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Abstract 

 

Rapid change in Arctic sea ice requires actionable forecast information for making decisions 

governing marine and coastal community safety in this challenging environment. In response, the 

NOAA Physical Sciences Laboratory (PSL) has provided experimental, daily forecasts of Arctic 

weather and sea ice conditions to stakeholders through the Coupled Arctic Forecast System 

(CAFS) model since 2016.  The model includes dynamical ocean, sea ice, land, and atmospheric 

models, coupled with a flux coupler.  The CAFS model (here, CAFS) is initialized with GFS 

boundary conditions and satellite-derived sea ice concentration and sea surface temperatures. 

The model is run daily to produce pan-Arctic, 0- to 10- day forecasts of sea ice, oceanic and 

atmospheric fields. Alaska-specific regional products, sea ice drifts across the Arctic in support 

of the Sea Ice Drift Forecast Experiment (SIDFEx), and special-request meteograms and time-

height cross-sections for field campaign support (e.g., for the 2020 MOSAiC year-long drift 

expedition) are made available through a website designed in collaboration with National 

Weather Service-Alaska Region (NWS-AR) partners. 

 

To characterize and understand the predictive skill of coupled ice, ocean and atmospheric 

processes, CAFS has been evaluated using Arctic observations obtained from ships, buoy 

platforms, land observatories, and satellites from 2015 to present.  In this paper, we describe the 

CAFS model and present analyses of sea ice dynamic and thermodynamic processes observed 

during the MOSAiC campaign (2019-2020). This work contributes to ongoing collaborations 

with the NWS to evaluate the performance of modeling products, techniques in the Arctic in 

support of development of the Unified Forecast System, and multi-model international 

collaborations, etc. 
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Introduction 

 

Over the past several decades, dramatic Arctic environmental changes have become the “new 

normal” in the Arctic region.  According to recent Arctic Report Cards (e.g., Osborne et al. 

2018; Richter-Menge et al. 2019; Thoman et al. 2020; Moon et al. 2021), average annual 

temperature above 60° N and Arctic surface air temperatures have warmed at more than twice 

the rate of the rest of the planet.  Rapid and significant physical environmental changes in the 

Arctic, such as increases in permafrost thaw and decreases in sea ice extent and thickness (e.g., 

SWIPA 2017; IPCC 2019, ARC 2020) have created significant community, economic, and 

security concerns.    

 

The satellite record has documented a decreasing trend in annual pan-Arctic sea ice extent since 

1979, resulting in annual minimum extents two standard deviations below the 1981-2010 

average every summer since 2007 (Serreze and Stroeve 2015).  Winter maximum (March) and 

summer minimum (September) 2021 sea ice extents were less extreme compared to the last 

couple of years, but the 15 lowest minimum extents have all occurred in the last 17 years (Meier 

et al. 2023).  Summer 2021 saw the second-lowest amount of older, multi-year ice since 1985, 

and the post-winter sea ice volume in April 2021 was the lowest since records began in 2010. 

The amount of multiyear sea ice, based on available data since 1985, reached its second lowest 

level by the end of summer 2021, sea ice thickness was lower than recent years, and volume was 

at record low (since at least 2010) in April 2021.  

 

Regionally, the Alaskan Arctic sector has also experienced record low sea ice extents since 2018, 

with the Bering Sea ice dramatically reduced during the 2018/2019 winter and the Beaufort and 

Chukchi Seas (north and northeast of Alaska, respectively) experiencing rapid ice loss in spring 

2019.  By the end of summer 2019, the Chukchi Sea reached one of the lowest ice extents in the 

satellite record for the region (Thoman and Walsh 2019).  Consequently, the Bering and 

Chukchi Seas are now typically characterized by more young, thin first-year ice (FYI) and less 

old, thick multi-year ice (MYI - ice that survives at least one melt season; Perovich et al. 2016).  

There is an increasing trend in the date of “ice-covering” in the Beaufort and Chukchi Seas, with 

ice-over now typically two to three weeks later than was typical in the 1980s (Thoman and 

Walsh 2019). These longer periods of open water, decreased ice extent area, thinner ice, and 

warmer upper ocean temperatures, have set the stage for increased maritime access, use 

(military, commercial, and tourism), and future economic interests (Adams and Silber 2017; 

Smith and Stephenson 2013).  Reduced sea ice also raises concerns over increasing coastal 

hazards in Alaska, in particular beach run-up and erosion during storms (e.g., Overeem et al. 

2011, Barnhart et al. 2016, Fang et al. 2018). 

 

The safe execution of maritime activities in remote, challenging, and hazardous Arctic waters 

requires accurate forecasting of environmental conditions to support search and rescue, oil spill 
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response, commercial fishing, transportation, community, emergency and ecosystem 

management, environmental research, tourism, and the energy and mineral industries, to name a 

few.  Increased activity in the Alaskan Arctic sector increases the responsibility of U.S. national 

agencies to develop focused and skillful forecasts.  In response, the National Oceanic and 

Atmospheric Administration (NOAA) supports the development and improvement of forecast 

models capable of adequately representing Arctic processes on both regional and global scales.  

 

Accurate representations of physical processes governing atmosphere, ice, ocean and land, as 

well as the complex interactions between them, are critical for improving forecasts over a wide 

range of temporal (short-range to decadal) and spatial (local to global) scales.  This is 

particularly true for forecasts of sea ice, which impacts most activities at the ocean-atmosphere 

interface.  Use of coupled atmosphere-sea ice-ocean-land models is especially necessary for 

understanding the ice response to forcing from atmospheric storms, ocean currents, and the 

annual regional energy cycle.  Correct representation of these system interactions requires 

accurate simulation of atmospheric winds and boundary layer structure, upper ocean heat 

content, mixed-phase clouds, and sea ice characteristics and their influence on surface energy 

balances, ice motion, and internal feedback mechanisms (REFS).   

 

In this paper, we describe a regional coupled modeling system for forecasting the Arctic 

environment, including sea ice, on the weather time-scale.  For our purposes, weather-scale is 

defined here as the 0- to 10- day time range during which the ice responds directly to quickly 

changing atmospheric conditions (Mohammadi-Aragh et al. 2018) which, in turn, are 

superimposed on slower energy forcings from the annual cycle and the ocean dynamic and 

thermodynamic states.  By its very nature, the movement, growth, and melt of sea ice is driven 

by a combination of atmospheric and oceanic processes.  Forecast models struggle to produce 

reliable sub-seasonal forecasts due to inaccurate representation of the complex interactions 

between different system components, where small errors in one process can produce large errors 

in the interactions. 

 

In response to a general need for improvement of Arctic forecasting, the NOAA Physical 

Sciences Laboratory (PSL) modified an existing regionalized climate model, the coupled 

Regional Arctic System model (RASM, Maslowski et al. 2012), to serve as a research tool for 

assessing coupled physical processes driving the evolution of sea ice on the weather-scale.  The 

scope of this modeling effort was originally conceived in 2015 as a tool for understanding how 

sea ice evolution impacts lower atmospheric and upper-oceanic structures.  Quickly, however, 

the project goals were extended to deliver daily, 0- to 10- day forecasts and products to NOAA’s 

National Weather Service-Alaska Region (NWS-AR) sea ice forecasters and to the ship-based 

Sea State field program (Thomson et al. 2018; Rogers et al. 2018) in Fall 2015.  This routine 

forecast production provided an opportunity to compare model output to ship-based 

measurements of the Marginal Ice Zone (MIZ), and to inform the sorts of observations and 
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physics potentially required to support the future NWS operational, global, coupled modeling 

framework.  Additionally, daily delivery of products to NWS-AR partners provided an iterative 

environment supporting both assessment of model skill and determination of coupled forecast 

usefulness and utility in an operational setting.  In this manner, daily forecast delivery and 

performance assessment has been part of PSL model development for three consecutive fall 

freeze-up seasons (2015-2017).  Starting in February 2018, the forecast output was extended to 

include year-round, daily forecasts to provide model performance assessment over the complete 

annual cycle (2018-2022).   

