), where the entities from two tables that share the same primary key
and foreign key are connected through an edge; 2. Randomly permuted, where we apply a random
permutation on the destination nodes in the primary-foreign key graph for each type of the edge while
keeping the source nodes untouched. From Fig. 6 we observe that with random permutation on the
primary-foreign key edges the performance of the GNN becomes much worse, verifying the critical
role of carefully constructing the graph structure through, e.g., primary-foreign key as proposed
in Fey et al. (2024).

Node features and text embeddings. Here we study the effect of node features used in RELBENCH.
In the experiments depicted in Fig. 7, we compare GNN (w/ node feature) with its variant where
the node features are all masked by zeros (i.e., w/o node feature). We find that utilizing rich node
features incorporated in our RELBENCH dataset is crucial for GNN. Moreover, we also investigate, in
particular, the approach to encode texts in the data that constitutes part of the node features. In Fig. 8,
we compare GloVe text embedding (Pennington et al., 2014) and BERT text embedding (Devlin
et al., 2018) with w/o text embedding, where the text embeddings are masked by zeros. We observe
that encoding the rich texts in RELBENCH with GloVe or BERT embedding consistently yields better
performance compared with using no text features. We also find that BERT embedding is usually
better than GloVe embedding especially for node classification tasks, which suggests that enhancing
the quality of text embedding will potentially help achieve better performance.

Temporal awareness. We also investigate the importance of injecting temporal awareness into the
GNN by ablating on the time embedding. To be specific, in the implementation we add a relative

17



Figure 7: Investigation on the role of node features. At the top row are three node classification
tasks with metric AUROC (higher is better) while at the bottom are three node regression tasks with
metric MAE (lower is better), evaluated on the test set. We observe that leveraging node features is
important for GNN. Error bars correspond to 95% confidence interval.

Figure 8: Investigation on the role of text embedding. At the top row are three node classification
tasks with metric AUROC (higher is better) while at the bottom are three node regression tasks with
metric MAE (lower is better), evaluated on the test set. We observe that adding text embedding
using GloVe (Pennington et al., 2014) or BERT (Devlin et al., 2018) generally helps improve the
performance. Error bars correspond to 95% confidence interval.

time embedding when deriving the node features using the relative time span between the timestamp
of the entity and the querying seed time. Results are exhibited in Fig. 9. We discover that adding the
time embedding significantly enhance the performance across a diverse range of tasks, demonstrating
the efficacy and importance of building up the temporal awareness into the model.

D User Study Additional Details

D.1 Data Scientist Example Workflow

In this section we provide a detailed description of the data scientist workflow for the user-churn
task of the rel-hm dataset. The purpose of this is to exemplify the efforts undertaken by the

18



Figure 9: Investigation on the role of time embedding. At the top row are three node classification
tasks with metric AUROC (higher is better) while at the bottom are three node regression tasks with
metric MAE (lower is better), evaluated on the test set. We find that adding time embedding to the
GNN consistently boosts the performance. Error bars correspond to 95% confidence interval.

data scientist to solve RELBENCH tasks. For data scientist solutions to all tasks, see https:
//github.com/snap-stanford/relbench-user-study.

Recall that the main data science workflow steps are:

1. Exploratory data analysis (EDA).
2. Feature ideation.
3. Feature enginnering.
4. Tabular ML.
5. Post-hoc analysis of feature importance (optional).

D.1.1 Exploratory Data Analysis

During the exploratory data analysis (EDA) the data scientist familiarizes themselves with a new
dataset. It is typically carried out in a Jupyter notebook, where the data scientist first loads the dataset
or establishes a connection to it and then systematically explores it. The data scientist may:

• Visualize the database schema, looking at the fields of different tables and the relationships
between them.

• Closely analyze the label sets:
– Look at the relative sizes and temporal split of the training, validation and test subsets.
– Look at label statistics such as the mean, the standard deviation and various quantiles.
– For classification tasks, understand class (im)balance: how much bigger is the modal

class than the rest? For example, in the user-churn task roughly 82% of the samples
have label 1, so there is a good amount of imbalance but not enough to strictly require
up-sampling techniques.

– For regression tasks, understand the label distribution: are the labels concentrated
around a typical value or do they follow a power law wherein the labels span several
orders of magnitude? In extreme cases, this exploration will point to a need for
specialized handing of the label space for model training.

• Plot distributions and aggregations of interesting columns/fields. For example, in Figure 10
we can see three such plots. From left to right:

– The first plot shows the distribution of age among customers. We see two distinct peaks
one in the mid-twenties and another in the mid-fifties, suggesting different customer
“archetypes”, which may have different spending patterns.

