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Abstract

This dissertation discusses 3D reconstruction in scattering media. In the field
of computer vision, tasks to obtain 3D information such as an object shape,
surface normals, and scene depth are referred to as 3D reconstruction. Existing
3D reconstruction methods are basically designed for clear scenes. On the other
hand, under bad weather conditions such as foggy scenes, or through murky
water, the visibility of the scene is degraded. Such environments are referred
to as scattering media. Light traveling through scattering media get scattered
and attenuated by suspended particles, and thus the contrast of images cap-
tured in scattering media is reduced. Conventional 3D reconstruction methods
are affected by the image degradation in scattering media. This dissertation
presents image formation models for such degradation and proposes methods to
enable 3D reconstruction in scattering media. 3D reconstruction methods can
be divided into three categories on the basis of their principles, i.e., disparity-,
shading-, and Time-of-Flight (ToF) -based method. We apply each method to
scattering media with an appropriate physics-based scattering model.

We first formulate a physics model of light scattering and attenuation, which
are typical phenomena in scattering media. This formulation leads to the single
scattering model and atmospheric scattering model commonly used in image
processing and computer vision. The difference between these two models is the
requirement of active light sources. The atmospheric scattering model is used
for disparity-based methods where the system consists of only cameras without
active light sources. On the other hand, the single scattering model is used for
shading- and ToF-based methods that require active light sources.

For a disparity-based method, we discuss multi-view stereo (MVS) in scat-
tering media. MVS methods are used for reconstructing the 3D geometry of
a scene from multiple images. They exploit the dense pixel correspondence
between multiple images. We use a learning-based MVS method in scattering
media, the input of which is a cost volume that is constructed by sweeping a
fronto-parallel plane to a camera in a scene and evaluates the photometric con-
sistency between multiple cameras under the assumptions that the scene lies
on each plane. In scattering media, the ordinary cost volume however leads to
undesirable results due to image degradation. To solve this problem, we pro-
pose a novel cost volume for scattering media, called the dehazing cost volume.
Differing from the ordinary cost volume, our dehazing cost volume can compute
the cost of photometric consistency considering image degradation by restoring
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input images with the depth of each swept plane under the atmospheric scat-
tering model. We also propose a method of estimating scattering parameters,
such as airlight, and a scattering coefficient, which are required for our dehaz-
ing cost volume. The output depth of a network with our dehazing cost volume
can be regarded as a function of these parameters; thus, they are geometrically
optimized with a sparse 3D point cloud obtained at a structure-from-motion
step.

For a shading-based method, we discuss photometric stereo in scattering
media. Photometric stereo reconstructs surface normals from images captured
under different lighting conditions. Differing from the disparity-based method,
photometric stereo requires active light sources such as spotlights, and thus the
image degradation is modeled with the single scattering model. However, the
analysis of the single scattering model is more difficult than that of the at-
mospheric scattering model. Specifically, the computation of shape-dependent
forward scatter in highly turbid media is infeasible. For the efficient compu-
tation of forward scatter, we propose the analytical solution of forward scatter
with lookup tables. The effect of forward scatter is then divided into a shape-
dependent term and a global constant term. This formulates the image degra-
dation as a sparse linear system, which can be solved efficiently. We develop an
iterative algorithm where a forward scatter removal and 3D shape reconstruction
are preformed alternately.

For a ToF-based method, we discuss depth measurement in scattering media
with a continuous-wave ToF camera. Continuous-wave ToF cameras emit sinu-
soidal signals and observe amplitude of received signals and phase-shift between
these signals. Since the phase shift depends on an optical path, we can recon-
struct depth from the phase shift. Similar to common RGB cameras, however,
the observed signal in scattering media includes a scattering component due to
light scattering. The effect of scattering media is thus modeled in amplitude and
phase space under the single scattering model. We assume that a target scene
consists of an object region and a background that only contains a scattering
component. We also introduce two priors to estimate the scattering component:
first, the scattering component can be approximated using a quadratic function
in a local image patch, and second, the scattering component has a symmetrical
characteristic in an overall image. Scene segmentation of the object region and
background is then formulated as robust estimation where the object region
is regarded as outliers, and it enables the simultaneous object region estima-
tion and depth recovery on the basis of an iteratively reweighted least squares
optimization scheme.

Through extensive experiments with synthetic and real data that is captured
in actual underwater or foggy scenes, we evaluate the performance of the pro-
posed methods. Especially, the proposed methods is effective for highly turbid
media or distant scenes where captured images are significantly affected by light
scattering and attenuation.
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Chapter 1

Introduction

For intelligent systems, it is important to understand their surroundings. When
they interact or avoid collisions with objects, three-dimensional (3D) informa-
tion plays an important role. In the field of computer vision, tasks to obtain
3D information such as an object shape, surface normals, and scene depth are
referred to as 3D reconstruction methods. The typical input of the 3D recon-
struction methods is a single or multiple two-dimensional (2D) images captured
by RGB cameras. The applications of such techniques include autonomous mo-
bile robots and self-driving vehicles.

Existing 3D reconstruction methods are basically designed for clear scenes.
On the other hand, under bad weather conditions such as foggy scenes, or
through murky water, the visibility of the scene is degraded. Figure 1.1 shows
an example of an image captured under a foggy scene. Such environments are
referred to as scattering media. Light traveling through scattering media get
scattered and attenuated by suspended particles, and thus the contrast of images
captured in scattering media is reduced.

This dissertation discusses 3D reconstruction in scattering media. This en-
ables many applications in difficult scenes, for exmaple, drones and self-driving
vehicles under bad weather, or autonomous underwater vehicles. However, con-
ventional 3D reconstruction methods are affected by the image degradation in
scattering media. In this dissertation, we present image formation models with
such degradation and propose methods to enable 3D reconstruction in scattering
media.

1.1 3D reconstruction

First of all, we overview existing 3D reconstruction methods. As mentioned
above, their typical input is a single or multiple 2D images captured by RGB
cameras. On the other hand, some methods use special sensors or active light
sources in addition to cameras. The output representation of each method also
varies, e.g., a point cloud, a surface mesh, surface normals, and a depth map.
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Figure 1.1: Image captured under bad weather

We divide the 3D reconstruction methods into three categories on the basis
of their principles (Fig. 1.2). In the following, we summarize the advantages
and disadvantages of each category. An appropriate 3D reconstuction method
depends on target scenes and applications.

Methods based on disparity

Methods in this category use multiple cameras to capture multiple 2D images,
which are taken as input for the methods. If a system consists of two or more
than three cameras, it is called stereo or multi-view stereo (MVS) [1], respec-
tively. The principle of 3D reconstruction of these methods is triangulation.

Traditional methods first extract feature points from input images. These
featrue points often correspond to edges in the images, e.g., textures or object
boundaries. A typical featrue extraction algorithm used in computer vision is
the scale invariant feature transform (SIFT) [2], where the extracted features are
robust to a scale, rotation, and a lighting condition in a scene. The extracted
feature points are then matched between the images to get correspondences.
If the positional relationship between the camreas is known, 3D points cor-
ersponding to the feature points in the images can be computed on the basis of
triangulation.

Instead of using multiple cameras, we can move a single camera to get an
image sequence. Structure-from-motion (SfM) [3] takes such an image sequence
as input and estimates the camera motion and a scene structure simultane-
ously. Traditional SfM methods estimate only a sparse 3D point cloud, which
corresponds to extracted 2D feature points. Therefore, after SfM estimates the
camrea motion, MVS methods are often followed to get dense 3D shapes of
objects.