 

In the next section, we present details of the coupled ice-ocean-atmosphere model including 

descriptions of individual model components and initialization fields.  In Section 3, we provide 

examples of model hindcasts, validate the skill of these hindcasts against observations from 

ships, satellites, buoys, and land stations, and provide insight into key parameters for accurate 

simulation of sea ice evolution. In Section 4 we outline current and future applications and 

stakeholders, including information on how this effort is informing development of the Unified 

Forecast System (UFS) –a global, coupled comprehensive Earth modeling and data assimilation 

system to be used in NOAA operations and by the research community.  Finally, we summarize 

the results and provide examples of future work in Section 5. 

 

 

2. Coupled Arctic Forecast System  

 

The main objective of the Coupled Arctic Forecast System (CAFS) modeling project is to 

improve predictions of Arctic sea ice evolution on the weather-scale (0- to 10- days) by: 

identifying critical (mesoscale to synoptic) coupled, physical processes; characterizing process-

level model deficiencies; and improving model representation of those key processes.  In this 

section, we describe the model’s individual components, and provide information on model 

configuration and initialization fields.  The model version described here was “frozen” in fall 

2019 to provide consistent Arctic forecasts throughout the Multidisciplinary drifting Observatory 

for the Study of Arctic Climate (MOSAiC; Shupe et al. 2022) campaign year (October 2019-

September 2020).  Comparing CAFS forecasts with the hallmark, ice-ocean-atmosphere 

MOSAiC measurements will be the emphasis of our continuing, coupled process-oriented 

modeling studies. 

 

2.1 CAFS – Origin, Description and Model Components 

 

CAFS was adapted from the Regional Arctic System Model (RASM) to provide regional 

forecasts on the weather time-scale.  RASM is a limited-area (including all Arctic drainages, 

northern hemisphere storm tracks, sub-polar ocean circulations.), fully coupled, ice-ocean-

atmosphere-land model (Maslowski et al. 2012; Cassano et al. 2017) which includes the 
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following components configured for the pan-Arctic region: Weather and Research and 

Forecasting (WRF) atmospheric model (Skamarock et al. 2008); Parallel Ocean Program 

(POP2) ocean model (Smith et al. 2010); Los Alamos National Laboratory (LANL) Community 

Ice Model (CICE5; Hunke et al. 2013); and the Variable Infiltration Capacity (VIC) land 

hydrology model (Hamman et al. 2018).  The ocean and sea ice models used in RASM are 

regionally configured versions of those used in the National Center for Atmospheric Research 

(NCAR) Community Earth System Model (CESM), with WRF replacing the CESM Community 

Atmospheric Model (CAM) and VIC replacing the NCAR Community Land Model (CLM).  The 

components are coupled using a regionalized version of the CESM flux coupler (CPL7 REF?), 

which includes modifications important for resolving the sea ice pack’s inertial response to 

transient (i.e., weather-scale) events (Roberts et al. 2014).  

 

The NOAA PSL version of RASM, renamed CAFS, was modified for short-term, weather-scale 

forecasts by:  

● Limiting the horizontal domain to the Arctic Ocean and surrounding coastlines (Fig. 1); 

● Improving the atmospheric horizontal grid spacing to 10-km, thereby explicitly 

representing more mesoscale atmospheric processes and running all components at a 

similar resolution; 

● Initializing oceanic, sea ice, and atmospheric components with observations, 

operational analyses and reanalyses, and; 

● Replacing the VIC land model with the NCAR CLM with horizontal grid spacing to 10-

km consistent with the atmospheric model grid. 

 

The current CAFS configuration includes the dynamical POP2 ocean model, the LANL CICE5.3 

sea ice model, the NCAR CLM4.5 land model, and the Advanced Research WRF Version 3.6 

atmospheric model.  The individual model components are coupled using the NCAR Flux 

Coupler (CPL7) model.  Additional modifications include: activation of the Morrison bulk 

double-moment cloud microphysics scheme for droplets and frozen hydrometeors in WRF that 

allows both size and number of hydrometeors to vary in response to environmental conditions 

(Morrison et al. 2009); updating the NCAR CAM radiation schemes to use hydrometeor 

effective radii calculated in the microphysical scheme (Collins et al. 2006); and use of the 

revised Fifth-Generation Penn State-NCAR Mesoscale Model (MM5) surface layer scheme (with 

modified similarity function for stable conditions) (Grell et al. 1994)  and the diagnostic, non-

local Yonsei University (YSU) planetary boundary layer scheme (Hong 2010; Hu et al. 2013). 

Originally the CAFS domain covered the Arctic basin and surrounding coastal regions but was 

extended in 2018 to include the Bering Strait (to provide expanded forecast area guidance to 

NWS-AR) and Fram Strait (to provide sea ice forecasts for a MOSAiC drift track 
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intercomparison project (Goessling et al. 2020)).  Figure 1 illustrates the CAFS extended 

domain with an overlay of the MOSAiC Drift track. 

  

 

 
Figure 1. Map of CAFS domain. Overlaid on an example September SST map are locations of the main 

validation data sets used in this paper: Drift tracks of the Central Arctic buoy (red line) and MIZ buoy 

(brown line); Sikuliaq locations during Sea State (black dots) with the Sea State domain (yellow trapezoid); 

land observatories on the North slope of Alaska at Utqiagvik (blue dot) and Oliktok Point (green dot). 

 

 

 

2.2 CAFS – Model Configuration 

 

CAFS is run daily using the 0000 UTC analyses to produce 0- to 10- day forecasts and 6-hourly 

sea ice, atmosphere and ocean forecast guidance products.  Currently, CAFS forecasts are 

initialized at the beginning of each daily run with the NOAA Global Forecast System (GFS) 

deterministic atmosphere forecasts (GFS analyses are used to initialize the hindcasts), a satellite-

derived sea ice concentration (SIC), and the NOAA day/night blended satellite Sea Surface 

Temperature (SST) product.  A Sea Ice Thickness (SIT) product from the European Space 
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Agency’s (ESA) Cryosat-2 satellite was used to initialize the model in spring 2018 and has been 

running cycled thereafter.  All individual model components are summarized in Tables 1-4. 

 

 

Table 1. CAFS Model atmosphere component and specifications. 

 

Weather Research and Forecasting WRF-ARW 3.6 

Horizontal Grid Spacing 

# Grid Points 

10-km  

384x432 

Grid Configuration 

# Vertical Levels 

Polar Stereographic 

There are 40 geopotential height levels and 39 pressure levels. 

T, U, V are on pressure levels and W is on geopotential levels. 

