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Measuring the economic value of pollination services:  principles, evidence and knowledge gaps. 

 

Abstract 

An increasing degree of attention is being given to the ecosystem services which insect pollinators 

supply, and the economic value of these services. Recent research suggests that a range of factors 

are contributing to a global decline in pollination services, which are often used as a “headline” 

ecosystem service in terms of communicating the concept of ecosystem services, and how it ties 

peoples’ well-being to the condition of ecosystems and the biodiversity found therein. This paper 

explains how valuation of pollinators can aid policy design and ecosystem accounting, offers a 

conceptual framework for measuring the economic value of changes in insect pollinator populations, 

and then reviews what evidence exists on the empirical magnitude of these values (both market and 

non-market). This allows us to highlight where the largest gaps in knowledge are, where the greatest 

conceptual and empirical challenges remain, and where research is most needed. 
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1. Pollination: a headline ecosystem service?  

Animal pollination, usually via insects, birds or bats, influences the reproductive success of ~87% 

of flowering plants world-wide (Ollerton et al. 2011). In temperate regions, most animal pollination 

is provided by honeybees (Apis mellifera), bumblebees (Bombus spp.), solitary bees, wasps and 

hoverflies, while in the tropics, butterflies, moths, birds and bats become important (Klein et al, 

2007). Some crops, such as oilseed rape, are effectively pollinated by a broad range of insects, while 

others are specialized for pollination by particular insects; for example cocoa (Theobroma cacao) is 

primarily pollinated by midges (Klein et al, 2007). A number of bee species are actively managed, 

most notably the honeybee.  Globally, evidence is emerging that wild bees and other insects are 

more important to crop pollination than managed bees (Garibaldi et al, 2013, 2011). Managed 

bumblebees are most commonly used in enclosed production systems (glasshouses and tunnels), 

but the other managed species are predominantly used for field and orchard crops.     

Since pollination is an ecosystem service which humans depend on through its link to world 

food production, it has become an often-cited example of how ecosystems services are economically 

valuable. Worldwide, ~1,500 crops require insect pollination (Klein et al, 2007), and ~3-8% of global 

crop production (in tonnage) depends on insect pollination (Aizen et al, 2009). Recent estimates 

suggest that crop pollination by insects underpins £430 million of crop production in the UK (Smith 

et al, 2011), and $361 billion worldwide (Lautenbach et al. 2012). However, there is considerable 

doubt over the precision, reliability, usefulness and interpretation of such figures.   

The ecosystem service values derived from pollinators depend to a large extent on the 

condition and extent of the stock of pollinators, which is part of an area’s natural capital. The value 

of pollinators as a natural capital asset depends on the stream of economic benefits which such 

populations provide over time. However, in many areas, the ability of this natural capital asset to 
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supply us with benefits has been diminished due to pollinator population declines.  Vanbergen et al 

(2013) list the main pressures on the supply of pollination services as: 

1. Landscape change in agricultural landscapes: wild pollinators such as certain bumblebees 

may be disadvantaged from the loss of food sources due to decline in the area of wild flower 

meadows (Osgathorpe et al, 2011). More specialised pollinators tend to be more sensitive to 

the types of land use change inherent in land use intensification (Winfree et al, 2009). The 

increasing use of monocultures has been demonstrated to benefit wild pollinator 

abundances (e.g. Holzschuh et al, 2013) but can cause adverse community shifts (e.g. a 

reduction in long tongue bumblebees; Diekotter et al, 2010) and may draw pollinators away 

from wild plants (Holzschuh et al, 2013). Increased synthetic fertiliser use and increased 

livestock stocking density can also cause significant long-term shifts in floral communities, 

reducing available forage resources for pollinating insects (Isbell et al, 2013; Hudewenz et al, 

2012). On the other hand, farmer enrolment in agri-environment schemes which provide 

bee-friendly habitat will reduce the negative effects of agricultural landscape change 

(Scheper et al, 2013). 

2. Growing use of certain pesticides: there is evidence that insecticides such as neonicotinoids 

have significant non-lethal effects on both wild and managed bees, leading to reductions in 

foraging performance, decreased navigational abilities, reduced fecundity, and increased 

susceptibility to disease (e.g. Whitehorn et al, 2012; Di Prisco et al. 2013; Goulson, 2013). 

There is also growing evidence that contact with herbicides (Cousin et al, 2013), fungicides 

(Pettis et al, 2013) and even certain miticides (Berry et al, 2012) can have negative effects 

upon honeybee colony survival.  

3. The introduction of alien species: Invasive plants can have detrimental effects on native 

pollinators by displacing native flowers (e.g. Sugiura et al. 2013), although in some instances 

invasive plants species may benefit native pollinators; an example is  the spread of 

Himalayan Balsam in Europe (Bartomeus et al. 2010). Invasive, non-native bees can displace 
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native species either through direct competition or via spread of non-native diseases 

(Goulson 2003; Arbetmann et al. 2013).    