Projector-camera systems [4] can also be used for 3D reconstruction on the
same principle. These methods consist of a single camera and a single projec-
tor. The projector emits a stripes-like structured pattern onto an object. This
pattern is matched with an image captured by the camera to make correspon-
dence. For the camera-only methods, it is difficult to reconstruct objects with
textureless surfaces because feature extraction based on edges would fail. On
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Figure 1.2: Categories of 3D reconstruction. (a) methods based on disparity.
(b) methods based on shading. (c) methods based on ToF.

the other hand, the projector-camera methods can deal with such surfaces by
projecting patterns onto the surfaces.

Methods based on shading

Methods in this category leverage brightness on object surfaces to infer the 3D
shape. As well as the disparity-based methods, these methods also take 2D
images as input, while they directly use the pixel intensity of the input images.

These methods are based on the fact that light intensity reflected on the
object surface depends on its surface normal and lighting direction. The sim-
plest reflectance model is referred to as the Lambertian model. Intuitively, the
observed image is brightest when the surface normal is parallel to the light-
ing direction. On the other hand, the observed image gets darker as the angle
between the surface normal and lighting direction becomes larger.

The most basic approach is called shape from shading [5], which takes a
image captured by a single camera as input, while the reconstructed shape
has uncertainty whether color gradation stems from shading or original object
color. To eliminate this uncertainty, photometric stereo [6] takes multiple images
captured under different lighting conditions as input.

The typical output representation of the shading-based methods is surface
normals. Differing from the disparity-based methods, these methods can be
applied to textureless surfaces because feature matching is not required. In ad-
dition, dense reconstruction is easily achieved because the surface normals are
computed in a pixel-wise manner. On the other hand, there are several disad-
vantages of these methods. First, the traditional methods require active light
sources like spotlights, and their light directions must be computed beforehand.
This limits the application within a controlled environment. Moreover, it is
difficult to reconstruct surfaces with special reflectance properties such as view-
dependent specular reflection or subsurface scattering because the Lambertian
model does not hold in such cases. Interreflection and shadow also reduce the
accuracy of these methods. Another limitation is that these methods estimate
only gradient information, and thus the integration of the surface normals is re-
quired to get the object shape. This limits the possible class of shape reconstuc-
tion, e.g., depth discontinuity cannot be reconstructed with these shading-based
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methods. Some prior knowledge is required if we want to reconstruct absolute
depth.

Methods based on time-of-flight (ToF)

Instead of using RGB cameras, we can use special sensors that are designed to
measure scene depth. Typical sensors are based on time-of-flight (ToF), that is,
a light source within the sensor emit a signal into a target scene and receives
the reflected light. The scene depth can be computed using the time difference
between the emitted and received signals. Although sensors with infrared light
are sensitive to sunlight in outdoor scenes, ToF-based methods are robust to
ambient light in a scene and enable real-time depth measurement.

Recently, off-the-shelf ToF cameras such as the Microsoft Kinect for Win-
dows v2 (Kinect v2) are available at a low cost. ToF sensors with single photon
avalanche diode (SPAD), which are much more expensive sensors, can be used
for more detailed scene analysis on the spatio-temporal dimension. Such analy-
sis is referred to as transient imaging, where the sensor can observe the number
of photons arrived at each time stamp, the temporal resolution of which is typ-
ically from pico- to femto-seconds. The applications of such sensors include
non-line-of-sight imaging [7], which enables to recognize an object behind walls
or reconstruct its 3D shape.

1.2 Appropriate scattering model

This dissertation discusses 3D reconstruction in scattering media. As men-
tioned above, image degradation in scattering media reduces the accuracy of
3D reconstruction. For example, feature extraction and feature matching in the
disparity-based methods become difficult due to the decrease of image contrast.
For the shading- and ToF-based methods, light attenuation and undesirable
scattered light observed at the camera has a significant influence because they
directly use pixel intensity for 3D reconstruction.

It is necessary to use an appropriate image formation model in scattering
media depending on an applied 3D reconstruction method. In Section 1.1, we
divide 3D reconstruction methods into three groups, i.e., disparity-, shading-,
and ToF-based methods. These groups can be further divided into two types by
their characteristics: they require active light sources or not. For example, the
systems of the disparity-based method typically consist of only cameras. On
the other hand, the shading-based methods such as photometric stereo require
multiple light sources. As described in Chapter 2, the requirement of active
light sources is a major factor to determine the scattering model, and thus we
introduce two models for the image formation in scattering media. Figure 1.3
shows the overview of this dissertation. We discuss three methods, each of
which is based on disparity, shading, and ToF, respectively. For each method,
the appropriate scattering model is selected based on the requirement of active
light sources.
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Figure 1.3: Overview of this dissertation

1.3 Scope of application

This dissertation proposes three methods for 3D reconstruction in scattering
media, while they do not cover all possible situations. In this section, targe
scenes are parameterized by a scene scale and medium density, and we discuss
the scope of application with actual example scenes as a unified framework as
shown in Fig. 1.4.

First, we discuss scattering components that should be considered for each
method. Through this dissertation, light scattering is modeled with only single
scattering. This means that multiple scattering is assumed to be negligibly
small as described in Chapter 2. Although multiple scattering has a significant
effect as medium density gets higher, we focus on environment where multiple
scattering can be ignored. In Chapter 4, single scattering can also be categorized
into backscatter and forward scatter !. Forward scatter components are defined
as light that reflects on an object surface after single scattering or scattered light
after reflecting on an object surface. These forward scatter components heavily
depend on an object shape, the analysis of which is more difficult than that
of the backscatter. The effect of the forward scatter can be ignored if medium
density is low, while it should be modeled in highly turbid media.

Second, we discuss availability on different scales and medium density. Im-
ages and signals observed in scattering media are more degraded as a scene scale
and medium density become larger. In foggy scenes, for example, visibility is
reduced as fog is thicker or scene depth becomes larger. Large degradation ob-
scures original signals and makes 3D reconstruction more difficult. As shown
in Fig. 1.4, the proposed shading-based method focus on highly turbid media,
where scattering components are dominant because original signals are heavily
attenuated and forward scatter also has a significant effect. In such environment,
sensitive capturing systems such as high dynamic range cameras are required,
e.g., an 18-bit camera that we used in the proposed method. Regarding avail-

IThis definition is not strictly correct because a scattering direction depends on the posi-
tional relationship between a camera and a light source. For simplicity, however, we define a
backscatter component as scattered light that is observed by a camera without reaching an
object surface, and a forward scatter component as the other scattered light as described in
Chapter 4.
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Figure 1.4: Scope of application. Targe scenes are parameterized by scene scale
and medium density. Each image of example scene is cited from [8], [9], and
[10].

ability, a scene scale and medium density are inversely proportional. Thus, the
upper right area with a large scale and high density in Fig. 1.4 corresponds to
very difficult environment. On the other hand, the lower left area with a small
scale and low density corresponds to environment where degradation due to
light scattering is very small and special design for 3D reconstruction methods
will not be required.

Finally, we discuss the scope of the application of each method. This dis-
sertation aims to develop disparity-, shading-, and ToF-based methods for scat-
tering media. When medium density is relatively small and the visibility of
the scene is from several meters to several tens of meters, spatial features such
as edges in a captured image are easily extracted in spite of image degrada-
tion, and thus disparity-based methods are suitable for such scenes. Foggy road
scenes are typical example in the real world and motor vehicles will utilize the
developed method. On the other hand, as medium density becomes higher, ob-
served signals are more degraded, which makes the extraction of spatial features
difficult. In such scenes, ToF- or shading-based methods are suitable because
they use not spatial features but signal values directly. The proposed ToF-based
method supposes that the depth of target objects is about several meters and
a typical example of such scenes is an indoor fire scene filled with smoke. The
proposed shading-based method supposes that the depth of target objects is
about several tens of centimeters and typical application includes underwater
exploration, where strong light scattering will be caused.
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1.4 Overview of dissertation

The rest of this dissertation is organized as follows: Chapther 2 discusses a
physics model of light scattering and attenuation in scattering media. In par-
ticular, two scattering models commonly used in computer vision are discussed,
the single scattering model [11] and the atmospheric scattering model [12]. In
addition, we overview conventional image restoration methods based on these
models.

