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Abstract

Measurement and Verification (M&V) has become an indisplelesarocess in various incentive enerdli@ency and demand
side management (EEDSM) programmes to accurately andbiyefizeasure and verify the project performance in terms ef@gn
andor cost savings. Due to the uncertain nature of the unmeaisusavings, there is an inherent tradémetween the M&V
accuracy and M&V cost. In order to achieve the required M&\wacy cost-ffectively, we propose a combined spatial and
longitudinal metering cost minimisation (MCM) model to m$she design of optimal M&V metering plans, which miningshe
metering cost whilst satisfying the required measuremedtsampling accuracy of M&V. The objective function of th@posed
MCM model is the M&V metering cost that covers the procuretmimstallation and maintenance of the metering system adeer
the M&V accuracy requirements are formulated as the coingsraOptimal solutions to the proposed MCM modéleo useful
information in designing the optimal M&V metering plan. Thdvantages of the proposed MCM model are demonstrated by
a case study of an EE lighting retrofit project and the modeligely applicable to other M&V lighting projects with fierent
population sizes and sampling accuracy requirements.
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a = e-, wherelL is the rated average life span 0
of a certain type of lamp y

the random variable denoting the cumulative
sample mean across all lighting groups up to ther(K)
Kth crediting year

the cumulative sample mean of tth lighting

roup up to th&Kth crediting year
group up gy Ti(K)

the sample mean

the random variable denoting sample mean of
the daily energy consumption per lamp acrossy
all lighting groups in théth year

the sample mean of the daily energy consump-,
tion per lamp across all lighting groups in the
kth year

the random variable denoting the sample mean,,
of the daily energy consumption per lamp of the
ith lighting group in thekth year Ao

the sample mean of the daily energy consump-
tion per lamp of theath lighting group in thekth
year

p(k)
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the codficient related to the slope of the lamp
decay

theésth year, 1< § < K

the codficient related to the initial percentage
lamp survival atr=0

the random variable denoting the cumulative
standard deviation across all lighting groups up
to theKth crediting year

the random variable denoting the cumulative
standard deviation of thigh lighting group up
to theKth crediting year

the set of post-implementation energy govern-
ing factors

the design variable 2
20),...,AK),...,AK)), where A(k)
@K, ....z(K), puk),...,pK)

the optimal solution

the search starting point to solve the optimisa-
tion model

the true mean

the true mean of the daily energy consumption
per lamp across all lighting groups in tlkéh
year
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the true mean of the daily energy consumptionN

per lamp of theth lighting group in thekth year
n

N(k)

the set of baseline energy governing factors
the standard deviation

the true standard deviation of the daily energyp,
consumption per lamp across all lighting groups

in thekth year

- _ Ni(K)
the true standard deviation of the daily energy
consumption per lamp of thi¢h lighting group
in thekth year, andr;(k) = X (K)CV;(K) ni(K)

the time after a lamp installation

Ni (t)

the random variable denoting the cumulative
true mean across all lighting groups up to the
Kth crediting year Gi(t)

the random variable denoting the cumulative
true mean of théth lighting group up to th&th p
crediting year

P(9)
the codficient in the discrete lamp population
decay model

— : Pk
the codficient in the discrete lamp population
decay model

L . o Pi(0)
the individual meter device cost in tlih light-
ing group

: . , _ pi(K)
the installation cost per meter in tité lighting
group

R P

the backup meters of thi¢h lighting group in
thekth year,B;(0)=0
the monthly maintenance cost per meter in thes(tZ)
ith lighting group (1)
the codficient of variation Si(K)
the estimated CV value of th#h lighting group
in thekth year t
the daily energy consumption per lamp of the
ith lighting group at time ty
the baseline energy model t
the post-implementation energy model TolCon
the total lighting groups TolEun
the counter of lighting groups TolX
the total project crediting years ub

the counter of project crediting years, where
k=0 denotes the baseline period X(K)

the lower bound of the design variable

the lighting population
the sample size after population adjustment

the total survived lamp population in tHeh
year

the initial sample size before population adjust-
ment

the lighting population of théh lighting group
in thekth year

the sample size of thigh lighting group in the
kth year

the lamp population of thigh lighting group at
timet

the lamp daily burning hours of th#h lighting
group at timet

the relative precision

the cumulative precision level across all lighting
groups up to théth crediting year

the combined relative precision across all light-
ing groups in theth year

the cumulative precision level of thih lighting
group up to theth crediting year

the relative precision of thigh lighting group in
thekth year

the lamp rated power of tH#h lighting group at
timet

the reported energy savings
the percentage of survived lamps at time

the mathematical sign d&; (k) of theith lighting
group in thekth year

the project duration including both baseline and
post-implementation periods

the project baseline period

the project post-implementation period
the tolerance on the constraint

the tolerance on the function value

the tolerance on the design variable
the upper bound of the design variable

the random variable denoting the daily energy
consumption per lamp across all lighting groups
in thekth year



Xi(K)

the random variable denoting the daily energy UNFCCC United Nations framework convention on cli-

consumption per lamp of thi¢h lighting group mate change
In thekth year usD United States dollar
z the abscissas of the normal distribution curve Watt
that cut df an area at the tails to give desired
confidence level, also known ascore
1. Introduction
Z(5) the cumulative-score across all lighting groups - _ )
up to thesth crediting year Measurement and Verification (M&V) is the process of using
measurement to accurately and reliably determine the gavin
Z(k) the combined-score across all lighting groups delivered by an energy conservation measure (ECM) [11]. The
in thekth year M&YV process is introduced in detail in various M&V guide-
. s lines, such as the IPMVP [11], the ASHRAE Guideline 14 [1],
Z(9) the cumulat|vez-§qore of theith lighting group the California energyféciency evaluation protocol [25], and
up to thesth crediting year the localised M&V guideline in South Africa [10]. The best
z(K) the z-score of theith lighting group in thekth ~ Practice and experience of M&V usuallyfer valuable feed-
year backs of the project performance, i.e., energy or cost gauim
the project developers for energiieiency (EE) technology de-
Abbreviations ployment and project design. M&V has thus become an indis-
. S pensable process in various incentive EE programmes such as
R coefficient of determination clean development mechanism (CDM) [20], tradable white cer
ASHRAE American society of heating, refrigerating, and tificate (TWC) scheme [2], demand side management (DSM)
air-conditioning engineers programmes [10], and performance contracting [30]. Aceord
ing to [11], the most crucial part of the entire M&V process
CDM clean development mechanism is the design of an M&V plan, in which baseline modelling
CFL compact florescent lamp and savings fjetermination methodologies are proposedawith
proper metering plan for the measurement of the relevant M&V
Ccv codficient of variation data. The M&V savings are inherently uncertain as they are na
_ urally inexist and not directly measurable [19]. As sumrsedli
DLC direct load control in [11] and [1], the quantifiable savings uncertainties anme
ECM energy conservation measure prised of the measurement uncertainty, sampling unceéytain
and modelling uncertainty. A number of existing M&V studies
EEDSM energy fliciency and demand side managementhave proposed various baseline modelling techniques tb dea
) ) o with the modelling uncertainties that arise from the impop
EVO efficiency valuation organization mathematical function form, inclusion of the irrelevantiva
HDL halogen downlighter ables or exclusion of relevant variables. For example, [H5]
proposed a normative energy model based on Bayesian calibra
HERO home energy rebatdéfer tion, which is able to model the energy consumption pattegrns
. large sets of buildingsficiently with quantifiable uncertainties
ICL incandescent lamp associated with model parameters. In [4], an M&V approach
IPMVP international performance measurement andS Proposed to compare actual energy performance of a build-
verification protocol ing with its theoretical performance using calibrated hair
modelling. Diferent accuracy indicators such as the normalised
kW h kilowatt-hour root mean squared error (RMSE), relative bias, and median of
. -~ . the absolute relative total error are adopted in [13] toneeste
LED light-emitting diode the accuracy performance of five statistical baseline nddel
M&V measurement and verification M&V applications. Regression models have been adopted in
) S the following studies to develop baseline models for M&Vpur
MCM metering cost minimisation poses with detailed model identification and validation fgy t
: uncertainty indicators of cdigcient of determinationR¢), and
va not applicable codficient of variation of the RMSE (CVRMSE). Statistical
PD project developer criteria to assess goodness-of-fit of baseline models mger
) of the R> and CVRMSE are discussed in [23]. And [16] de-
R South African currency Rand velops a regression model to characterise the relatiorskip
RMSE root mean squared error tween daily energy consump_tion and energy governing factor
such as degree days, humidity, and fuel prices to assesa+the e
TWC tradable white certificate ergy saving performance of the Louisiana Home Energy Rebate