4. Pathogens and parasites. Pollinators suffer from a range of parasites, notably mites such as 

Varroa destructor which widely affects honeybees across the world (Vanbergen et al, 2013) 

and a range of bacterial, viral, protozoan and fungal diseases. The large scale anthropogenic 

movement of managed bees (primarily honeybee colonies and commercial bumblebee 

nests) has been linked with increased disease loads in the surrounding landscape (Meeus et 

al, 2011) and the spread of non-native parasites and pathogens against which they have 

little resistance (Graystock et al. 2013). The best known example is Varroa destructor, which 

was accidentally introduced to Europe and the Americas from Asia.  

5. Climate change: climate change has been linked with changes in species range (Franzen and 

Ockinger, 2012) and growing mis-matches between insect emergence and floral bloom 

(Kudo and Ida, 2013). Which bees pollinate which crops in specific regions may also change.  

Honey bees are less vulnerable due to their managed status and the broad range of climates 

they can occupy, although their activity, and therefore service delivery may alter (Rader et 

al, 2013). Climate change may also facilitate the growing of new insect pollinated crops in 

some regions e.g. the expansion of fruits northwards, but is also likely to result in the 

abandonment of some crops. 

These pressures, many of which are the result of economic activities, ultimately result in economic 

losses to the flow of ecosystem services from the stock of pollinators. The economic value flows 

from pollinators are both market and non-market, as explained in detail in section 3. Market-valued 

benefits from pollinators consist of the contribution they make to the growing of a range of 

agricultural and horticultural crops (Gallai et al, 2009). Non-market benefits come from the utility 

which people derive from seeing pollinators or simply knowing they are being conserved and the 

indirect values derived from the aesthetic and cultural value of the wild flowers and garden plants 

which require pollination to sustain them. At any point in time, the present value of the future 
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stream of market- and non-market valued benefits from pollinators defines the value of this natural 

asset within a landscape. 

In this paper, we provide an overview of why the economic valuation of pollination services 

in particular is useful to policy-makers and other stakeholders. This is followed by a brief review of 

the methods presently utilised to measure the economic values of insect pollinators for different 

end uses, highlighting the shortcomings of these methods in relation to their potential end uses.  We 

then review the empirical literature and the proposed frameworks to highlight the main gaps in the 

evidence base.  

 

2. Why measure the economic value of pollination services? 

The economic valuation of pollination, as with any ecosystem service, has a number of 

potential context-specific uses. First, economic valuation of ecosystem services is a means of 

illustrating the value (benefits) of conserving pollination services (Costanza et al, 2014), and 

highlights the risks of these services diminishing to policy makers and other stakeholders that may 

not have  previously considered or understood their benefits (Abson and Termenson, 2010).  

Secondly, once quantified economically, the market and non-market values of pollination 

can be included as part of cost-benefit analysis to inform policy or business decisions and land 

planning (Hanley and Barbier, 2009). For instance, a decision on whether to maintain the current EU 

ban on neonicotinoid pesticides would be better informed if the economic benefits of restricting the 

use of such pesticides, in terms of foregone pollination services, could be compared with the 

economic costs of such a policy, such as declines in agricultural yields (Goulson, 2013). Similarly, the 

economic benefits of enhanced wild pollinator populations arising from agri-environmental 

measures could be compared with the costs of such schemes, in order to prioritise and rationalise 

public expenditures to enhance the production of public goods (Breeze et al, 2014).  
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Finally, valuation allows for the construction of extended or environmentally-adjusted 

national accounts which show the value of changes in a country’s natural capital, and to track 

changes in the value of ecosystem assets which make up the natural capital stock (Barbier, 2011). 

Internationally agreement is slowly emerging on the importance of registering the economic value of 

ecosystem service flows in national economic and environmental reporting and accounting (ONS, 

2012; UNEP, 2012; UN, 2013). An environmentally-adjusted value for Net Domestic Product (a 

measure of national income) would ideally incorporate both market and non-market benefits which 

are supplied by pollinators in any year, and also include a depreciation/net investment term to 

capture year-on-year changes in the capital value of the asset – its ability to provide direct and 

indirect benefits over time. However, the value of benefits to crop producers in year t from 

pollinators would not be added to the adjusted Net Domestic Product in year t since that value 

would already be included in the value of agricultural production (Nordhaus, 2006).   

 

3. Conceptual frameworks for measuring the economic benefits from pollinators. 

In this section, the ways in which stocks of pollinator populations generate economic values 

is explained for (i) market-valued outputs (ii) non-market values. This leads to an explanation of how 

such values can be quantified for applied use. From an economic valuation viewpoint, economic 

value is often thought of in terms of marginal values; that is, as a pollinator population rises or falls 

by one “unit” (e.g. by one additional colony in a landscape), what are the change in benefits people 

potentially receive from pollinators? 