Chapter 3 discusses MVS in scattering media as a disparity-based method.
We use deep learning based MVS, where the input of the neural network is a
cost volume to describe geometric constraints between multiple cameras. The
atmospheric scattering model can be used as the image formation model because
the system consists of only cameras. We discuss a novel method to incorporate
this model into the cost volume to consider the geometric constraint and image
degradation simultaneously.

Chapter 4 discusses photometric stereo in scattering media as a shading-
based method. Photometric stereo takes multiple images captured under dif-
ferent lighting conditions as input, and thus the system consists of a single
camera and multiple light sources. Therefore, the single scattering model can
be adopted to describe the observation in scattering media. The analysis of the
single scattering model is more difficult than that of the atmospheric scatter-
ing model. In this chapter, we describe the efficient computation of forward
scattering in the single scattering model.

Chapter 5 discusses a ToF-based method in scattering media. In general, a
camera and a light source are internally mounted in ToF devices. Therefore,
we can describe the observation with the single scattering model. We use an
amplitude-modulated continuous-wave ToF camera such as Kinect v2. Note
that raw data of such ToF cameras is an amplitude image and a phase image
for the measurement of scene depth, and thus the image formation should be
modeled in amplitude and phase space.

Chapter 6 conclude the dissertation with some discussion and future works.






Chapter 2

Image Formation Models in
Scattering Media

In scattering media such as fog, smoke, and murky water, light traveling through
a medium interacts with suspended particles. A typical phenomenon is the
scattering and attenuation. In this chapter, we formulate the light scattering
and attenuation on the basis of physics. This formulation leads to the single
scattering model and atmospheric scattering model commonly used in image
processing and computer vision. Conventional image restoration methods based
on these models are briefly discussed at the end of this chapter. Note that in
this dissertation, the density of scattering media is assumed to be homogeneous.

2.1 Scattering and attenuation

First of all, we provide a simple formulation of light scattering and attenuation.
For more details, please see [12].

2.1.1 Scattering

We consider an environment filled with particles. As shown in Fig. 2.1, light is
incident on an unit volume in this environment, and its cross section is regarded
as an unit area. Let E be irradiance at this cross section, the unit of which
is denoted by [W/m?]. Light scattering in this volume changes the traveling
direction of the incident light. We denote this scattering direction by 6. Its
radiant intensity I(6) is written as follows:

where §(0) is an angular scattering coefficient. Note that I(6) is an energy per
unit volume and unit solid angle. If this unit volume is regarded as a point light



10CHAPTER 2. IMAGE FORMATION MODELS IN SCATTERING MEDIA

Light source

T

Camera _~"Unit volume

Figure 2.1: Light is incident on unit volume in scattering media. Light scattering
in this volume changes traveling direction of incident light.

source, its radiant flux @ is calculated by integrating Eq. (2.1) on a sphere:

o= | B(0)Edws = BE, (2.2)
Qar

where S is a scattering coefficient, the unit of which is [/m]. S represents the
proportion of the scattered light to the total amount of the incident light.

2.1.2 Attenuation

When light is incident on scattering media, light going in the same direction as
the incident direction is attenuated due to light scattering. In addition, light
absorption in scattering media also causes light attenuation. Let the coefficient
of this absorption be a. An extinction coefficient ¢ can be defined as the sum
of a and the scattering coefficient 3 as follows:

oc=a+p. (2.3)

Now consider attenuation from x = 0 to = d as shown in Fig. 2.2. The
attenuation of irradiance in an infinitesimal length dz is given by

dE(x)
E(z)

= —odz. (2.4)

Let the irradiance at © = 0 be E(0) = Ey. Solving the differential equation with
the integration on « along [0, d] and the boundary condition E(0) = Ey, we can
obtain the following relationship:

E(d) = Ege 7% (2.5)

This means that light is attenuated exponentially with distance in scattering
media.
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z=0 r=d

dx

Figure 2.2: Light scattering and absorption in scattering media causes light
attenuation. This attenuation is modeled by exponential function, i.e., E(d) =
Eoe=7¢, where F(0) = Ey and ¢ is extinction coefficient.

2.2 Single scattering model

In scattering media, light emitted from an light source is incident on particles
and it get scattered and attenuated by these particles. On the other hand, the
scattered light is also incident on other particles, and light scattering and
attenuation is caused successively. This phenomenon is called multiple scatter-
ing. Although the multiple scattering is observed commonly, the analysis of this
phenomenon is very complicated. In computer vision, this multiple scattering
is often considered to be negligible under the assumption that the effect of more
than second-order scattering is sufficiently small. In this section, we discuss
the image formation model under this assumption, called the single scattering
model.

Now a camera and a point light source are located in scattering media as
shown in Fig. 2.3. The camera observes an infinitesimal volume at a distance y
from the light source, and light scattering occurs in this volume. Let the radiant
intensity of the light source be I [W/sr], the irradiance of this volume can be

written as follows:
I

76—‘79

L (2.6)

where the attenuation term 1/y? is called the inverse square law. e~ Y is an
additional attenuation term due to scattering media. The scattered light in this
volume with the scattering coefficient 8 can be written as follows:

I
B ?e Y, (2.7)
This represents the energy per unit volume.

Let the solid angle of this volume with respect to the camera be dw. The
observed area of this volume with distance x from the camera is dwz?. Let the
length of this volume be dz. The volume can be denoted by dV = dwz?dx.
Therefore, if this volume is regarded as a point light source, the total energy
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Light source

Y
O
Camera /\\ _______________
e
- T ,<d,1:> _______________
dwz?

Figure 2.3: Single scattering model. Light scattering occurs at infitesimal vol-
ume. Observed area of this volume is dwz? and length is dz. This volume can
be regarded as point light source, and its emitted light is observed as scattered
light at camera. Total scattering component is sum of light scattered on light
of sight.

can be written as follows:
I I
B—e VdV = B—Ze_gydwadx. (2.8)
Yy Yy

The camera observes only scattered light with scattering angle 6,. The
radiant intensity of the scattered light toward the camera via this volume is
given by

dl(z) = P(Gw)ﬁyée“’ydwﬁdx, (2.9)

where P(#) is a phase function, describing the angular distribution of scattered
light. The following Henyey-Greenstein phase function is commonly used in
computer vision:

1 1-g°

PO) = — .
() 47 (1 + g2 — 2g cos 0)3/2

(2.10)

The parameter g controls the distribution of scattered light as shown in Fig.
2.4. For example, g = 0 represents isotropic scattering, that is, the intensity
of scattered light is equal in all directions. On the other hand, when g < 0 or
g > 0, backscattering or forward scattering is dominant, respectively.

The irradiance of this scattered light at the camera is written as follows:

1 I
dE(r) = dI(v)—e 7" = P(0,)3—5e 7Ydwe 7"dx, (2.11)
€ Y
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Figure 2.4: Plot of phase function. g = 0 (b) represents isotropic scattering,
that is, intensity of scattered light is equal in all directions. When g < 0 (a) or
g > 0 (c¢), backscattering or forward scattering is dominant, respectively.

and the radiance at the camera is written as follows:

dE I
dL(x)::(;fﬂ::fxam)5y260y60$dw. (2.12)
The unit of which is [W/m?-sr]. Light scattering occurs on the line of sight from
the camera, and thus the total radiance from the camera to a point at distance
d is the sum of these scattered light,

d d
L(d):/0 dL(x):/O P(é)z)ﬁ%e*(’ye*”da@. (2.13)

Note that y is also a function of x.