19

https://github.com/snap-stanford/relbench-user-study
https://github.com/snap-stanford/relbench-user-study


20 40 60 80
0

2

4

6

8

Age Distribution

age

p
er

ce
n
t

Jan 2019 Jul 2019 Jan 2020 Jul 2020
0

0.5M

1M

1.5M

2M

Number of Sales by Month

month

n
u
m

_
sa

le
s

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Lorenz Curve (articles)

Fraction of articles

Fr
ac

ti
on

 o
f 
sa

le
s

Figure 10: EDA Plots. Each plot explores different characteristics of the dataset. Understanding
the data and identifying relationships between different quantities is an essential prerequisite to
meaningful feature engineering.

– The second plot shows the number of sales per month over a two year period. We can
see some seasonality with summer months being particularly good for overall sales.
This suggests date related features could be useful.

– The third plot shows a Lorenz curve of sales per article, showcasing the canonical
Pareto Principle: 20% of the articles account for 80% of the sales.

• Run custom queries to look at interesting quantities and/or relationships between different
columns. For instance, in the EDA for rel-hm, an interesting quantity to look at is
the variability in item prices across the year. This reveals that most of the variability is
downward, representing temporary discounts.

• Investigate outliers or odd-looking patterns in the data. These usually will have some
real-world explanation that may inform how the data scientist chooses to pre-process the
data and construct features.

In all, this process takes in the order of a few hours (3-4 for most datasets in the user study).

D.1.2 Feature Ideation

Having explored the dataset in the EDA, the data scientist will then brainstorm features that, to their
judgement, will provide valuable signal to a model for a specific learning task. In the case of the
user-churn task, a rather simple feature would be the customer’s age, which is a field directly
available in one of the tables. A slightly more complex feature would be the total amount spent by the
customer so far. Finally, an example of a fairly complex feature is the average monthly sales volume
of items purchased by the customer in the past week. A high value for this feature may indicate that
the customer has been shopping trendy items lately, whereas a low value for this feature may indicate
that the customer has been interested in more arcane or specific items.

In practice, the ideation phase consists of writing down all of these feature ideas in a file or a piece of
paper. It is the quickest part of the whole process and in this user study took between 30 minutes and
one hour.

D.1.3 Feature Engineering

With a list of features in hand, the data scientist then proceeds to actually write code to generate all
the features for each sample in the the train, validation and test subsets. In this user study, this was
carried out using DuckDB SQL5 with some Jinja templating6 for convenience.

Revisiting the example features from the previous section, the conceptual complexity of the features
closely tracks with the technical complexity of implementing them. For customer age all that is
required is a simple join. The total amount spent by the customer, can be calculated using a group
by clause and a couple of join’s. Lastly, calculating the average monthly sales volume of items
purchased by the customer in the past week requires multiple group by’s, join’s, and window functions
distributed across multiple common table expressions (CTEs).

5See https://duckdb.org/.
6See https://jinja.palletsprojects.com/en/3.1.x/intro/.

20

https://duckdb.org/
https://jinja.palletsprojects.com/en/3.1.x/intro/


A key consideration during feature engineering is the prevention of leakage. The data scientist must
ensure that none of the features accidentally include information from after the sample timestamp.
This is especially true for complex features like the third example above, where special care must be
taken to ensure that each join has the appropriate filters to comply with the sample timestamp.

For some tasks, e.g., study-outcome, the initial features did leak information from the validation
set into the training set. Thanks to the RELBENCH testing setup, leaking test data into the training
data is hard to do by accident, since test data is hidden. Leaking information from validation to train
(but not test to train) led to extremely high validation performance and very low test performance
(test was significantly lower than LightGBM with no feature engineering). The large discrepancy
between validation and test performances alerted the data scientist to the mistake, and the features
were eventually fixed. This example illustrates another complexity that feature engineering introduces,
with special care needed to ensure leakage does not happen.

Other considerations that the data scientist must keep in mind during development and implementation
of the features are parsing issues, runtime constrains and memory load. For example, during the
user study we identified a parsing issue arising from special characters in user posts/comments in the
rel-stack dataset. The backslash character, widely used LATEXcan trip up certain text parsers if
not handled with care. Furthermore, runtime and memory constraints are important to keep in mind
when working with larger datasets and computing features that require nested join’s and aggregations.
During the user study, there were some cases where we had to refactor SQL queries to make them
more efficient, increasing the overall implementation time. For some tasks we had to implement
sub-sampling of the training set to reduce the burden on compute resources.

Finally, once the features have been generated for each data subset, the data scientist will usually
inspect the generated features looking for anomalies (e.g. an unusual prevalence of NULL values). In
this user study we also implemented some automated sanity checks to validate the generated features
beyond manual inspection.