 

3.1 Market values 

Pollinators provide economic value to crop production through increasing the quantity and 

quality of crops produced, resulting in greater economic output which is in turn influenced by 
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market prices for the crop. The extent of these benefits will vary between crops (Klein et al, 2007) 

and varieties (e.g. Hudewenz et al, In Press) depending on the degree of floral self-compatibility. As 

such, pollination services (PS) act as an input into total crop production in a similar manner to 

conventional inputs such as plant protection products.  This can be captured as part of a crop output 

production function, a form of economic model which relates the physical yield of a given crop, x1, 

to variations in the supply of pollination services PS: 

Q(x1) = f (Y, PS, ε)        (1) 

where Q(x1) is the economic output per hectare per year, Y is a vector of inputs (e.g. labour hours, 

pesticides etc.) and ε represents stochastic factors such as rainfall and temperature. There will be a 

separate production function for each crop (x1, x2, x3..) relevant to a farmer’s choices of what to 

grow. PS effectively represents the probability that any given flower will be sufficiently pollinated (v) 

above a threshold number of grains required to produce marketable fruit of a specified quality. As 

such, the lower the chance of a flower being sufficiently pollinated, the higher the marginal value of 

additional pollination services. As farmers will also have the option of switching between crops, 

these values are also heavily influenced by the costs in substituting between crops, particularly if 

switching to non-insect pollinated crops. This is likely to be very low in arable crops but much higher 

in orchard and small fruit crops where substitutes are themselves pollinator dependant (Klein et al, 

2007). 

However, the supply of pollination services is different from other agricultural inputs 

because of its direct link to plant reproduction. As such in some crops, pollination is essential to 

producing any positive level of output and thus other inputs in the “no pollination” scenario can 

generate zero output for some crops. In other crops, pollination only slightly enhances yield (Klein et 

al, 2007). Pollination services could therefore be distinguished from other inputs by using a scaling 

function Z, the value of which lies between zero and one, which is then applied to potential output 

which depends on use of other inputs such as fertiliser and labour: 
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Q(x1) = {(f’ (Y)) * Z( PS)}, ε       (2) 

 Through this direct production, pollination also influences consumer welfare:  by 

maintaining supplies of a crop relative to demand pollination acts to keep prices to consumer low, 

thus increasing consumers’ surplus (Gallai et al, 2009; Lautenbach et al, 2012).  

 Unlike many other inputs, pollination services are often provided for little or no cost to the 

producer; particularly wild pollination services which are often produced from habitats that are left 

to develop on land with poor access and productivity, minimising opportunity costs to the 

producers. Mass flowering crops can themselves sustain crop pollinators through the temporary 

abundance of floral resources, effectively creating a positive feedback loop (e.g. Holzschuh et al, 

2012). As such pollinators provide a service for a low cost that would otherwise have to be paid by 

the producer if they wished to optimise yield (Allsopp et al, 2008; Partap and Ya, 2012), reducing 

their marginal production costs per unit and as such increasing producer welfare (Kasina et al, 2009).  

 

3.2 non-market values 

Beyond crop production, insect pollinators provide a number of non-market benefits. From an 

economic value viewpoint, this happens in at least two ways. First, individuals derive pleasure from 

seeing pollinators and knowing they exist. This is known as non-use, passive use or existence value. 

Such values are direct benefits to individuals from the presence, diversity and abundance of 

pollinators and as such changes to the presence, abundance and/or diversity will change utility. The 

monetary value of such changes in utility is given by an individual’s willingness to pay (WTP) for an 

improvement in pollinator populations, or WTP to avoid a loss of pollinators. For an individual a, we 

could write therefore that their utility U depends on: 

Ua = f (S1, S2, S3, Y, N, E)     (3) 
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where Y is income, capturing ability to pay, E is other environmental attributes and N is all other 

goods and services in the individual’s choice set. The marginal, direct non-market value of a change 

in population S1 is given by wtp* in (4), where S10 is some initial population of pollinator species S1 

and S11 is a higher population level (here we assume that the populations of other pollinators S2 and 

S3 are un-changing): 

Ua (S10, S2, S3, Y, N, E) = Ua (S11, S2, S3, Y-wtp*, N, E)  (4) 

The marginal utility and thus marginal WTP for pollinator diversity or abundance will likely be lower, 

the higher the level of species diversity or abundance in an area.  

Second, individuals may care about the consequences of pollinators’ actions. For example, 

this could be through the effects of wild pollinators on the diversity and abundance of wild flowers 

and trees. Several studies have noted that respondents derive greater aesthetic utility from 

increasingly floristically diverse landscapes (Lindeman-Matthies et al, 2010), indirectly benefitting 

from the actions of pollinators. Wild pollinators are also important for the production of fruit and 

seeds for wild birds through their action on wild and garden plants (Jacobs et al, 2009), thus 

indirectly contributing to the utility from bird-watching.  If we assume that the variable E in equation 

(3) captures the importance of wild flowers and trees and of gardens and allotments to people, then 

the indirect, non-market economic value of pollinators is given by the effects of changes in pollinator 

populations on E. Ideally, we would want to empirically measure the partial derivative of E with 

respect to S multiplied by the partial derivative of U with respect to E. 