When an object exists in the scene, the camera observes the reflected light
on its surface. In addition, this reflected light also gets scattered and reaches
the camera or other object surfaces. In Chapter 4, we give a more detailed
formulation and discuss the efficient computation of these components.

2.3 Atmospheric scattering model

As described in Section 2.2, the single scattering model can be used for a scene
under an active light source such as a spotlight. In this section, we discuss the
atmospheric scattering model, which is simpler than the single scattering model.
This model commonly used for describing the scattering effect in outdoor scenes.
Overcast sky illumination is considered as a main light source in such scenes.

Similar to the single scattering model, a camera observes an infinitesimal
volume. If this volume is regarded as a light source, the radiant intensity at this
volume is written as follows:

dI(z) = kBdwr?dz. (2.14)

Differing from Eq. (2.9), a light source is not modeled explicitly. On the other
hand, the constant k, which is uniform in the scene, represents lighting condition
including ambient light and scattering property. This model is the specific case
of the single scattering model, that is, if a single distant light source such as
sunlight is assumed in the single scattering model, k is given by

k = P(6)Lo, (2.15)
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where Ly and 6 denote the radiance and lighting direction of the light source.
Note that these parameters are spatially-invariant.

The irradiance at the camera is also written in the same manner as follows:

1

dE(z) = dI(x)ﬁefﬁx = kBdwe P dz, (2.16)

where we omitted the absorption coefficient o from the extinction coefficient

(o = B). This condition holds in scattering media such as fog [13]. The radiance

at the camera is written as follows:
dE(zx)

dL(z) = —~ = kBe P dz. (2.17)

Now an object is located at distance d from the camera. The integration between
x =0 and x = d yields the total scattered light as follows:

d
L(d) = / dL(z) = k(1 — e P9). (2.18)
0
If an object is located at an infinite distance, we can obtain
k= Lo, (2.19)

where Lo, is called airlight. Therefore, the observed scattering component at
the camera is given by
L(d) = Loo(1 — e P9, (2.20)
In addition to this scattering component, we consider light reflected on an
object surface as follows:
Leop _pa
&—’;e pd, (2.21)
where p depends on object properties such as a shape, color, or reflectance.
1/d* and e~ P? represent attenuation due to the inverse square law and scattering
media. Thus, the total observation L(d) at the camera is the sum of the reflected
and scattering components as follows:

P Loop  _pa —Bd
L(d) = %e Al 4 Loo(1 — e7P9). (2.22)
In the literature of image resotration, the following notation is commonly used
as the atmospheric scattering model:

I=Jt+A(1—1), (2.23)

where I = [I7,19,1°]T € R3 is observed pixel RGB values, J = [J7, J9,J%]T €
R? is the pixel values of a latent clear image, and A = [A", A9, A®]T € R? is
airlight. t = e=#%, where z is scene depth, is called transmission or optical depth.
Compared with the single scattering model, the atmospheric scattering model
is simpler formulation without complicated integral calculation. As discussed
in this section, light sources are not modeled explicitly in the atmospheric scat-
tering model. Thus, the requirement of active light sources is a major factor to
determine the scattering model when constructing a 3D reconstruction method
in scattering media.
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2.4 Image restoration in scattering media

In the fields of image processing and computer vision, image restoration meth-
ods in scattering media have been proposed, where image degradation due to
scattering media is modeled with physics-based scattering models.

As discussed in Sections 2.2 and 2.3, image degradation due to scattering
media depends on scene depth. Intuitively, light reflected in a scene get at-
tenuated with respect to the scene depth. On the other hand, scattered light
observed at a camera increases with the depth because it is the sum of light
scattered between the camera and scene objects. Image restoration in scatter-
ing media is thus difficult because depth estimation and image restoration is the
chicken-and-egg relationship, which is discussed also in the following chapters
of this dissertation.

To solve this problem, some priors or assumptions are made in most image
restoration methods. For example, backscatter components are assumed to be
saturated under the single scattering model in [14, 15] because the inverse square
law in Eq. (2.13) reduces scattered light dramatically. Under this assumption,
the scattering component no longer depends on the scene depth, and thus the
scattering component are simply subtracted from a captured image by using a
no-object image.

In the case of the atmospheric scattering model (Eq. (2.23)), unknown
parameters, J, A, and ¢, need to be estimated from I. The estimation of these
parameters from a single image is an ill-posed problem. In the fields of image
processing and computer vision, this task is commonly referred to as dehazing
or defogging [16, 17, 18, 19, 20]. To solve the ill-posed nature, He et al. [17]
proposed a dark channel prior with which a clear image having a dark pixel in a
local image patch is assumed. They also assumed that transmission is the same
within a local image patch. Based on these assumptions, the transmission # in
local image patch Q(x) centered on pixel x is computed as follows:

Jyurs — i ( in J° ) 2.24
dark = 2000 \ce (rig b} ) (224)
i . I(y) I . Jy) z
= 1-—t 2.25
i (min =g2) = 7 min (i ) (225)

- I¢
t — 1— min (min (y)

yeQx)\ ¢ Ac) (Jdark — 0). (2.26)

Note that A is assumed to be estimated beforehand using the brightest pixels
that are considered to be the most haze-opaque regions [16]. Berman et al. [20]
proposed a haze-line prior with which the same intensity pixels of the latent
clear image forms a line in RGB space. This means that a point corresponding
to an observed pixel intensity is a dividing point between those of the pixel
intensity of a latent clear image and airlight in RGB space. The value of trans-
mission corresponds to its dividing ratio. Airlight can be estimated in the same
framework [21].
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Many learning-based methods using neural networks have also recently been
proposed to learn the priors of natural images from large scale training dataset
[22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The earliest work by Ren et al. [23] was
proposed to learn a convolutional neural network (CNN), which takes a hazy
image as input then outputs a transmission map. Similar to non-learning-based
dehazing methods, a clear image is computed with this estimated transmission
map and pre-estimated airlight by using the physics-based model (Eq. (2.23)).
Li et al. [24] transformed Eq. (2.23) to derive an equation where unknown
parameters A and t¢ are incorporated into a single parameter then trained a
network to estimate this parameter. This suppressed the effect of the additional
estimation error of airlight. Yang et al. [28] proposed a method that bridges
the gap between learning- and non-learning-based methods by making a network
learn the dark channel prior.

In contrast to these physics-based approaches, methods without explicit
physics-based models have also recently provided highly accurate results [26,
29, 30, 31]. Liu et al. [29] claimed that a physics-based scattering model hardly
constrains the solution space and makes gradient descent optimization stop at
a local minimum.



Chapter 3

Multi-view Stereo in
Scattering Media

In this chapter, we discuss MVS in scattering media as a disparity-based 3D
reconstruction method. MVS methods [1] are used for reconstructing the 3D
geometry of a scene from multiple images. They exploits the dense pixel corre-
spondence between multiple images.

We discuss a learning-based MVS method in scattering media. Learning-
based MVS methods have recently been proposed and provided highly accurate
results [32, 33, 34]. The proposed method is based on MVDepthNet [35], which
is one such MVS method.

MVDepthNet estimates scene depth by taking a cost volume as input for
the network. The cost volume is based on a plane sweep volume [36], i.e., it is
constructed by sweeping a fronto-parallel plane to a camera in the scene and
evaluates the photometric consistency between multiple cameras under the as-
sumptions that the scene lies on each plane. As described in Chapter 2, however,
an image captured in scattering media degrades; thus, using the ordinary cost
volume leads to undesirable results, as shown in Fig. 3.1(b).