Offer (HERO) programme. In order to quantify the industrial The major reason is that sub-metering of the entire lighting
energy savings, [17] uses multi-variable piece-wise regjoe  population implies prohibitive measurement and samplosi.c
models to develop energy baselines, which can be adjusted yhe design of costfiective metering plans to achieve the re-
weather and production data over the post-retrofit periad. | quired sampling accuracy criterion with proper sample bize
[9], a primary multiple regression model is derived as a limse comes more diicult when the lamp population is large and de-
model by incorporating three weather parameters, namely, o centralised. Ref. [35] has proposed a spatial meteringuoivst
door temperature, relative humidity, and global solaratidh.  imisation (MCM) model to balance the sampling uncertagtie
Linear regression models are constructed in [8] for bas@at  across lighting groups. The idea in [35] is to minimise theasa
ibration in order to quantify the energy and demand savitngs d ple sizes and metering cost for CDM lighting EE projects by as
to installation of motor sequencing controller on the cgmre  signing optimal confidence and precision levels to the iight
belt. In addition, [31] introduces a cross-validation noethio ~ groups with dfferent energy consumption uncertainties. The
compute the baseline model uncertainty. Besides the nmiodell model in [35] is applicable and useful in optimising the M&V
uncertainties of M&V, the measurement uncertainties Ugual metering plan, but lacks of considerations on lighting dapu
come from inappropriate calibration of the metering equépin  tion decay dynamics over the projects’ life cycle. In preeti
inexact measurement procedure, or improper meter satectiothe lamp population will decay due to the lamp breakaget thef
installation or operation; and the sampling uncertaintessilt ~ or other unpredicted damages. Sampling theory [26] ind&cat
from inappropriate sampling approaches or ffisient sample that the sample size can be reduced when the sampled popula-
sizes [1]. tion size becomes smaller. Several studies have proposed lo
Although M&V metering plans can be designed to handle thegitudinal MCM models to balance the sampling uncertainties
measurement uncertainties by applying sophisticateduneas across adjacent reporting years. The idea is to reduce thé M&
ment instruments while reducing the sampling uncertariiie  metering cost for lighting EE projects by optimally deciglitme
taking suficient sample sizes, M&V practitioners cannot enjoy required confidence and precision levels iffetient reporting
such a luxury due to limited budgets for the projected savingyears over the projects’ crediting period. For instanagdlists
verification, given that [11] clearly states that the anivi&V [34] and [36] present a longitudinal MCM model by incorpo-
cost should be less than 10% of the annual savings realised bgting a liner lamp population decay model that is widelyduse
the EE projects. Hence M&V practitioners and project devel-in CDM lighting projects. The longitudinal MCM model pro-
opers have great interest in designing the optimal M&V me-vided in [34] and [36] is further improved in [5], which pralés
tering plan that helps to verify the savings accurately avsl-c  more detailed discussions on the lamp population decay mod-
effectively. An M&V metering plan obtained by professional els, weighted measurement impacts, and price inflationiseof t
judgements of M&V practitioners may be far from optimal, es- metering devices. The longitudinal MCM models in [34], [36]
pecially when there are particular requirements on the M&Vand [5] are applicable to lighting projects with homogersou
accuracy and M&V cost. In order to minimise the meteringlighting population that shares the same energy usagepatte
cost, and thus to maximise the project developers’ profi, th and population decay dynamics.
study aims to design a cosffective metering plan to satisfy =~ On summary of existing M&V studies, the optimal M&V
M&YV accuracy requirements. metering plans can be designed 1) without optimisation but
An obvious observation is that the metering cost is lowerby professional judgements; 2) by applying the spatial MCM
whenever fewer samples are measured. However, the sample®del for project with no population decay; 3) by using the
to be measured in some existing M&V case studies do not seefangitudinal MCM model to projects with homogeneous light-
to have been determined optimally. In [18], instantaneais d ing population and similar population decay dynamics. How-
mand meters and run-time loggers are installed to monité 10 ever in practice, solely using the spatial or longitudinalM
of the lighting fixtures’ energy consumption. Ref. [14] pro- modelis instficient to accommodate lighting projects that have
poses to quantify the load reduction from a residential-elecmultiple homogeneous lighting groups but witlffdrent energy
tric water heater load control programme by a “notch” test onconsumption patterns and population decay dynamics across
substation level in order to reduce the metering and sagplingroups. In this study, a combined spatial and longitudin@N¥
cost of M&V. However, substations are not easily access$dyle model is proposed to further reduce the lighting project me-
common M&YV practice. In [22], a “deemed savings estimates’tering cost by balancing the sampling uncertainties botx sp
M&YV approach is proposed by modelling historical data, vhhic tially across homogeneous lighting groups and longitutlina
are sampled from 288 end users of the regional direct load coracross adjacent reporting years. In this model, the desigh v
trol (DLC) programmes. ables are the required annual confidence and precisiors lierel
The general mathematical description of the optimal M&V each lighting group. The objective function is a cost funeti
metering plan problem has been proposed in [33]. Howevethat covers the procurement, installation and maintenaffice
with the guidance of [33], the optimal M&V metering plan the metering system for M&V. The sampling accuracy require-
for various M&V projects needs to be redeveloped with thements are formulated as the constraints. In order to demasast
consideration of project specific budget plans, technekgi the advantages of the proposed MCM model, an optimal me-
measurement complexities, accuracy requirements, ang- poptering plan is designed for a lighting retrofit project withat
lation sizes. Among these projects, the optimal meterilag pl homogeneous lighting groups as a case study. Optimal solu-
for lighting retrofit projects has attracted considerabkearch. tions for the case study are obtained by the proposed comhbine
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spatial and longitudinal MCM model with the consideratidn o of energy governing factors that determines the lightingren
the project specific characteristics. The optimal solipro- consumption in the baseline and post-retrofit periods,eesp
vide useful and dicient M&V metering plan information such tively. For the lighting technologys(¥) and G(¥) should at
as the required lighting samples to be measured in each lighkeast include the following energy governing variables, ithe
ing groups, the achieved sampling accuracy in terms of confilamp populationN;(t), rated powetP;(t), and daily operating
dence and precision levels as well as the annual and total M&Wours O;(t). In order to simplify the measurement and sam-
metering cost for the studied lighting project. In addititimee  pling uncertainty analysi$;(t) andO;(t) can be determined in
metering solutions obtained without optimization, witHetp ~ combination as the daily energy consumptiit). Then the
the spatial or the longitudinal MCM models are also caladat project baseline can be denoted B{Ni(t1), Ei(t;)) and sim-
and compared. The comparisons among these solutions higiarly the post-retrofit is denoted b@(Ni(t2), Ei(t2), wherety
light the advantageous performance of the proposed spatibl refers to the baseline perio refers to the post-retrofit period,
longitudinal MCM model in designing costfective M&V me-  andt refers to both periods. To ensure a fair comparison, the
tering plan whilst satisfying the M&V accuracy requirement projected energy savingt,) under the post-retrofit condition
This combined optimisation model will be widely applicable are calculated by Eq. (1)