D.1.4 Tabular Machine Learning

The output of the Feature Engineering phase is a DuckDB table with engineered features for each data
subset. There is some non-trivial amount of work required to go from those tables to the numerical
arrays used for training by most Tabular ML models (LightGBM in this case). This is implemented
in a Python script that loads the data, transforms it into arrays and carries out hyperparameter tuning.
In this user study we ran 5 hyperparameter optimization runs, with 10 trials each, reporting the mean
and standard deviation over the 5 runs. For the user-churn task this took one to two hours.

D.1.5 Post-hoc Analysis

The last step in the process is to look at a trained model and analyze its performance and feature
importance. To this end we used SHAP values (Lundberg and Lee, 2017) and the corresponding
python package7. Figure 11 shows the top 30 most important features in the user-churn task. The
individual violin plots show the distribution of SHAP values for a subset of the validation set, the
color indicates the value of the feature. For the user-churn task, the most predictive features were
primarily (1) all-time statistics of user behavior pattern, and (2) temporal information that allows the
model to be aware of seasonality.

D.2 Regression Output Head Analysis

By default, our RDL implementation uses a simple linear output head on top of the GNN embeddings.
However we found that on regression tasks this sometimes led to lower than desirable performance.
We found that performance on many regression tasks could be improved by modifying this output
head. Instead of a linear layer, we took the output from the GNN, and fed these embeddings into a
LightGBM model, which is trained in a second separate training phase from the GNN model.

The resulting model still uses an end-to-end learned GNN for cross-table feature engineering, showing
that the GNN is learning useful features. Instead we attribute the weaker performance to the linear
output head. We believe that further attention to the regression output head is an interesting direction
for further study, with the goal of designing an output head that is performant and can be trained
jointly with the GNN (unlike our LightGMB modification).

7See https://shap.readthedocs.io/en/latest/.

21

https://shap.readthedocs.io/en/latest/


Figure 11: Feature Importances. SHAP values of top 30 features ranked by importance. Note:
week_of_year feature shows little variability because the validation set is temporally concentrated in
a few weeks.

We run three experiments to study this phenomena, and attempt to isolate the output head as a
problematic component for regression tasks.

1. LightGBM trained on GNN-learned entity-level features on regression tasks. We find that
this model performs better than the original GNN, suggesting that the linear output head of
the GNN is suboptimal.

2. LightGBM trained on GNN-learned entity-level features on classification tasks. We find
no performance improvement, and even some degradation, compared to the original GNN
model, suggesting that the observed performance boost of (1) comes not from an overall
better architecture but from the correction of an innate shortcoming of the linear output head
vis-a-vis regression tasks. In other words, using a LightGBM on top of the GNN is only
helpful insofar as it provides a more flexible output head for regression tasks.

3. Evaluate GNN performance after converting regression tasks to binary classification tasks
with label y = 1{yregression > 0}. We find that the performance gap between the data
scientist models and the GNN narrow. This suggests that the GNN can learn the relevant
predictive signal, but performance is affected by how the task is formulated (classification
vs regression).

See Tables 10, 11, 12 for the results of each of these experiments.

In Figure 3, for regression tasks we report the RDL results using GNN learned features with
LightGBM output head. In Table 4 we report result for the basic GNN in order to avoid creating
confusion for other researchers when comparing different GNN methods. We believe that Tables

22



Table 10: Entity regression results (MAE, lower is better) on selected RELBENCH datasets. Training
a LightGBM model on features extracted by a trained GNN leads to performance lift. This is evidence
that the linear layer output head of the base GNN is suboptimal.

Dataset Task Split GNN GNN+LightGBM

rel-f1 driver-position Test 4.173±0.178 4.05±0.09

rel-stack post-votes Test 0.065±0.00 0.062±0.00

rel-amazon item-ltv Test 14.31±0.028 14.10±0.02

Table 11: Entity classification results (AUROC, higher is better, numbers bolded if withing standard
deviation of best result) on selected RELBENCH tasks. Training a LightGBM model on features
extracted by a trained GNN does not lead to performance lift, and can even hurt performance slightly.
This is evidence that output head limitations hold for regression tasks only. Note, study-outcome
uses default GNN parameters for simplicity, differing form the performance reported in the main
paper.

Dataset Task Split GNN GNN+LightGBM

rel-f1 driver-dnf Test 72.3±1.67 71.8±1.30

rel-trial study-outcome Test 68.8±1.10 68.2±0.44

rel-stack user-badge Test 88.3±0.04 88.4±0.04

10, 11, 12 provide clear evidence that there is an opportunity for improvements and simplifications,
which we leave to future work.

Table 12: Entity classification results (AUROC, higher is better) on selected RELBENCH regression
tasks, converted into classification tasks with binary label y = 1{yregression > 0}. Training a
LightGBM model on features extracted by a trained GNN leads to performance lift. This is evidence
that the linear layer output head of the base GNN is suboptimal.

