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Abstract

The laser step diagonal measurement modifies the diagonal displacement measure-
ment by executing a diagonal as a sequence of single-axis motions. It has been
claimed that the step-diagonal test enables the identification of all the volumet-
ric error components, including linear errors, straightness and squareness errors, in
three-dimensional space. In this paper, we show that the conventional formulation
of the step diagonal measurement is valid only when implicit assumptions related to
the configuration of laser and mirror setups are met, and that its inherent problem is
that it is generally not possible to guarantee these conditions when volumetric errors
of the machine are unknown. To address these issues, we propose a new formulation
of the step diagonal measurement, in order to accurately identify volumetric errors
even under the existence of setup errors. To simplify the discussion, this paper only
considers the two-dimensional version of laser step diagonal measurement to esti-
mate volumetric errors on the XY plane. The effectiveness of the proposed modified
identification scheme is experimentally investigated by an application example of

two-dimensional laser step diagonal measurement to a high-precision machine tool.
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1 Introduction

To meet increasing demands in the manufacturing of optical parts or
electronic parts, high-precision and ultra-precision machine tools have been
rapidly introduced into the market in recent years. Typically, a machine tool of
the positioning resolution up to 1~0.1nm is called an ultra-precision machine
tool, and a machine of the positioning resolution of 0.1 gm~10 nm and higher
stiffness, higher speed, and larger workspace than ultra-precision machines is
referred to as a high-precision machine tool. To ensure the motion accuracy
over the entire three-dimensional workspace of such a machine tool, it is im-
portant to evaluate all the volumetric errors including 3 linear displacement
errors, 6 straightness errors and 3 squareness errors [1]. For ultra-precision
and high-precision machines of a nanometer-order positioning resolution, it is
particularly important to evaluate straightness and squareness errors, since it
is often the case in practice that straightness and squareness errors of such
a machine are much larger than linear positioning errors. Currently, ASME
B5 (TC52) and ISO 230 (TC39) are working on the standardization of the
definition of volumetric accuracy [2].

For the measurement of linear displacement errors, laser interferome-
ters of the resolution sufficient to measure high-precision and ultra-precision
machines are widely available in today’s market. The measurement of other
volumetric errors such as straightness and squareness errors is more difficult
and time-consuming. Typically, straightness and squareness errors are mea-
sured by using a high-precision displacement sensor and an artifact such as a
straight edge or a square edge. For the measurement on high-precision or ultra-
precision machines, the artifact whose geometric and dimensional accuracies
are guaranteed to be higher than the accuracy of the measured machine is
needed, which requires higher measurement cost. Furthermore, since the mea-
surement is one-dimensional and its path is restricted to a line or a square, an
operator must change the setup of a sensor and an artefact every time for the
measurement of each different error component. Dual-beam laser systems or

autocollimators to measure straightness and squareness errors are also avail-



able from many companies. They do not require an artefact such as a straight
edge, but it is the same in that a different setup is needed to measure each
different error component.

In the literature, many research efforts have been reported on the eval-
uation of volumetric errors. For example, laser trackers have been applied to
evaluate volumetric errors on coordinate measuring machines [3,4]. A laser
tracker is capable of measuring the three-dimensional position of the target,
and thus can be directly applied to the evaluation of volumetric errors. In
general, however, there are many error sources in a laser tracker, and their
precise calibration is crucial to obtain the measurement accuracy sufficient to
evaluate volumetric errors of high-precision machine tools. Furthermore, laser
trackers are at this stage too expensive to be widely accepted to test machine
tools in the industry. The laser interferometer with the auto-alignment of laser
direction [5] has similar issues. Especially for CMMs, three-dimensional volu-
metric errors are often evaluated by using a ball plate (e.g. [6]). The cost to
make the ball plate of the geometric accuracy precisely calibrated can be an
issue in practical applications to machine tools. It is also a critical limitation
that the measurement volume is strictly restricted to the size of the ball plate.

For quicker, lower-cost evaluation of volumetric errors of a machine tool,
the standards ASME B5.54 [7] and ISO230-6 [8] define the diagonal measure-
ment by using a laser interferometer. Its two-dimensional version is illustrated
in Fig. 1. In the diagonal measurement, the machine moves along each of di-
agonals of the machine’s workspace in turn, and the diagonal displacement is
measured by using a laser interferometer. In the three-dimensional case, the
machine moves along each of its four body diagonals. Although the diagonal
measurement can be considered as a good quick check of volumetric errors,
it is almost obvious that it cannot be used as a strict diagnosis of each volu-
metric error. As has been discussed in details by Chapman [9], under certain
conditions, a machine can achieve a good result on diagonal tests, even though
it has a poor volumetric accuracy. Furthermore, more importantly, it is impos-
sible to distinguish the linear error, the straightness error, and the squareness

error of each axis from the results of diagonal tests.