 

4. Empirical evidence on the application of pollination service valuation. 

4.1 Market values  
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The majority of studies into the economic value of pollination services have been purely 

illustrative and used to raise awareness of the impact of pollination services on regional or national 

agriculture (e.g.: Jai-dong and Chen, 2011; Calderone et al, 2012). Almost all of these studies have 

focused on producer benefits of crop production. Early studies equate the benefits of insect 

pollination with the total value of crops produced (Matheson and Schrader, 1987; Costanza et al, 

1997), or else use rents paid to bee-keepers for pollination services (Burgett et al, 2004) as the value 

of pollination services. However, neither of these methods are ideal, as most crops are able to 

produce some yield in the absence of insect pollination (Klein et al, 2007) and as many countries lack 

a well-defined market for honeybee pollination services (Carreck et al, 1997). Furthermore, even in 

countries where hive rental is widespread, honeybees often provide only a minority of pollination 

services (Garibaldi et al, 2013) and hiring them for pollination may be uncommon for many crops 

(e.g. Oilseed Rape; Carreck et al, 1997).  

 Most studies have focused on estimating the value of pollination as an input into crop 

production using a simplified production function known as a dependence ratio (DR) which 

measures the proportion of crop output lost without pollination services. This DR approach was 

taken in the UKNEA (Smith et al, 2011) to measure the economic value of pollination for all UK crops 

in 2007 and has been similarly applied in numerous countries (Table 1). DR values are typically based 

on field research into the impacts of pollination services on yield or reviews of this work (e.g. Klein et 

al, 2007) and can capture the variation in benefits from insect pollination of different crops. As such 

the marginal benefits of pollination will rise in proportion to DR. The DR approach has served to 

illustrate the benefits of pollination by highlighting regions where total production is especially 

vulnerable to pollinator declines, and thereby to highlight areas where spending on pollinator 

conservation would be most beneficial (e.g.  Lautenbach et al, 2012). Cook et al (2007) also use this 

method to compare the benefits of pollinator conservation to the costs of preventing V. destructor 

impacts in Australia.  

 Although easily applied and updated using regional or national production statistics, DR 
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values are susceptible to a number of biases based on the studies they are drawn from. Firstly, 

studies may not use standardised methods, leading to bias arising from methodological differences. 

Second, the studies used may not account for all economically significant aspects of output that are 

influenced by pollination, such as crop quality or producer costs (Garratt et al, 2014). Third, applying 

a single DR value to a crop may misrepresent varietal differences in pollination service benefits (e.g. 

Hudewenz et al, In Press), which is particularly important where varietal turn-over is high. Finally, DR 

methods innately assume that pollination services are already at a maximum, which may not be the 

case (e.g. Garratt et al, 2014) and only estimate a 100% loss of pollination service rather than 

marginal losses.  

 Some studies have attempted to rectify these faults by assessing the per hectare benefits 

from comprehensive field studies that account for the effect of market quality benefits, cultivar 

variations (Garratt et al, 2014) and storage life (Klatt et al, 2014) as well as the effect on varying 

producer profits. Like DR studies, however, these yield analysis (YA) studies remain largely 

illustrative, as they lack mostly lack the information to link marginal changes in pollination services 

to crop output (but see Ricketts and Lonsdorf, 2013). However, if supported with sufficient data 

relating pollination services to local landscapes, it is possible for these small scale studies to develop 

estimates of the potential natural capital value of pollination services from particular surrounding 

habitats. This application has been undertaken by Ricketts and Lonsdorf (2013) for coffee production 

in Costa Rica, a study which highlights the effects on the marginal value of forest patches with 

increasing distance. There are however a range of issues in extrapolating upward from any small 

scale study, most notably as the representativeness of the site or landscape (Eigenbrod et al, 2010) 

and the marginal variation in demand for pollination services.  

 Other studies have expanded the DR model to illustrate the impacts of changes in pollination 

services on consumer welfare, using econometric techniques to calculate losses in consumer surplus 

(CS); an economic measure of the disparity between the price paid for a good and the price that the 

public are willing to pay. Although more comprehensive than DR studies, accurate estimates of the 
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relations between crop prices, production and consumer welfare require extensive data and partial 

equilibrium econometric analysis (e.g. Southwick and Southwick, 1992), which would ideally include 

an analysis of trade effects for traded crops, which most current CS studies have not incorporated 

(Kevan and Phillips, 2001). As CS estimates are extensions of DR analyses they also suffer from the 

same flaws of DR analyses. 