Dataset Task Split GNN Data Scientist

rel-f1 driver-position Test 81.96±1.18 86.63±0.40

rel-stack post-votes Test 80.5±0.18 78.3±0.05

rel-amazon item-ltv Test 70.61±0.06 70.29±0.06

E Dataset Origins and Licenes

This section details the sources for all data used in RELBENCH. In all cases, the data providers
consent for their data to be used freely for non-commercial and research purposes. The only
database with potentially personally identifiable information is rel-stack, which draws from the
Stack Exchange site, which sometimes has individuals’ names as their username. This information
shared with consent, as all users must agree to the Stack Exchange privacy policy, see: https:
//stackoverflow.com/legal/privacy-policy.

rel-amazon. Data obtained from the Amazon Review Data Dump from Ni et al. (2019). See
the website: https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/. Data
license is not specified.

rel-avito. Data is obtained from Kaggle https://www.kaggle.com/competitions/
avito-context-ad-clicks. All RELBENCH users must download data from Kaggle them-
selves, a part of which is accepting the data usage terms. These terms include use only for non-
commercial and academic purposes. Note that after data download, we further downsample the avito
dataset by randomly selecting approximately 100,000 data point from user table and sample all other
tables that have connections to the sampled users.

rel-stack. Data was obtained from The Internet Archive, whose stated mission is to provide
“universal access to all knowledge. We downloaded our data from https://archive.org/
download/stackexchange in Novermber 2023. Data license is not specified.

rel-f1. Data was sourced from the Ergast API (https://ergast.com/mrd/) in February
2024. The Ergast Developer API is an experimental web service which provides a historical record of

23

https://stackoverflow.com/legal/privacy-policy
https://stackoverflow.com/legal/privacy-policy
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
https://www.kaggle.com/competitions/avito-context-ad-clicks
https://www.kaggle.com/competitions/avito-context-ad-clicks
https://archive.org/download/stackexchange
https://archive.org/download/stackexchange
https://ergast.com/mrd/


motor racing data for non-commercial purposes. As far as we are able to determine the data is public
and license is not specified.

rel-trial. Data was downloaded from the ClinicalTrials.gov website in January 2024.
This data is provided by the NIH, an official branch of the US Government. The terms of use state
that data are available to all requesters, both within and outside the United States, at no charge. Our
rel-trial database is a snapshot from January 2024, and will not be updated with newer trials
results.

rel-hm. Data is obtained from Kaggle https://www.kaggle.com/competitions/
h-and-m-personalized-fashion-recommendations. All RELBENCH users must
download data from Kaggle themselves, a part of which is accepting the data usage terms. These
terms include use only for non-commercial and academic purposes.

rel-event. The dataset employed in this research was initially released on Kaggle for the Event
Recommendation Engine Challenge, which can be accessed at https://www.kaggle.com/c/
event-recommendation-engine-challenge/data. We have obtained explicit consent
from the creators of this dataset to use it within RELBENCH. We extend our sincere gratitude to Allan
Carroll for his support and generosity in sharing the data with the academic community.

F Additional Training Table Statistics

We report additional training table statistics for all tasks, separated into entity classification (cf. Ta-
ble 13), entity regression (cf. Table 14), and link prediction (cf. Table 15).

Table 13: RELBENCH entity classification training table target statistics.
Dataset Task Split Positives Negatives

rel-amazon

user-churn
Train 2,956,658 (62.47%) 1,775,897 (37.53%)

Val 263,098 (64.2%) 146,694 (35.8%)
Test 213,400 (60.64%) 138,485 (39.36%)

item-churn
Train 1,113,863 (43.52%) 1,445,401 (56.48%)

Val 73,242 (41.22%) 104,447 (58.78%)
Test 61,647 (36.95%) 105,195 (63.05%)

rel-f1

driver-dnf
Train 1,365 (11.96%) 10,046 (88.04%)

Val 125 (22.08%) 441 (77.92%)
Test 207 (29.49%) 495 (70.51%)

driver-top3
Train 231 (17.07%) 1,122 (82.93%)

Val 119 (20.24%) 469 (79.76%)
Test 128 (17.63%) 598 (82.37%)

rel-hm user-churn
Train 3,170,367 (81.89%) 701,043 (18.11%)

Val 62,225 (81.28%) 14,331 (18.72%)
Test 61,609 (82.61%) 12,966 (17.39%)

rel-stack

user-engagement
Train 68,020 (5.0%) 1,292,830 (95.0%)

Val 2,411 (2.81%) 83,427 (97.19%)
Test 2,411 (2.74%) 85,726 (97.26%)

user-badge
Train 163,048 (4.81%) 3,223,228 (95.19%)