As an extension of the diagonal measurement, the step diagonal mea-
surement, or the vector measurement, has been proposed by Wang [10,11]. In
the step diagonal measurement, each axis is moved one at a time along the
"zig-zag” path toward the body diagonal direction. Figure 2 illustrates the
setup of the two-dimensional version of the step-diagonal measurement. Wang
claimed that additional data enables the identification of all the volumetric
errors, namely the linear error, the straightness error, and the squareness error
of each axis, from step diagonal measurements.

The first objective of this paper is to discuss the validity of the volumet-
ric error identification based on step diagonal measurements. In this paper,
we show that the formulation of the step diagonal measurement presented by
Wang [10] is valid only when implicit assumptions related to laser and mirror
setups are met, and that its inherent problem is that it is generally not pos-
sible to guarantee these conditions when volumetric errors of the machine are
unknown. As a result, setup errors potentially impose significant errors on the
identification of volumetric errors. As a critical issue with the step diagonal
measurement, Chapman [9] discussed that the misalignment of the mirror may
cause a large estimation error. The discussion presented in this paper contains
this issue, but we will present rather critical issues with Wang’s formulation
of the step diagonal measurement.

As remedies for these issues, this paper will propose a new formulation
of the step diagonal measurement, such that each volumetric error can be
identified from step diagonal measurements even when setup errors exist. To
simplify the discussion, this paper only considers the two-dimensional version
of step diagonal measurements. The extension to the three-dimensional case is
straightforward, and will be studied in our future research. The validity of the
discussion on issues in step diagonal measurements and the effectiveness of the
proposed modified identification scheme will be investigated experimentally by
showing an application example to a high-precision machine tool. The remain-
der of the paper is organized as follows: Section 2 first defines volumetric errors
and the step diagonal measurement, and then briefly reviews the conventional

formulation of step diagonal measurement proposed by Wang [10]. Section 3



discusses inherent issues with the conventional formulation of step diagonal
measurement. A new formulation of step diagonal measurement is proposed
in Section 4. Section 5 presents an experimental validation of the present for-
mulation by showing its application example to a high-accuracy machine tool.

Finally, the paper concludes with a brief summary as presented in Section 6.

2 Conventional Formulation of Laser Step Diagonal Measurement

2.1 Problem Statement

Figure 2 depicts the setup of 2D step-diagonal measurement. As the
machine spindle, where a plane mirror is attached, moves along a “zig-zag”
path, the moving distance along the face diagonal is measured by using a laser
interferometer. Suppose that the laser is aligned to the diagonal AD, as is illus-
trated in Fig. 2. Suppose that this direction is represented by the unit vector
lpp = [ Lo pp: ly,pp] (this setup is referred to as pp measurement hereafter).

Suppose that reference location of the target mirror in X and Y direc-

tions, P,(k) and P,(k) € R?, are respectively given by:

where a is constant. To simply the discussion, this paper assumes that the
aspect ratio of each block is one.

Define E,(z(k)) and E,(z(k)) (k =1, ---, N) as the positioning error
in X- and Y-directions, respectively, when the machine moves toward the X
direction from the reference position P,(k — 1) to Py(k). In other words, the
actual position of the target mirror, P,(k) € R?, is given by:

a+ Ey(x(k)) . k| Ey(x(i))
Py(k) = Py(k— 1) + = Pu(k) + 3 (2)

Ey(z(k)) Ey(z(i))



For the motion toward Y direction, P,(k), E,(y(k)) and E,(y(k)) (k =1, ---,
N) are defined similarly. In this paper, total 4N error components, F,(z(k)),
E,(z(k)), Ex(y(k)) and E,(y(k)) (k =1, ---, N), are called volumetric errors.
The objective of step diagonal measurements is to identify each of these vol-
umetric errors.

