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Abstract

Measurement and Verification (M&V) has become an indispensable process in various incentive energy efficiency and demand
side management (EEDSM) programmes to accurately and reliably measure and verify the project performance in terms of energy
and/or cost savings. Due to the uncertain nature of the unmeasurable savings, there is an inherent trade-off between the M&V
accuracy and M&V cost. In order to achieve the required M&V accuracy cost-effectively, we propose a combined spatial and
longitudinal metering cost minimisation (MCM) model to assist the design of optimal M&V metering plans, which minimises the
metering cost whilst satisfying the required measurement and sampling accuracy of M&V. The objective function of the proposed
MCM model is the M&V metering cost that covers the procurement, installation and maintenance of the metering system whereas
the M&V accuracy requirements are formulated as the constraints. Optimal solutions to the proposed MCM model offer useful
information in designing the optimal M&V metering plan. Theadvantages of the proposed MCM model are demonstrated by
a case study of an EE lighting retrofit project and the model iswidely applicable to other M&V lighting projects with different
population sizes and sampling accuracy requirements.
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Nomenclature

Variables

α α = e−L, whereL is the rated average life span
of a certain type of lamp

χ̄(K) the random variable denoting the cumulative
sample mean across all lighting groups up to the
Kth crediting year

χ̄i(K) the cumulative sample mean of theith lighting
group up to theKth crediting year

x̄ the sample mean

X̄(k) the random variable denoting sample mean of
the daily energy consumption per lamp across
all lighting groups in thekth year

x̄(k) the sample mean of the daily energy consump-
tion per lamp across all lighting groups in the
kth year

X̄i(k) the random variable denoting the sample mean
of the daily energy consumption per lamp of the
ith lighting group in thekth year

x̄i(k) the sample mean of the daily energy consump-
tion per lamp of theith lighting group in thekth
year
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β the coefficient related to the slope of the lamp
decay

δ theδth year, 1≤ δ ≤ K

γ the coefficient related to the initial percentage
lamp survival atτ=0

Γ(K) the random variable denoting the cumulative
standard deviation across all lighting groups up
to theKth crediting year

Γi(K) the random variable denoting the cumulative
standard deviation of theith lighting group up
to theKth crediting year

Ψ̂ the set of post-implementation energy govern-
ing factors

λ the design variable λ =

(λ(0), . . . , λ(k), . . . , λ(K)), where λ(k) =

(z1(k), . . . , zI (k), p1(k), . . . , pI (k))

λ∗ the optimal solution

λ0 the search starting point to solve the optimisa-
tion model

µ the true mean

µ(k) the true mean of the daily energy consumption
per lamp across all lighting groups in thekth
year
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µi(k) the true mean of the daily energy consumption
per lamp of theith lighting group in thekth year

Ψ the set of baseline energy governing factors

σ the standard deviation

σ(k) the true standard deviation of the daily energy
consumption per lamp across all lighting groups
in thekth year

σi(k) the true standard deviation of the daily energy
consumption per lamp of theith lighting group
in thekth year, andσi(k) = x̄i(k)CVi(k)

τ the time after a lamp installation

θ(K) the random variable denoting the cumulative
true mean across all lighting groups up to the
Kth crediting year

θi(K) the random variable denoting the cumulative
true mean of theith lighting group up to theKth
crediting year

β̃ the coefficient in the discrete lamp population
decay model

γ̃ the coefficient in the discrete lamp population
decay model

ai the individual meter device cost in theith light-
ing group

bi the installation cost per meter in theith lighting
group

Bi(k) the backup meters of theith lighting group in
thekth year,Bi(0)=0

ci the monthly maintenance cost per meter in the
ith lighting group

CV the coefficient of variation

CVi(k) the estimated CV value of theith lighting group
in thekth year

Ei(t) the daily energy consumption per lamp of the
ith lighting group at timet

F(Ψ) the baseline energy model

G(Ψ) the post-implementation energy model

I the total lighting groups

i the counter of lighting groups

K the total project crediting years

k the counter of project crediting years, where
k=0 denotes the baseline period

lb the lower bound of the design variable

N the lighting population

n the sample size after population adjustment

N(k) the total survived lamp population in thekth
year

n0 the initial sample size before population adjust-
ment

Ni(k) the lighting population of theith lighting group
in thekth year

ni(k) the sample size of theith lighting group in the
kth year

Ni(t) the lamp population of theith lighting group at
time t

Oi(t) the lamp daily burning hours of theith lighting
group at timet

p the relative precision

P(δ) the cumulative precision level across all lighting
groups up to theδth crediting year

p(k) the combined relative precision across all light-
ing groups in thekth year

Pi(δ) the cumulative precision level of theith lighting
group up to theδth crediting year

pi(k) the relative precision of theith lighting group in
thekth year

Pi(t) the lamp rated power of theith lighting group at
time t

S(t2) the reported energy savings

s(τ) the percentage of survived lamps at timeτ

Si(k) the mathematical sign ofBi(k) of theith lighting
group in thekth year

t the project duration including both baseline and
post-implementation periods

t1 the project baseline period

t2 the project post-implementation period

TolCon the tolerance on the constraint

TolFun the tolerance on the function value

TolX the tolerance on the design variable

ub the upper bound of the design variable

X(k) the random variable denoting the daily energy
consumption per lamp across all lighting groups
in thekth year
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Xi(k) the random variable denoting the daily energy
consumption per lamp of theith lighting group
in thekth year

z the abscissas of the normal distribution curve
that cut off an area at the tails to give desired
confidence level, also known asz-score

Z(δ) the cumulativez-score across all lighting groups
up to theδth crediting year

z(k) the combinedz-score across all lighting groups
in thekth year

Zi(δ) the cumulativez-score of theith lighting group
up to theδth crediting year

zi(k) the z-score of theith lighting group in thekth
year

Abbreviations

R2 coefficient of determination

ASHRAE American society of heating, refrigerating, and
air-conditioning engineers