Val 7,301 (2.95%) 240,097 (97.05%)
Test 6,735 (2.64%) 248,625 (97.36%)

rel-trial study-outcome
Train 7,647 (63.76%) 4,347 (36.24%)

Val 561 (58.44%) 399 (41.56%)
Test 483 (58.55%) 342 (41.45%)

rel-event

user-repeat
Train 1,882 (48.98%) 1,960 (51.02%)

Val 130 (48.51%) 138 (51.49%)
Test 110 (44.72%) 136 (55.28%)

user-ignore
Train 3,247 (16.88%) 15,992 (83.12%)

Val 441 (10.54%) 3,744 (89.46%)
Test 450 (11.40%) 3,499 (88.60%)

rel-avito

user-clicks
Train 2,302 (3.87%) 57,152 (96.13%)

Val 745 (3.52%) 20,438 (96.48%)
Test 740 (1.54%) 47,256 (98.46%)

user-visits
Train 78,467 (90.59%) 8,152 (9.41%)

Val 27,086 (90.35%) 2,893 (9.65%)
Test 30,731 (85.06%) 5,398 (14.94%)

24

ClinicalTrials.gov
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations
https://www.kaggle.com/c/event-recommendation-engine-challenge/data
https://www.kaggle.com/c/event-recommendation-engine-challenge/data


Table 14: RELBENCH entity regression training table target statistics.
Dataset Task Split Minimum Median Mean Maximum

rel-amazon

user-ltv

Train 0.0 0.0 16.93 9,511.46
Val 0.0 0.0 14.14 7,259.91

Test 0.0 0.0 16.78 10,329.86
Total 0.0 0.0 16.71 10,329.86

item-ltv

Train 0.0 20.78 67.57 198,419.8
Val 0.0 22.44 72.10 75,901.55

Test 0.0 23.72 77.13 206,663.58
Total 0.0 20.97 68.38 206,663.58

rel-f1 driver-position

Train 1.0 13.33 13.90 39.0
Val 1.0 11.4 11.08 22.0

Test 1.0 12.18 11.93 24.0
Total 1.0 13.0 13.57 39.0

rel-hm item-sales

Train 0.0 0.0 0.076 87.16
Val 0.0 0.0 0.086 40.36

Test 0.0 0.0 0.076 38.31
Total 0.0 0.0 0.076 87.16

rel-stack post-votes

Train 0.0 0.0 0.093 78.0
Val 0.0 0.0 0.062 36.0

Test 0.0 0.0 0.068 26.0
Total 0.0 0.0 0.090 78.0

rel-trial

study-adverse

Train 0.0 2.0 39.84 28,085.0
Val 0.0 2.0 57.08 17,245.0

Test 0.0 3.0 57.93 5,978.0
Total 0.0 2.0 42.20 28,085.0

site-success

Train 0.0 0.0 0.44 1.0
Val 0.0 0.4 0.47 1.0

Test 0.0 0.17 0.4 1.06
Total 0.0 0.0 0.45 1.0

rel-event user-attendance

Train 0.0 0.0 0.37 16.0
Val 0.0 0.0 0.28 5.0

Test 0.0 0.0 0.26 8.0
Total 0.0 0.0 0.34 16.0

rel-avito ad-ctr

Train 0.00052 0.018 0.045 1.0
Val 0.00091 0.018 0.048 1.0

Test 0.00085 0.019 0.052 1.0
Total 0.00052 0.018 0.047 1.0

25



Table 15: RELBENCH link prediction training table link statistics.

Dataset Task Split #Links Avg #links per
entity/timestamp %Repeated links

rel-amazon

user-item-purchase
Train 11,759,844 2.18 -

Val 802,540 2.28 0.18
Test 918,919 2.33 0.15

user-item-rate
Train 7,146,115 1.8 -

Val 519,496 2.01 0.19
Test 599,867 2.05 0.15

user-item-review
Train 5,138,184 2.19 -

Val 268,651 2.3 0.18
Test 305,476 2.4 0.15

rel-hm user-item-purchase
Train 13,191,321 3.38 -

Val 237,152 3.18 3.51
Test 207,996 3.10 3.76

rel-stack

user-post-comment
Train 43,337 2.08 -

Val 1,603 1.94 3.43
Test 1,517 2.0 4.09

post-post-related
Train 7,162 1.2 -

Val 294 1.3 0.0
Test 359 1.39 1.39

rel-trial

condition-sponsor-run
Train 503,176 12.51 -

Val 30,448 14.63 34.48
Test 25,694 12.49 38.37

site-sponsor-run
Train 1,485,360 2.27 -

Val 80,103 2.16 20.91
Test 50,635 1.85 23.29

rel-avito user-ad-visit
Train 2,738,733 31.53 -

Val 877,441 29.27 6.79
Test 712,985 19.73 4.73

G Dataset Schema

*

1

*

1

product

product_id numerical

brand text

title text

description text

price numerical

category varchar

customer

customer_id numerical

customer_name text

review

review_text text

summary text

review_time timestamp

rating numerical

verified categorical

customer_id numerical

product_id numerical

Figure 12: rel-amazon database diagram.