In the pp measurement, when the target moves toward the X direction
from the reference position P,(k —1) to P,(k), its diagonal displacement from
the start point (point A), denoted by Ry pp, is measured by using a laser
interferometer. Similarly, when the target moves toward the Y direction from
the reference position P,(k — 1) to P,(k), its diagonal displacement from the
start point is denoted by Ry pp-

A similar measurement is conducted as the laser is aligned along the
diagonal BC in Fig. 2 (this setup is referred to as np measurement). Diagonal

displacements, Ry ) np and Rypynp (K =1, ---, N), are defined similarly.

2.2 Conventional Formulation of Laser Step Diagonal Measurement

This section briefly reviews the conventional formulation of the identifi-
cation of volumetric errors based on the step diagonal measurement presented
by Wang [10].

To simplify the discussion, the single block case (i.e. N = 1) is first con-
sidered. As depicted in Fig. 3, under the assumption that the mirror is aligned
perpendicular to the laser direction, the diagonal displacement, R, ,,, for the

motion toward the X direction from the point A to B is given as follows:

Ry pp = llx’pp ly’ppl : (3)



By combining similar formulations for R, ,,, R; ., and R, ,,, we have:

lopp  lypp 0 0 a+ FE,(x) Ry op
0 0 lopp lypp E, (2) Ry pp
= (4)
_lx,np _ly,np 0 0 E:v(y) Rfﬂ,nl)
0 0 lemp lymp a+Ey (y) Ry,an

Assume nominal laser directions, i.e.:

(5)

44

Then, volumetric errors, E,(z), Ey(x), Ey(y) and E,(y), can be estimated

1 1
llw,pp ly,pp] - ﬁ ll 1] ’ llw,np ly,np] - ﬁ

from Ry ,p, Rypps Renp and Ry, by solving Eq. (4).
In the multiple blocks case (i.e. N > 2), Eq. (4) can be extended as

follows:
lepp  lypp O 0 a+ By (x(k)) R:v(k),pp
0 0 lepp lypp Ey(x(k)) Ry pp
= (k =1,
_lx,np _ly,np 0 0 E:E(y(k)) R:v(N—k:—l—l),np
I 0 0 lomp ly,np_ I a+ Ey(y(k)) | I Ry(i) mp |

By assuming nominal laser directions, volumetric errors at each block can be

identified similarly as in the single block case.

3 Issues in Conventional Formulation of Laser Step Diagonal Mea-

surement

To understand an inherent issue with the identification of volumetric

errors based on Eq. (6), notice that Eq. (6) is valid only when the following



conditions are satisfied:

(1) Laser beam directions must be precisely aligned to nominal directions,
Eq. (5).

(2) The flat mirror must be precisely aligned perpendicular to the laser beam
direction.

(3) The angular errors of the machine are negligibly small.

An inherent problem with the conventional formulation (the identifica-
tion of volumetric errors by solving Eq. (6)) is that when the conditions above
are not met, it potentially imposes a significant error on the estimates of vol-
umetric errors. Furthermore, since the direction of the laser beam and the flat
mirror can be only aligned based on the motion of the machine to be measured,
no matter how careful an operator sets up laser beam and mirror directions,
it is simply not possible to guarantee the satisfaction of the conditions (1) and
(2), when volumetric errors of the machine are unknown. Therefore, we claim
that, in general cases where setup errors cannot be completely eliminated, it
is not possible to accurately identify all the volumetric errors by using the
conventional formulation of laser step diagonal measurement. The detailed

discussion will follow.

3.1 Misalignment of laser beam directions

Except for a special case, the laser beam direction in pp and np measure-
ments can be only aligned based on the motion of the machine to be measured.
That is, in a typical setup, the laser beam direction is aligned such that it
becomes parallel to the machine’s diagonal. For example, when the machine
moves from A to D in Fig. 3, the laser direction is adjusted such that the devia-
tion of the location of the laser spot on the mirror is minimized (this alignment
can be done more precisely by using a quad-detector). Here, if the machine has
volumetric errors and they are unknown, it is not possible to align the laser
beam perfectly to the nominal direction. An illustrative example is shown in
Fig. 4. This example assumes that F,(y) > 0, E,(z) = E,(x) = E,;(y) = 0. By

carefully setting up laser directions, the laser direction can be ideally aligned



to the machine’s diagonal. However, since the machine’s diagonals are not
perpendicular to each other due to volumetric errors, laser directions in pp-
and np- measurements cannot be perpendicular to each other, no matter how
careful an operator sets up laser directions.