CDM clean development mechanism

CFL compact florescent lamp

CV coefficient of variation

DLC direct load control

ECM energy conservation measure

EEDSM energy efficiency and demand side management

EVO efficiency valuation organization

HDL halogen downlighter

HERO home energy rebate offer

ICL incandescent lamp

IPMVP international performance measurement and
verification protocol

kW h kilowatt-hour

LED light-emitting diode

M&V measurement and verification

MCM metering cost minimisation

n/a not applicable

PD project developer

R South African currency Rand

RMSE root mean squared error

TWC tradable white certificate

UNFCCC United Nations framework convention on cli-
mate change

USD United States dollar

W Watt

1. Introduction

Measurement and Verification (M&V) is the process of using
measurement to accurately and reliably determine the savings
delivered by an energy conservation measure (ECM) [11]. The
M&V process is introduced in detail in various M&V guide-
lines, such as the IPMVP [11], the ASHRAE Guideline 14 [1],
the California energy efficiency evaluation protocol [25], and
the localised M&V guideline in South Africa [10]. The best
practice and experience of M&V usually offer valuable feed-
backs of the project performance, i.e., energy or cost savings to
the project developers for energy efficiency (EE) technology de-
ployment and project design. M&V has thus become an indis-
pensable process in various incentive EE programmes such as
clean development mechanism (CDM) [20], tradable white cer-
tificate (TWC) scheme [2], demand side management (DSM)
programmes [10], and performance contracting [30]. Accord-
ing to [11], the most crucial part of the entire M&V process
is the design of an M&V plan, in which baseline modelling
and savings determination methodologies are proposed witha
proper metering plan for the measurement of the relevant M&V
data. The M&V savings are inherently uncertain as they are nat-
urally inexist and not directly measurable [19]. As summarised
in [11] and [1], the quantifiable savings uncertainties are com-
prised of the measurement uncertainty, sampling uncertainty,
and modelling uncertainty. A number of existing M&V studies
have proposed various baseline modelling techniques to deal
with the modelling uncertainties that arise from the improper
mathematical function form, inclusion of the irrelevant vari-
ables or exclusion of relevant variables. For example, [15]has
proposed a normative energy model based on Bayesian calibra-
tion, which is able to model the energy consumption patternsin
large sets of buildings efficiently with quantifiable uncertainties
associated with model parameters. In [4], an M&V approach
is proposed to compare actual energy performance of a build-
ing with its theoretical performance using calibrated thermal
modelling. Different accuracy indicators such as the normalised
root mean squared error (RMSE), relative bias, and median of
the absolute relative total error are adopted in [13] to estimate
the accuracy performance of five statistical baseline models for
M&V applications. Regression models have been adopted in
the following studies to develop baseline models for M&V pur-
poses with detailed model identification and validation by the
uncertainty indicators of coefficient of determination (R2), and
coefficient of variation of the RMSE (CVRMSE). Statistical
criteria to assess goodness-of-fit of baseline models in terms
of the R2 and CVRMSE are discussed in [23]. And [16] de-
velops a regression model to characterise the relationshipbe-
tween daily energy consumption and energy governing factors
such as degree days, humidity, and fuel prices to assess the en-
ergy saving performance of the Louisiana Home Energy Rebate
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Offer (HERO) programme. In order to quantify the industrial
energy savings, [17] uses multi-variable piece-wise regression
models to develop energy baselines, which can be adjusted by
weather and production data over the post-retrofit period. In
[9], a primary multiple regression model is derived as a baseline
model by incorporating three weather parameters, namely, out-
door temperature, relative humidity, and global solar radiation.
Linear regression models are constructed in [8] for baseline cal-
ibration in order to quantify the energy and demand savings due
to installation of motor sequencing controller on the conveyor
belt. In addition, [31] introduces a cross-validation method to
compute the baseline model uncertainty. Besides the modelling
uncertainties of M&V, the measurement uncertainties usually
come from inappropriate calibration of the metering equipment,
inexact measurement procedure, or improper meter selection,
installation or operation; and the sampling uncertaintiesresult
from inappropriate sampling approaches or insufficient sample
sizes [1].

Although M&V metering plans can be designed to handle the
measurement uncertainties by applying sophisticated measure-
ment instruments while reducing the sampling uncertainties by
taking sufficient sample sizes, M&V practitioners cannot enjoy
such a luxury due to limited budgets for the projected savings
verification, given that [11] clearly states that the annualM&V
cost should be less than 10% of the annual savings realised by
the EE projects. Hence M&V practitioners and project devel-
opers have great interest in designing the optimal M&V me-
tering plan that helps to verify the savings accurately and cost-
effectively. An M&V metering plan obtained by professional
judgements of M&V practitioners may be far from optimal, es-
pecially when there are particular requirements on the M&V
accuracy and M&V cost. In order to minimise the metering
cost, and thus to maximise the project developers’ profit, this
study aims to design a cost-effective metering plan to satisfy
M&V accuracy requirements.

An obvious observation is that the metering cost is lower
whenever fewer samples are measured. However, the samples
to be measured in some existing M&V case studies do not seem
to have been determined optimally. In [18], instantaneous de-
mand meters and run-time loggers are installed to monitor 10%
of the lighting fixtures’ energy consumption. Ref. [14] pro-
poses to quantify the load reduction from a residential elec-
tric water heater load control programme by a “notch” test on
substation level in order to reduce the metering and sampling
cost of M&V. However, substations are not easily accessiblefor
common M&V practice. In [22], a “deemed savings estimates”
M&V approach is proposed by modelling historical data, which
are sampled from 288 end users of the regional direct load con-
trol (DLC) programmes.

The general mathematical description of the optimal M&V
metering plan problem has been proposed in [33]. However,
with the guidance of [33], the optimal M&V metering plan
for various M&V projects needs to be redeveloped with the
consideration of project specific budget plans, technologies,
measurement complexities, accuracy requirements, and popu-
lation sizes. Among these projects, the optimal metering plan
for lighting retrofit projects has attracted considerable research.

The major reason is that sub-metering of the entire lighting
population implies prohibitive measurement and sampling cost.
The design of cost-effective metering plans to achieve the re-
quired sampling accuracy criterion with proper sample sizebe-
comes more difficult when the lamp population is large and de-
centralised. Ref. [35] has proposed a spatial metering costmin-
imisation (MCM) model to balance the sampling uncertainties
across lighting groups. The idea in [35] is to minimise the sam-
ple sizes and metering cost for CDM lighting EE projects by as-
signing optimal confidence and precision levels to the lighting
groups with different energy consumption uncertainties. The
model in [35] is applicable and useful in optimising the M&V
metering plan, but lacks of considerations on lighting popula-
tion decay dynamics over the projects’ life cycle. In practice,
the lamp population will decay due to the lamp breakage, theft
or other unpredicted damages. Sampling theory [26] indicates
that the sample size can be reduced when the sampled popula-
tion size becomes smaller. Several studies have proposed lon-
gitudinal MCM models to balance the sampling uncertainties
across adjacent reporting years. The idea is to reduce the M&V
metering cost for lighting EE projects by optimally deciding the
required confidence and precision levels in different reporting
years over the projects’ crediting period. For instance, studies
[34] and [36] present a longitudinal MCM model by incorpo-
rating a liner lamp population decay model that is widely used
in CDM lighting projects. The longitudinal MCM model pro-
vided in [34] and [36] is further improved in [5], which provides
more detailed discussions on the lamp population decay mod-
els, weighted measurement impacts, and price inflations of the
metering devices. The longitudinal MCM models in [34], [36],
and [5] are applicable to lighting projects with homogeneous
lighting population that shares the same energy usage patterns
and population decay dynamics.

On summary of existing M&V studies, the optimal M&V
metering plans can be designed 1) without optimisation but
by professional judgements; 2) by applying the spatial MCM
model for project with no population decay; 3) by using the
longitudinal MCM model to projects with homogeneous light-
ing population and similar population decay dynamics. How-
ever in practice, solely using the spatial or longitudinal MCM
model is insufficient to accommodate lighting projects that have
multiple homogeneous lighting groups but with different energy
consumption patterns and population decay dynamics across
groups. In this study, a combined spatial and longitudinal MCM
model is proposed to further reduce the lighting project me-
tering cost by balancing the sampling uncertainties both spa-
tially across homogeneous lighting groups and longitudinally
across adjacent reporting years. In this model, the design vari-
ables are the required annual confidence and precision levels for
each lighting group. The objective function is a cost function
that covers the procurement, installation and maintenanceof
the metering system for M&V. The sampling accuracy require-
ments are formulated as the constraints. In order to demonstrate
the advantages of the proposed MCM model, an optimal me-
tering plan is designed for a lighting retrofit project with two
homogeneous lighting groups as a case study. Optimal solu-
tions for the case study are obtained by the proposed combined
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spatial and longitudinal MCM model with the consideration of
the project specific characteristics. The optimal solutions pro-
vide useful and sufficient M&V metering plan information such
as the required lighting samples to be measured in each light-
ing groups, the achieved sampling accuracy in terms of confi-
dence and precision levels as well as the annual and total M&V
metering cost for the studied lighting project. In addition, the
metering solutions obtained without optimization, with solely
the spatial or the longitudinal MCM models are also calculated
and compared. The comparisons among these solutions high-
light the advantageous performance of the proposed spatialand
longitudinal MCM model in designing cost-effective M&V me-
tering plan whilst satisfying the M&V accuracy requirements.
This combined optimisation model will be widely applicable
to design the optimal metering plan for various M&V lighting
projects with different population sizes and sampling accuracy
requirements.