To solve this problem, we propose a novel cost volume for scattering media,
called the dehazing cost volume. As described in Chapter 2, degradation due to
a scattering medium depends on the scene depth. Our dehazing cost volume
can restore images with such depth-dependent degradation and compute the
effective cost of photometric consistency simultaneously. It enables robust 3D
reconstruction in scattering media, as shown in Fig. 3.1(c).

The rest of this chapter is organized as follows: In Section 3.1, we first
overview MVS methods in clear scenes then describe related work including ex-
isting stereo and MVS methods in scattering media. In Section 3.2, an ordinary
cost volume and our dehazing cost volume for scattering media is discussed. In
Section 3.3, we describe a method for estimating scattering parameters in the
atmospheric scattering model, which is required to construct our dehazing cost
volume. This can be achieved in the same framework as depth estimation with

17
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(a) (b) (c)

Figure 3.1: Estimated depth in scattering media. (a) Image captured in actual
foggy scene. (b) Output depth of fine-tuned MVDepthNet [35] with ordinary
cost volume. (c) Output depth of network with our dehazing cost volume.

our dehazing cost volume. In Section 3.4, we demonstrate the effectiveness of
depth estimation with our dehazing cost volume on synthetic and real data.
Finally, Section 3.5 concludes this chapter.

3.1 Related work

3.1.1 Multi-view stereo

MVS methods [1] are used for reconstructing 3D geometry using multiple cam-
eras. In general, it exploits the dense pixel correspondence between multiple
images for 3D reconstruction. The correspondence is referred to as photometric
consistency and computed on the basis of the similarity measure of pixel inten-
sity. One of the difficulties in the computation of photometric consistency is
occlusion, i.e., the surface of a target object is occluded from certain cameras.
This leads to incorrect correspondence and inaccurate 3D reconstruction. To
solve this problem, methods have been proposed for simultaneous view selection
to compute effective photometric consistency and 3D reconstruction with MV'S,
achieving highly accurate 3D reconstruction [37, 38].

Along with the above problem, there are many cases in which it is difficult
to obtain accurate 3D geometry with traditional MVS methods. A textureless
surface and an object with a view-dependent reflectance property, such as spec-
ular reflection, are typical cases. Learning-based MVS methods have recently
been used to learn semantic information on large-scale training data and enable
robust 3D reconstruction in such scenes.

Learning-based MVS methods often construct a cost volume to constrain 3D
geometry between multiple cameras. For example, Wang and Shen [35] proposed
MVDepthNet, which constructs a cost volume from multi-view images by setting
one of the images as a reference image. It can take an arbitrary number of input
images to construct the cost volume. The convolutional neural network (CNN)
takes the reference image and cost volume as input then estimates the depth
map of the reference camera. DeepMVS proposed by Huang et al. [33] first
constructs a plane sweep volume, then the patch matching network is applied
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to the reference image and each slice of the volume to extract features to measure
the correspondence, which is followed by feature aggregation networks and depth
refinement with a fully connected conditional random field. Yao et al. [32] and
Im et al. [34] respectively proposed MVSNet and DPSNet, in which input images
are first passed through the networks to extract features, then the features
are warped instead of constructing the cost volume in the image space. Our
proposed method is based on MVDepthNet [35], which is the simplest and
light-weight method, and we extended the ordinary cost volume and constructs
our dehazing cost volume for scattering media.

3.1.2 Disparity-based method in scattering media

The proposed method is based on stereo 3D reconstruction without active light
sources. There have been several works for applying such disparity-based meth-
ods to scattering media. Caraffa et al. [39] proposed a binocular stereo method
in scattering media. With this method, image enhancement and stereo recon-
struction are simultaneously modeled on the basis of a Markov random field.
Song et al. [40] proposed a learning-based binocular stereo method in scatter-
ing media, where dehazing and stereo reconstruction are trained as multi-task
learning. The features from the networks of each task are simply concatenated
at the intermediate layer. The most related method to ours is the MVS method
proposed by Li et al. [41]. They modeled dehazing and MVS simultaneously and
regularized the output depth using an ordering constraint, which was based on
a transmission map that was the output of dehazing with Laplacian smoothing.

These previous studies [39, 41] designed photometric consistency measures
considering the scattering effect. However, this requires scene depth because
degradation due to scattering media depends on this depth. Thus, they relied
on iterative implementation of an MVS method and dehazing, which leads to
large computation cost. In contrast, our dehazing cost volume can solve this
chicken-and-egg problem by computing the scattering effect in the cost volume.
The scene depth is then estimated effectively by taking the cost volume as input
for a CNN, making fast inference possible.

3.2 MYVS with dehazing cost volume in scatter-
ing media
In this section, we describe MVS in scattering media with our dehazing cost

volume. We first overview the proposed method then discuss the ordinary cost
volume and our dehazing cost volume, followed by implementation details.

3.2.1 Overview

MVS methods are roughly categorized by output representations, e.g., point-
cloud, volume, or mesh-based reconstruction. The proposed method is formu-
lated as depth-map estimation, i.e., given multiple cameras, we estimate a depth



20 CHAPTER 3. MULTI-VIEW STEREO IN SCATTERING MEDIA
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Figure 3.2: Overview of MVS in scattering media. Input of network is refer-
ence image captured in scattering medium and our dehazing cost volume. Our
dehazing cost volume is constructed from reference image and source images.
Network architecture of our method is same as that of MVDepthNet [35], which
has encoder-decoder with skip connections. Output of network is disparity maps
(inverse depth maps) at different resolutions.

map for one of the cameras. We refer to a target camera to estimate a depth map
as a reference camera r and the other cameras as source cameras s € {1,---, S},
and images captured with these cameras are denoted as a reference image I,
and source images I, respectively. We assume that the camera parameters are
calibrated beforehand.

An overview of the proposed method is shown in Fig. 3.2. Our dehazing cost
volume is constructed from a hazy reference image and source images captured
in a scattering medium. The network takes the reference image and our dehazing
cost volume as input then outputs a disparity map (inverse depth map) of the
reference image. The network architecture is the same as that of MVDepthNet
[35], while the ordinary cost volume used in MVDepthNet is replaced with our
dehazing cost volume for scattering media.

3.2.2 Dehazing cost volume

In this section, we explain our dehazing cost volume, which is taken as input
to the network. The dehazing cost volume enables effective computation of
photometric consistency in scattering media.

Before explaining our dehazing cost volume, we show the computation of
the ordinary cost volume in Fig. 3.3(a). We first sample the 3D space in the
reference-camera coordinate system by sweeping a fronto-parallel plane. We
then back-project source images onto each sampled plane. Finally, we take
the residual between the reference image and each warped source image, which
corresponds to the cost of photometric consistency on the hypothesis that the
scene exists on the plane. Let the image size be W x H and number of sampled
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depths be N. We denote the cost volume as V : {1,--- ,W} x {1,--- | H} X
{1,---,N} = R, and each element of the cost volume is given as follows:

Y, 0,1) = g 32 11 0) = Ly 20) (3.1)

where z; is the depth value of the i-th plane. The operator m,_,, : R? — R2
projects the camera pixel (u,v) of the reference camera r onto the source image
I, with the given depth, which is defined as follows:

u
|: 7Tr—>s(gll-lfyvaz) :| ~ ZKer—mK;l v +Kstr—>87 (32)
1

where K, and K, are the intrinsic parameters of the reference camera r and
the source camera s, and R,_,; and t,_,; are a rotation matrix and translation
vector from r to s, respectively. The cost volume evaluates the photometric
consistency of each pixel with respect to the sampled depth; thus, the element
of the cost volume with correct depth ideally becomes zero.