Wang [10] pointed out that a small misalignment error of laser direction
does not affect much measured diagonal distances, i.e. Ry, := R, pp + Ry pp,
and Ry, = Ry, + Ry ,p. However, it causes much larger error on each of
Ry pp, Rypp, Rypnp, and R, ,,. For example, as illustrated in Fig. 5, assume
that the laser direction is misaligned by 0.01 mm from the nominal direction
for the step size of 10 mm. From our experiences, this is within typical level
of misalignment in practical measurement. Assume that the machine has no
positioning error when it moves from A to B then to C. Also assume that
the mirror is aligned perfectly perpendicular to the laser direction. The mis-
alignment in the laser direction reduces the diagonal distance, I?,,, by only
0.004 pm. On the other hand, the same misalignment reduces R, ,, by 5.0 pm
and increases R, ,, by 5.0 um. This is a significant error compared to typical
machine tool’s positioning error.

The quantitative sensitivity of the laser misalignment on the estimated

volumetric errors will be discussed in Section 3.4.

3.2 Misalignment of mirror directions

Similarly, the direction of the flat mirror can be only aligned based on
the motion of the machine to be measured. Typically, the mirror direction is
adjusted as illustrated in Fig. 6. For example, in the pp measurement, when
the machine moves from B to C, the mirror direction is adjusted such that the
measured diagonal distance becomes approximately equal at both ends of the
mirror. This adjustment aligns the mirror ideally parallel to the diagonal direc-
tion (BC), but it does not ensure the perpendicularity of laser and mirror direc-
tions. Fig. 6 illustrates the case where E,(y) > 0, E,(z) = Ey,(x) = E,(y) = 0.
In such a case for example, it is clear that the mirror direction cannot be per-
pendicular to the laser direction, no matter how careful an operator sets up

the mirror. Furthermore, notice that if the mirror is perfectly aligned to the



diagonal direction by this adjustment, it simply makes R, ,, = R, ,, and
R, np = Ry np- It means that the step diagonal measurement only gives half of
diagonal distances (half of AD or BC), and thus the error identification based
on Eq. (4) will obviously fail.

It is to be noted that when the machine’s diagonals are perpendicular to
each other, it is possible to align laser and mirror directions perfectly. Figure 7
shows examples of such a “special” case. For example, when the machine has
the same linear positioning error in both X and Y directions as illustrated in
Fig. 7(a), or when the machine has only the squareness error as illustrated
in Fig. 7(b), then the machine’s diagonals are still approximately perpendicu-
lar to each other, and thus misalignment errors of laser and mirror directions
can be eliminated if an operator aligns them very carefully. If the machine to
be measured “happens to” meet this condition, the conventional formulation
presented in Section 2.2 can potentially estimate volumetric errors. In general
cases where the machine’s accuracy is not known in priori, however, it is not

possible to guarantee the conditions (1) and (2) in Section 3.1.

3.8  Machine’s angular errors

On typical machining centers, it is often the case that the straightness
error of a feed drive is caused by the deformation of guideways, and thus
that the straightness error is accompanied with angular errors. Notice that, in
the two-dimensional case, we only considers the yaw error. The angular error
changes the relative direction of the mirror with respect to the laser beam
direction as the machine moves A—B—D in Fig. 3. As a result, angular er-
rors also affect diagonal displacements, R, ,, and R, ,,. The formulation (4)
ignores this effect, under the assumption that angular errors are negligibly
small compared to positioning errors. When the machine’s angular errors are
not negligibly small, they may cause significant estimation errors. Soons [12]
and Yang et al. [13] gave the formulation of the effect of angular errors on
identification accuracies for the three-dimensional laser step diagonal mea-
surement, and thus it is not repeated here.

For example, when the angle of the mirror changes by 7(z) due to the
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machine’s angular error as the machine moves from A to B in Fig. 3, its
effect on the diagonal displacement is approximately given by ga’y(x). On
typical latest machining centers, this is often significantly small compared to
the effect from volumetric errors. Considering this, and considering that the
aforementioned previous papers have discussed the formulation of the effect of
angular errors in details, this paper ignores the effect of angular errors of the
machine in the estimation of volumetric errors. It should be emphasized that
the assumption of the angular errors of the machine to be negligibly small
shall be mandatory requirement for both the conventional formulation and

the proposed formulation to be presented in Section 4.

3.4 Sensitivity analysis of setup errors

To quantitatively evaluate the effect of aforementioned setup errors on
the estimation accuracy of laser step diagonal measurements and to further
clarify critical issues with the conventional formulation, this section presents
the sensitivity analysis of setup errors on the estimates of volumetric errors.
In particular, the misalignment error of laser direction discussed in Section
3.1 and the misalignment error of mirror direction discussed in Section 3.2 are
considered (these errors are referred to as setup errors hereafter).