to design the optimal metering plan for various M&V lighting -

projects with diferent population sizes and sampling accuracy S(t2) = F(Ni(t2), Ei(ta)) — G(Ni(t2), Ei(t2)), (1)

requirements. _ _ _ whereF(-) is the adjusted baseline when the lamp population
The rest of this paper is organised as follows: Section 2 Progecays in the post-retrofit period.

vides the mathematical formulation of the optimal M&V me- |, order to accurately report the savir,) in Eq. (1), the
tering plan problem. In Section 3, an optimal metering p&n i msdelling uncertainties, measurement uncertainties,sane
designed for a hospital lighting retrofit project as a casd\sto pling uncertainties must be handled properly. The modgllin
demonstrate the advantages of the proposed model. The apRlincertainty is not applicable to lighting retrofit projeeten
cability of the propose_d model is dlsc_:ussed in Section 4eavhil o lighting energy usage is directly measured in isolatidre
the conclusion comes in the last section. measurement uncertainties are usually negligible whealsiei
and high accuracy metering equipment is applied for measure

2. Formulation of the optimal M&V metering plan prob-  ment. For lighting projects with large and decentralisedupo

lem lation, sampling uncertainty is the major contributor te #av-

) ] ) o _ings uncertainty. The sampling uncertainties can be ratlbge

In this section, general metering plans for lighting retrofi 5ing sifficient sample sizes with suitably selected sampling
projects are discussed. With the application of Class'c'sanlechniques such as simple random sampling, stratified sam-
pling approaches, sample size determination methodcﬁpgiep”ng’ systematic sampling, cluster sampling, and muétge
and lamp population decay models, the optimal M&V metering:lsampnng [7]. In order to report the M&V savings accurately
plan problem is formulated as a combined spatial and longitu;, tnis study, the sample sizes for the lighting projectsat
dinal MCM model under necessary modelling assumptions. mally decided to satisfy the @10 criterion.t

According to the previous discussions, the metering plans f
] ] ) the EE lighting projects can be summarised as follows:

Without loss of generality, the methodology to design the 1y The two energy governing variables namely the survived
optimal M&V metering plans is discussed under the scope Ofamp populatiorNi(t) and daily energy consumption per lamp
lighting retrofit projects in this study. Given a lightingtmefit g (1) in theith lighting group need to be continuously sampled
project with an initial lamp population dfi, the lamp popula- 5,4 metered. More preciseli (t) needs to be sampled reg-
tion can be classified intbhomogeneous lighting groups when ularly andE;(t) will be monitored by long-term metering over
the same technical specifications, similar energy consompt o projects’ baseline and crediting period. Each monitare
uncertainties, and population decay dynamics of the lamgps @sampled variable must satisfy the/80 criterion.
identified in theith lighting group, wherg s the counter of the 2) The meters will be purchased and installed during the

lighting groups. For lighting retrofit projects, various Bght-  pasefine period. The baseline lighting system will be metsu
ing technologies, i.e., compact florescent lamps (CFLhtdi {5 3 calendar months.

emitting diod.es. (LEDSs) or solar-powered lamps are employed 3) The decay dynamics dfi(t) will be discussed in Sub-

to replace existing less EE lamps such as halogen downightesection 2.3. The required sample sizes for metefir( will
(HDLs) and incandescent lamps (ICLs). The retrofit interven pa gecided by the proposed combined spatial and longitlidina
tions do not change the existing lighting control configiisg  \1cM model.

and illumination levels. 4) Meters will be installed to monitor the sampled lamp ap-

Let a lighting retrofit project have a three-months’ baselin pjiance individually. Meters with dierent functionalities and
measurement period ari€l years of the project crediting pe-

riod with its savings performance being measured, verifiet a TFor the 9010 orfer o . ot
€ — . or the criterion, precision is an assessment of the error marfgin
reported’k = 1,2,...,K denotes the counter of the crediting the final estimate and confidence is the likelihood that thepdiag result of an

years ank = O denotes the baseline_ ye&i(¥) andG(¥) de-  estimate lies within a certain range of the true values.ofiotig the notation of
note the energy models, where notatithsnd¥ representa set the 9910 criterion, Yy denotes x% confidence and y% precision in this study.
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prices will be applied in dferent lighting groups. Calibration 2.3. Lamp population decay modelling
and maintenance of the metering systems will be performed
regularly. As discussed in Egs. (1) and (4), the survived lamp popula-
tion is crucial for the M&V baseline adjustment, savings-cal
2.2. The sampling approach and sample size determination culation, and sample size determination. Without an ad¢eura
According to [7], the simple random sampling approach ismodel to characterise the lamp population decay dynanties, t
applicable when the sampled units are homogeneous. Howevsurvived lamp population needs to be identified by condgctin
the stratified random sampling is most applicable for alight samples of questionnaires, telephone interviews, andeosisi-
retrofit project with multiple lighting groups, when charae  veys for various energyfiecient lighting retrofit projects. The
istics of the lighting units are more similar within groupsth  inspections on the lamp population affdient time intervals
across groups. In this study, the lighting population alfir over the projects’ crediting period are helpful for the ]
stratified intol homogenous strata and then the simple randonperformance evaluation, M&V metering plan design, and nec-
sampling is performed within each stratum where each lightessary maintenance planning. But the regular inspectien ap
ing unit has the same probability of being sampled and meproach is usually very costly and time-consuming as such in-
tered. The sampling uncertainties irffdrent lighting groups spections have to be conducted repeatedly for variousriight
are characterised by cfiieient of variation (CV), which is de- projects with diferent characteristics. In order to alleviate the
fined as the standard deviation of the metering recordsetivid lamp population inspection burdens, the lamp population de
by the mean. CV is a positive value and a greater CV valugay dynamics are characterised by various models that have
corresponds to a higher sampling uncertainty. been established from biological population dynamicsysturd
As provided in standard statistics text books [26], theahit from reliability engineering experiments. For instancesvp-
sample sizey to achieve certain confidence and precision levelbus study [6] has performed an informative review on thetexis
of homogeneous population is calculated by ing lamp population decay dynamics. In addition, [5] has pro
20\2 posed a reliable lamp population decay model that is imgtove
Ny = , (2)  from existing models as given in both the Polafigceent light-
p? ing programme evaluation report [21] and the technical repo
wherez denotes the abscissas of the normal distribution curvef South African national CFL mass roll out programme [3].
that cut df an area at the tails to give desired confidence levelThe general form of the model is provided in Eq. (5)
also known as the-score, ando is the relative precision. For
the 9010 criterion,z=1.645 for 90% confidence ane=10% as () = 1 ) (5)
the allowed margin of error. The values Dt various confi- Y+ a€f
dence levels are tabulated in many statistics books[@gn be
calculated by th&-transformation formula

wheres(7) is the percentage of survived devices at tirrfer a
lighting project,r is counted from the beginning of lamp instal-