An alternative to these basic production function approaches is to examine costs avoided by 

the presence of pollinators by estimating the costs of replacing them (e.g. Allsopp et al, 2008). Unlike 

DR studies these replacement costs (RC) methods are less susceptible to geographic or cultivar 

variations and do not require assumptions to be made regarding current service levels.   Again, these 

studies remain almost exclusively illustrative due to their inability to highlight the effects of marginal 

changes in both insect or artificial pollination services and the impacts on crop prices that would 

result from the adoption of such methods. It is unlikely that this method would be applicable for all 

crops, as artificial pollination methods have proven ineffective on a number of crops (e.g. Kempler et 

al, 2002), and, more importantly, are unlikely to accurately estimate the full value of a these 

ecosystem services, due to issues of substitutability, joint products and the need for the least-cost 

alternative to be considered when such avoided costs are calculated (Hanley and Barbier, 2009).  

More recently, Winfree et al (2011) combined DR, CS and RC methods into a single 

assessment of the value of pollination for watermelon production in Pennsylvania based upon a 

detailed YA study. This combination of methods produced a more comprehensive examination of 

pollination service benefits to the crop, both within and beyond the state of Pennsylvania. However, 

much of the data collected remains very case specific and is of limited use in broader cost:benefit 

analysis. 

 

 4.2 Non-market values 
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Whilst many studies in the literature have applied stated preference methods to estimate 

the value non-market benefits of biodiversity, at present only one study has undertaken stated 

preference estimates of either direct or indirect non-market pollinator benefits,(Mwebaze et al, 

2010). This resulted in an estimate for the existence value of protecting honeybees in the UK of 

£1.77bn/year. However, this study is based on a small and non-random sample of the public, whilst 

the question used to elicit willingness to pay means that this figure confuses the market- and non-

market values of pollinators. Moreover, since the survey did not contain any statement regarding 

the consequentiality of responses, there was no incentive for participants to reveal their true values.  

 

5. Expanding the evidence base. 

Although economic valuation of pollination services has a number of potential end uses, our 

review has highlighted that presently most studies are mainly illustrative of the economic benefits of 

pollinators. Although illustrative research has uses in raising awareness, policy engagement on 

pollination services has become particularly strong in many countries with major policy initiatives 

such as the UK’s National Pollinator Strategy (DEFRA, 2014). In the following section we present an 

expanded framework for market valuation and propose methodologies for non-market valuation of 

pollination service benefits that can facilitate the production of evidence which is more useful to the 

kinds of objectives outlined in section 2.  

 

5.1. Expanding methods – Market Valuation 

Most existing valuations of pollination services are not applicable to cost-benefit analyses 

concerning particular policies because they do not measure the impacts of marginal changes in 

pollinator populations on consumer and producer well-being. At a primary, bio-economic modelling 

level, it will be of critical importance to expand the production function models described previously 
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in order to assess the full breadth of impacts arising from pressures/mitigations of concern for cost-

benefit analysis and the transferability between sites required in natural capital asset valuation.  

As pollination services are provided by communities of mobile organisms they are largely 

stochastic and depend on a range of factors within the community. Foremost, the supply of 

pollination services PS is influenced by both the relative pollination efficiency of different insect 

species (honeybees, bumblebees, hoverflies etc.), S, and the overall diversity of taxa within the 

landscape. The efficiency of individual pollinator species is in turn a product of their  effectiveness as 

pollinators (E), usually in terms of pollen grains deposited/visit (e.g. Winfree et al, 2011), their 

visitation rate/period (T) (e.g. Woodcock et al, 2013). This in turn will be affected by the probability 

of a species making a visit (R) and their overall abundance (A) within the landscape.  The pollination 

services provided by an individual species i for a given crop X1 can therefore be expressed as: 

PSi(X1) = h (E,T( R,A))      (5) 

This framework allows for direct modelling of the economic impacts of drivers that affect 

pollinator efficiency, particularly in systems that rely heavily upon a single pollinator such as 

glasshouse crops.  

In most systems however, pollination services are provided by a range of species. These 

species may each provide services independently, resulting in additive benefits. However in several 

systems, pollinators act as compliments, with the activities of one species or group of species 

enhancing the service efficiency of others (e.g. Brittan et al, 2013a; Greenleaf and Kremen, 2006). 

Similarly, species may act as substitutes for one another, maintaining service levels under pressures 

such as the population declines and adverse climate conditions (e.g. Brittan et al, 2013b; Winfree 

and Kremen, 2009). The rate of substitutability between pollinators (ie the change in PS if population 

S1 falls by 5%, whilst population S2 rises by 5%) , particularly between managed and wild species, 
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also informs the insurance value of pollinators in maintaining the flow of pollination services in the 

event of a major disease outbreak (Baumgartner, 2007).  