The first geopotential levels is ~23 m and the first pressure 

level is ~12 m 

Time Step 

Coupling Frequency 

WRF: 30-s 

Coupler: 30-min step 

Lateral Boundary Conditions 0.5° GFS 3-hourly forecasts of T, P, WV 

Initialization T, P, U-V winds, & wv initialized with GFS analysis; 

Hydrometeor mass and number concentration initialized with 

values from the 24-h forecast from the previous day’s forecast 

Longwave/Shortwave Radiation  CAM 

Surface Layer Revised-MM5 

Boundary Layer YSU 

Cloud Microphysics Morrison Double-Moment Scheme 

Convective Parameterization Grell 3D 

Information passed from WRF to 

Coupler 

SLP, P, T, Tpot, specific humidity, air density, winds at lowest 

model level; Sfc LW flux; Sfc direct & diffuse SW, net SW 

flux; Precipitation type; Height of bottom atmospheric level 

Information passed from 

Coupler to WRF 

Area-weighted latent, sensible, momentum fluxes; T(Sfc & 2-

m), 2-m specific humidity, 10-m winds; Sfc roughness length, 

wind stress; Upward LW sfc, direct & diffuse albedo; Sfc snow 

water equivalent; Evaporation; Land, ocean, ice fractions; Sfc 

stability; Air/sea exchange coefficient; Friction velocity 

Nudging None 
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Table 2. CAFS Model ice component and specifications. 

 

Los Alamos Sea Ice CICE 5.3 

Horizontal Grid Spacing 

# Grid Points 

Rotated Sphere shared with POP  

420 x 464 

Grid Configuration 

# Ice Categories 

Rotated Sphere 

7 Ice Thickness Categories 

Time Step 

Coupling Frequency 

CICE: 15-min 

Coupler: 30-min step 

Initialization SIT initialized with ESA CryoSat2 in February 2018 then free-

running; 

Forecasts: Reinitialized daily with NESDIS Blended Day/Night 

SST and AMSR2 SIC; 

Hindcasts: Reinitialized daily with NASA MUR SIC and SST 

Ice Rheology EVP / no grounded ice 

Information passed from CICE to 

Coupler 

Turbulent fluxes for WRF BL & sfc schemes; Sfc albedo for 

WRF radiation scheme; Net heat, fresh water, and salt fluxes; 

Penetrating SW radiation; Ice-ocean stress for ocean model 

Information passed from Coupler to 

CICE 

P, T, Tpot, specific humidity, air density, winds at lowest atmos 

model level; Sfc LW down flux; Sfc direct & diffuse SW, net 

SW flux; Precipitation type; Height of bottom atmospheric 

level; Freezing/melting potential; 

Ocean sfc currents; Sea surface slope; Ocean sfc salinity, SST 
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Table 3. CAFS Model Ocean component and specifications. 

 

Parallel Ocean Program POP Version 2.1 

Horizontal Grid Spacing 

# Grid Points 

Rotated Sphere shared with CICE  

420 x 464 

Grid Configuration 

# Vertical Levels 

B-grid 

45 

Time Step 

Coupling Frequency 

POP: 15-min 

Coupler: 30-min step 

Spin-up/Relaxation/Restarts Ocean spun-up with strong restoring to TOPAZ July 2014 

monthly mean & spun-up with GFS 6-11 July 2017 forcing 

(repeated 4 times). Relaxation to TOPAZ 2014 MM T/S 2 

points from coastline below surface (to keep T & salinity from 

drifting in the absence of runoff); 

Relaxation to TOPAZ 2014 MM T/S 15 points along N/S 

boundaries; Ocean restarts from previous day’s forecast 

Ocean inflow/outflow Not included in the configuration 

Information passed from POP to 

Coupler 

Ocean sfc currents; Sea sfc salinity, SST; Sea surface slope; 

qflux 

Information passed from Coupler to 

POP 

Net heat, fresh water, and salt fluxes; Penetrating shortwave 

radiation; Ice-ocean stress fluxes; Ice fraction; Ice & river 

runoff flux 
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Table 4. CAFS Model Land component and specifications. 

 

NCAR Community Land Model  CLM 4.5 

Horizontal Grid Spacing 

# Grid Points 

10-km  

384x432 

River Discharge/Outflow Not included in this configuration  

Grid Configuration 

# Vertical Levels 

Polar Stereographic 

15 

Time Step 

Coupling Frequency 

30-min 

Coupler: 30-min step 

Initialization Cold start 

Restart Land restarts from previous day’s 

forecast 

Information passed from CLM to 

Coupler 

Turbulent fluxes & wind stress for WRF BL & sfc schemes; 

Sfc albedo for WRF radiation scheme 

Information passed from Coupler to 

CLM 

P, T, Tpot, specific humidity, air density, winds at lowest atmos 

model level; Sfc LW down flux; Sfc direct & diffuse SW & net 

SW flux; Precipitation type; Height of bottom atmospheric 

level 

 

 

 

2.2.1 Lateral Boundary Conditions 

 

The GFS, NOAA’s operational global weather forecast model, is produced by the NWS National 

Centers for Environmental Prediction (NCEP) and used daily by operational forecasters across 

the U.S.  CAFS forecasts use the global, 0.5° GFS, 3-hourly forecast fields of pressure (P), 

temperature (T), horizonal winds (U), and water vapor (QV) for lateral forcing at the boundaries 

to produce higher-resolution (10-km) regional forecasts.  GFS biases therefore may affect CAFS 

performance, but such impacts are not specifically addressed in the current study.  Ocean lateral 

boundaries at the gateway regions are relaxed to a coupled, ocean-sea ice data assimilation 

system developed for the Arctic (TOPAZ4; Xie et al. 2017; Sakov et al. 2012) using 2017 

monthly temperature and salinity fields. 

 

2.2.2 Initial Conditions 

 

Although CAFS does not have direct data assimilation capabilities, GFS assimilates atmospheric, 

land, ocean, and ice observations available through the Global Telecommunication System 

(GTS).  GFS initializes sea ice conditions using satellite analyses; however, the atmosphere-only 

model does not evolve sea ice during the forecast time period (0-16 days) and is therefore 

inadequate for sea ice forecasting guidance needs.  Additionally, GFS does not include initial 
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cloud property fields, so CAFS hydrometeor mass and number concentrations are initialized with 

fields from the first day of the previous day’s hindcast to reduce spin-up time required to develop 

mature clouds in CAFS. 

 

To develop skillful sea ice forecasts, a model must be initialized with accurate sea surface 

temperature (SST) and sea ice states (Allard et al. 2018; Posey et al. 2015).  CAFS is initialized 

each day with the Advanced Microwave Scanning Radiometer (AMSR2) sea ice concentration 

(SIC) data (Spreen et al. 2008).  The AMSR2 radiometer is a conically-scanning passive 

microwave radiometer system that measures in seven frequency bands ranging between 6.925 

GHz and 89.0 GHz at both horizontal and vertical polarizations.  The 6.25 km AMSR2 SIC 

information is interpolated to the CAFS horizontal grid. The atmospheric model grid resolution 

is 10-km but the ocean is on a non-uniform grid which is ~9-10 km. 

 

CAFS ocean surface temperatures are initialized with a daily, satellite-derived NOAA day/night 

blended product (Maturi et al. 2017).  NOAA’s National Environmental Satellite Data and 

Services (NESDIS) generates a daily operational 0.05° global high-resolution satellite-based SST 

analyses with a nominal product latency of 1 to 3 hours from product generation. This analysis 

combines SST data from U.S., Japanese and European geostationary infrared imagers, and low-

Earth orbiting infrared (U.S. and European) SST data, into a single high-resolution 5-km 

product.  