As described in Chapter 2, an observed image captured in scattering media
without active light sources can be modeled with the atmospheric scattering
model. Let an RGB value at the pixel (u,v) of a degraded image captured in
scattering media and its latent clear image be I(u,v) € R® and J(u,v) € R3,
respectively. We assume that the pixel value of each color channel is within 0
and 1. We recall the atmospheric scattering model here:

I(u,v) = J(u,v)e P20 L A1 — e P2(uv)) (3.3)

where z(u,v) € R is the depth at pixel (u,v), 8 € R is a scattering coefficient
that represents the density of a medium, and A € R? is global airlight. For
simplicity, we assume that A is given by A = [4,4,A]T, A € R, i.e., the
color of scattering media is achromatic (gray or white). This degradation leads
to undesirable results with the ordinary cost volume defined in Eq. (3.1). In
contrast, our dehazing cost volume dehazes the image and computes photometric
consistency cost simultaneously. Degradation due to scattering media depends
on scene depth; thus, our dehazing cost volume restores degraded images using
the depth of a swept plane.

Figure 3.3(b) shows the computation of our dehazing cost volume. A ref-
erence image is dehazed directly using the depth of a swept plane. A source
image is dehazed using the swept plane from a source camera view, then the
dehazed source image is warped to the reference-camera coordinate system.
Similar to the ordinary cost volume, we define our dehazing cost volume as
D:{l,--- , W}x{1,---,H} x{1,--- ,N} = R, and each element of our de-
hazing cost volume is given as

1
D(u,v,i) = g Z | T (u, v; 2;) — Js(mr2s(u,v; 20)) |1, (3.4)
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Figure 3.3: Cost volume and dehazing cost volume. (a) Ordinary cost volume
is constructed by sweeping fronto-parallel plane in reference-camera coordinate.
Cost of photometric consistency is simply computed as residual between ref-
erence image and warped source image on each swept plane z = z;. (b) In
our dehazing cost volume, reference image is dehazed using sampled depth, z;,
which is constant over all pixels. Source image is dehazed using depth of swept
plane from source-camera view, then dehazed source image is back-projected
onto plane. Cost is computed by taking residual between both dehazed images.
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where J,.(u, v; z;) and Js(m— s (u, v; 2;)) are dehazed reference and source images.
From Eq. (3.3), if A and 8 are estimated beforehand, they are computed as
follows:

Jr(uyviz) = 7IT(”’_”;;A LA, (3.5)
e—Bzi
Is r—s , Ui 2 _A
To(mrsuyvi ) = LelTroslwviz) —A L, (3.6)

e_ﬂCs,i(ﬂ'r—m (u,v;zi))

As shown in Fig. 3.3(b), the reference image is dehazed using the swept plane
with depth z;, whose depth map is denoted as z;. On the other hand, the
source image is dehazed using ¢ ;, which is a depth map of the swept plane
from the source camera view. The depth (,;(mr—s(u,v;2;)) is used for the
cost computation of the pixel (u,v) of the reference camera because the pixel
mr—s(u,v; z;) on the source camera corresponds to pixel (u,v) of the reference
camera. Our dehazing cost volume exploits the dehazed images with much
more contrast than the degraded ones; thus, the computed cost is robust even in
scattering media. In accordance with this definition of our dehazing cost volume,
the photometric consistency between the latent clear images is preserved.

Our dehazing cost volume computes photometric consistency with dehazed
images in the cost volume. This is similar to the previous methods [39, 41] that
compute photometric consistency considering scattering effect. However, this
is a chicken-and-egg problem because the effect of scattering media depends on
scene depth, and they rely on iterative implementation of MVS and dehazing to
compute the scattering effect. Our method, on the other hand, can compute the
scattering effect using a depth hypothesis of a swept plane without an explicit
scene depth, which can eliminate the iterative optimization.

Our dehazing cost volume restores an image using all depth hypotheses;
thus, image dehazing with depth that greatly differs from the correct scene
depth results in an unexpected image. The extreme case is when a dehazed
image has negative values at certain pixels. This includes the possibility that
a computed cost using Eq. (3.4) becomes very large. To avoid such cases, we
revise the definition of our dehazing cost volume as follows:

| T (w5 23) — s (Trms s (u, 05 24)) 11
N1 if 0 < JE(u,v;2) <1land
D(w,v,1) = S Z 0 < J(mros(u,v;2:)) <1 ce{rg,b} (3.7)
° v otherwise,

where J(u,v; z;) and JE(mrs(u,v;2;)) are the pixel values of the channel ¢ €
{r, g,b} of the reconstructed clear images. A constant 7 is a parameter that is
set as a penalty cost when the dehazed result is not contained in the domain of
definition. This makes the training of the network stable because our dehazing
cost volume is upper bounded by v. We can also reduce the search space of
depth by explicitly giving the penalty cost. In this study, we set v = 3, which is
the maximum value of the ordinary cost volume defined in Eq. (3.1) when the
pixel value of each color channel is within 0 and 1.
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Figure 3.4: Visualization of our dehazing cost volume. (b) Computed ordinary
cost volume and our dehazing cost volume at red point in (a). In (b), red dot
indicates location of ground-truth, and blue and green dots indicate minimum
value of ordinary cost volume and our dehazing cost volume, respectively. (c)
and (d) Output depth of MVDepthNet [35] with ordinary cost volume and our
dehazing cost volume, respectively.

Figure 3.4(b) visualizes the ordinary cost volume and our dehazing cost
volume at the red point in (a). Each dot in (b) indicates a minimum cost, and
the red dot in (b) indicates ground-truth depth. The curve of the cost volume
is smoother than that of our dehazing cost volume due to the degradation in
image contrast, which leads to a depth error. Our dehazing cost volume can
also reduce the search space with the dehazing constraint v on the left part in
(b), where its cost value is constantly large.

3.2.3 Network architecture and loss function

As shown in Fig. 3.2, a network takes a reference image and our dehazing cost
volume as input. To compute our dehazing cost volume, we should predetermine
the target 3D space for scene reconstruction and number of depth hypotheses
for plane sweep. We uniformly sample the depth on the disparity space between
0.02 and 2 and set the number of samples to N = 256. The network architec-
ture is the same as that of MVDepthNet [35], which has an encoder-decoder
architecture with skip connections. The network outputs disparity maps at dif-
ferent resolutions. The training loss is defined as the sum of L1 loss between
these estimated disparity maps and the ground-truth disparity map. (For more
details, please refer to [35].)



3.3. SCATTERING PARAMETER ESTIMATION 25

Table 3.1: Network architecture of airlight estimator. Network takes single
RGB image as input then outputs single scalar value A. Stride of convolution
layers from convl to conv6 is 2. Each convolution layer except for conv8 has
batch normalization and ReLU activation. glb_avg pool denotes global average
pooling layer.

Layer Kernel Channel Input
convl 7 3/16 1
conv2 5 16/32 convl
conv3 3 32/64 conv2
conv4 3 64/128 conv3
convh 3 128/256 conv4
conv6 3 256/256 convh
glb_avg_pool - 256/256 conv6
conv7 1 256/64  glb_avg_pool
conv8 1 64/1 conv7

3.3 Scattering parameter estimation

As mentioned in Section 3.2, our dehazing cost volume requires scattering pa-
rameters, airlight A and a scattering coefficient 5 in Eq. (3.6). In this section,
we first explain the estimation of A then describe the difficulty of estimating
B. Finally, we discuss the simultaneous estimation of the scattering parameters
and depth with our dehazing cost volume.