PS (x1) =g (S1, S2, S3….)       (6) 

Information on such community level production functions for pollination services would 

allow for an assessment of the costs and benefits of certain policies that are likely to affect multiple 

pollinators; for instance if a new agrochemical causes a 10% decline in S1 but leaves S2 and S3 

unaffected. As the abundance of any species within the community changes, the function (6) should 

allow the estimation of the effects on output. The overall community composition in a landscape will 

be influenced by a number of local factors, including the intensity of pressures (e.g. agrochemicals) 

local foraging resources and the strength of a source population (Scheper et al, 2013; Kleijn et al, 

2011). These can be modelled as part of (6) based on existing projective models such as the inVEST 

model (Lonsdorf et al, 2009) and linked back to service value by way of (5) above.  

Finally, production function models can be further expanded by incorporating measures of 

farmer costs in order to examine the effects of different cropping patters within the landscape and 

interventions on overall profits. In this case, the prices of all outputs (crops) the farmer could grow, 

along with the costs and marginal physical products of each input, would be relevant to determining 

the maximum profit he can make, and determining the combination of crops and management 

regime which result in this maximum.  The effects of changes in the supply of pollination services on 

farm-level profits could thus be estimated. Existing modelling approaches could be used to describe 

such an optimisation system, incorporating ecological links between farm management and 

ecosystem service supply, as described for example in Armsworth et al (2012) or Hanley et al (2012), 

in order to link the PS values estimated by the production function models such as (5) and (6) to  

land use planning and predictive modelling of changes in farmer behaviour.  
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5.2. Expanding methods - Non-Market valuation 

To date the non-market benefits of pollination services have only been vaguely explored 

(Mwbaze et al, 2010). As such these benefits remain a major uncaptured knowledge gap despite the 

availability of methodologies to do so.  Economists have developed a range of methods for 

empirically estimating such non-market values (Hanley and Barbier, 2009). For both direct and 

indirect non-market values of insect pollinators, it seems likely that only stated preference 

approaches would be a feasible method. Stated preferences work by asking a sample of individuals 

to either state whether they would be willing to pay a particular sum of money for an increase in an 

environmental good, or their willingness to accept compensation for a decline in this good 

(contingent valuation); or by asking people to make choices between different “bundles” of 

environmental attributes and a price (choice experiments). These responses are obtained in the 

context of a carefully-constructed hypothetical market for the good in question. Features of such 

markets which have been shown to be important are (i) that respondents feel that their responses 

are consequential (Vossler et al., 2012); (ii) that a non-voluntary payment mechanism be used (iii) 

that the environmental change in question be clearly described, and that any uncertainty over this 

environmental change is also well-described and (iv) that the hypothetical market is realistic and 

does not encourage ethical rejection (Riera et al, 2012) . 

For direct benefits, where people care about the populations of pollinators, either 

contingent valuation or choice experiments could be used to estimate willingness to pay for a 

change in such populations (e.g. a 10% increase in bumblebee abundance over a 5 year period in 

England).  Choice experiments would enable the researcher to measure the impacts of different 

attributes of such a policy change on people’s preferences – such as whether they prefer an increase 

in species diversity rather than abundance, and whether they prefer policy to be targeted at 

endangered or common species. Either method could be used to show how the non-market direct 

benefits of pollinators vary across the country and across income groups, or between rural and 
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urban households, and both have been used to estimate the utility benefit of changes in biodiversity 

across a wide range of settings (Atkinson et al., 2014; Jobstvogt et al, 2014).  The main challenges of 

applying SP methods to estimating direct utility values of pollinator populations would be to meet 

the good design requirements noted as (i) – (iv) above.  Moreover, individuals may feel that they lack 

sufficient knowledge about the ecological importance of pollinators to be able to state their 

preferences in terms of Willingness to Pay for prospective changes in pollinator populations (Christie 

et al, 2006), although methods are available which can reduce this lack-of-knowledge barrier to 

valuing changes in biodiversity (e.g. LaRiviere et al, 2014; Colombo et al, 2013). 

For indirect benefits, choice experiments and contingent valuation could be used to value 

marginal changes in the environmental goods which pollinators help to produce, such as wild flower 

meadows.  However, it would be difficult to design a study in such a way that one could isolate the 

contribution of (wild) pollinators to the production of the environmental good which people are 

valuing (e.g. a 25% rise in the number of wild flower meadows in Devon).  

 

 6. Knowledge gaps 

Whilst there is a clear conceptual basis for measuring the economic value of insect 

pollinators to the detail required for application by policy, and whilst there are a range of methods 

that exist for estimating these values, there remain deficiencies and omissions in the empirical 

literature on market values of pollination, and an almost total lack of empirical studies on non-

market values. One significant barrier to wider and better use of production function approaches is 

the lack of generalizable, empirical functions (production functions) which relate pollinator 

efficiency, abundance and diversity to crop output outside of local case studies.  