 

CAFS forecasts use initial sea ice thickness (SIT) conditions from ESA’s CryoSat-2 and Soil 

Moisture and Ocean Salinity (SMOS) satellites on 14 February 2018 and are thereafter 

initialized­­ with fields from the first day of the previous day’s forecast.  Comparisons with the 

NASA ICESat-2 laser altimeter freeboard and CryoSat-2 observations from May 2019 were 

consistent with CAFS to within ~15%.  For example, all of the main SIT features such as the 

higher values within the Canadian Archipelago and the Beaufort MYI “arm” features (pers. 

comm., Farrell 2019) were present in the CAFS thickness fields.  

 

 

3. CAFS Model Validation 

 

CAFS forecasts and hindcasts were extensively validated with a variety of observations obtained 

from oceanic, ice, and land locations. Hindcasts were evaluated to identify model biases that 

limit forecast skill and identify the model physical processes that cause hindcasts to drift away 

from observations.  In this section, we present a selection of hindcasts validated against buoy 

observations, satellite measurements, and concurrent in situ observations to demonstrate model 

skill in predicting atmospheric state variables, wind and boundary layer structures, synoptic 

features, surface radiation terms, cloud microphysics, and ice and ocean properties.  Model 

hindcasts are compared to observations from: the ONR sponsored Sea State campaign (Oct-Nov 
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2015); land-based atmospheric observatories from two Department of Energy (DOE) 

Atmospheric Radiation Measurement (ARM) Program observatories (2017, 2018) located on the 

North Slope of Alaska (Oliktok Point and Utqiaġvik, Alaska; see Uttal et al. 2015); buoys in the 

Beaufort and Chukchi Seas (2015, 2017, 2019); and satellite-based instruments (2015, 2018, 

2019).  The validation datasets, which include both vertically-resolved observations (e.g., 

profiles of ocean and atmospheric properties including clouds), as well as point observations 

(e.g., surface flux components, sea ice characteristics), are described in more detail below. 

 

3.1 Validation of Coupled Ice-Ocean Properties 

 

The ONR Sea State campaign collected measurements in the Chukchi Sea region from the light 

icebreaker research vessel (R/V) Sikuliaq during the 2015 freeze-up period. The Sikuliaq 

transected various ice (and temperature) conditions during its 6-week cruise –from open water 

(where temperatures were relatively warm), to the MIZ (where temperatures were significantly 

colder), and up to the edge of the MYI pack as the fall freeze-up of first year ice evolved.  In 

essence, the ocean froze under the ship during the course of the Sea State campaign, as described 

by Thomson et al. (2016) and Persson et al. (2016).  The extensive suite of Sea State 

measurements used to assess model performance included those obtained from the: ocean [SST, 

underway Conductivity-Temperature-Depth (uCTD)]; atmosphere [basic meteorological 

parameters such as near-surface wind, pressure, temperature; boundary layer stability; turbulent 

fluxes of sensible and latent heat, and momentum; radiative fluxes; 4 times daily rawinsondes]; 

and ice [SIT, SIC, type].  Over 4300 uCTD’s and 165 rawinsondes were launched during the 

campaign to characterize the coupled atmosphere-ocean system.  Neither rawinsonde nor surface 

data were sent to the GTS, so these are independent of GFS analyses. 

 

To facilitate assessment of CAFS performance, model error, and predictability skill as a function 

of forecast hour, model output from the four surrounding points were interpolated to the exact 

location of the ship at the validation time.  The bar-whisker plots in Figure 2 illustrate model 

performance compared to oceanic temperature profiles from uCTDs (blue) and atmospheric 

temperature profiles from rawinsondes (red).  These plots illustrate model error of the coupled 

ocean-atmosphere state at the location of the German Icebreaker Polarstern over the yearlong 

campaign for forecast lead times of 12-h, 24-h, 180-h and 240-h.  Observational profiles, which 

extend vertically from ~150 m below the ocean surface to ~120 mb in the upper atmosphere, 

capture important features and transitions that need to be captured by the model to ensure 

accurate projection of ice properties.  This includes the structure of the ocean halocline (~50-m 

below ocean surface), the ocean mixed layer (~0 - 25-m depth), the ice surface, the atmospheric 

surface layer (lowest ~20 - 50-m), the atmospheric boundary layer (~975 - 900 mb), the free 

troposphere, and the tropopause (~250 mb).  Bars and whiskers are shown for all atmospheric 

and ocean model levels, with white dots (It would be good to increase the diameter of the white 

dots or to give them another color (e.g., green or bright red) to make them visible. They are hard to 
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see) indicating median values and black dots indicating mean values.  …the oceanic comparisons 

matched uCTDs (162) to the nearest-in-time (within 12-h) rawinsoundings. 

 

An examination of the upper two panels in Figure 2, reveals temperature errors throughout the 

column of less than ~0.5 ° C (black dots) up until 36-h forecast times (not shown).  Notable 

exceptions include larger deviations evident at the three major temperature transition zones: the 

tropopause (+/-1 ° C out to 180-h); the boundary layer air temperatures (+2-3 ° C after 180-h); 

and the ocean halocline (~-0.5 ° C across all lead times).  Mismatches between the height of the 

simulated and observed tropopause are likely related to a combination of errors in the GFS 

analyses, potential model thermodynamic biases, the CAFS modeled height of the tropopause 

(Wilson et al. 2011) and model-measurement resolution differences at the tropopause.  

 

Errors in the ocean surface temperatures are small (< -0.25 ° C across all lead times) however, 

larger errors are apparent in simulated temperatures around the ocean halocline (~ -50 m) where 

Root Mean Square Error (RMSE) values remain nearly constant (~ 0.5 ° C across all lead times) 

indicating that the errors at depth are associated with errors in defining the depth of the mixed 

layer.  Overall, the oceanic temperature errors remain steady across the different lead times due 

to daily initialization of the ocean surface satellite-derived SST’s, as well as, slower evolution 

and mixing of oceanic temperatures, in general.  Earlier versions of the model allowed the ocean 

to free-run with error at initialization from accumulating biases.  This issue ultimately led us to 

rely on a physically-consistent SST/SIC initialization pair that was initialized at the start of each 

forecast time. 

 

It is generally known that NWP models lose the greatest predictability and skill within the 5- to 

7-day range (REF?) and this is consistent with CAFS results, as illustrated in the difference 

between the 120- and 240- hours profiles (lower 2 panels of Fig. 2).  This is especially evident in 

the atmospheric boundary layer (925 mb and below), where temperature bias error in the lowest 

2-km grows rapidly after 5 days, from roughly +1.5 ° C at 180 h to +2.5 - 3 ° C at 240 h.  This 

warm bias in comparison to observations indicates that the model is unable to maintain observed 

boundary layer stratification and rapidly evolves into a less-stable state 

 

An analysis of CAFS hindcast skill over all forecast lead times (every 6-h), shows RMSE of 

temperature growing from approximately 1 ° C to 4 ° C starting at day-5 within the boundary 

layer and from around 1 ° C to 3 ° C at the tropopause after day-5.5 (not shown).  RMSE of 

ocean temperature remains fairly constant across all forecast lead times (~1 ° C throughout all 
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depths except for 2 ° C at the halocline). RMSE of temperatures in the free troposphere (~850 to 

275 mb) varies from 1 ° C and grows to around 2.5 ° C starting on day-7.5.  