As has been discussed in Section 3.2, notice that setup errors poten-
tially impose significant effect on the measured diagonal displacement when
the mirror center is not on the laser axis, while its effect becomes negligi-
bly small when the mirror center is on the laser axis. For example, in the
pp measurement as shown in Fig. 3, when the mirror center is at the point
B, both of laser and mirror misalignment errors may cause significant error
on R, ,,, as has been discussed in Sections 3.1 and 3.2. However, their effect
on the diagonal distance, I?,,, is negligibly small. In the k-th block, suppose
that “nominal” step diagonal distances are denoted by Rx(k),pp and Ry(k),pp,
when the laser direction is perfectly aligned to the nominal direction and the
mirror is aligned perfectly perpendicular to the laser direction. The effect of

the misalignment of laser and mirror directions can be given in the following
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form:

Rfr(k),pp = Rx(k),pp + 5Rw,ppa Ry(k),pp = Ry(k),m) + 5Ry,ppv (7)

where 0R;,, and 0R, ,, are diagonal displacement errors caused by setup
errors. Under the assumption that the machine’s angular error is negligibly
small, we can approximate that the effect of setup errors, dR, ,, and 0R, ,,,
are the same for all the blocks. Furthermore, as discussed above, the following

approximation holds:

ORypp + 0 Ry pp = 0 (8)

For the np measurement, Ry np, Ly(k)np, 0Lz np, and 6, ,, are analogously
defined.
By solving Eq.(6) for estimated volumetric errors in the k-th block,

E.(x(k)), E,(x(k)), E.(y(k)), and F,(y(k)), with measured diagonal mea-

surements, Rx(k)’pp, Ry(k)mp, Rx(k)mp, and Ry(k)mp, we have:

2@ (k) = 3 { Batwon + Ro(v—k1)mp =~ OBy = SRanp ) — a (9)
500 () =22 {Ratty o = Bty = Ry + 6 (10)
5209 =22 { Bty — Fatmn + 6y — SR} )
E,(y(k)) = ? {Rytyop + Ryyp + O R pp + 0 Ry} — 0 (12)

The nominal laser beam directions (5) are assumed here. Notice that the ap-
proximation (8) (and also d R,y + 0Ry np & 0) is used.

Equations (9) and (12) indicate that the estimated linear positioning
errors, F,(2(k)) and E,(y(k)), are subject to the influence of setup errors by
:Fg {0R; pp + 0Ry 1p}- As is clear from the discussion in Sections 3.1 and 3.2,
it is practically not possible to guarantee that this effect is sufficiently small
compared to the machine’s positioning error. It is also clear from Eqs. (9)~(12)

that it is not possible to identify 0R, ,, and R, ,, from laser step diagonal
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measurements.

As is shown in Eqgs. (10) and (11), E,(z(k)) and E,(y(k)) are also sub-
ject to the influence of setup errors by :F§ {0R; ,p — 0R, 1y} However, notice
that the reference direction to define normal error components can be arbi-
trarily determined. For example, the reference direction can be set such that
E,(z(1)) = 0. Under this assumption, the effect of setup errors can be esti-

mated from Eq. (10) by:

5Rw,pp - 5R:v,np = Rfv(l)mp - R:v(N)mp (13)

Therefore, normal error components, E,(z(k)) and E,(y(k)), can be es-
timated even under the existence of setup errors. This will be further discussed
in Section 4.

To further illustrate that setup errors may potentially results in a signif-
icant identification error, numerical simulations are presented. In the simula-
tions, it is assumed that the machine has given volumetric errors in the single
block as shown in Table 1 (Three sets of given errors, (a), (b) and (c), are
tested). Laser directions are assumed to be aligned perfectly to the machine’s
diagonal directions (therefore, due to the machine’s volumetric errors, they
may not be aligned to nominal directions). For the simplicity of simulation,
the mirror is assumed to be perfectly aligned perpendicular to the laser beam
direction (notice that the effect of the mirror misalignment can be discussed
in exactly the same manner as the laser misalignment). Estimated volumetric
errors are computed by using the conventional formulation (4). Note that the
reference direction is set such that £, (z) becomes zero.