 

6.1. Market based valuation 
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To date, studies on the efficiency of individual pollinators have focused on comparisons 

between different managed species (e.g. Thompson and Goodall, 2001) although some more recent 

studies have begun to more formally address the efficiency of wild species groups (Winfree et al, 

2011). However, even these studies have not provided enough information to generalise species 

service efficiency beyond their particular case study areas, focusing instead on observations of 

individual species or generalised groups. A traits based approach, in which morphological (e.g. size 

or tongue length) and behavioural traits (e.g. activity period) are linked to individual species 

efficiency (Ne’eman et al, 2010) would allow for a greater degree of value transfer on a per crop 

basis and could theoretically be linked with crop flower traits (e.g. flower size, pollen production) to 

better generalise these relationships and identify those wild and managed pollinators which are 

likely to be of particularly high economic value. 

Pollinator abundance is important in determining both individual species efficiency within 

the landscape (eq. 5) and their contribution to overall service delivery (eq. 6) which is in turn 

affected by the abundance of other species within the landscape. Several recent studies have linked 

the abundance and diversity of pollinators to their service delivery (Hoehn et al, 2008; Rader et al, 

2009), however the effects of substitution and interaction between species have also only been 

explored in a few specific case studies (e.g. Greenleaf and Kremen, 2006; Rader et al, 2013). As with 

species efficiency, a traits based approach linking diversity to services would be ideal for facilitating a 

more accurate and transferrable assessment of pollination service values without having to know all 

species identity. 

Another research gap relates to threshold effects. Threshold effects in the supply of 

pollination services due to a decline in the condition of the pollinator asset would result in large 

changes in the marginal economic value of pollinators. These thresholds are likely to occur at lower 

levels for crops or wild plants that are more reliant on specific pollinators such as field beans (Free, 

1993). Areas reliant on honeybees are also vulnerable to collapse, as diseases can spread quickly 
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between colonies, and can spill over into wild bumblebees (Furst et al. 2014).   The integrity of the 

pollinator asset could decline in a non-linear way if there is a positive feedback between wild flower 

diversity loss and pollinator diversity. There are also issues of reversibility; once a population has 

suffered significant losses it may be difficult or impossible to recover without intervention (Ellis et al, 

2013). Understanding population thresholds and reversibility, using existing ecological models of 

population dynamics, is therefore a key factor when examining the long term costs and benefits of 

actions that are likely to increase pressures on pollinators.  

Although ecological research has linked the abundance and diversity of pollinators to 

landscape features such as agrochemical use and semi-natural habitat (Scheper et al, 2013 and 

references therein) these links have yet to be widely generalised. As such, attempts to map the 

availability of pollination services still rely heavily on expert appraisal (e.g. Lonsdorf et al, 2009; 

Schulp et al, 2013), leaving it difficult to determine the potential or actual service delivery of 

pollinators at a landscape level.  This knowledge gap, an essential barrier to accurate integration of 

wild pollinators into natural capital accounts, could be most accurately filled by the development of 

systematic monitoring schemes, methodologies for which are already well established (LeBuhn et al, 

2013). Unfortunately, while a number of schemes monitor the diversity of species within landscape, 

no systematic monitoring scheme has yet widespread trends in pollinator abundance, although the 

UK government has acknowledged the need for such a scheme (DEFRA, 2014). This in turn allows for 

a more detailed assessment of the costs and benefits of different pressures and mitigation actions 

on pollinator populations by comparing the status and trends of populations in landscapes with 

different management. 

Beyond the ecological aspects of estimating market benefits, our review highlights a limited 

number of studies examining market benefits to stakeholders beyond producers. While models exist 

to assess the impacts on consumer surplus (e.g. Lautenbach et al, 2012), limited information at how 

national crop prices react to yield changes, particularly when the crop is widely traded 
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internationally (Kevan and Phillips, 2001), prevents these models being more widely used (but see 

Winfree et al, 2011). As such, time series econometric analyses of these relationships would have 

substantial value in assessing the wider benefits of changes in pollination services and assessing the 

marginal costs of changing to non-insect pollinated crops. Furthermore, many of the studies 

examining consumer effects have only explored the value based on prices paid to farmers, which will 

often represent what supermarkets and other distributors will pay, pointing to a need to examine 

the broader supply chain.  

Perhaps most fundamentally, pollination production functions are complex ecological-

economic models and such, a multi-stage, data intensive modelling approach as proposed here is 

likely to require extensive research to implement. The species links between abundance at an 

individual and community in particular represents a major challenge for modelling.  

 

6.2. Non-Market Valuation 

 Although non-market valuation methods are well established for ecosystem services in 

general they have yet to be applied to any wider degree regarding pollination services, in itself a 

significant knowledge gap when considering the total economic benefits of pollination. Part of the 

complexity in assessing these values is the inherent difficulty of separating the value of pollination 

from that of pollinators. Limited public knowledge of the linkages between pollinators and 

pollination services is also likely to complicate the use of stated preference approaches (Christie et 

al, 2006). A major knowledge gap in assessing these non-market values is therefore the extent of 

public knowledge and information about pollination services, and how this relates to public 

willingness to pay for programmes designed to increase pollinator populations.  