26



*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

postLinks

Id numerical

RelatedPostId numerical

PostId numerical

LinkTypeId numerical

CreationDate timestamp

posts

Id numerical

PostTypeId numerical

AcceptedAnswerId numerical

ParentId numerical

CreationDate timestamp

Body text

OwnerUserId numerical

Title text

Tags text

users

Id numerical

AccountId numerical

CreationDate timestamp

AboutMe text

votes

Id numerical

PostId numerical

VoteTypeId numerical

UserId numerical

CreationDate timestamp

comments

Id numerical

PostId numerical

Text text

CreationDate timestamp

UserId numerical badges

Id numerical

UserId numerical

Class categorical

Date timestamp

TagBased categorical

postHistory

Id numerical

PostId numerical

UserId numerical

PostHistoryTypeId numerical

ContentLicense categorical

Text text

CreationDate timestamp

Figure 13: rel-stack database diagram.

*

1

*

1

*

1

*

1

*

1

*

1 *

1

*

1

*

1

*

1

*

1

*

1

*

1

races

raceId numerical

year numerical

round numerical

circuitId numerical

name text

date timestamp

time timestamp

circuits

circuitId numerical

circuitRef text

name text

location text

country categorical

lat numerical

lng numerical

alt numerical

drivers

driverId numerical

driverRef text

code text

forename text

surname text

dob timestamp

nationality categorical

results

resultId numerical

raceId numerical

driverId numerical

constructorId numerical

statusId categorical

number numerical

grid numerical

position numerical

positionOrder numerical

points numerical

laps numerical

milliseconds numerical

fastestLap numerical

rank numerical

date timestamp

standings

driverStandingsId numerical

raceId numerical

driverId numerical

points numerical

position numerical

wins numerical

date timestamp

constructors

constructorId numerical

constructorRef text

name text

nationality categorical

constructor_results

constructorResultsId numerical

raceId numerical

constructorId numerical

points numerical

date timestamp

constructor_standings

constructorStandingsId numerical

raceId numerical

constructorId numerical

points numerical

position numerical

wins numerical

date timestamp

qualifying

qualifyId numerical

raceId numerical

driverId numerical

constructorId numerical

number numerical

position numerical

Figure 14: rel-f1 database diagram.