 

 
Figure 2. Combined ocean CTD and atmospheric rawinsondes temperature (° C) error profiles from the 

location of the R/V Sikuliaq over the 6-week campaign at forecast lead times of 12-h, 24-h, 180-h and 240-h.  

Bar and whiskers are shown for all atmosphere and ocean model levels, with thin lines indicating minimum 

and maximum values, and thick lines indicating 25% and 75% values. Black dots indicate median values and 

the white dots indicate mean values.  

 

 

 

To understand how CAFS handles complex ice-ocean-atmosphere coupled processes, model 

output was compared to surface meteorological quantities (Figs. 3a-d), as well as various surface 
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flux parameters including radiative up- and downwelling longwave and shortwave fluxes (LWu, 

LWd, (Fig. 3e), SWu, SWd), sensible heat flux (Hs), and latent heat flux (Hl) measured during the 

Sea State campaign.  

 

 

Figure 3. Comparisons between observed (solid lines) and model output from hindcast lead times (“x”) for: a) 

Sea Level Pressure (mb); b) air (red) and skin (blue) temperature (°C); c) wind speed (ms-1); d) surface layer 

stability (Tair – Tskin; °C); and e) downwelling longwave radiation (LWd; Wm-2). Model lead times are 0-h 

[red; except 6-h in e)], 24-h (blue), 60-h (magenta), and  120-h (green), so each observation time includes 

multiple points from the sequential daily initializations. Observed data are 1-h running means and model 

output was interpolated to the observation heights (e.g., 15.4 m for Tair, 16.5 m for winds). The times when 

the ship was away from the ice edge are shaded. 

 

 

 

Temperature observations at 15.4 m height on the ship’s bow tower show that the ship spent four 

time periods near the ice edge (warmer temperatures) and three periods within the growing first-

year ice region (colder temperatures) (Fig. 3b). During several of the ice-edge periods, lower 
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sea-level pressure (SLP) and larger pressure gradients (Fig. 3a) were observed, producing 

stronger winds (Fig. 3c).  More details of the atmospheric and ice conditions during Sea State are 

provided by Persson et al. (2018).  CAFS captured synoptic-scale temporal/spatial variability 

reasonably well, with only small errors in SLP (Fig. 3a) and only slightly larger errors in 

temperature and wind speed (Figs. 3b and 3c).  Forecast (hindcast) errors as a function of 

forecast time (not shown) demonstrate that SLP bias decreases from near 0 hPa for 12- to 36-h 

forecasts to -0.8 hPa between 60- and 120-h forecasts, with a mean bias of -0.4 hPa.  RMSE 

increases from 0.5 hPa at 12-h to 2 hPa near 100- and 120-h.  Wind speed bias and RMSE are 

approximately +0.8 ms-1 and 2.2 ms-1, respectively, with only a small increase in RMSE with 

increasing forecast time.  The bias and RMSE of air temperature (Ta) average +0.6 °C and 2.8 

°C, while the bias and RMSE of skin temperature are around -1.1 °C and 3.6 °C, respectively.  

Hence, in the mean, the CAFS-generated surface layer along the ship track is too stable 

throughout each hindcast, since the skin temperature is too cold and the air temperature too 

warm.  This manifests as a positive bias in stability in CAFS in Figure 3d. 

 

Downwelling longwave radiation (LWd) provides a measure of the degree of cloudiness, with 

high values linked to cloudy conditions and low values connected to clear sky conditions.  

Figure 3e shows that CAFS had some success in predicting sky conditions, though there were 

also many periods with large discrepancies.  The mean bias in LWd for 1- to 5-day hindcasts was 

extremely small (+0.3 W m-2), though the large mean RMSE of 39.8 Wm-2 reflects timing offsets 

in otherwise correct simulations. This RMSE value is about half of the upper limit of ~80 Wm-2, 

given by the difference between cloudy and clear conditions (see Fig. 3e) if the model were 

incorrect at every validation time.  The sensible heat flux (Hs) is also an important component of 

the energy budget in this environment.  While not shown in Figure 3, Hs has a bias and RMSE 

of -1.9 Wm-2 and 32.4 Wm-2, respectively, where the small negative mean bias is consistent with 

the stability bias in the CAFS-simulated surface layer, while the large RMSE reflects impacts of 

clouds and ice conditions on Hs.  

 

In general, models struggle to capture features of the complex Marginal Ice Zone where the fine-

scale ice features cannot be adequately captured by satellite initialization fields.  As shown in 

Figure 4, LWd (cloud) hindcasts have significant errors as do hindcasts of SIC near the ship.  

Figure 4a reveals that CAFS predicts SIC reasonably well during the 3 periods when the ship 

was in the interior of the ice, where observed SIC’s were close to 100% and the predicted SIC’s 

were around 80-98%.  However, during periods when the ship was near the ice edge with 

observed SIC varying rapidly (spatially and temporally) between 0-100%, CAFS often 

significantly underestimated (e.g., Year Day 283-287) or overestimated (e.g., Year Day 305-308) 

SIC. A scatterplot of difference between simulated and observed SIC as a function of the 

observed SIC (Fig. 4b) shows a broad error scatter within the 100% error range, and that the 

model prediction errors are not concentrated near the desired 0% value, except possibly for 

observed SIC >88%.  Note that SIC at the initial time in the model (“O” in Fig. 4b) is 
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underestimated for observed SIC of < 75%.  Hence, in all but the highest SICs, simulated values 

are hindered by poor initialization, resulting in poor forecasts for this single point validation.   

 

 

 

 

Figure 4. a) Time series of observed (red line) and modeled ice concentration for 0 h (red x), 24-h (blue x), 60-

h (magenta x), and 120-h (green x) lead times; b) scatterplot of modeled minus observed ice concentration as 

a function of observed ice concentration for 4 model lead times; and c) time series of observed (red line) and 

modeled Fatm for 4 model lead times. Modeled values are from hindcasts. The blue lines in b) bracket the 

possible range of difference points. 

 

 

 

This poor prediction of SIC near the ice edge leads to poor predictions of air-surface temperature 

differences and, therefore, turbulent heat flux (Hs and Hl) near the ice edge. As a result of the 

erratic but significant errors in LWd (cloudiness) and turbulent heat flux (ice concentration) near 

the ice edge, evaluation of net atmospheric energy flux (Fatm = SWnet + LWnet - Hs - Hl) (Fig. 4c) 
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shows some periods where the model values compare reasonably well to the observations (e.g., 

Year Day 280-285) and others where Fatm was simulated quite poorly (e.g., Year Day 297-301; 

Year Day 306-308).  The mean 120-h bias in the model Fatm is only 9.4 Wm-2, while the mean 

RMSE is large at 72.1 Wm-2 for these hindcasts, reflecting the model’s difficulties with 

predicting cloud cover and sea ice concentration near the ice edge. 

 

To examine the sea ice forecasting success of CAFS hindcasts on a more regional basis, regional 

observed (AMSR2 satellite) and modeled SIC fields were compared (Fig. 5).  In general, 

observed and modeled SIC fields diverged locally during the 5-day simulations initialized on 

each day (Figs. 5a-c), but the model performed reasonably well when examining the regional 

statistics.  Figure 5d shows that CAFS produced similar amounts of ice growth over 5-day 

periods during Sea State as observed with AMSR2 but was unable to reproduce smaller areas of 

ice loss (through advection or melt) during the few instances that this was observed. 