7= X~ H ) (3) lations.a = e andL is the rated average life span of a certain

o/n type of lamps. Following CDM guidelines [27], the rated av-

wherexis the sample meap;is the true mean while denotes ~ ©rage life span is declared by the manufacturer or respensib
the true standard deviation of the sampled population. vendor as being the expected time at which 50% of any large

CV can be estimated from spot measurements or derivegumber of EE devices reach the end of their individual liyes.
from previous metering experience. In some cases, it may b€ the slope of decay, andis initial percentage lamp survival
desirable to initially conduct a small sample for the sole pu atr = 0. ThUS, values fof an_dy can be obtained by solving
pose of estimating a CV value to assist in planning the samgpli the following system of equations:
design. If CV is unknown, 0.5 is historically recommended by
[28] as the initial CV since numerous projects have shows thi s(0) =1,
to be reasonable guess for most applications. After the first s(L) = 0.5.
year of monitoring, the CV can be projected from the results
of the metering in the previous year, which can be used as an The discrete and dynamical form of model (5) is also given
updated initial CV value for the sample size determinatibn oin [6] and [5] as follows
the coming year. Usually more samples are required to aghiev
a higher confidence level and a better precision level fovargi s(k + 1) = Bys(k)? — B(K) + S(K), (7
CV value. The initial sample sizey can be adjusted by Eg.

(4) [26] when the populatioiN is a finite number. As can be where s(k) is the survived percentage of the lighting project
observed in Eq. (4) population at thekth sampling interval. Note that for der-
2 ent lighting groups, the parametgdsandy are diferent and
noN CV2ZN ; . L
n= = > , (4) they can be obtained by the system identification approazh pr
Mo+ N CVeZ+ Np? posed in [5]. Eq. (7) is further applied in the design of o@im
when N reduces from+oco to 0, the sample size will become maintenance plans for lighting retrofit project populatimna
smaller. control system approach in [37].

(6)




2.4. Modelling and assumptions year can be analyzed as follows. &tk) be the random vari-
According to the proposed metering pldf(t) needs to be able that denotes the daily energy consumption of an indalid
monitored by long-term measurement over the baseline ani@mp of theith lighting group in thekth year. From the well-
post-retrofit periods. The measurement uncertaintiesamd s known Central Limit Theorem [12], it is assumed thatk)
pling uncertainties must be properly handled to ensuredhe s follows normal distributionXi(k) ~ A(ui(K), oi(K)?) given the
isfaction of the required 90 criterion. In order to reduce large lamp population in thih lighting group, wherey;(K) is
the measurement uncertainties, the metering devices meed the true mean value, and(K) is the true standard deviation of
be carefully selected with full consideration of their agry  theith group in thekth year. If anyni(k) samples are drawn
levels and cost implications. According to [29], the key eom from theith lighting group, the sample mean distribution sat-
ponents of the metering cost include meters procurement, irisfies a normal distributiod; (k) ~ A (i (K), o (K)?/ni(k)) [32].
stallation and maintenance cost. In order to design a cosfAssume theXi(k)'s are independent and the combined distri-
effective metering plan, it is suggested to usfedent meter-  bution for theX;(k)'s in all lighting groups in thekth year is
ing devices with dferent procurement prices, memory capaci-denoted byX(k) ~ N (u(K), (k)?), where the combined sample
ties, data transmission functions and accuracy levelighting ~ mean valuex(k) for the total lighting population in thkth year
groups with diferent sampling uncertainties. Hence the meterds calculated by
will be selected according to the estimated CV values irouei | _
lighting groups in this study. Particularly, @V < 0.25, then (k) = 2i-1 Ni(k)xi(k)’ ®)
less expensive meters with acceptable accuracy will beechos N(k)
Otherwise ifCV > 0.25, then expensive and sophisticated me-
ters will be applied. In general, measurement uncertairaie
ignorable when the accuracy levels of the selected M&V nseter
are much better than the A® criterion. B Zi' N (R (K)
lM——jwrﬁ

the true mean valug(k) for the total lighting population in the
kth year is calculated by

9)

Spatial

and the true standard deviatiofk) for the total lighting popu-
lation in thekth year is calculated by

Year k: N(u(k), 0?(k))

Ve

LCHOLAGR |

Year k+1: N(u(k + 1),0%(k + 1))

| 2
2 _ Z (ai(KNi(K)
T 2 hwNGe 4o

Group i+1: {Nyyy (), i1 ()}

Sample sizes

8% NN
%
____*_

According to Eq. (3), the transformation function in thé&h
lighting group of thekth year is given by

\ 4

. (k)
M 110) %09 - () = () - (11)
| & ' VAR
Group i: {N;(k), n;(k)} =
Population Longitudinal wherex;(k) is the sample mean of thith lighting group in the
kth year andri(k) = X(K)CV,(k). Assume that the estimated
Figure 1: lllustrations for the metering cost minimisatimodelling. daily energy consumptions and CV values of ttrelighting

group will not change over the credit period, then the steshda
qiewanno-.(k) of theith lighting group in thekth year will also
remain unchanged.

The combined annualscorez(k) and relative precision level
p(k) are calculated by

The sampling uncertainties are analysed and handled by
combined spatial and longitudinal MCM model in this study.
The optimisation ideas of the modelling are illustrated oy F
ure 1. In Figure 1, the curve (in red) with squared-markers (i
green) and the curve (in purple) with circled-markers (in or X(K) — (k)
ange) denote the lamps withfiirent population decay dynam- zK) = E (12)
ics over time. On the spatial domain at &ik year, the lighting
project population is classified infiohomogeneous strata ac- and

cording to diferent sampling uncertainty levels of the daily en- p(k) = M (13)
ergy consumption of an individual lamp. La(k) and p;(k) X(K)
denote thez score and the precision levels in titd group, On the longitudinal domain over the crediting period, the

z(k) and p(k) denote the combined score and precision lev- project performance may need to be reported regularly at fixe
els across all subgroups, respectival/(k) and nj(k) denote  reporting intervals, i.e., in the years &f= (2,4, ..., K}, to the

the survived lamp population and the required sample size groject developers and relative stakeholders by M&V practi
theith lighting group in thekth year, respectively\N(k) denote tioners. For both the baseline year and the reporting y&ars
the total survived lamp population in theh year. The spa- the sampled parameters are required to satisfy a requiced ac
tial sampling uncertainties across all lighting groupshiakth racy level, i.e., the 900 criterion. Itis clear that fewer samples



are required to achieve theQ0 criterion when the projectpop-  Let the design variable bg = (2(0),...,4(K),..., A(K)),
ulation decreases. For a performance report covers the kear whereA(k) = (z(K), ...,z (K), p1(K), ..., pi(k)). The objective
and k + 1), the possible sample sizes over the two years mighfunction is denoted by
be 30 and 10, respectively to achieve thgl@Ccriterion. Then
the initial investment must be made available for 30 meters i |
thekth year while the surplus 20 meters become unnecessary in f(/l)Kz Z;=1(a*' +bi +3ci)ni(0) (19)
the ( + 1)th year. An optimal metering plan may be designed + it Ziza[126ni(K) + Bi(K)Si(K) (@ + bi)],
to install 20 meters for both the yedtsand k + 1), such that
a lower accuracy level, i.e., 85 is reached in the ye@rbut a
higher accuracy level, i.e., @is obtained in the yeak( 1),
while the combined accuracy level across the ykanrsd K+ 1) Bi(k) = maxBi(k — 1),0) + ni(k — 1) — ni(K),
satisfies the 90 criterion.