The rest of this paper is organised as follows: Section 2 pro-
vides the mathematical formulation of the optimal M&V me-
tering plan problem. In Section 3, an optimal metering plan is
designed for a hospital lighting retrofit project as a case study to
demonstrate the advantages of the proposed model. The appli-
cability of the proposed model is discussed in Section 4 while
the conclusion comes in the last section.

2. Formulation of the optimal M&V metering plan prob-
lem

In this section, general metering plans for lighting retrofit
projects are discussed. With the application of classic sam-
pling approaches, sample size determination methodologies,
and lamp population decay models, the optimal M&V metering
plan problem is formulated as a combined spatial and longitu-
dinal MCM model under necessary modelling assumptions.

2.1. The metering plan for lighting retrofit projects
Without loss of generality, the methodology to design the

optimal M&V metering plans is discussed under the scope of
lighting retrofit projects in this study. Given a lighting retrofit
project with an initial lamp population ofN, the lamp popula-
tion can be classified intoI homogeneous lighting groups when
the same technical specifications, similar energy consumption
uncertainties, and population decay dynamics of the lamps are
identified in theith lighting group, wherei is the counter of the
lighting groups. For lighting retrofit projects, various EElight-
ing technologies, i.e., compact florescent lamps (CFLs), light-
emitting diodes (LEDs) or solar-powered lamps are employed
to replace existing less EE lamps such as halogen downlighters
(HDLs) and incandescent lamps (ICLs). The retrofit interven-
tions do not change the existing lighting control configurations
and illumination levels.

Let a lighting retrofit project have a three-months’ baseline
measurement period andK years of the project crediting pe-
riod with its savings performance being measured, verified and
reported;k = 1, 2, . . . ,K denotes the counter of the crediting
years andk = 0 denotes the baseline year.F(Ψ) andG(Ψ̂) de-
note the energy models, where notationsΨ andΨ̂ represent a set

of energy governing factors that determines the lighting energy
consumption in the baseline and post-retrofit periods, respec-
tively. For the lighting technology,F(Ψ) andG(Ψ̂) should at
least include the following energy governing variables, i.e., the
lamp populationNi(t), rated powerPi(t), and daily operating
hoursOi(t). In order to simplify the measurement and sam-
pling uncertainty analysis,Pi(t) andOi(t) can be determined in
combination as the daily energy consumptionEi(t). Then the
project baseline can be denoted byF(Ni(t1),Ei(t1)) and sim-
ilarly the post-retrofit is denoted byG(Ni(t2),Ei(t2), wheret1
refers to the baseline period,t2 refers to the post-retrofit period,
and t refers to both periods. To ensure a fair comparison, the
projected energy savingsS(t2) under the post-retrofit condition
are calculated by Eq. (1)

S(t2) = F̃(Ni(t2),Ei(t1)) −G(Ni(t2),Ei(t2)), (1)

whereF̃(·) is the adjusted baseline when the lamp population
decays in the post-retrofit period.

In order to accurately report the savingsS(t2) in Eq. (1), the
modelling uncertainties, measurement uncertainties, andsam-
pling uncertainties must be handled properly. The modelling
uncertainty is not applicable to lighting retrofit projectswhen
the lighting energy usage is directly measured in isolation. The
measurement uncertainties are usually negligible when suitable
and high accuracy metering equipment is applied for measure-
ment. For lighting projects with large and decentralised popu-
lation, sampling uncertainty is the major contributor to the sav-
ings uncertainty. The sampling uncertainties can be reduced by
taking sufficient sample sizes with suitably selected sampling
techniques such as simple random sampling, stratified sam-
pling, systematic sampling, cluster sampling, and multi-stage
sampling [7]. In order to report the M&V savings accurately
in this study, the sample sizes for the lighting projects areopti-
mally decided to satisfy the 90/10 criterion.1

According to the previous discussions, the metering plans for
the EE lighting projects can be summarised as follows:

1) The two energy governing variables namely the survived
lamp populationNi(t) and daily energy consumption per lamp
Ei(t) in the ith lighting group need to be continuously sampled
and metered. More precisely,Ni(t) needs to be sampled reg-
ularly andEi(t) will be monitored by long-term metering over
the projects’ baseline and crediting period. Each monitored and
sampled variable must satisfy the 90/10 criterion.

2) The meters will be purchased and installed during the
baseline period. The baseline lighting system will be measured
for 3 calendar months.

3) The decay dynamics ofNi(t) will be discussed in Sub-
section 2.3. The required sample sizes for meteringEi(t) will
be decided by the proposed combined spatial and longitudinal
MCM model.

4) Meters will be installed to monitor the sampled lamp ap-
pliance individually. Meters with different functionalities and

1For the 90/10 criterion, precision is an assessment of the error marginof
the final estimate and confidence is the likelihood that the sampling result of an
estimate lies within a certain range of the true values. Following the notation of
the 90/10 criterion, x/y denotes x% confidence and y% precision in this study.

5



prices will be applied in different lighting groups. Calibration
and maintenance of the metering systems will be performed
regularly.

2.2. The sampling approach and sample size determination
According to [7], the simple random sampling approach is

applicable when the sampled units are homogeneous. However,
the stratified random sampling is most applicable for a lighting
retrofit project with multiple lighting groups, when character-
istics of the lighting units are more similar within groups than
across groups. In this study, the lighting population are firstly
stratified intoI homogenous strata and then the simple random
sampling is performed within each stratum where each light-
ing unit has the same probability of being sampled and me-
tered. The sampling uncertainties in different lighting groups
are characterised by coefficient of variation (CV), which is de-
fined as the standard deviation of the metering records divided
by the mean. CV is a positive value and a greater CV value
corresponds to a higher sampling uncertainty.

As provided in standard statistics text books [26], the initial
sample sizen0 to achieve certain confidence and precision level
of homogeneous population is calculated by

n0 =
z2CV2

p2
, (2)

wherez denotes the abscissas of the normal distribution curve
that cut off an area at the tails to give desired confidence level,
also known as thez-score, andp is the relative precision. For
the 90/10 criterion,z=1.645 for 90% confidence andp=10% as
the allowed margin of error. The values ofz at various confi-
dence levels are tabulated in many statistics books [7].zcan be
calculated by theZ-transformation formula

z=
x̄− µ
σ/
√

n
, (3)

wherex̄ is the sample mean;µ is the true mean whileσ denotes
the true standard deviation of the sampled population.