Table 1 compares given and estimated volumetric errors. In the case (a),
the estimates of linear positioning errors, E,(x) and E,(y), contain a large
estimation error, while the cases (b) and (c) have almost no error. This can
be understood by observing that the cases (b) and (c) correspond to the cases
shown in Fig. 7(a) and (b), respectively. In case (a), estimation errors are as

large as half of the given error.
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4 New formulation of laser step diagonal measurement

The discussion in Sections 3.1 and 3.2 shows that it is not possible to
completely eliminate the misalignment of laser and mirror directions when the
machine’s accuracy is unknown. In this section, we present a new formulation
of laser step diagonal measurement such that setup errors do not impose any
effect on estimated volumetric errors, and thus the machine’s volumetric errors
can be accurately estimated even when there exist significant setup errors in
both laser and mirror alignments.

As is clear from Eqs. (9)~(12), it is not possible to identify setup er-
rors, namely 0R,,, and 0R,,,, from measured diagonal distances, Ry) p,
Ryiyppr Ba(i)mp and Ry np- In order to cancel 61, ,, and 0R, ,,, a remedy
is to directly measure linear error components, E,(z(k)) and E,(y(k)). When
E.(xz(k)) and E,(y(k)) (k=1,---,N) are known, from first and second rows of
Eq. (6), the estimated E,(z(k)) and E,(y(k)) can be given by:

Efy(fv(k)) =V2+ Rugypp — (a+ Ex(a(k)))
Ex(y(k)) =V2 - Rywypp — (a+ By (y(k))) (14)

where k=1,---,N. Notice that in this case, only pp measurement is necessary
to identify normal error components, £, (z(k)) and E,(y(k)).
Suppose that the measured diagonal displacements, R, ) 5, and Ryx) pp,
are subject to setup errors as is given in Eq. (7). Then, analogously to Egs. (9)~(12),

the estimates become:

Ey(x(k) = V2 (Ragy pp — 0Ragp) — (0 + Ex(x(k)))
Ex(y(k)) = V2 (Ryypp + 6Rapp) — (a.+ By (y(k))) (15)

Analogously to the discussion in Section 3.4, the influence of setup errors,
dRg pp, can be identified in this formulation, since the reference direction can
be arbitrarily set. Therefore, in this formulation, the influence of setup errors
can be cancelled, and thus normal error components, E,(z(k)) and E,(y(k)),

can be identified even then there exists significant setup errors.
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Remark 1: Notice that E,(z(k)) and E,(y(k)) can be also estimated from

the np measurement:

Ey(x(k))
E,(y(k))

_\/5 ' Rx(N—k-H),np + (CL + Em(x(k)))
~V2+ Ry p + (a + By (y(k))) (16)

Adding Eqgs. (14) and (16), we have:

{Ry(k),pp . Ry(k),np} (17)

which are the same as the solutions for the conventional formulation given
in Egs. (10) and (11). This observation indicates that, as for normal error
components, E,(z(k)) and E,(y(k)), the proposed formulation (14) and the
conventional formulation (6) are essentially the same. Setup errors only af-
fect the estimates of linear error components, E,(z(k)) and E,(y(k)), which
validates the discussion in Section 3.4. In other words, when E,(z(k)) and
E,(y(k)) are replaced with the measured values, the conventional formula-
tion (6) can give a good estimate for E,(z(k)) and E,(y(k)).

It should be noted that this holds only in the two-dimensional case of
step diagonal measurement. In the three-dimensional version of step diagonal
measurement, the conventional formulation (the extension of Eq. (6) to the
three-dimensional case) cannot give accurate estimates under the existence
of setup errors, even when all the estimated linear errors are replaced with
the measured values. The extension of the proposed formulation to the three-

dimensional case will be presented in our near-future publication.

Remark 2: Since the proposed formulation requires the measurement of lin-
ear error components, E,(z(k)) and E,(y(k)) (k=1,---,N), in addition to step
diagonal measurements, it certainly requires longer measurement time, which

may obscures an advantage of step diagonal measurements. However, when
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compared to the conventional measurement scheme where an artifact such
as a straight edge or a squareness edge is used, we claim that the step di-
agonal measurement can still shorten the total measurement time. In the
two-dimensional case, the conventional measurement requires two setups to
measure linear positioning errors, two setups to measure straightness errors,
and one setup to measure the squareness error. The proposed scheme requires
two setups for step diagonal measurement, and two setups for linear measure-
ments.