In order to quantify the sampling uncertainties on the lamgi  whereB;(0) = 0, andS;(K) is the mathematical sign @;(k),
dinal domain, assume the installed metering system wilbeot which is defined as
relocated over th& years and the same sampled lighting units .
will be continuously measured. And the sampled lamps need to 0, !f Bi(k) >0,
be monitored to ensure immediate replacement on occurrence Si(K) =sgnB(K) =1 -3 it Bi(k) =0,
of a lamp failure. Thus the metered data from the Years 1 to 1 if Bi(k) <0
(k — 1) will also be analyzed together with the metered data in h 3 is the sian funci Th traint i
thekth year. Further assume thé(k)’s are independent, then where sgr() is the sign function. € constraints are sum

wheren;(K) is calculated by Eq. (4); anéi(k) denotes the sur-
plus meters in th&th year, which is calculated by

the combined distribution for thﬁ(k)’s over theK years will marised as 2(0) > 1.645
follow a normal distribution (k) ~ N(8(k), I'(K)?), where p(O)_< 10%
N (20)
Z(6) = 1.645
e TR NRXK)
X(K) = kle NGO (14) P() < 10%
k=t wheres = {2, 4, ..., K}; 2 z(0) andp(0) are the combinezscore
K Nk and relative precision across all lighting groups durirglibise-
oK) = kle , (15) line period, whileZ(s) andP(d) are the cumulative score and
2k N(K) relative precision up to théth year in the post-implementation
K 2 period. The combined spatial and longitudinal MCM model is
rz = S [ NG 16) denoted byc((19), (20)).
(K) K : (16)
i1\ Zkea N(Y)

Let Z(6) and P(s) denote cumulative score and cumulative 3. Case study
precision levels by end of th#h year, respectively, then

X(6) - 6(5)

In this section, an optimal M&V metering plan is designed
for a lighting retrofit project as a case study to illustraie t

Z(0) = re) 17 advantages of the proposed combined spatial and longéldin
MCM model.
X(0) - 6(5)
P(6) = o (18)  3.1. Background of the lighting project

A lighting retrofit project is going to be implemented to re-
wherey(0), 6(6), andI'(s) are calculated by Eqs. (14)-(16), 1e- - the lighting load in 45 provincial hospitals in Southiéd.

spectively by substituting for the valueK. . - .
. . It lanned to install 263 519 CFLs to replace existindline
As the lamp population decays, the number of required me- 'SP ns S P xistingfin

LA cient ICLs. In addition, 140 777 units of LEDs will be instzd|
ters may also decease. If fewer meters are required iktthe

) . ) to replace the less energyfieient HDLs. The 12 Watt (W)
year than the available m_eters_mstalled in tke)th year, then CFLs and 6 W LEDs will be adopted to replace the 60 W ICLs
the surplus meters remain onsite for backup useaj, bt andc;

denote th t t installati d thi . and 50 W HDLs, respectively. The ICLs are mainly installed
enote the meter procurement, instafiation and mMonthinmal s, o406 rooms and burning during 8:00-16:00 everyday. The
tenance cost for each metering device ofithdighting group,

. . . Lo HDLs are installed in the corridors and hallwa here mo-
respectively. Then the combined spatial and longitudin@Ni S ns ! dors ways W

: : S tion sensors are currently in use to control the HDL lighting
model IS formulated under fo!low assumpt_|0n$.'l'h_e I|ght|ng_ systems. The CFLs and LEDs will be directly installed to re-
population will not decay during the baseline period. Tneeti

U . ) . place the ICLs and HDLs without changing the existing light-
for the prpject |mplementat|o_n can be ignore?). During Fhe ing control systems. The EE lamps have equivalent lumen to
credit period, maintenance will only be performed to thévact

meters.3) The inflatiorideflation of the metering cost will not
be Confs'deredﬁl) The uncertainty of the lamp population decay — 2opyiously, one can also Iét= {1,4,7, .., K} when other reporting inter-
model is neglectable. vals are agreed by the project stakeholders.




the replaced old lamps. The CFLs have a rated life of 3 years i
while the LEDs have a rated life of 6 years. According to the — — — Group|
agreements between the project sponsors and project gevelo sl 77T 7
ers (PDs), the energy saving performance of this project mus -
be verified and reported in every 2 years’ interval over the 10 I !
years’ crediting period. PDs are responsible for the M&Vtcos
that at least covers the metering system procurement|lasta
tion and maintenance. The energy consumption of the lightin
system will be sampled and measured over the 3 months’ base-
line period and the entire crediting period.

The involved lamps are naturally classified into two sub-
groups according to their dierent daily energy consumption
uncertainties. Group | is the 263 519 ICLs and Group Il is the

Survived population

140 777 HDLs. The lighting classification remains unchanged Time: Year
after project implementation. The energy consumption unce
tainties can be estimated by spot measurement during the on Figure 2: Survived lamp populations.

site project survey. For instance, the estimated daily gner

consumption per lamp in Group | is48 + 0.09 kWh in the

baseline period and @6+ 0.018 kWh in the crediting period. the CFLs have shorter life spans than the LEDs, the lamp pop-
CV value of the daily energy consumption per lamp in Group lyjation in Group Il becomes greater than that in Group | from
is around 0.19. The energy consumption uncertainties iNBro years 5-10 of the lighting project.

Il are greater than those in Group | as the lamps are condrolle  The optimal metering plan can be obtained by solving the
by the motion sensors. In this case, a CV value as high as Ot%Ode|C((19), (20)) with the application of the project specific

is recommended by [28] for Group II over both the baselin€nformation as given in Table 1. Solutions are calculated us
and crediting periods. The estimated daily energy consiampt g the software program [24]. In particular, the optimalso

per lamp in Group Il is 20+ 0.10 kWhiin the baseline period  tions are computed by the “fmincon” code of the Matlab Opti-
and 0024= 0.012 kWh in the crediting period based on an as-mjsation Toolbox. The optimisation settings of the “fminto
sumption that on average the lamps are burning 4 hours per d@ynction are shown in Table 2, where a search starting point
with low confidence. Since the energy consumption behasiour, and the boundaries of the design variable are also assigned.

in Group Il change more frequently than those in Group |, therrom a mathematical perspective, the sample sizes, whéch ar
metering devices to be installed in Group Il should be more ad

vanced, i.e., with more intelligent control units, fastempling

frequency, and larger memory capacity. The Group Il meters cz:;grize:sopﬁmis{g;{;osnesmngs'

are cgpak_JIe of capturing the real time energy consgmptlon in Algorithm interior-point

both lighting groups but Group | meters are not applicabte fo TolEun 1045

the measurements in Group Il. More detailed project inferma TolCon 1045

. . . . . . —4!

tion is summarised in Table 1 from the on site project survey. TolX 1074
Hessian ‘Ibfgs’, 20

Ib: (z(K), pi(K))  (0,0)
ub: (z(K), pi(K)  (+eo, 1)

Table 1: Lighting project details. Jo: @M. p()  (0.2,0.2)
: . Pi .2,0.