CV can be estimated from spot measurements or derived
from previous metering experience. In some cases, it may be
desirable to initially conduct a small sample for the sole pur-
pose of estimating a CV value to assist in planning the sampling
design. If CV is unknown, 0.5 is historically recommended by
[28] as the initial CV since numerous projects have shown this
to be reasonable guess for most applications. After the first
year of monitoring, the CV can be projected from the results
of the metering in the previous year, which can be used as an
updated initial CV value for the sample size determination of
the coming year. Usually more samples are required to achieve
a higher confidence level and a better precision level for a given
CV value. The initial sample sizen0 can be adjusted by Eq.
(4) [26] when the populationN is a finite number. As can be
observed in Eq. (4)

n =
n0N

n0 + N
=

CV2z2N
CV2z2 + Np2

, (4)

when N reduces from+∞ to 0, the sample size will become
smaller.

2.3. Lamp population decay modelling

As discussed in Eqs. (1) and (4), the survived lamp popula-
tion is crucial for the M&V baseline adjustment, savings cal-
culation, and sample size determination. Without an accurate
model to characterise the lamp population decay dynamics, the
survived lamp population needs to be identified by conducting
samples of questionnaires, telephone interviews, and onsite sur-
veys for various energy efficient lighting retrofit projects. The
inspections on the lamp population at different time intervals
over the projects’ crediting period are helpful for the project
performance evaluation, M&V metering plan design, and nec-
essary maintenance planning. But the regular inspection ap-
proach is usually very costly and time-consuming as such in-
spections have to be conducted repeatedly for various lighting
projects with different characteristics. In order to alleviate the
lamp population inspection burdens, the lamp population de-
cay dynamics are characterised by various models that have
been established from biological population dynamics study or
from reliability engineering experiments. For instance, previ-
ous study [6] has performed an informative review on the exist-
ing lamp population decay dynamics. In addition, [5] has pro-
posed a reliable lamp population decay model that is improved
from existing models as given in both the Poland efficient light-
ing programme evaluation report [21] and the technical report
of South African national CFL mass roll out programme [3].
The general form of the model is provided in Eq. (5)

s(τ) =
1

γ + αeβτ
, (5)

wheres(τ) is the percentage of survived devices at timeτ for a
lighting project,τ is counted from the beginning of lamp instal-
lations.α = e−L andL is the rated average life span of a certain
type of lamps. Following CDM guidelines [27], the rated av-
erage life span is declared by the manufacturer or responsible
vendor as being the expected time at which 50% of any large
number of EE devices reach the end of their individual lives.β
is the slope of decay, andγ is initial percentage lamp survival
at τ = 0. Thus, values forβ andγ can be obtained by solving
the following system of equations:















s(0) = 1,

s(L) = 0.5.
(6)

The discrete and dynamical form of model (5) is also given
in [6] and [5] as follows

s(k+ 1) = β̃γ̃s(k)2 − β̃s(k) + s(k), (7)

where s(k) is the survived percentage of the lighting project
population at thekth sampling interval. Note that for differ-
ent lighting groups, the parametersβ̃ and γ̃ are different and
they can be obtained by the system identification approach pro-
posed in [5]. Eq. (7) is further applied in the design of optimal
maintenance plans for lighting retrofit project populationby a
control system approach in [37].
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2.4. Modelling and assumptions
According to the proposed metering plan,Ei(t) needs to be

monitored by long-term measurement over the baseline and
post-retrofit periods. The measurement uncertainties and sam-
pling uncertainties must be properly handled to ensure the sat-
isfaction of the required 90/10 criterion. In order to reduce
the measurement uncertainties, the metering devices need to
be carefully selected with full consideration of their accuracy
levels and cost implications. According to [29], the key com-
ponents of the metering cost include meters procurement, in-
stallation and maintenance cost. In order to design a cost-
effective metering plan, it is suggested to use different meter-
ing devices with different procurement prices, memory capaci-
ties, data transmission functions and accuracy levels for lighting
groups with different sampling uncertainties. Hence the meters
will be selected according to the estimated CV values in various
lighting groups in this study. Particularly, ifCV < 0.25, then
less expensive meters with acceptable accuracy will be chosen.
Otherwise ifCV ≥ 0.25, then expensive and sophisticated me-
ters will be applied. In general, measurement uncertainties are
ignorable when the accuracy levels of the selected M&V meters
are much better than the 90/10 criterion.

Population Longitudinal 

Spatial 

S
a

m
p

le
 s

iz
e
s 

Group i+1:  

Group i:   

 

Year k:  

Year k+1:  

 

Figure 1: Illustrations for the metering cost minimisationmodelling.

The sampling uncertainties are analysed and handled by a
combined spatial and longitudinal MCM model in this study.
The optimisation ideas of the modelling are illustrated by Fig-
ure 1. In Figure 1, the curve (in red) with squared-markers (in
green) and the curve (in purple) with circled-markers (in or-
ange) denote the lamps with different population decay dynam-
ics over time. On the spatial domain at thekth year, the lighting
project population is classified intoI homogeneous strata ac-
cording to different sampling uncertainty levels of the daily en-
ergy consumption of an individual lamp. Letzi(k) and pi(k)
denote thez score and the precision levels in theith group,
z(k) and p(k) denote the combinedz score and precision lev-
els across all subgroups, respectively;Ni(k) and ni(k) denote
the survived lamp population and the required sample size of
the ith lighting group in thekth year, respectively;N(k) denote
the total survived lamp population in thekth year. The spa-
tial sampling uncertainties across all lighting groups in thekth

year can be analyzed as follows. LetXi(k) be the random vari-
able that denotes the daily energy consumption of an individual
lamp of theith lighting group in thekth year. From the well-
known Central Limit Theorem [12], it is assumed thatXi(k)
follows normal distributionXi(k) ∼ N(µi(k), σi(k)2) given the
large lamp population in theith lighting group, whereµi(k) is
the true mean value, andσi(k) is the true standard deviation of
the ith group in thekth year. If anyni(k) samples are drawn
from the ith lighting group, the sample mean distribution sat-
isfies a normal distribution̄Xi(k) ∼ N(µi(k), σi(k)2/ni(k)) [32].
Assume theX̄i(k)’s are independent and the combined distri-
bution for theX̄i(k)’s in all lighting groups in thekth year is
denoted byX(k) ∼ N(µ(k), σ(k)2), where the combined sample
mean value ¯x(k) for the total lighting population in thekth year
is calculated by

x̄(k) =

∑I
i=1 Ni(k)x̄i(k)

N(k)
, (8)

the true mean valueµ(k) for the total lighting population in the
kth year is calculated by

µ(k) =

∑I
i=1 Ni(k)µi(k)

N(k)
, (9)

and the true standard deviationσ(k) for the total lighting popu-
lation in thekth year is calculated by

σ(k)2 =

I
∑

i=1

(σi(k)Ni(k))2

ni(k)N(k)2
. (10)

According to Eq. (3), thez transformation function in theith
lighting group of thekth year is given by

x̄i(k) − µi(k) = zi(k) · σi(k)
√

ni(k)
, (11)

wherex̄i(k) is the sample mean of theith lighting group in the
kth year andσi(k) = x̄i(k)CVi(k). Assume that the estimated
daily energy consumptions and CV values of theith lighting
group will not change over the credit period, then the standard
deviationσi(k) of theith lighting group in thekth year will also
remain unchanged.