 

In general, CAFS-simulated surface radiation and turbulent fluxes are in reasonable agreement 

with Sea State observations after accounting for discrepancies expected from errors in ice edge 

location and SIC, and for errors in the surface-layer stability described previously.  When mean 

fluxes are plotted as a function of relative distance to the ice edge, over-ice and over-water fluxes 

are in reasonable agreement after accounting for stability errors (not shown).  Fluxes near the ice 

edge, however, contain larger errors because of error in representing ice edge location and sea 

ice properties.  Surface radiation quantities are more erratic, likely because of misrepresentation 

of clouds in CAFS.  Additionally, although smaller-scale dynamic structures such as low-level 

jets (e.g., Guest et al. 2018) and turbulent flux gradients at the ice edge were resolved in CAFS, 

differences in timing or strength were attributed to inexact location of the initialized ice edge and 

ice thickness.  Resolving smaller scale features represented by point measurements in the highly 
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variable MIZ is a challenge since the resolution of satellite-derived initialization fields (typically 

3.0 - 12.5 km) does not capture the complex reality of the ice edge.  

 

 

 
 

Figure 5. Observed and modeled ice concentration 5-day changes within the Sea State domain. Shown are 

sample AMSR2 ice concentration fields from Oct 3 and Oct 8 (a & b), and the forecast ice concentration field 

on October 8 (c) initialized 120 h earlier using the October 3 AMSR2 field in a) as initial condition. Panel d) 

shows the percentage of pixels within the shown Sea State domain that change from water to ice (red) and 

from ice to water (green) during the 5 days (120-h) after the given time for AMSR2 (solid) and the CAFS 

model hindcasts (dashed). The October 3 (Year Day 276) to October 8 (Year Day 281) observed and modeled 

changes are shown by the double blue arrow. 15% ice concentration is used as the ice/no-ice threshold. The 

Sea State ship track is shown in each panel (magenta line), with the track for the given day marked in green. 

 

 

 

3.2 Validation of Near-Surface Atmospheric and Sea Ice Properties using Buoys 

 

Measurements of atmospheric surface air temperature (SAT), sea level pressure (SLP), 2-m air 

temperature and ice motion from the International Arctic Buoy Programme (IABP) were used to 

further validate CAFS hindcasts.  The U.S. component of the IABP network (USIABP) is 

managed by the University of Washington and the U.S. National Ice Center (NIC).  The USIABP 

provides real-time data that are uploaded to the GTS and therefore available for assimilation into 

operational weather forecasts (e.g., GFS).   In this section, we provide an overview of work 

completed over the past 2 years to assess CAFS model performance using drifting buoys. 

Assessing CAFS performance in a range of SICs is important for understanding model 

representation of coupled processes, as illustrated by the validations in Section 3a.  In Figure 1, 
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two IABP buoy tracks (2015) are shown (brown and red lines) overlaid onto an example fall 

season CAFS surface temperature (° C) field – one buoy in high concentration sea ice in the 

“Central Arctic” (here, CA buoy, reporting SLP and T2m) and one buoy in the Marginal Ice Zone 

(here, MIZ buoy, reporting SLP and SAT).  Comparison of CAFS performance statistics in these 

two environments illustrates some of the model’s performance characteristics.   

 

Figure 6 shows Taylor diagrams (Taylor 2001) of CAFS hindcasts and persistence forecasts 

(from 1 October – 5 November 2015, concurrent with the Sea State campaign) at 0-, 1-, 3-, 5-, 7-

, and 10-day forecast lead times of SLP and T2m (top row) and SLP and SAT (bottom row) 

compared to observations taken by the CA and MIZ buoys depicted in the Figure 1 drift tracks.  

Taylor diagrams graphically represent how accurately a model simulates the real-world system 

by mapping pattern correspondence between simulated and observed fields through a single 

point that combines information on the correlation coefficient and ratio of the standard 

deviations of the two patterns.  

 

Together, these statistics provide a summary illustration of how well the model reproduces 

observations by quantifying the forecast skill in terms of three statistics: Pearson correlation 

coefficient; standard deviation; and bias. The Pearson correlation coefficient is mapped along the 

azimuthal angle; the normalized standard deviation is proportional to the radial distance from the 

origin; and the bias is defined by the symbol size as indicated in the legend located in the upper 

left of each panel.  Forecasts that match best with the pattern of observations will have the 

highest correlation, lowest bias and be clustered around the location of the graph marked REF on 

the x-axis (Correlation=1.0, Normalized Standard Deviation=1.0).   CAFS hindcasts, as a 

function of lead time (by color in the upper right legend of each panel), are indicated by the #1 

above each symbol and persistence forecasts are indicated by the #2 above each symbol. The 

lowest bias for any different lead time is denoted by a solid square (which for “persistence” is the 

0-day forecast in all panels).  In general, note that many of the model points in Figure 6 are 

clustered along the dashed arc showing the low standard deviation and indicating that the 

amplitude of the pattern variations compares very well.  However, as expected, the correlation 
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decreases with increasing hindcast lead time.  

 

 

 
Figure 6. Taylor diagrams of 10-day CAFS hindcasts during the Sea State period (1 Oct – 5 Nov 2015) 

compared to observations obtained from IABP CA buoy and MIZ buoy (tracks shown in Fig. 5). Each 

diagram shows standard deviation (radial axis), Pearson’s correlation coefficient (azimuthal axis), and bias 

(legend in upper left) of the hindcasts as a function of lead time (#1 above each symbol) as well as for a 

persistent forecast (#2 above each symbol).  Panel: A) Surface pressure (hPA) along the CA drift track; B) 2m 

temperature (°C) along the CA drift track; C) Surface pressure (hPa) along the MIZ drift track; D) Surface 

air temperature (°C) along the MIZ drift track.  The lowest bias for the range of lead times (0-, 1-, 3-, 5-, 7-, 

10-day) shown is denoted by a solid square. 

 

 

 

In summary, Taylor diagrams allow us to visualize forecast skill and investigate sources of error 

compared with a persistence benchmark.  For example, the fact that CAFS hindcast SLP in the 

central Arctic beats persistence but rapidly drifts away from observations may be due to errors in 
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model physics, and T2m in the central Arctic (and also SLP in the MIZ) is not accurately 

initialized, indicating that better initial conditions are needed to improve forecast skill. 

In addition to these Taylor diagrams, we present a regional comparison of CAFS-modeled sea 

ice area (total area covered by sea ice based on AMSR2 satellite sea ice concentration) for the 

Chukchi and Beaufort Seas area (defined as 180o-125o W) during the 2017 and 2018 freeze-up 

seasons (defined as 1 November – 5 December).  Figure 7 shows RMSE of 35 individual, 10-

day CAFS forecasts (red dots) and persistence forecasts (black dots) as a function of lead time.  

In both 2017 and 2018 forecast years, CAFS beats a persistence forecast within 2 days.  CAFS 

error growth is less than 20% between a 2-day and 10-day lead time, while persistence forecast 

error grows by 220% over the same lead times. That is, during the freeze-up season, CAFS 

grows ice within the domain while a persistence forecast doesn’t, though the locations of ice 

growth may differ from observations (e.g., Fig. 4).  The freeze-up season is the time of year 

when a coupled model will do best against persistence forecasts. 