3.3.1 Estimation of airlight A

We first describe the estimation of A. Although methods for estimating A from
a single image have been proposed, we implement and evaluate a CNN-based
estimator, the architecture of which is shown in Table 3.1. It takes a single RGB
image as input, which is passed through several convolution layers with stride
2. Global average pooling is then applied to generate a 256 x 1 x 1 feature map.
This feature map is passed through two 1 x 1 convolutions to yield 1D output
A. Note that each convolution layer except for the final layer (conv8) is followed
by batch normalization and then by rectified linear unit (ReLU) activation. For
training and test, we used the synthesized image dataset described in Section
3.4.1. Figure 3.5 shows the error histogram of A on the test dataset. In this
dataset, the value of A is randomly sampled from [0.7,1.0], indicating that the
estimation of A can be achieved from a single image.

3.3.2 Difficulty of estimating scattering coefficient

In contrast to A, it is difficult to estimate § from a single image. As shown in
Eq. (3.3), image degradation due to scattering media depends on 5 and scene
depth z through e #% with the scale-invariant property, i.e., the pairs of k3
and (1/k)z for arbitrary k € R lead to the same degradation. Since the depth
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Figure 3.5: Error histogram of our airlight estimator on synthesized test dataset.
Simple L1 error is computed on each estimate. In this dataset, A is randomly
sampled from [0.7,1.0].

scale cannot be determined from a single image, the estimation of the scattering
coefficient from a single image is infeasible.

In response to this problem, Li et al. [41] proposed a method for estimating
B from multi-view images. With this method, it is assumed that a sparse 3D
point cloud and camera parameters can be obtained by SfM from noticeable
image edges even in scattering media. From a pixel pair and corresponding 3D
point, two equations can be obtained from Eq. (3.3). Additionally, if we assume
that the pixel value of the latent clear image is equal to the corresponding pixel
value of the other clear image, this simultaneous equations can be solved for
B. However, this multi-view-based method involves several strong assumptions.
First, the pixel value of the latent clear image should be completely equal to
the corresponding pixel value of the other clear image. Second, the values of
the observed pixels should be sufficiently different to ensure numerical stability.
This assumption means the depth values of both images should be sufficiently
different, and it is sometimes very difficult to find such points. Finally, A is
assumed to be properly estimated beforehand. These limitations indicate that
we should avoid using the pixel values directly for 8 estimation.

3.3.3 Estimation with geometric information

In this study, the scattering coefficient was estimated without using pixel inten-
sity. Our method ensures the correctness of the output depth with the estimated
scattering coefficient.

As well as the MVS method proposed by Li et al. [41], a sparse 3D point
cloud is assumed to be obtained by SfM in advance. Although our dehazing cost
volume, which is taken as input for a network, requires A and /3, this means that
the network can be regarded as a function that takes A and § as variables and
outputs a depth map. Now, the network with fixed parameters is denoted by
F, and the output depth can be written by z4 3 = F(A4, 8) as a function of A
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(c) (d) (e)

Figure 3.6: Consideration of depth discontinuities. (a) Input image. (b) Output
depth with ground-truth scattering parameters. Depth discontinuities exist in
red boxed region. Zoom of regions in (a) and (b) are shown in (c¢) and (d),
respectively. (e) Depth map of sparse 3D point cloud obtained by SfM in this
region. It is uncertain whether feature point obtained by SfM is located on
background or foreground around depth discontinuities. This includes possibil-
ity that output depths of network and SfM are completely different such as right
pixel in (e).

and 8. Note that for simplicity, we omitted the input image from the notation.
Let a depth map that corresponds to a sparse 3D point cloud by SfM be z,,.
The scattering parameters are estimated by solving the following optimization
problem:

A*, 8" = argmin m(u, v)p| zsfm (U, ), 24 g(u,v) ), 3.8
8 §7ﬂ§<>p(f<>A,ﬁ< )) (3.8)

where z, (u,v) denotes a value at the pixel (u,v) of a depth map z,, and m(u,v)
is an indicator function, where m(u,v) = 1 if a 3D point estimated by SfM
is observed at pixel (u,v), and m(u,v) = 0 otherwise. A function p com-
putes the residual between the argument depths. Therefore, the solution of Eq.
(3.8) minimizes the difference between the output depth of the network and
the sparse depth map obtained by SfM. A final dense depth map can then be
computed with the estimated A* and *, i.e., z* = F(A*, 5*). Differing from
the previous method [41], our method does not require pixel intensity because
the optimization is based on only geometric information, and the final output
depth is ensured to match at least the sparse depth map obtained by SfM.

We use the following function as p to measure the difference between depth
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Figure 3.7: Example of parameter search. (a) Input image. (b) Sparse depth
map obtained by SfM. (c¢) Error plot with respect to 5. (d) Final output depth.

values:
|25 fm (1, v) — 24,8 (u, )|,
|25 m (U, v) — za,8(u+6,0)|,
p(zsfm(u,v),zAﬁ(u,v)) =minq |zsfm(u,v) —zag(u—95,0), . (3.9)
|Z5fm(u’ U) - ZA,ﬁ(“? v+ 6)|7
|Z$fm(u’ U) - ZA,ﬁ(“’? U= 5)|

As shown in Fig. 3.6, it is uncertain whether the feature point obtained by
SfM is located on the background or foreground around depth discontinuities.
This includes the possibility that the output depths of the network and SfM are
completely different. To suppress the effect of this error on the scattering pa-
rameter estimation, we use the neighboring pixels when calculating the residual
of the depths. As shown in Eq. (3.9), we use the depth values of the pixels
at a distance of ¢ pixel in the horizontal and vertical direction. The minimum
value among these residuals is used for the optimization. Note that we set § =5
pixels in this study.

3.3.4 Solver

The network with our dehazing cost volume is differentiable with respect to
A and B. Standard gradient-based methods can thus be adopted for the op-
timization problem. However, we found that an iterative algorithm based on
back-propagation easily falls into a local minimum. Therefore, we perform grid
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Algorithm 1 Depth and scattering parameter estimation

Require: Reference image I,., source images {Is|s € {1,---,S}}, depth esti-
mator F, airlight estimator G, Bmin, Bmaz,Da, Ag, and zgpm,
Ensure: A*, §*, z*
Ao — Q(Ir)
ﬂO — argmin Zu,y m(uvv)p(zsfm(ua U),ZAO,B(U,U))
BE[anin;BnLaw]
where z4 g = F(A, 8; I, {I1,--- ,Is})
A* p* < argmin ) m(u,v)p(zsfm(u,v), za,8(u, v))
AEQA,ﬂEQB ’
where Q4 = [Ag — A4, Ao + A 4] and Qg = [Bo — Ag,ﬁo + AB]
2« F(A*, 8% L, (I, , Is))

search to find the best solution. Figure 3.7 shows an example in which we search
for 5 under ground-truth A. Figure 3.7(a) shows an input image, and (b) shows
the sparse depth map obtained by SfM. The horizontal axis of (c) represents 3,
and we plot the value of Eq. (3.8) with respect to each 8. The green dashed line,
which represents the ground-truth 3, corresponds to the global minimum. Fig-
ure 3.7(d) shows the final output depth of the network with this global optimal
solution.

As discussed in Section 3.3.1, we can roughly estimate A with the CNN-
based estimator. We initialize A by this estimate. Let Ay be the output of this
estimator, and we search for 8y in the predetermined search space [Bmin, Bmaz)
as follows:

Bo = argmin Zm(u,v)p(zsfm(um),zAO_ﬂ(u,v)) (3.10)
ﬂE[ﬂmivuﬁvnam] u,v

We then search for A* and * that satisfy Eq. (3.8) in the predetermined search
space [Ag— A4, Ao+ A4] and [Bo — Ag, Bo+ Ap]. Algorithm 1 shows the overall
procedure of depth and scattering parameter estimation.