The combined annualzscorez(k) and relative precision level
p(k) are calculated by

z(k) =
x̄(k) − µ(k)
σ(k)

, (12)

and

p(k) =
x̄(k) − µ(k)

x̄(k)
. (13)

On the longitudinal domain over the crediting period, the
project performance may need to be reported regularly at fixed
reporting intervals, i.e., in the years ofδ = {2, 4, ...,K}, to the
project developers and relative stakeholders by M&V practi-
tioners. For both the baseline year and the reporting yearsδ,
the sampled parameters are required to satisfy a required accu-
racy level, i.e., the 90/10 criterion. It is clear that fewer samples
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are required to achieve the 90/10 criterion when the project pop-
ulation decreases. For a performance report covers the years k
and (k+ 1), the possible sample sizes over the two years might
be 30 and 10, respectively to achieve the 90/10 criterion. Then
the initial investment must be made available for 30 meters in
thekth year while the surplus 20 meters become unnecessary in
the (k + 1)th year. An optimal metering plan may be designed
to install 20 meters for both the yearsk and (k + 1), such that
a lower accuracy level, i.e., 85/15 is reached in the yeark but a
higher accuracy level, i.e., 95/5 is obtained in the year (k + 1),
while the combined accuracy level across the yearsk and (k+1)
satisfies the 90/10 criterion.

In order to quantify the sampling uncertainties on the longitu-
dinal domain, assume the installed metering system will notbe
relocated over theK years and the same sampled lighting units
will be continuously measured. And the sampled lamps need to
be monitored to ensure immediate replacement on occurrence
of a lamp failure. Thus the metered data from the Years 1 to
(k − 1) will also be analyzed together with the metered data in
thekth year. Further assume that̄X(k)’s are independent, then
the combined distribution for thēX(k)’s over theK years will
follow a normal distribution ¯χ(k) ∼ N(θ(k), Γ(k)2), where

χ̄(K) =

∑K
k=1 N(k)x̄(k)
∑K

k=1 N(k)
, (14)

θ(K) =

∑K
k=1 N(k)µ(k)
∑K

k=1 N(k)
, (15)

Γ(K)2 =

K
∑

k=1













σ(k)N(k)
∑K

k=1 N(k)













2

. (16)

Let Z(δ) and P(δ) denote cumulativez score and cumulative
precision levels by end of theδth year, respectively, then

Z(δ) =
χ̄(δ) − θ(δ)
Γ(δ)

, (17)

P(δ) =
χ̄(δ) − θ(δ)
χ̄(δ)

, (18)

whereχ̄(δ), θ(δ), andΓ(δ) are calculated by Eqs. (14)-(16), re-
spectively by substitutingδ for the valueK.

As the lamp population decays, the number of required me-
ters may also decease. If fewer meters are required in thekth
year than the available meters installed in the (k−1)th year, then
the surplus meters remain onsite for backup use. Letai , bi andci

denote the meter procurement, installation and monthly main-
tenance cost for each metering device of theith lighting group,
respectively. Then the combined spatial and longitudinal MCM
model is formulated under follow assumptions.1) The lighting
population will not decay during the baseline period. The time
for the project implementation can be ignored.2) During the
credit period, maintenance will only be performed to the active
meters.3) The inflation/deflation of the metering cost will not
be considered.4) The uncertainty of the lamp population decay
model is neglectable.

Let the design variable beλ = (λ(0), . . . , λ(k), . . . , λ(K)),
whereλ(k) = (z1(k), . . . , zI (k), p1(k), . . . , pI (k)). The objective
function is denoted by

f (λ) =
∑I

i=1(ai + bi + 3ci)ni(0)
+
∑K

k=1
∑I

i=1[12cini(k) + Bi(k)Si(k)(ai + bi)],
(19)

whereni(k) is calculated by Eq. (4); andBi(k) denotes the sur-
plus meters in thekth year, which is calculated by

Bi(k) = max(Bi(k− 1), 0)+ ni(k− 1)− ni(k),

whereBi(0) = 0, andSi(k) is the mathematical sign ofBi(k),
which is defined as

Si(k) = sgn(Bi(k)) =



















0, if Bi(k) > 0,
− 1

2 , if Bi(k) = 0,
−1, if Bi(k) < 0,

where sgn(·) is the sign function. The constraints are sum-
marised as































z(0) ≥ 1.645,
p(0) ≤ 10%,
Z(δ) ≥ 1.645,
P(δ) ≤ 10%,

(20)

whereδ = {2, 4, ...,K}; 2 z(0) andp(0) are the combinedzscore
and relative precision across all lighting groups during the base-
line period, whileZ(δ) andP(δ) are the cumulativez score and
relative precision up to theδth year in the post-implementation
period. The combined spatial and longitudinal MCM model is
denoted byC((19), (20)).

3. Case study

In this section, an optimal M&V metering plan is designed
for a lighting retrofit project as a case study to illustrate the
advantages of the proposed combined spatial and longitudinal
MCM model.

3.1. Background of the lighting project

A lighting retrofit project is going to be implemented to re-
duce the lighting load in 45 provincial hospitals in South Africa.
It is planned to install 263 519 CFLs to replace existing ineffi-
cient ICLs. In addition, 140 777 units of LEDs will be installed
to replace the less energy efficient HDLs. The 12 Watt (W)
CFLs and 6 W LEDs will be adopted to replace the 60 W ICLs
and 50 W HDLs, respectively. The ICLs are mainly installed
in office rooms and burning during 8:00-16:00 everyday. The
HDLs are installed in the corridors and hallways where mo-
tion sensors are currently in use to control the HDL lighting
systems. The CFLs and LEDs will be directly installed to re-
place the ICLs and HDLs without changing the existing light-
ing control systems. The EE lamps have equivalent lumen to

2Obviously, one can also letδ = {1,4, 7, ...,K} when other reporting inter-
vals are agreed by the project stakeholders.
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the replaced old lamps. The CFLs have a rated life of 3 years
while the LEDs have a rated life of 6 years. According to the
agreements between the project sponsors and project develop-
ers (PDs), the energy saving performance of this project must
be verified and reported in every 2 years’ interval over the 10
years’ crediting period. PDs are responsible for the M&V cost
that at least covers the metering system procurement, installa-
tion and maintenance. The energy consumption of the lighting
system will be sampled and measured over the 3 months’ base-
line period and the entire crediting period.

The involved lamps are naturally classified into two sub-
groups according to their different daily energy consumption
uncertainties. Group I is the 263 519 ICLs and Group II is the
140 777 HDLs. The lighting classification remains unchanged
after project implementation. The energy consumption uncer-
tainties can be estimated by spot measurement during the on
site project survey. For instance, the estimated daily energy
consumption per lamp in Group I is 0.48 ± 0.09 kWh in the
baseline period and 0.096± 0.018 kWh in the crediting period.
CV value of the daily energy consumption per lamp in Group I
is around 0.19. The energy consumption uncertainties in Group
II are greater than those in Group I as the lamps are controlled
by the motion sensors. In this case, a CV value as high as 0.5
is recommended by [28] for Group II over both the baseline
and crediting periods. The estimated daily energy consumption
per lamp in Group II is 0.20± 0.10 kWh in the baseline period
and 0.024± 0.012 kWh in the crediting period based on an as-
sumption that on average the lamps are burning 4 hours per day
with low confidence. Since the energy consumption behaviours
in Group II change more frequently than those in Group I, the
metering devices to be installed in Group II should be more ad-
vanced, i.e., with more intelligent control units, faster sampling
frequency, and larger memory capacity. The Group II meters
are capable of capturing the real time energy consumption in
both lighting groups but Group I meters are not applicable for
the measurements in Group II. More detailed project informa-
tion is summarised in Table 1 from the on site project survey.