We claim that a significant practical value of laser step diagonal mea-
surement is in that it can evaluate straightness and squareness errors by only
using a linear laser interferometer. Compared to the conventional artifact-
based measurement, the step diagonal measurement requires lower cost, ap-
plying a laser interferometer to the evaluation of all the errors, including linear,
straightness, and squareness errors, without requiring a artifact of high geo-
metric accuracy. It has also an advantage in the measurement of volumetric

errors over a large measurement range, since it does not require a large artifact.

5 Experimental validation

The problems with the conventional formulation of laser step diagonal
measurement, and the effectiveness of its proposed formulation, are exper-
imentally validated by an application example to a three-axis vertical-type
high-precision milling machine.

The machine has three orthogonal linear axes, which are all driven by
a linear motor with a aerostatic guideway. Its positioning resolution is 10 nm
in all the axes. The strokes of X and Y axes are both 100mm. For laser mea-
surements, a laser doppler displacement meter, MCV-500 by Optodyne, Inc.
is used. Laser beam directions are aligned by using a quad-detector, LD42 by
Optodyne, Inc. The step diagonal measurements are done with the step size
a = 10 mm, over the entire range of 60 mm x 60 mm (i.e. 6 blocks in X and

Y directions). Figure 8 shows the experimental setup of laser step diagonal
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measurement.

First, volumetric errors are estimated by the conventional formulation
using step diagonal measurements only. Figure 9 shows measured diagonal
displacement profiles with respect to nominal diagonal distances in pp and np
directions. In particular, the profile in the np direction has a sawteeth shaped
variation of significant amplitude. This is mostly caused by the misalignment
of the mirror and/or the laser direction as has been discussed in Section 3.
Figure 10(a)(b) shows estimated linear positioning errors in X and Y direc-
tions with respect to each reference point, é,(x(k)) and é,(y(k)), computed by
using the conventional formulation of step diagonal measurement described in
Section 2.2. Note that estimated positioning errors, é,(x(k)) and é,(y(k)), are
respectively given by the accumulation of E,(z(k)) and E,(y(k)), namely (see
also Eq. (2)):

=Py(k) ~ P,(k) = (18)

Their measured values, €,(z(k)) and €,(y(k)), obtained by using the
same laser interferometer aligned directly toward X- and Y-directions, are
also shown in Figure 10. For each of step diagonal measurement and linear
measurement, the same measurement is repeated by three times. Figure 10
plots the mean of estimated and measured errors by the marks “o”, as well as
their variation at each measurement point by horizontal parallel lines (“=").
The mean positioning error measured by the laser interferometer is +1.14 yum
over 60 mm in the X direction, and +0.69 ym over 60 mm in the Y direction.
As is clearly seen from the figure, the conventional formulation of laser step
diagonal measurement results in a large estimation error in both X and Y

directions. The estimate of mean positioning error is -0.74 ym over 60 mm in

the X direction, and +2.27 pym over 60 mm in the Y direction. As has been
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discussed in Section 3, these errors are mostly caused by the misalignment of
laser directions and mirror directions.

Then, errors in the normal direction, E,(z) and E,(y), are estimated
based on the proposed formulation of step diagonal measurements presented
in Section 4, by using measured displacement profiles in pp-, np-, X-, and Y-
directions. Estimated profiles of the accumulated positioning error in the nor-
mal direction, é,(z(k)) and €é,(y(k)), are plotted in Fig. 11(a)(b). To validate
their estimation accuracy, positioning errors in the normal direction, €,(z(k))
and €,(y(k)), are measured using a cross grid encoder (KGM), KGM182 by
Heidenhain. Note that in all the cases, errors in the normal directions are
defined such that the mean of normal errors with the motion toward the X
direction, i.e. €,(z(k)) (or é,(x(k))), becomes zero. See the remark below for
the measurement accuracy of the KGM.

Table 2 summarizes measured and estimated straightness and square-
ness errors. Here, the straightness error is defined by the maximum variation
of mean values of normal errors (e, (z(k)) and €,(y(k))) from their least-square
mean line. The squareness error is defined by the gradient of the least-square
mean line of €,(y(k)) with respect to that of €, (z(k)).