 

 

 
Figure 7. RMSE of 35 10-day CAFS hindcasts (red dots) and persistence forecasts (black dots) of sea ice area 

as a function of forecast lead time for 2017 (left) and 2018 (right) freeze-up (1 November to 5 December) in 

the Beaufort and Chukchi Seas, defined as 180-125°W.   

 

 

 

Finally, we describe results of sea ice dynamic quantities as compared to IABP buoy 

observations and in comparison to other operational forecast centers.  The IABP observations 

were incorporated in near real-time as part of the World Meteorological Organization’s (WMO) 

Year of Polar Predictions (YOPP; WMO WWRP 2016) Sea Ice Drift Forecast Experiment 

(SIDFEx) project (Goessling et al. 2020).  The SIDFEx project is an international community 

effort to compare daily drift forecasts (at lead times from days to a year), from a variety of 

modeling centers (including NOAA) to the locations of select IABP buoys, as well as the 



22 
 

location of the MOSAiC campaign’s Polarstern icebreaker during the year-long drift 

deployment (2019-2020).  

 

The systematic assessment of drift forecasting capabilities allows for improvements related to 

physical understanding of sea ice and can help identify and resolve model shortcomings, 

predictability limits, and interaction between sea ice and boundary layer physics in the 

atmosphere and ocean.  It has also provided an opportunity to compare CAFS with other drift 

model products from international modeling centers in Europe (ECMWF), Canada (Environment 

Canada), the United Kingdom (UKMet), Germany (DWD), and Norway (MetNo) to name a few.  

The comparisons can be found online and provide forecast skill assessment over a range of ice 

conditions (https://www.polarprediction.net/key-yopp-activities/sea-ice-prediction-and-

verification/sea-ice-drift-forecast-experiment/).   

 

3.3 Validation of Properties using Land Station Data 

 

Atmospheric measurements obtained from two DOE ARM sites located along the North 

Slope of Alaska (NSA), Utqiaġvik (formerly, Barrow) and Oliktok Point (OLI) (de Boer et 

al. 2018) were also used to compare CAFS-simulated fields to measurements and to assess 

biases of surface pressure, 2-m temperature, wind speed and direction, surface water vapor, 

and radiative quantities (ARM 2018a; 2018b) for the time periods spanning 1 November 

through 5 December in 2017 and 2018.  Observations are 1-min averages which were then 

averaged across 20 minutes to approximate correspondence to the "spatial scale" included 

within the model’s 10-km grid spacing.   A selection of time series for several lead times 

(0.25-, 2-, 5-, 10-day) and the corresponding Taylor diagrams for 2-m temperature (° C) and 

the downwelling LW radiation term (W m-2) are shown in Figures 8-9, respectively.   

 

Additional Taylor diagrams of surface pressure (hPa), 2-m water vapor (g kg-1), and 10-m 

wind speed (ms-1) are presented in Figure 10 to summarize hindcast statistics.  Each of the 

Taylor diagram distributions contains approximately 32,000 comparison points that use 1-

min observations +/- 2 hours from the hindcast time, with the exception of the 10-day 

forecast (where there is no associated +2 hours).   

 

Figure 8 shows example T2m time series at a selection of forecast lead times (from Oliktok Point, 

AK during Fall 2017) and the corresponding summary Taylor diagram (for both Utqiaġvik and 

Oliktok Point, Alaska during Fall 2017 and 2018).  In general, CAFS captures the temperature 

structures well from the initial time period through day-5 with correlations between 0.95 and 0.8.  

https://www.polarprediction.net/key-yopp-activities/sea-ice-prediction-and-verification/sea-ice-drift-forecast-experiment/
https://www.polarprediction.net/key-yopp-activities/sea-ice-prediction-and-verification/sea-ice-drift-forecast-experiment/
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Differences in the 10-day lead time time-series relate to the lower correlation (~0.5) shown in the 

Taylor diagram.  

 

 
Figure 8. Time series of 2-m temperature (°C) from measurements at the DOE North Slope of Alaska 

observatory at Utqiaġvik, AK (black) and the CAFS model (red) for 0.25-, 2-, 5-, and 10-day lead times. 

Taylor diagram for T2m at Utqiaġvik and Oliktok Point, Alaska. 

 

 

Figure 9 depicts the downwelling longwave time series and summary Taylor diagrams as an 

example of a more process-oriented model skill metric.  As in the previous discussion, forecast 

skill falls off after day-5 and both upwelling (not shown) and downwelling radiative terms have 

lower correlations between the 0- to 5-day lead times (~0.8 – 0.5).  The model tends to get the 
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clear sky periods correct (lower values of LWd) but there is an offset in the LWd during cloudy 

periods, which may correspond to modeled clouds being too thick or too warm.  Hence, the 

standard deviations are larger than 1.0. 

 

 

 
Figure 9. Time series of downwelling 926 longwave radiation (Wm-2) from measurements at the DOE North 

Slope of Alaska observatory at Utqiaġvik, AK (black) and the CAFS model (red) for 0.25-, 2-, 5-, and 10-day 

lead times during fall 2017. Taylor diagram for LWdn at Utqiaġvik (NSA) and Oliktok Point (OLI), Alaska. 
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Lastly, we present Taylor graph comparisons of the CAFS model surface meteorology quantities 

(Figs. 10 and 11).  CAFS forecasts of surface pressure (Fig. 10, top panel) show excellent skill 

as we have already described in previous sections with modeled values consistently close to the 

observations.  Note the tight clustering of points with a progression of correlation values along 

the normalized standard deviation arc equal to 1.0 from >0.99 toward lower values with 

increasing hindcast lead time, with 0.87 at day-10.  The largest drop in skill is between the 5- and 

10- day forecast from ~0.93 to 0.87, as would be expected with initial value NWP.  This 

expected result is in part tied to using the GFS fields for initialization which are based on the 

GFS data assimilation process incorporating the available observations. expected result is in part 

tied to using the GFS fields for initialization which are based on the GFS data assimilation 

process incorporating the available observations. 

 

Taylor diagrams for 2-m water vapor (Fig. 10 top bottom) and 10-m wind speed (Fig. 11) show a 

similar and expected reduction in correlation with longer forecast lead time with most 0- to 5-day 

values between 0.95 - 0.7.  However, there are differences in the standard deviation (lower 

values for wind speeds and higher values for water vapor), and correlations are generally lower.  

Lower values for wind speed may indicate an inability for the model to represent small-scale 
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coastal atmospheric features and variations at these two sites. More detailed analysis is needed to 

clarify the reasons for the differences. 

 

 

 

 
Figure 10. Taylor diagrams of CAFS hindcasts in comparisons to measurements of surface pressure (hPa)  – 

top; 2-m water vapor -lower at Utqiaġvik (NSA) and Oliktok Point (OLI), Alaska for fall 2017 and 2018. 
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 Figure 11.  10-m wind speed (ms-1) – bottom row at Utqiaġvik (NSA) and Oliktok Point (OLI), Alaska for fall 

2017 and 2018. 