Table 1: Lighting project details.
Parameters Group I Group II
Meter unit price a1=R 876 a2=R 3 146
Installation per meter b1=R 195 b2=R 320
Monthly maintenance c1=R 45 c2=R 98
CV values CV1(k) = 0.19 CV2(k) = 0.50
Baseline estimates ¯x1(0) = 0.48 kWh x̄2(0) = 0.20 kWh
Post-retrofit estimates ¯x1(k) = 0.096 kWh x̄2(k) = 0.024 kWh
Coefficient β̃ in Eq. (7) β̃1 = 1.1438 β̃2 = 1.0297
Coefficient γ̃ in Eq. (7) γ̃1 = 0.8553 γ̃2 = 0.9201

Once the coefficientsβ̃ andγ̃ in Eq. (7) are identified with the
given lamp life span, the lamp population decay dynamics are
determined for the studied project. In Figure 2, the horizontal
axis denotes the count of years where Yeark corresponds to the
duration [k, k+1). For instance, Year 0 corresponds to the du-
ration [0,1), denoting the baseline period and Years 1-10 corre-
spond to the duration [1,11), denoting the crediting period. The
vertical axis denotes the survived lamp population. It shows
that Group I has a greater initial lamp population. However,as
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Figure 2: Survived lamp populations.

the CFLs have shorter life spans than the LEDs, the lamp pop-
ulation in Group II becomes greater than that in Group I from
Years 5-10 of the lighting project.

The optimal metering plan can be obtained by solving the
modelC((19), (20)) with the application of the project specific
information as given in Table 1. Solutions are calculated us-
ing the software program [24]. In particular, the optimal solu-
tions are computed by the “fmincon” code of the Matlab Opti-
misation Toolbox. The optimisation settings of the “fmincon”
function are shown in Table 2, where a search starting point
λ0 and the boundaries of the design variable are also assigned.
From a mathematical perspective, the sample sizes, which are

Table 2: Optimisation settings.
Categories Options
Algorithm interior-point
TolFun 10−45

TolCon 10−45

TolX 10−45

Hessian ‘lbfgs’, 20
lb: (zi (k), pi (k)) (0, 0)
ub: (zi (k), pi (k)) (+∞, 1)
λ0: (zi (k), pi (k)) (0.2, 0.2)

integer numbers, must be solved through integer programming
algorithms. Since this study arises from the practical issues
of minimising the metering cost, real-valued sample sizes are
used during the optimisation. After the optimal solutionλ∗ is
found, theceil function is applied to obtain the integer sam-
ple sizes. Mathematically, the rounded sample sizes by the
ceil function are only sub-optimal solutions. Henceforth, the
terms “optimal/optimise” and “minimal/minimise” refer to the
rounded sub-optimal solutions.

The studied hospital lighting retrofit project includes differ-
ent lighting groups with different daily energy consumption un-
certainties. In addition, these lighting groups exhibit different
lamp life spans and population decay dynamics. The project
characteristics strongly indicate the applicability of the com-
bined spatial and longitudinal MCM model as discussed in Sec-
tion 2. In order to fully reveal the superiority of the proposed
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modelC((19), (20)), the optimal solutions obtained solely by
the spatial MCM model in [35] and the longitudinal MCM
model in [36] are also given in the following subsections for
comparison purposes.

3.2. Benchmark and optimal solutions
In order to maximise the PDs’ profits, the proposed MCM

modelC((19), (20)) will be applied to find the most suitable
M&V metering plan for the hospital lighting retrofit project.
As to demonstrate the advantages of the proposed combined
spatial and longitudinal MCM model, the metering plan with-
out optimisation is calculated as a benchmark for comparison
purpose.

For the hospital lighting retrofit project, a possible solution
without optimisation might be that the 90/10 criterion is applied
to the sampling target in both lighting Groups I and II, where
λi(k) = (1.6451(k), 1.6452(k), 0.11(k), 0.12(k)). The correspond-
ing z scores, precisions, sample sizes and metering costs are
calculated as shown in Table 3. It shows that the precision
levels are better than 10% while the lowestz score is greater
than 1.645 for each monitoring report. The total metering cost
over the baseline and crediting period is R 1 115 732. In this
scenario, the expected sampling accuracy is better than there-
quired 90/10 criterion, which is not necessary.

Table 3: Metering cost without optimisation.
Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.9665 95.06% 9.90% 10 68 R 267 740
1 1.8500 93.57% 9.89% 10 68 R 85 368
2 2.6234 99.13% 9.89% 10 68 R 85 368
3 3.2122 99.87% 9.90% 10 68 R 85 368
4 3.6682 99.98% 9.90% 10 68 R 85 368
5 3.9677 99.99% 9.90% 10 68 R 85 368
6 4.1110 100% 9.90% 10 68 R 85 368
7 4.1617 100% 9.90% 10 68 R 85 368
8 4.1747 100% 9.90% 10 68 R 85 368
9 4.1767 100% 9.90% 9 68 R 85 368

10 4.1769 100% 9.90% 7 65 R 85 368
Total n/a n/a n/a 10 68 R 1 115 732

3.2.1. Spatial optimisation
The spatial MCM model in [35] aims to balance the sam-

pling uncertainties across lighting groups by assigning optimal
confidence and precision levels to the lighting groups with dif-
ferent energy consumption uncertainties. For this case study,
the spatial optimisation model is formulated as follows. The
design variable isλ = (λ(0), . . . , λ(k), . . . , λ(K)), whereλ(k) =
(z1(k), z2(k), p1(k), p2(k)), k = 0, 1, . . . ,K. The objective func-
tion is given in Eq. (19), which is subject to the constraints

{

z(k) ≥ 1.645,
p(k) ≤ 10%.

(21)

The spatial optimisation model is denoted byS((19), (21)). The
model S((19), (21)) is solved with the initial values given in
Table 1 and the optimisation settings in Table 2. The obtained
confidence levels, precision levels, and optimal sample sizes
are shown in Figures 3-4. In addition, the numerical optimal
solutions and metering cost are summarised in Table 4.
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Figure 3: Confidence levels (spatial optimal only).

In Figures 3-4, the horizontal axes denote the counter of
years. In Figure 3, optimal confidence and precision levels are
presented, where the dashed line (in blue) and the solid line
(in red) denote the confidence and precision levels for Groups
I and II, respectively; the dash-dotted line (in green) denotes
the combined confidence and precision levels across lighting
groups over thekth year, while the starred line (in black) de-
notes the cumulative confidence and precision levels up to the
kth year. As shown by the dash-dotted lines (in green) in both
sub-figures of Figure 3, the constraints in Eq. (21) are satisfied.
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Figure 4: Sample sizes (spatial optimal only).

In Figure 4, the sample sizes in Group I and Group II are
denoted by the dashed line (in blue) and the solid line (in red),
respectively. The total sample sizes are denoted by the starred
solid line (in black). It is observed that the sample sizes in
Group I is greater than those in Group II during the years [0,
5) but becomes smaller than those in Group II during the years
[6, 11). As discussed in [35], the sample sizes change when
population changes. To achieve a certain level of sampling ac-
curacy, greater number of samples are usually required for a
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bigger sampling population. However, it is worthy mentioning
that in Year 5,N1(5) < N2(5) but n1(5) > n2(5) as shown in
Figure 4. The reason is that the modelS((19), (21)) attempts
to use as many as less expensive meters in Group I in order to
minimise the total metering cost.