Figure 11 and Table 2 show a good match between measured and esti-
mated volumetric errors obtained by step diagonal measurements. The max-
imum estimation error, i.e. the maximum difference between measured and
estimated errors obtained based on the proposed formulation, is less than 0.1
pm for e,(y(k)), and 0.21 pm for €,(x(k)) (k = 1,---,6). As is summarized
in Table 2, on this machine, straightness errors of X and Y axes are both
about 0.1 pum, according to the measurement by using the KGM. Compared
to straightness errors, this machine has relatively larger squareness errors. The
proposed formulation of laser step diagonal measurement succeeds to estimate

the squareness error with an estimation error of less than 0.1 um.
Remark: According to the maker’s calibration chart, the measurement un-

certainly of the laser doppler displacement meter used in this experiment is

calibrated as +0.18 ppm. The experiment was conducted in a room with the
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temperature control for + 1°C. The laser measurement was conducted un-
der the compensation of air and material temperatures. However, since other
environmental variation was not accurately evaluated, further analysis of the
measurement, uncertainty of laser displacement measurement is difficult. As
is shown in Fig. 10, the variation in three measurements of linear positioning
error was at maximum (.17 gm over 60 mm.

According to the maker’s calibration chart, the measurement uncertainty
of the KGM used in this experiment is calibrated as: Ugsy, = 0.02um + 0.36 -
107% - L, where L is the measurement interval length. Note that this is the
uncertainty in the measurement of linear positioning errors. The measure-
ment uncertainty of the positioning error in the direction normal to the feed
direction is not calibrated in the maker’s calibration charts, since the uncer-
tainty calibration of the two-dimensional measurement is difficult due to the
unavailability of the comparator. It is also to be noted that the above uncer-
tainty is evaluated only along two lines (lines in X and Y directions passing
the center of the grid plate); the uncertainty over the entire grid plate is not
evaluated. In [14], the authors applied a self-calibration scheme to estimate
the two-dimensional measurement accuracy of the same KGM. The estimated
measurement error in the direction normal to the feed direction (along a line

in the Y direction) was within +0.12um over 80mm.

6 Conclusion

The conventional formulation of the step diagonal measurement pro-
posed by Wang [10] is valid only when the following implicit conditions are
met: (1) laser beam directions are precisely aligned to nominal directions, and
(2) the flat mirror is precisely aligned perpendicular to the laser beam di-
rection. An inherent problem with the conventional formulation of the step
diagonal measurement is that it is generally not possible to meet these condi-
tions by the adjustment of the setup, when volumetric errors of the machine

are unknown. This paper first presented the quantitative analysis of the effect
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of setup errors on estimated volumetric errors. It was shown that setup errors
may impose a significant effect on the estimates of linear positioning errors
(Ex(x) and E,(y)), while their effect on estimated positioning errors in the
normal direction (E,(z) and E,(y)) is sufficiently small. Therefore, in general
cases where setup errors cannot be completely eliminated, it is not possible to
accurately identify all the volumetric errors by using the conventional formu-
lation of laser step diagonal measurement.

The new formulation proposed in this paper suggests that linear posi-
tioning errors must be independently measured, and then normal error com-
ponents (namely, straightness and squareness error components) can be iden-
tified by using step diagonal measurements even under the existence of setup
errors. As an application example, the proposed scheme was applied to esti-
mate two-dimensional volumetric errors on a high-precision milling machine
of the positioning resolution of 10 nm. Experimental results indicated that
the squareness error of X and Y axes (1.21 pum over 60mm measured by the
KGM) was estimated with an estimation error less than 0.1 pm.

The extension of the present formulation of laser step diagonal measure-

ment to the three-dimensional case will be studied in our future research.
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Table 1

Comparison of given and estimated volumetric errors by the conventional formula-

tion of step diagonal measurements.

Case (a) Case (b) Case (c)
given | estimated || given | estimated || given | estimated
E.(x) || O -0.05 0.1 0.1 0 -0.0002
Ey(z) | 0 0 0 0 0 0
E.(y) || O 0 0 0 0.1 0.1000
Ey(y) || 0.1 [0.15 0.1 |01 0 0.0002
unit: mm
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Table 2

Measured and estimated straightness errors (in X and Y) and squareness errors.

Measured by KGM

Estimated by step

digonal measurements

Straightness
error in X 0.05 pm 0.07 pm
Straightness
error in Y 0.11 pm 0.24 pm
Squareness

-1.21 pm -1.23 pm

error in XY

* All the errors are over the range of 60 mm.
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formulation.
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Fig. 9. Measured diagonal displacements in pp and np directions.
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Fig. 10. Comparison of linear positioning errors, e, (x(k)) and €,(y(k)), measured by
a laser interferometer and estimated by the conventional formulation of laser step

diagonal measurement.
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€z(y(k)), measured by the KGM and estimated by laser step diagonal measurements.
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