More significantly however there remains the challenge to identify links between marginal 

shifts in pollinator populations and the values attributed to the non-market benefits arising from 
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them. When attributing value to the aesthetic values of floral diversity, large plant-pollinator 

networks can be involved, adding additional complexity to assessments of the marginal changes in 

pollinator communities (Burkle et al, 2012). As such, it becomes difficult to generalise key pollinators 

in landscapes and therefore identify the impacts of marginal changes caused by pressures or 

mitigations. This is likely to be true of other indirect, non-market benefits from pollination services.   

 

7. Conclusions 

This paper has reviewed the conceptual basis and rationale for evaluating the economic 

benefits of pollination services. Of the principal uses of valuation, existing work has focused almost 

exclusively on illustrative studies, with few studies generating values which can be used in cost-

benefit analyses or natural capital accounting. To this end we have presented a more detailed 

framework for valuing marginal impacts of shifts in pollinator communities on the market and non-

market values associated with pollination services. The knowledge gaps identified highlight the 

significant ecological complexity of developing such models, with extensive field ecology required to 

build the comprehensive production function models to answer these questions. 

These knowledge gaps in turn highlight the principal difficulties in developing valuation in a 

form that is suitable for cost-benefit analysis and/or natural capital – the increasing complexity 

required to make assessments of benefits transferrable and comprehensive. While a number of 

localised studies have developed methods suitable for assessing costs and benefits (Winfree et al, 

2011; Cook et al, 2007) and contributions to natural capital (Ricketts and Lonsdorf, 2013), these are 

highly case-specific. Extrapolating from these studies therefore runs the risk of presenting erroneous 

values or over-generalising fringe situations (Eigenbrod et al, 2010). However, it is these broad, 

region and national scale analyses that are of particular interest to stakeholders and policy 

(Vanbergen et al, 2012; UNEP, 2012).  As such, if research is to achieve the demands for truly 
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functional valuation it will be imperative for policy makers and other stakeholders to increase 

support for pollination services research.  However, based upon the conceptual framework for 

valuation set out in this paper,  we recommend the following priority areas for research: 1) the  

Identification of key pollinator traits in a range of representative crops, 2) assessment of the 

behavioural and morphological traits that facilitate substitution and synergy (complementarity) 

within pollinator communities, 3) evaluation of the links between habitat variables and the 

populations of pollinators, ideally using a systematic monitoring scheme, 4) econometric analyses of 

the links between insect pollinators, production and consumer prices for these crops and 5) an 

assessment of the non-market benefits of pollination services utilising stated preference techniques 

to reveal the wider values of pollination as a headline ecosystem service.   
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Table 1. Studies assessing the economic value of pollination services 

Study Region Value (2010 GBP) Method 

Matheson and Schrader (1987) New Zealand £1.83bn Crop Value 

Costanza et al (1997) Global £118.4/ha Crop value 

Calderone (2012) USA £10.6bn DR 

Jai-Dong and Chen (2011) China (horticulture) £29.3bn DR 

Kasina et al (2009) Kenya (small holdings) £25-£1,910/ha DR 

Losey and Vaughn (2006) USA £2.30bn DR 

Morse and Calderone (2000) USA £12.1bn DR 

Zych and Jakubiec (2006) Poland £520.2M DR 

Carreck and Williams (1998) UK £322.1M DR 

Canadian Honey Council (2001) Canada £406.2M DR 

Gill et al (1991) Australia £0.5-£0.9bn DR 

Pimtel et al (1997) Global £165.7bn DR 

Guerra-Sanz (2008) Spain (glasshouse) £470M DR 

Brading et al (2009) Egypt £1.3bn DR 

Robinson et al (1989) USA £12.4bn DR 

Garratt et al (2014) UK (Apples) £36.7M YA 

Klatt et al (2014) EU (Strawberries) £750.7M YA 

Stanley et al (2013) Ireland (Oilseed Rape) £3.32M YA 

Greenleaf and Kremen (2006) USA (sunflower) £16.6M  YA 

Olschewski et al (2006) Indonesia & Ecuador (coffee) £30-£31/ha YA 

Ricketts et al (2004) Costa Rica (coffee) Up to £97/ha YA 

Shipp et al (1994) Canada (glasshouse peppers) Up to £41,6450/ha YA 

Gallai et al (2009) Global £121.8bn DR, CS 

Southwick & Southwick (1992) USA £2.5-£8.3bn DR, CS 

Allsopp et al (2008) South Africa £17.9-£78.6m  RC 

Calzoni and Speranza (1998) Italy (plums) £274/Ha RC 

Winfree et al (2011) NJ, USA (watermelons) £0.13-£2.3M RC, YA, CS 

Legend: DR = Dependence Ratio; CS = Consumer Surplus, RC = Replacement Costs, YA = Yield Analysis 

 

 

 