In Table 4,Z(k) is translated into the confidence levelsC(k).
One may be surprised to see that more samples are required
when population decays in Group II. This is because that Group
II has a relatively greater population and a higher CV than those
in Group I in the years [6, 10), which results in requiring greater
sample sizes to satisfy the desired sampling accuracy.

Table 4: Metering cost with spatial optimisation.
Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.6452 90.01% 9.58% 12 6 R 37 032
1 1.6448 90.00% 9.73% 12 3 R 10 008
2 2.3185 97.96% 9.59% 12 4 R 11 184
3 2.8278 99.53% 9.64% 12 4 R 11 184
4 3.2124 99.87% 9.64% 12 6 R 13 536
5 3.4659 99.95% 9.65% 12 9 R 27 462
6 3.5883 99.97% 9.66% 12 18 R 58 842
7 3.6331 99.97% 9.66% 10 33 R 96 198
8 3.6447 99.97% 9.66% 11 44 R 95 810
9 3.6464 99.97% 9.66% 12 44 R 58 224

10 3.6466 99.97% 9.66% 10 36 R 47 736
Total n/a n/a n/a 12 44 R 467 216

3.2.2. Longitudinal optimisation
The longitudinal MCM model proposed in [36], with its im-

provements provided in [5], aims to balance the sampling un-
certainties across adjacent reporting years by designing optimal
confidence and precision levels in each reporting years. Forthis
case study, the longitudinal optimisation model is formulated as
follows. The design variable isλ = (λ(0), . . . , λ(k), . . . , λ(K)),
whereλ(k) = (z1(k), z2(k), p1(k), p2(k)), k = 1, . . . ,K. The ob-
jective function is given in Eq. (19) that is subject to the con-
straints































zi(0) ≥ 1.645,
pi(0) ≤ 10%,
Zi(δ) ≥ 1.645,
Pi(δ) ≤ 10%.

(22)

AssumeX̄i(k)’s are independent over the years [0, K), then the
X̄i(k)’s over theK years of theith lighting group will follow a
normal distribution ¯χi(k) ∼ N(θi(k), Γi(k)2), where

χ̄i(K) =

∑K
k=1 Ni(k)x̄i(k)
∑K

k=1 Ni(k)
, (23)

θi(K) =

∑K
k=1 Ni(k)µi(k)
∑K

k=1 Ni(k)
, (24)

Γi(K)2 =

K
∑

k=1













σi(k)Ni(k)
∑K

k=1 Ni(k)













2

. (25)

Let Zi(δ) andPi(δ) denote cumulativez score and the cumula-
tive precision levels by end of theδth year of theith lighting
group, respectively, then

Zi(δ) =
χ̄i(δ) − θi(δ)
Γi(δ)

,

and

Pi(δ) =
χ̄i(δ) − θi(δ)
χ̄i(δ)

,

whereχ̄i(δ), θi(δ), andΓi(δ) are calculated by Eqs. (23)-(25),
respectively by substitutingδ for the valueK. The longitudi-
nal optimisation model is denoted byL((19), (22)). The model
L((19), (22)) is solved with the initial values given in Table 1
and the optimisation settings in Table 2. The obtained con-
fidence levels, precision levels and optimal sample sizes are
shown in Figures 5-6. In addition, the numerical optimal so-
lutions and metering cost are summarised in Table 5.
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Figure 5: Confidence levels (longitudinal optimal only).

Figures 5-6 share the same presentation style as Figures 3-4
in terms of the horizontal and vertical axes. In Figure 5, optimal
confidence and precision levels are presented, where the dashed
line (in blue) and the solid line (in red) denote the confidence
and precision levels for Groups I and II, respectively; the starred
line (in black) denotes the cumulative confidence and precision
levels up to thekth year; in addition, the dotted line (in purple)
and the circle line (in green) denote the cumulative confidence
and precision levels up to thekth year in theith lighting group.
As shown by the dotted lines (in purple) and the circle lines
(in green) in both sub-figures of Figure 5, the constraints in
Eq. (22) are satisfied.

In Figure 6, the sample sizes in Group I and Group II are
denoted by the dashed line (in blue) and the solid line (in red),
respectively. The total sample sizes are denoted by the starred
solid line (in black). In Figure 6, the samples required during
the baseline period are determined without optimisation. Dur-
ing the reporting period, the required sample sizes within every
two years’ reporting interval are very close. For instance,35
and 34 samples are required in Years 1-2 while 11 and 10 sam-
ples are required in Years 3-4 in Group II. Similar sample size
commitment pattern is also observed in Group I. The samples
are optimally decided over the reporting period within lighting
groups with the application of the modelL((19), (22)). How-
ever, it is expected that the metering cost can be further min-
imised when spatial optimisation ideas can also be incorporated
during both the baseline and reporting periods.
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Figure 6: Samples sizes (longitudinal optimal only).

Table 5: Metering cost with longitudinal optimisation.
Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.9655 95.06% 9.90% 10 68 R 267 740
1 1.4179 84.38% 9.80% 6 35 R 44 400
2 1.8639 93.77% 9.48% 5 34 R 42 684
3 1.7629 92.21% 8.67% 2 11 R 14 016
4 1.9278 94.61% 9.41% 1 10 R 12 300
5 1.9577 94.97% 9.09% 1 6 R 7 596
6 2.0113 95.57% 9.06% 1 4 R 5 244
7 2.0192 95.65% 9.00% 1 2 R 2 892
8 2.0267 95.73% 9.01% 1 1 R 1 716
9 2.0268 95.73% 9.01% 1 1 R 1 716

10 2.0268 95.73% 9.01% 1 1 R 1 716
Total n/a n/a n/a 10 68 R 402 020

3.2.3. Combined spatial and longitudinal optimisation
In this subsection, the combined spatial and longitudinal

MCM modelC((19), (20)) is solved with the initial values given
in Table 1 and the optimisation settings in Table 2. The obtained
confidence levels, precision levels and optimal sample sizes are
shown in Figures 7-8. In addition, the numerical optimal solu-
tions and metering cost are summarised in Table 6.

Table 6: Metering cost with combined spatial and longitudinal optimisation.
Year Z(k) C(k) P(k) n1(k) n2(k) Cost (R)

0 1.6585 90.28% 9.65% 14 5 R 35 684
1 1.2148 77.55% 9.21% 7 2 R 6 132
2 1.6727 90.56% 9.28% 6 2 R 5 592
3 1.6680 90.47% 9.22% 2 1 R 2 256
4 1.7252 91.55% 8.96% 2 1 R 2 256
5 1.7276 91.59% 8.69% 1 1 R 1 716
6 1.7540 92.06% 8.64% 1 1 R 1 716
7 1.7529 92.04% 8.55% 1 1 R 1 716
8 1.7549 92.07% 8.54% 1 1 R 1 716
9 1.7550 92.07% 8.54% 1 1 R 1 716
10 1.7550 92.07% 8.54% 1 1 R 1 716

Total n/a n/a n/a 14 5 R 62 216

In Figure 7, optimal confidence and precision levels are pre-
sented, where the dashed line (in blue) and the solid line (inred)
denote the confidence and precision levels for Groups I and II,
respectively; the starred line (in black) denotes the cumulative

confidence and precision levels up to thekth year. As shown by
the starred lines (in black) in both sub-figures of Figure 7, the
constraints in Eq. (20) are satisfied.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

C
on

fid
en

ce
 le

ve
ls

 

 
Group I Group II Yearly Cumulative

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Time: Year

P
re

ci
si

on
 le

ve
ls

 

 
Group I Group II Yearly Cumulative

Figure 7: Confidence and precision levels (combined optimisation).