Parameters Group | Group 11

Meter unit price a;=R 876 a;=R 3 146 ) ) )
Installation per meter  b;=R 195 b2=R 320 integer numbers, must be solved through integer progragmin
Monthly maintenance  ¢;=R 45 c2=R 98 algorithms. Since this study arises from the practicaldssu
CV values CVi(K) = 0.19 CV(k) = 0.50 . ; ) ;

Baseline estimates %(0) = 048 kWh  %5(0) = 0.20 KWh of minimising the m_et(_erm_g cost, real value_d sample_sm_es a
Post-retrofit estimates  x(K) = 0.096 kWh  %(K) = 0.024 kwh used during 'Fhe optimisation. _After the o!otlmal _solutub“ms
Codficient3in Eq. (7) 1 = 1.1438 Bo = 1.0297 found, theceil function is applied to obtain the integer sam-
Coeflicienty'in Eq. (7) y1 = 0.8553 72 = 09201 ple sizes. Mathematically, the rounded sample sizes by the

ceil function are only sub-optimal solutions. Henceforth, the

Once the cofficientss andy'in Eq. (7) are identified with the terms “optimaloptimise” and “minimaiminimise” refer to the
given lamp life span, the lamp population decay dynamics areounded sub-optimal solutions.
determined for the studied project. In Figure 2, the horiabn The studied hospital lighting retrofit project includefeli-
axis denotes the count of years where Yeaorrespondsto the entlighting groups with dferent daily energy consumption un-
duration [k, k-1). For instance, Year O corresponds to the du-certainties. In addition, these lighting groups exhibitetient
ration [0,1), denoting the baseline period and Years 1-1feeo lamp life spans and population decay dynamics. The project
spond to the duration [1,11), denoting the crediting peridte  characteristics strongly indicate the applicability oé tbom-
vertical axis denotes the survived lamp population. It show bined spatial and longitudinal MCM model as discussed in Sec
that Group | has a greater initial lamp population. Howesser, tion 2. In order to fully reveal the superiority of the propds
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model C((19), (20)), the optimal solutions obtained solely by
the spatial MCM model in [35] and the longitudinal MCM
model in [36] are also given in the following subsections for
comparison purposes.

3.2. Benchmark and optimal solutions

In order to maximise the PDs’ profits, the proposed MCM
model C((19), (20)) will be applied to find the most suitable
M&V metering plan for the hospital lighting retrofit project

As to demonstrate the advantages of the proposed combined

spatial and longitudinal MCM model, the metering plan with-
out optimisation is calculated as a benchmark for compariso
purpose.

For the hospital lighting retrofit project, a possible smint
without optimisation might be that the A criterion is applied
to the sampling target in both lighting Groups | and Il, where
Ai(K) = (1.645(k), 1.645,(k), 0.15(k), 0.1,(k)). The correspond-

Group Il Yearly —#— Cumulative

l———GroupI
F %

Confidence levels

.
10

l = = = Group | Group Il Yearly —#— Cumulative

Precision levels

____________

Time: Year

Figure 3: Confidence levels (spatial optimal only).

ing z scores, precisions, sample sizes and metering costs are

calculated as shown in Table 3.
levels are better than 10% while the lowesicore is greater
than 1.645 for each monitoring report. The total meteringt co

It shows that the precision

In Figures 3-4, the horizontal axes denote the counter of
years. In Figure 3, optimal confidence and precision leves a

over the baseline and crediting period is R 1 115 732. In thipresented, where the dashed line (in blue) and the solid line

scenario, the expected sampling accuracy is better tharethe
quired 9Q10 criterion, which is not necessary.

Table 3: Metering cost without optimisation.

Year Z(k) C(k) P(k) ni(k)  na(k) Cost (R)
0 19665 95.06%  9.90% 10 68 R 267 740
1 1.8500 93.57%  9.89% 10 68 R 85 368
2 26234 99.13%  9.89% 10 68 R 85 368
3 3.2122 99.87%  9.90% 10 68 R 85 368
4 3.6682 99.98%  9.90% 10 68 R 85 368
5 3.9677 99.99%  9.90% 10 68 R 85 368
6 4.1110 100% 9.90% 10 68 R 85 368
7 4.1617 100% 9.90% 10 68 R 85 368
8 41747 100% 9.90% 10 68 R 85 368
9 4.1767 100% 9.90% 9 68 R 85 368
10 4.1769 100% 9.90% 7 65 R 85 368
Total n/a n/a n/a 10 68 R 1115732

3.2.1. Spatial optimisation

The spatial MCM model in [35] aims to balance the sam-
pling uncertainties across lighting groups by assignintinugl
confidence and precision levels to the lighting groups with d
ferent energy consumption uncertainties. For this casgystu
the spatial optimisation model is formulated as follows.eTh
design variable ig = (2(0),...,A(K), ..., A(K)), whereA(k) =
(z2(K), z2(K), p1(K), p2(K)), k = 0,1,...,K. The objective func-
tion is given in Eq. (19), which is subject to the constraints

{ 2(k) > 1.645

p(k) < 10%
The spatial optimisation model is denoted®{19), (21)). The
model S((19), (21)) is solved with the initial values given in
Table 1 and the optimisation settings in Table 2. The obthine
confidence levels, precision levels, and optimal samplessiz
are shown in Figures 3-4. In addition, the numerical optima
solutions and metering cost are summarised in Table 4.

(21)

10

(in red) denote the confidence and precision levels for Gsoup
I and Il, respectively; the dash-dotted line (in green) dego
the combined confidence and precision levels across lightin
groups over théth year, while the starred line (in black) de-
notes the cumulative confidence and precision levels upgo th
kth year. As shown by the dash-dotted lines (in green) in both
sub-figures of Figure 3, the constraints in Eq. (21) arefgadis

: : T

= = =Group |

L Group Il
—#— Total

@
o

3
o
T
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o
T

Sample size
w
o
T
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[N
o

o

5 6
Time: Year

Figure 4: Sample sizes (spatial optimal only).