27



*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

studies

nct_id numerical

start_date timestamp

target_duration text

study_type categorical

acronym text

baseline_population text

brief_title text

official_title text

phase categorical

enrollment numerical

enrollment_type categorical

source text

number_of_arms numerical

number_of_groups numerical

has_dmc categorical

is_fda_regulated_drug categorical

is_fda_regulated_device categorical

is_unapproved_device categorical

is_ppsd text

is_us_export categorical

biospec_retention categorical

biospec_description text

source_class categorical

baseline_type_units_analyzed text

fdaaa801_violation categorical

plan_to_share_ipd categorical

detailed_descriptions text

brief_summaries text

outcomes

id numerical

nct_id numerical

outcome_type categorical

title text

description text

time_frame text

population text

units text

units_analyzed text

dispersion_type text

param_type categorical

date timestamp

outcome_analyses

id numerical

nct_id numerical

outcome_id numerical

non_inferiority_type categorical

non_inferiority_description text

param_type text

param_value numerical

dispersion_type categorical

dispersion_value numerical

p_value_modifier text

p_value numerical

ci_n_sides categorical

ci_percent numerical

ci_lower_limit numerical

ci_upper_limit numerical

ci_upper_limit_na_comment text

p_value_description text

method text

method_description text

estimate_description text

groups_description text

other_analysis_description text

date timestamp

drop_withdrawals

id numerical

nct_id numerical

period text

reason text

count numerical

date timestamp

reported_event_totals

id numerical

nct_id numerical

event_type categorical

classification categorical

subjects_affected numerical

subjects_at_risk numerical

date timestamp

designs

id numerical

nct_id numerical

allocation categorical

intervention_model categorical

observational_model categorical

primary_purpose text

time_perspective categorical

masking categorical

masking_description text

intervention_model_description text

subject_masked categorical

caregiver_masked categorical

investigator_masked categorical

outcomes_assessor_masked categorical

date timestamp

eligibilities

id numerical

nct_id numerical

sampling_method categorical

gender categorical

minimum_age text

maximum_age text

healthy_volunteers categorical

population text

criteria text

gender_description text

gender_based categorical

adult categorical

child categorical

older_adult categorical

date timestamp

interventions

intervention_id numerical

mesh_term text

conditions

condition_id numerical

mesh_term text

facilities

facility_id numerical

name text

city text

state text

zip text

country text

sponsors

sponsor_id numerical

name text

agency_class categorical

interventions_studies

id numerical

nct_id numerical

intervention_id numerical

date timestamp

conditions_studies

id numerical

nct_id numerical

condition_id numerical

date timestamp

facilities_studies

id numerical

nct_id numerical

facility_id numerical

date timestamp

sponsors_studies

id numerical

nct_id numerical

sponsor_id numerical

lead_or_collaborator categorical

date timestamp

Figure 15: rel-trial database diagram.

28



*

1

*

1

article

article_id numerical

product_code numerical

prod_name text

product_type_no numerical

product_type_name categorical

product_group_name categorical

graphical_appearance_no categorical

graphical_appearance_name categorical

colour_group_code categorical

colour_group_name categorical

perceived_colour_value_id categorical

perceived_colour_value_name categorical

perceived_colour_master_id numerical

perceived_colour_master_name categorical

department_no numerical

department_name categorical

index_code categorical

index_name categorical

index_group_no categorical

index_group_name categorical

section_no numerical

section_name text

garment_group_no categorical

garment_group_name categorical

detail_desc text

customer

customer_id text

FN categorical

Active categorical

club_member_status categorical

fashion_news_frequency categorical

age numerical

postal_code categorical

transactions

t_dat timestamp

price numerical

sales_channel_id categorical

customer_id numerical

article_id numerical

Figure 16: rel-hm database diagram.

29



*

1

*

1

*

1

*

1 *1

*

1

*

1

user_friends

user numerical

friend numerical

event_interest

user numerical

event numerical

invited categorical

timestamp timestamp

interested categorical

not_interested categorical

event_attendees

event numerical

status categorical

user_id numerical

start_time timestamp

events

event_id numerical

user_id numerical

start_time timestamp

city text

state text

zip text

country text

lat numerical

lng numerical

c_1_to_c_100 numerical

c_other numerical

users

user_id numerical

locale text

birthyear numerical

gender categorical

joinedAt timestamp

location text

timezone numerical

Figure 17: rel-event database diagram.

*

1

*

1

*1

*

1

*

1

*

1

*

1 *

1

*

1

*

1

*

1

AdsInfo

AdID numerical

LocationID numerical

CategoryID numerical

Price numerical

Title text

IsContext categorical

Category

CategoryID numerical

Level categorical

ParentCategoryID numerical

SubcategoryID numerical

__index_level_0__ numerical

Location

LocationID numerical

Level categorical

RegionID numerical

CityID numerical

PhoneRequestsStream

UserID numerical

IPID numerical

AdID numerical

PhoneRequestDate timestamp

SearchInfo

UserID numerical

SearchID numerical

SearchDate timestamp

IPID numerical

IsUserLoggedOn categorical

SearchQuery text

LocationID numerical

CategoryID numerical

SearchStream

SearchID numerical

AdID numerical

Position categorical

ObjectType categorical

HistCTR numerical

IsClick categorical

SearchDate timestamp

UserInfo

UserID numerical

UserAgentID numerical

UserAgentOSID numerical

UserDeviceID numerical

UserAgentFamilyID numerical

VisitStream

UserID numerical

IPID numerical

AdID numerical

ViewDate timestamp

Figure 18: rel-avito database diagram.

H Additional Discussion

As well as datasets and model benchmarking, the RELBENCH package aims to make the use of
Relational Deep Learning on other problems not considered in this work. Here we discuss several
key usability choices make during the design of the RELBENCH package.

Adding new datasets is easy. RELBENCH organizes datasets as subclasses of a parent dataset class.
An example definition for rel-stack can be found here. This class reads the raw data (e.g., from
csv or parquet) into pandas data frame format and stores a dictionary of all the database tables. It also
stores a small amount of metadata to indicate which column is the primary key column, which (if
any) are foreign-keys linking to another table, and which (if any) column is a timestamp column. All
other class functionality is standardized in the parent dataset class, allowing maximal compatibility
with the model training and minimal effort to define a new dataset class.

30

https://github.com/snap-stanford/relbench/blob/main/relbench/datasets/stack.py


Once defined and added to the database registry, a user can load the data using RELBENCH utility
function

dataset = get_dataset("dataset-name")

and run RELBENCH model training scripts on the data with no further modifications required.
Importantly RELBENCH is designed so that this functionality is outward facing—i.e., a user can
define their own new dataset and add it to the registry without modifying the package source code.
We wrote a tutorial of how to do this here. In practice, we found that writing a new dataset class took
no more than a couple of hours.