In Figure 8, the sample sizes in Group I and Group II are
denoted by the dashed line (in blue) and the solid line (in red),
respectively. The total sample sizes are denoted by the starred
solid line (in black). As can be seen in Figure 8, the samples
required during the baseline period are determined solely by
spatial optimisation. In addition, as both the spatial and longi-
tudinal MCM ideas are applied during the reporting period, the
required sample sizes are optimised whereas the metering cost
is significantly reduced.

4. Model performance comparison and discussion

In Section 3, four different M&V metering plans have been
obtained for the same lighting retrofit project by the no optimi-
sation approach, the spatial MCM approach, longitudinal MCM
approach, and the combined spatial and longitudinal MCM ap-
proach, respectively. Detailed numeric solutions obtained from
the four approaches are provided in Tables 3-6. In order to com-
pare the performance among the four approaches, key informa-
tion in terms of the sample sizes and the M&V metering cost
are also presented graphically as shown in Figures 9-11. In
Figures 9-10, the horizontal axis denotes the counter of years
where Year 0 denotes the baseline period and Years 1-10 de-
note the crediting period. The vertical axis denotes the sample
sizes. And in Figures 9-10, legend “Benchmark” (in red) de-
notes the sample sizes obtained without optimisation; legend
“Spatial” (in green) denotes the sample sizes obtained by the
spatial MCM model; legend “Longitudinal” (in purple) denotes
the sample sizes obtained by the longitudinal MCM model; and
legend “Combined” (in blue) denotes the sample sizes obtained
by the combined spatial and longitudinal MCM model. Data la-
bels are given in Figures 9-10 to denote the benchmark sample
sizes. The M&V metering cost obtained by the four approaches
are shown in Figure 11. Figure 11 has two vertical axes, in
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Figure 8: Sample sizes (combined optimisation).

which the primary axis denotes the M&V metering cost (in
Rand), and the secondary axis denotes the percentage of cost
savings against the benchmark, which is calculated as

Cost saving(%) =
Benchmark cost−Optimised cost

Benchmark cost
.

More precisely, comparing to the benchmark, the spatial MCM
model saves 58%, the longitudinal MCM model saves 64%, and
combined spatial and longitudinal MCM model saves 94% of
the metering cost that would have been spent without optimi-
sation. Thus the modelC((19), (20)) offers a minimal meter-
ing cost in terms of total metering cost of the hospital lighting
project without violating the sampling accuracy requirements.
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Figure 9: Sample size comparison in Group I.

The presented case study suggests that three MCM models
C((19), (20)), S((19), (21)), andL((19), (22)) are all useful in
designing the optimal M&V metering plans for lighting retrofit
projects. When lighting projects have multiple homogeneous
lighting groups with different sampling uncertainties, the spatial
MCM modelS((19), (21)) is most applicable when the lighting
population is properly maintained to avoid lamp populationde-
cay. If no lighting maintenance activities are carried out,then
the lamp population will decay as time goes by. In such a case,

the longitudinal MCM modelL((19), (22)) is most applicable to
optimise the sample sizes within reporting intervals for each ho-
mogeneous lighting groups. Also learnt from the case study,the
modelC((19), (20)) exhibits the best performance in terms of
metering cost minimisation whilst satisfying the required90/10
criterion for each reporting interval.

In order to apply the modelC((19), (20)) more flexibly, the
lamp population decay dynamics for different homogeneous
lighting groups need to be specifically identified by addressing
the lamps’ life spans, usage patterns, and technologies. Inaddi-
tion, if the lighting retrofit projects are sponsored under differ-
ent EEDSM programmes, then performance reporting schedule
δ in the modelC((19), (20)) may be altered, which will result
in different optimal sample size regimes. Moreover, it is likely
that the M&V practitioners may need to design optimal M&V
metering plans under different sampling accuracy requirements
other than the 90/10 criterion. The optimal sample size regimes
and relative metering cost are also calculated and providedin
Table 7. It is obvious that better sampling accuracy requirement
implies higher M&V metering cost over the project crediting
period. For instance, requiring the 99/1 criterion for sampling
implies higher metering cost than the 90/10, 85/5, and 95/5 cri-
teria.
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Figure 10: Sample size comparison in Group II.
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Figure 11: Metering cost comparison.

13



Table 7: Metering costs for different accuracy criteria.

Criteria 85/5 95/5 99/1

Year n1(k) n2(k) Cost (R) n1(k) n2(k) Cost (R) n1(k) n2(k) Cost (R)
0 41 14 R 102 086 76 26 R 189 416 3 268 1 080 R 8 002 008
1 19 5 R 16 140 35 9 R 29 484 1 488 362 R 1 229 232
2 17 5 R 15 060 31 9 R 27 324 1 348 349 R 1 138 344
3 7 2 R 6 132 11 4 R 10 644 454 138 R 407 448
4 5 2 R 5 052 8 3 R 7 848 313 125 R 316 020
5 2 2 R 3 432 4 3 R 5 688 160 106 R 211 056
6 1 1 R 1 716 2 2 R 3 432 55 73 R 115 548
7 1 1 R 1 716 1 1 R 1 716 14 33 R 46 368
8 1 1 R 1 716 1 1 R 1 716 1 12 R 14 652
9 1 1 R 1 716 1 1 R 1 716 1 5 R 6 420
10 1 1 R 1 716 1 1 R 1 716 1 2 R 2 892

Total 41 14 R 156 482 76 26 R 280 700 3 268 1 080 R 11 489 988

5. Conclusion

In this study, a combined spatial and longitudinal MCM
model is proposed to assist the optimal M&V metering plan de-
signs of the EE lighting retrofit projects. The proposed model is
capable of designing optimal M&V metering plan for lighting
projects that have multiple homogeneous lighting groups but
with different lamp population decay dynamics across lighting
groups. With the application of this model, the M&V meter-
ing cost is minimised by optimising the confidence and preci-
sion levels in different lighting groups over the projects’ cred-
iting period. As illustrated by the case study, the combined
spatial and longitudinal MCM model is able to reduce 94%
of the M&V metering cost that would have been spent under
the no optimisation scenario, which exhibits better performance
in terms of minimising the M&V metering cost under specific
sampling accuracy requirements than both the spatial MCM and
longitudinal MCM models. The proposed combined spatial and
longitudinal MCM model can be flexibly applied to other sim-
ilar lighting retrofit projects with different technologies, differ-
ent project population variations, different reporting intervals,
and different sampling accuracy requirements.

However, besides the advantages of the combined spatial and
longitudinal MCM model, the proposed model has the follow-
ing limitations: 1) this model focuses on handling samplingun-
certainties cost-effectively in the M&V process, but pays less
attention to the modelling and measurement uncertainties;2)
extra efforts are required to characterise the population decay
dynamics when applying this model to design optimal M&V
metering plans for other technologies.
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