In Figure 4, the sample sizes in Group | and Group Il are
denoted by the dashed line (in blue) and the solid line (i), red
respectively. The total sample sizes are denoted by theedtar
solid line (in black). It is observed that the sample sizes in
Group | is greater than those in Group Il during the years [0,
5) but becomes smaller than those in Group Il during the years
[6, 11). As discussed in [35], the sample sizes change when
lpopulation changes. To achieve a certain level of sampling a
curacy, greater number of samples are usually required for a



bigger sampling population. However, it is worthy mentimni  and

that in Year 5,Ni(5) < Ny(5) butny(5) > ny(5) as shown in P, () = X1(0) ~ #(0)

Figure 4. The reason is that the mo®(19), (21)) attempts Xi(0)

to use as many as less expensive meters in Group | in order wherey;(6), 6(6), andI’(6) are calculated by Egs. (23)-(25),
minimise the total metering cost. respectively by substituting for the valueK. The longitudi-

In Table 4,Z(k) is translated into the confidence level&). nal optimisation model is denoted thy(19), (22)). The model
One may be surprised to see that more samples are require(19), (22)) is solved with the initial values given in Table 1
when population decays in Group II. This is because that srouand the optimisation settings in Table 2. The obtained con-
Il has a relatively greater population and a higher CV thais¢h  fidence levels, precision levels and optimal sample sizes ar
in Group | in the years [6, 10), which results in requiringageg ~ shown in Figures 5-6. In addition, the numerical optimal so-

sample sizes to satisfy the desired sampling accuracy. lutions and metering cost are summarised in Table 5.
Table 4: Metering cost with spatial optimisation. 14
Year  Z(K) C(K) PO  m®K mK  Cost(R) 2 08l
0 16452 9001% 958% 12 6 R 37032 5 ol
1 1.6448 90.00% 9.73% 12 3 R 10 008 g
2 23185 97.96% 959% 12 4 R 11184 g o4
3 28278 9953% 9.64% 12 4 R 11184 § o2r
4 32124 9987% 964% 12 6 R 13536 0 ‘
5 34659 99.95% 9.65% 12 9 R 27 462 0 2 4 6 8 10
6 35883 99.97% 9.66% 12 18  R58842
7 36331 99.97% 9.66% 10 33 R96198 o o
8 36447 9997% 966% 11 4 R95810 £ 08} Group I
9 36464 99.97% 9.66% 12 44  R58224 8 ogl| —— Cumulative ]
10 36466 99.97% 9.66% 10 36  R47736 gl am g[gjz | —
Total  n/a n/a n/a 12 44 R 467216 g 1T "7
a 0.2___._, ) . . - f 1
0 ‘ : i
0 2 4 6
3.2.2. Longitudinal optimisation Time: Year
The longitudinal MCM model proposed in [36], with its im-
provements provided in [5], aims to balance the sampling un- Figure 5: Confidence levels (longitudinal optimal only).

certainties across adjacent reporting years by desigmtigal
confidence and precision levels in each reporting yearsthiror
case study, the longitudinal optimisation model is fornedaas
follows. The design variable ig = (2(0),...,A(K),..., A(K)),
whereA(k) = (z1(K), z(K), p1(K), p2(K)), k = 1,...,K. The ob-
jective function is given in Eq. (19) that is subject to thenco
straints

Figures 5-6 share the same presentation style as Figures 3-4
in terms of the horizontal and vertical axes. In Figure 5iropt
confidence and precision levels are presented, where thedlas
line (in blue) and the solid line (in red) denote the confidenc
and precision levels for Groups | and Il, respectively; tiaered

z(0) > 1.645 line (in black) denotes the cumulative confidence and piatis
pi(0) < 10% levels up to thékth year; in addition, the dotted line (in purple)
Z:(6) > 1.645 (22)  and the circle line (in green) denote the cumulative confiden
P.(5) < 10% and precision levels up to theh year in thdth lighting group.

As shown by the dotted lines (in purple) and the circle lines

AssumeX;(K)'s are independent over the years [0, K), then thein green) in both sub-figures of Figure 5, the constraints in
Xi(K)'s over theK years of thdth lighting group will follow a Eqg. (22) are satisfied.

normal distributionyi(k) ~ N(6 (k). Ti(k)?), where In Figure 6, the sample sizes in Group | and Group Il are
_ SN (K) denoted by the dashed line (in blue) and the solid line (if,red
Xi(K) = TS NR (23)  respectively. The total sample sizes are denoted by theedtar
Zica Ni(k) solid line (in black). In Figure 6, the samples required dgri
S N (R (K) the baseline period are determined without optimisatioar-D
6i(K) = TS NG (24)  ing the reporting period, the required sample sizes witkiene
Ziea Ni(K) two years’ reporting interval are very close. For instarg®,
) K ai(KN; (K) 2 and 34 samples are required in Years 1-2 while 11 and 10 sam-
Ti(K)” = Z [m) (25)  ples are required in Years 3-4 in Group I1. Similar sample siz
k=1 =1

) commitment pattern is also observed in Group I. The samples
Let Z(6) andPi(6) denote cumulative score and the cumula-  gre optimally decided over the reporting period within tigh
tive precision levels by end of thith year of theith lighting  groups with the application of the mode{(19), (22)). How-

group, respectively, then ever, it is expected that the metering cost can be further min
Xi(0)=6.5) imised when spatial optimisation ideas can also be incaipdr
Z(0) = W during both the baseline and reporting periods.
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o confidence and precision levels up to itle year. As shown by

o the starred lines (in black) in both sub-figures of Figurehg, t
] Group ] 1 constraints in Eg. (20) are satisfied.
—4— Total
60
. l - — = Group| Group Il Yearly —¢— Cumulalive‘
sor ) —————————
g 3 08f I_I —
g40r T 31— - 06l i
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Figure 6: Samples sizes (longitudinal optimal only).

Time: Year
Table 5: Metering cost with longitudinal optimisation.
Year Z(k) C(k) P(K) ni(k)  na(k) Cost (R)

Figure 7: Confidence and precision levels (combined opétiug).

0 19655 9506% 990% 10 68 R 267740
1 1.4179 84.38%  9.80% 6 35  R44400
2 18639 9377%  9.48% 5 34  R42684 ) ) _
3 17629 92.21%  8.67% 2 11 R 14 016 In Figure 8, the sample sizes in Group | and Group Il are
4 192718 9461%  9.41% 1 10 R12300 denoted by the dashed line (in blue) and the solid line (in,red
5 19577 94.97%  9.09% 1 6 R 7596 respectively. The total sample sizes are denoted by theedtar
6 20113 9557%  9.06% 1 4 R 5244 id line (in black b o h |
7 20192 9565% 9.00% 1 > R 2 892 solid line (m. ack). As can be seen in Figure 8., the samples
8 2.0267 95.73%  9.01% 1 1 R 1716 required during the baseline period are determined solgly b
9 2.0268  95.73%  9.01% 1 1 R1716 spatial optimisation. In addition, as both the spatial anl-
10 20268 9573%  9.01% 1 1 R 1716 : ; ; ; ; ;

Total n/a v/a o/a 1 68 R 402020 tudinal MCM ideas are applied during the reporting peribe, t

required sample sizes are optimised whereas the metergstg co
is significantly reduced.