 

 

 

4. Applications 

 

NOAA PSL has provided real time, experimental, daily, 0- to 10- day forecasts of Arctic weather 

and sea ice evolution information during freeze-up seasons from 2015-2018 and daily forecasts, 

year-round, starting in February 2018 via a publicly-accessible web interface. The CAFS suite of 

experimental ice, ocean and atmosphere model products have been used by a variety of 

stakeholders.  At present, the National Weather Service-Alaska Region and the National Ice 

Center (NIC) incorporate CAFS ice, ocean and atmospheric products as guidance for their 1- to 

5- day Arctic sea ice forecasts. 

 

A variety of atmospheric, oceanic, sea ice and coupled forecast products, including animations of 

the 0- to 10- day forecasts, time-height cross sections, tracer and drift forecasts, meteograms 

(time series of meteorological quantities for a given location), and archived output files are 

posted daily to the website (https://www.esrl.noaa.gov/psd/forecasts/seaice/).  The CAFS 

forecast page was developed with the NWS-AR Sea Ice Program (SIP) forecasters to ensure that 

the most useful guidance products, on the desired higher-resolution Alaska region grid, was 

easily accessible and in a usable format for inclusion into their GIS platform. Feedback from SIP 

forecasters has been invaluable given their experience with rapidly evolving Arctic marine 

https://www.esrl.noaa.gov/psd/forecasts/seaice/
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conditions, their interactions with polar operators in a real time environment, and their 

knowledge of real-world freeze-up processes.  

 

CAFS forecast products have also been used to inform a variety of Arctic field campaigns over 

the last several years, including: the Navy Ice Experiment (ICEX; 2017, 2018) camps; ONR-

sponsored Stratified Ocean Dynamics of the Arctic (SODA; 2018) and Sea State (2015; 

described in Section 3) research cruises held in the Beaufort and Chukchi Seas; the SIDFEx 

(described in Section 3) and MOSAiC campaigns (Shupe et al. 2022) during their year-long 

drift deployment (2019-2020); and NASA’s ARCSIX 

(https://espo.nasa.gov/arcsix/content/ARCSIX) aircraft campaign (2024).   

  

5. Conclusions and Future Work 

 

Experimental, weather-scale (0- to 10- day) forecasts of Arctic weather and sea ice evolution 

have been provided to stakeholders using the Coupled Arctic Forecast System fully-coupled, ice-

ocean-atmosphere, regional model since 2015.  The current configuration of the coupled model 

includes the WRF atmospheric model, the POP2 dynamical ocean model, the CICE5 sea ice 

model, and the NCAR land and flux coupler models.  The model is initialized each day with 

satellite sea ice concentration and sea surface temperature data.  The CAFS sea ice forecasting 

project has two distinct objectives: the first is to provide model guidance for short-term forecasts 

of Arctic sea ice and weather; the second is to characterize process-level model deficiencies to 

improve model representation of key processes.  NOTE: Can we support explanations of how to 

improve the representations, of what really is responsible for the errors reported and how to 

correct the model schemes. 

 

Performance metrics, developed with observations from ship-based campaigns, buoys, satellite 

measurements, and Arctic land stations were shown to discuss hindcast skill relative to lead time 

and model biases.  Model output was compared with rawinsonde profiles (temperature, pressure, 

relative humidity, and wind speed and direction), uCTD profiles (ocean temperature), surface 

meteorology quantities (sea level pressure, surface and 2-m temperature, 2-m water vapor, 10-m 

wind speed and direction, surface radiative fluxes), and satellite observations (sea ice extent and 

thickness) during the fall freeze-up season were discussed.  

 

The comparisons between CAFS and observations show that, in general, CAFS is a skillful 

coupled model able to provide useful forecast guidance products to sea ice forecasters.  CAFS 

captures synoptic-scale temporal/spatial variability, as well as, near-surface weather with only 

small errors in SLP and only slightly larger errors in temperature and wind speed.  CAFS shows 

skill in creating, moving and melting sea ice, with forecast skill beating persistence after 1 day 

with correlations ~0.9-0.95 until day-2 and ~0.7-0.8 until ~day 5.5-6.5, as compared with 

satellite and buoy data.  Temperature errors throughout the atmosphere column were < ~0.5 ° C, 

https://espo.nasa.gov/arcsix/content/ARCSIX
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up to 36-h lead times and errors in the ocean surface temperatures < -0.25 ° C, across all lead 

times.  Exceptions included larger deviations evident at major temperature transition zones: the 

tropopause (+/-1 ° C); the boundary layer air temperatures (+2-3 ° C after 180-h); and the ocean 

halocline (~-1.5 ° C).  

 

As expected, CAFS predictability skill significantly decreases after day-7, especially in the 

atmospheric boundary layer (925 mb and below), where temperature bias error in the lowest 2-

km grows rapidly from roughly +1 ° C at 180-h to +2.5 – 3.25 ° C at 240-h.  This warm bias 

indicates that the model is unable to maintain observed boundary layer stratification and rapidly 

evolves into a less-stable state.   Process studies to evaluate if this bias is due to the 

misrepresentation of air-surface interaction processes, issues with the model coupling, 

representation of clouds, or to other boundary layer and surface processes and parameterizations 

continue to be evaluated.  

 

Modeled quantities linked to strongly coupled processes such as radiative fluxes, boundary layer 

stability, and cloud structure exhibited lower correlations, especially in the Marginal Ice Zone 

regions where the fine-scale ice features are not captured in the satellite initialization fields.  In 

general, CAFS-simulated surface radiation and turbulent fluxes are in reasonable agreement with 

point observations after accounting for discrepancies expected from errors in ice edge location 

and SIC, and for errors in the surface-layer stability.  Validations using several of the data sets 

show that initial conditions of ice concentrations and even 2-m temperature are often in error, 

especially near the ice edge, leading to errors in a number of air-surface interaction processes.  

 

When compared to point measurements, CAFS exhibited some success in predicting sky 

conditions, cloud structure, and phase, though some periods showed error in correctly simulating 

the timing and lifetime.  Improvements were made after initializing the cloud hydrometeor mass 

and number with fields from the first day of the previous day’s hindcast to reduce spin-up time 

of cloud microphysical fields, as well as the use of a double-moment microphysical scheme 

implemented in WRF. 

 

Ultimately, understanding coupled processes is a major driver behind the CAFS development 

process, and we will continue to evaluate surface energy exchange against observations of ice, 

ocean, and atmosphere through comparison with additional data sets.  Measurements obtained 

over an annual cycle from the MOSAiC Drifting Observatory will allow us to further assess and 

validate the model, address outstanding process questions, and intercompare with other 

international coupled forecast models.  Advancing our understanding of coupled forecast skill 

and error is an important component of NOAA’s continued development of the global Unified 

Forecast System.  In this capacity the regional CAFS model has informed discussions with the 
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UFS teams to understand processes unique to the Arctic environment and their cumulative 

influence on sea ice forecasting. 

 

The Arctic is a unique environment and the heterogeneity of the surface conditions drive 

variability.  Arctic cyclones, which transport heat and momentum from lower latitudes and 

impact navigation though atmosphere, ocean, and sea ice conditions are impacted by small-scale 

variability such as meso-scale cyclones, tropopause potential vorticity anomalies, and land-sea 

and ice-ocean temperature and moisture contrasts.  Ongoing studies with CAFS reveal that 

global models with regional, higher-resolution configurations in the Arctic and parameterizations 

adequate and specific to simulate Arctic boundary layers and mixed-phase cloud systems should 

be considered for optimized forecast skill. 
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