Research Group in Mathematical Inequalities and Applications

The value of the Group is greater than the sum of the values of its members.

Problem Corner

Problem 1, (2010)

Ovidiu Furdui

Campia Turzii, 405100 Cluj, Romania Email: ofurdui@yahoo.com

Received: 08 January, 2010

Open Problem. Let $(y_k)_{k\geq 1}$ be the sequence defined by

$$y_k = \frac{1}{2k} e^{\frac{1}{2k} \cdot \frac{1}{2k}},$$

where the fraction $\frac{1}{2k}$ appears exactly 2k times in the definition of y_k . For example

$$y_1 = \frac{1}{2}^{\frac{1}{2}}, \quad y_2 = \frac{1}{4}^{\frac{1}{4}\frac{1}{4}}, \quad y_3 = \frac{1}{6}^{\frac{1}{6}\frac{1}{6}\frac{1}{6}}$$

Prove or disprove that, for $k \ge 10$, the following inequality holds

$$1 - \frac{1}{\ln(2k)} < y_k$$

RGMIA-pc-1-10