3.2.3. Combined spatial and longitudinal optimisation

In this Subsection, the combined Spatial and |Ongitudinah_ M odel performancecomparis)n and discussion
MCM modelC((19), (20)) is solved with the initial values given
in Table 1 and the optimisation settings in Table 2. The oletgi In Section 3, four dterent M&V metering plans have been
confidence levels, precision levels and optimal samplessiee  obtained for the same lighting retrofit project by the no wpti
shown in Figures 7-8. In addition, the numerical optimalisol = sation approach, the spatial MCM approach, longitudinaNMC
tions and metering cost are summarised in Table 6. approach, and the combined spatial and longitudinal MCM ap-
proach, respectively. Detailed numeric solutions obhinem

Table 6: Metering cost with combined spatial and longitatlimptimisation. the four approaches are prowded in Tables 3-6. In ordentv co

Year 20 cm PO m® ™  Cost(R) pare.the performance among.the four approaches, key informa
0 16585 900.28% 9.65% 14 5  R235684 tion in terms of the sample sizes and the M&V metering cost
1 1.2148  77.55%  9.21% 7 2 R 6132 are also presented graphically as shown in Figures 9-11. In
2 16727 9056% 9.28% 6 2 R55%2 Figures 9-10, the horizontal axis denotes the counter ofsyea
3 1.6680 90.47% 9.22% 2 1 R 2256 : i
4 17752 OL55% 8.96% @ 2 1 R 2 256 where Year 0 Qenote_s the baselln_e perlc_)d and Years 1-10 de-
5 1.7276  91.59%  8.69% 1 1 R1716 note the crediting period. The vertical axis denotes theptam
6 17540  92.06%  8.64% 1 1 R 1716 sizes. And in Figures 9-10, legend “Benchmark” (in red) de-

0, 0, . . . . . .
! 17529 92.04%  8.55% ! ! R1716 notes the sample sizes obtained without optimisation;ndge
8 17549 9207%  854% 1 1 R 1716 y o . .
9 17550 92.07%  8.54% 1 1 R1716 Spqtlal (in green) denotes the s_ample sizes obtained by th

10 17550 92.07%  8.54% 1 1 R1716 spatial MCM model; legend “Longitudinal” (in purple) delest

Total nja n/a n/a 14 5 R62216 the sample sizes obtained by the longitudinal MCM model; and

legend “Combined” (in blue) denotes the sample sizes obtihin
In Figure 7, optimal confidence and precision levels are preby the combined spatial and longitudinal MCM model. Data la-
sented, where the dashed line (in blue) and the solid linee@ih  bels are given in Figures 9-10 to denote the benchmark sample
denote the confidence and precision levels for Groups | and Ikizes. The M&V metering cost obtained by the four approaches
respectively; the starred line (in black) denotes the catud  are shown in Figure 11. Figure 11 has two vertical axes, in
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Figure 8: Sample sizes (combined optimisation).

the longitudinal MCM model ((19), (22)) is most applicable to
optimise the sample sizes within reporting intervals fateao-
mogeneous lighting groups. Also learnt from the case sthéy,
modelC((19), (20)) exhibits the best performance in terms of
metering cost minimisation whilst satisfying the requigyfL0
criterion for each reporting interval.

In order to apply the modeZ((19), (20)) more flexibly, the
lamp population decay dynamics forfldirent homogeneous
lighting groups need to be specifically identified by address
the lamps'’ life spans, usage patterns, and technologiesldia
tion, if the lighting retrofit projects are sponsored undigfeal-
ent EEDSM programmes, then performance reporting schedule
¢ in the modelC((19), (20)) may be altered, which will result
in different optimal sample size regimes. Moreover, it is likely
that the M&V practitioners may need to design optimal M&V
metering plans under fiierent sampling accuracy requirements
other than the 900 criterion. The optimal sample size regimes
and relative metering cost are also calculated and provided

which the primary axis denotes the M&V metering cost (in Table 7. Itis obvious that better sampling accuracy reaquoérmet
Rand), and the secondary axis denotes the percentage of cé®plies higher M&V metering cost over the project crediting

savings against the benchmark, which is calculated as

Benchmark cost Optimised cost

Cost savind%) =

Benchmark cost

period. For instance, requiring the/Q%riterion for sampling
implies higher metering cost than the/20, 855, and 9%5 cri-
teria.

More precisely, comparing to the benchmark, the spatial MCM

model saves 58%, the longitudinal MCM model saves 64%, and
combined spatial and longitudinal MCM model saves 94% of 70
the metering cost that would have been spent without optimi- 60

sation. Thus the mod&l((19), (20)) ofers a minimal meter-

ing cost in terms of total metering cost of the hospital light
project without violating the sampling accuracy requiremse

Sample size

®Benchmark ® Spatial

Year

® Longitudinal = Combined

Figure 9: Sample size comparison in Group |.

The presented case study suggests that three MCM models

C((29), (20)), S((19), (21)), andL((19), (22)) are all useful in
designing the optimal M&V metering plans for lighting refito

projects. When lighting projects have multiple homogerseou
lighting groups with diferent sampling uncertainties, the spatial

MCM modelS((19), (21)) is most applicable when the lighting

population is properly maintained to avoid lamp populatiea
cay. If no lighting maintenance activities are carried dlgn

Year

B Benchmark @ Spatial ™ Longitudinal ® Combined

Figure 10: Sample size comparison in Group II.
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Figure 11: Metering cost comparison.

the lamp population will decay as time goes by. In such a case,
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Table 7: Metering costs for fierent accuracy criteria.

Criteria 85/5 95/5 99/1
Year n(k) nx(k) Cost(R) ni(k) no(k) Cost(R) ny(k) na(k) Cost (R)
0 41 14 R102086 76 26 R189416 3268 1080 R8002008
1 19 5 R16140 35 9 R 29484 1488 362 R 1229232
2 17 5 R15060 31 9 R 27324 1348 349 R 1138344
3 7 2 R 6132 11 4 R 10 644 454 138 R 407 448
4 5 2 R 5052 8 3 R 7 848 313 125 R 316 020
5 2 2 R 3432 4 3 R 5688 160 106 R 211 056
6 1 1 R1716 2 2 R 3432 55 73 R 115 548
7 1 1 R1716 1 1 R1716 14 33 R 46 368
8 1 1 R1716 1 1 R1716 1 12 R 14 652
9 1 1 R1716 1 1 R1716 1 5 R 6420
10 1 1 R1716 1 1 R1716 1 2 R 2892
Total 41 14 R156482 76 26 R280700 3268 1080 R 11489988
5. Conclusion [1] ASHRAE (2002). ASHRAE Guideline 14: measurement of energy and

In this study, a combined spatial and longitudinal MCM [2]
model is proposed to assist the optimal M&V metering plan de-
signs of the EE lighting retrofit projects. The proposed niixle
capable of designing optimal M&V metering plan for lighting
projects that have multiple homogeneous lighting grougs bu [4]
with different lamp population decay dynamics across lighting
groups. With the application of this model, the M&V meter-
ing cost is minimised by optimising the confidence and preci-
sion levels in diferent lighting groups over the projects’ cred-

iting period. As illustrated by the case study, the combined 6

(3]

(3]

spatial and longitudinal MCM model is able to reduce 94% [7]
of the M&V metering cost that would have been spent under

the no optimisation scenario, which exhibits better penfance

in terms of minimising the M&V metering cost under specific

sampling accuracy requirements than both the spatial MGiM an
longitudinal MCM models. The proposed combined spatial and
longitudinal MCM model can be flexibly applied to other sim- [10]

ilar lighting retrofit projects with dterent technologies, fiier-

[11

ent project population variations, ftBrent reporting intervals,

and diferent sampling accuracy requirements.

8

9]

However, besides the advantages of the combined spatial afd!
longitudinal MCM model, the proposed model has the foIIow-[13]

ing limitations: 1) this model focuses on handling sampling

certainties costféectively in the M&V process, but pays less
attention to the modelling and measurement uncertainfigs;
extra dforts are required to characterise the population decay

dynamics when applying this model to design optimal M&V [15]

metering plans for other technologies.
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