Data Processing. Models are trained using databases essentially as they are found as this is one of
the key promises of Relational Deep Learning. That said, one important pre-processing that was
necessary is to drop columns which introduce temporal leakage. This happens when a cell in a row is
updated after the row is first created, adding information from after the associated timestamp. For
example, the raw Stack Exchange database includes a “was answered” TRUE/FALSE column for
each question. We deleted this column since providing this as input to any model (RDL or otherwise)
would leak information that wouldn’t be available at test time. Overwriting of cells is common
in real-world relational databases which negatively affects both RDL and data scientist modeling.
Designing methods to detect or address this type of temporal leakage would be an interesting direction
for future work.

Hardware usage. RELBENCH datasets were chosen to be academic-lab friendly, meaning that
all training runs can be run on small GPUs e.g., a 11GB NVIDIA GeForce RTA 2080 Ti released
in 2018. We also experimented with Quadro RTX 8000 (48GB) and A100s (80GB). In all cases,
loading data to launch an experiment takes no more than 1 minute even for the largest RELBENCH
dataset. The one-time text embedding cost is the only significant pre-processing expense. This
takes at most 40 minutes for the slowest database, which in this case is the rel-amazon database
because it has a lot of text data including product descriptions and reviews. We found the computation
requirements extremely manageable on modest hardware, and provided the data scientist access to
the same hardware for their work. For model training, we found that RDL model training never took
more than about 2 hours. In many cases the RDL model trained faster than the data scientist model,
primarily because the data scientist model included a comprehensive LightGBM hyperparmeter
sweep, whereas the RDL models used a single set of RDL hyperparamers with no tuning.

Reliability of RDL Models. One advantage RDL models forego in comparison to data scientist
designed models is the natural interpretability, and associated trust, that comes from features specified
through SQL queries. SQL queries often have natural semantic meaning the give insights into possible
failure modes of the model.

An intriguing possibility for future work is to view RDL models as compositions of SQL queries,
thereby matching the interpretability standards of data scientist-built models. Intuitively the GNN
message passing closely resembles a SQL JOIN + AGGREGATE operation. Indeed, since our graph
construction connects a node v (i.e., DB entity) to all entities v′ with vpkey = v′fkey, the GNN message
passing propagates information from all such v′ to v. This is the same as a SQL inner join operation,
which makes a new table with a row for all (v, v′) pairs, which is often followed by an aggregation
(e.g., sum or mode) over v′ to get a table with one row for each v. This connection points to a
possibility to reverse engineer a set of SQL operations matching each GNN layer.

I Broader Impact

Relational deep learning broadens the applicability of graph machine learning to include relational
databases. Whilst the blueprint is general, and can be applied to a wide variety of tasks, including
potentially hazardous ones, we have taken steps to focus attention of potential positive use cases.
Specifically, the beta version of RELBENCH considers two databases, Amazon products, and Stack
Exchange, that are designed to highlight the usefulness of RDL for driving online commerce and
online social networks. Future releases of RELBENCH will continue to expand the range of databases
into domains we reasonably expect to be positive, such as biomedical data and sports fixtures. We
hope these concrete steps ensure the adoption of RDL for purposes broadly beneficial to society.

31

https://colab.research.google.com/github/snap-stanford/relbench/blob/main/tutorials/custom_dataset.ipynb


Whilst we strongly believe the RELBENCH has all the ingredients needed to be a long term benchamrk
for relational deep learning, there are also possibilities for improvement and extension. Two such
possibilities include: (1) RDL at scale: currently our implementation must load the entire database
into working memory during training. For very large datasets this is not viable. Instead, a custom
batch sampler is needed that acesses the database via queries to sample specific entities and their
pkey-fkey neighbors; (2) Fully inductive link-prediction: our current link-prediction implementation
supports predicting links for test time pairs (head,tail) where head is potentially new (unseen during
training) and tail seen in the training data. Extending this formulation to be fully inductive (i.e., tail
unseen during training) is possible, but out of the scope of this work for now.

32


	Introduction
	Overview and Design
	RelBench Datasets
	Predictive Tasks on RelBench Datasets
	Entity Classification
	Entity Regression
	Recommendation

	Expert Data Scientist User Study
	Related Work
	Conclusion
	Relational Deep Learning Implementation
	Additional Task Information
	Experiment Details and Additional Results
	Detailed Results
	Hyperparameter Choices
	Ablations

	User Study Additional Details
	Data Scientist Example Workflow
	Exploratory Data Analysis
	Feature Ideation
	Feature Engineering
	Tabular Machine Learning
	Post-hoc Analysis

	Regression Output Head Analysis

	Dataset Origins and Licenes
	Additional Training Table Statistics
	Dataset Schema
	Additional Discussion
	Broader Impact