3.4 Experiments

In this study, we used MVDepthNet [35] as a baseline method. As mentioned
previously, the ordinary cost volume is replaced with our dehazing cost volume
in the proposed method, so we can directly evaluate the effect of our dehazing
cost volume by comparing our method with this baseline method. We also com-
pared the proposed method with simple sequential methods of dehazing and
3D reconstruction using the baseline method. DPSNet [34], the architecture
of which is more complicated such as a multi-scale feature extractor, 3D con-
volutions, and a cost aggregation module, was also trained on hazy images for
further comparison. In addition to the experiments with synthetic data, we give
an example of applying the proposed method to actual foggy scenes.
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3.4.1 Dataset

We used the DeMoN dataset [42] for training. This dataset consists of the
SUN3D [43], RGB-D SLAM [44], and MVS datasets [45], which have sequences
of real images. The DeMoN dataset also has the Scenesll dataset [46, 42],
which consists of synthetic images. Each image sequence in the DeMoN dataset
includes RGB images, depth maps, and camera parameters. In the real-image
datasets, most of the depth maps have missing regions due to sensor sensibil-
ity. As we discuss later, we synthesized hazy images from the clean images in
the DeMoN dataset for training the proposed method, where we need dense
depth maps without missing regions to compute pixel-wise degradation due to
haze. Therefore, we first trained MVDepthNet using clear images then filled the
missing regions of each depth map with the output depth of MVDepthNet. To
suppress boundary discontinuities and sensor noise around missing regions, we
applied a median filter after depth completion. For the MVS dataset, which has
larger noise than other datasets, we reduced the noise simply by thresholding
before inpainting. Note that the training loss was computed using only pixels
that originally had valid depth values. We generated 419,046 and 8,842 samples
for training and test data, respectively. Each sample contained one reference
image and one source image. All images were resized to 256 x 192.

We synthesized a hazy-image dataset for training the proposed method from
clear images. The procedure of generating a hazy image is based on Eq. (3.3).
For A, we randomly sampled A € [0.7,1.0] for each data sample. For 3, we
randomly sampled 8 € [0.4,0.8],[0.4,0.8],[0.05,0.15] for the SUN3D, RGB-D
SLAM, and Scenes11 datasets, respectively. We found that for the MVS dataset,
it was difficult to determine the same sampling range of § for all images because
it contains various scenes with different depth scales. Therefore, we determined
the sampling range of 8 for each sample of the MVS dataset as follows. We first
set the range of a transmission map e~#% to [0.2,0.4] for all samples then com-
puted the median of a depth map z,.q for each sample. Finally, we determined
the 8 range for each sample as 8 € [—10g(0.4)/zmea, — 10g(0.2)/ Zmea-

Similar to Wang and Shen [35], we adopted data augmentation to enable
the network to reconstruct a wide depth range. The depth of each sample was
scaled by a factor between 0.5 and 1.5 together with the translation vector of
the camera. Note that when training the proposed method, 8 should also be
scaled by the inverse of the scale factor.

3.4.2 Training details

All networks were implemented in PyTorch. The training was done on a NVIDIA
V100 GPU with 32-GB memory. The size of a minibatch was 32 for all training.
We first trained MVDepthNet from scratch on the clear-image dataset. We
used Adam [47] with a learning rate of 1.0 x 10~%. After the initial 100K
iterations, the learning rate was reduced by 20% after every 20K iterations.
We then fine-tuned MVDepthNet on hazy images and trained the proposed
method with our dehazing cost volume. The parameters of both methods were
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Table 3.2: Quantitative results. We compared proposed method (MVDepth-
Net w/ decv) with MVDepthNet [35] fine-tuned on hazy images (MVDepth-
Net), simple sequential methods of dehazing [24, 30] and depth estimation with
MVDepthNet (AOD-Net + MVDepthNet, FFA-Net + MVDepthNet), and DP-
SNet [34] trained on hazy images (DPSNet). Red and blue values are best and
second-best, respectively.
Dataset Method Ll-rel Ll-inv sc-inv  C.P. (%)
AOD-Net + MVDepthNet  0.249  0.132  0.250 47.8
FFA-Net + MVDepthNet  0.180 0.111  0.211 55.5
SUN3D MVDepthNet 0.155  0.093 0.184 60.3
DPSNet 0.145 0.082  0.183 64.7
MVDepthNet w/ dcv ~ 0.100  0.058  0.161 79.0
AOD-Net + MVDepthNet 0.205  0.127  0.315 58.9
FFA-Net + MVDepthNet  0.179  0.114  0.288 65.0
RGB-D SLAM MVDepthNet 0.157  0.091  0.254 70.7
DPSNet 0.152  0.090 0.234 71.6
MVDepthNet w/ dcv ~ 0.162  0.089  0.231 68.8
AOD-Net + MVDepthNet 0.323  0.123  0.309 51.9
FFA-Net + MVDepthNet  0.215  0.112  0.288 55.6
MVS MVDepthNet 0.184 0.100 0.241 57.1
DPSNet 0.191  0.088  0.239 67.9
MVDepthNet w/ dcv  0.160  0.091  0.222 58.1
AOD-Net + MVDepthNet 0.330 0.036  0.539 52.3
FFA-Net + MVDepthNet  0.377  0.041  0.600 51.3
Scenesll MVDepthNet 0.151  0.022  0.279 64.0
DPSNet 0.105  0.018  0.381 81.8
MVDepthNet w/ dev ~ 0.134  0.019  0.216 72.3

initialized by that of the trained MVDepthNet on clear images. The initial
learning rate was set to 1.0x10~* and reduced by 20% after every 20K iterations.

We also trained the dehazing methods, AOD-Net [24] and FFA-Net [30], and
the MVS method DPSNet [34] on our hazy image dataset for comparison. The
dehazing networks were followed by MVDepthNet trained on clear images for
depth estimation. DPSNet was trained with the same loss function and learning
schedule as in the original paper [34].

3.4.3 Evaluation of dehazing cost volume

We first evaluated our dehazing cost volume with ground-truth scattering pa-
rameters. Table 3.2 shows the quantitative evaluation. We used four evaluation
metrics following Wang and Shen [35]: Ll-rel is the mean of the relative L1 er-
ror between the ground-truth depth and estimated depth, L1-inv is the mean of
the L1 error between ground- truth inverse depth and estimated inverse depth,
sc-inv is the scale-invariant error of depth proposed by Eigen et al. [48], and cor-
rectly estimated depth percentage (C.P.) [49] is the percentage of pixels whose
relative L1 error is within 10%. The red and blue values are the best and
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(a) Clear (b) Hazy (¢) Ground (d) MVDepthNet (¢) DPSNet  (f) Proposed
image input truth [35] [34]

Figure 3.8: Qualitative results. (a) clear image, (b) hazy input, (¢) ground-
truth depth, (d) output of fine-tuned MVDepthNet [35], (¢) output of DPSNet
[34], and (f) output of proposed method. From top to bottom, each row shows
results of input images in SUN3D, RGB-D SLAM, MVS, and Scenes11 datasets,
respectively.

second-best, respectively.

The proposed method (MVDepthMet w/ dcv, where “dev” denotes our de-
hazing cost volume) was compared with MVDepthNet [35] fine-tuned on hazy
images (MVDepthNet), simple sequential methods of dehazing [24, 30] and
depth estimation with MVDepthNet [35] (AOD-Net + MVDepthNet, FFA-Net
+ MVDepthNet), and DPSNet [34] trained on hazy images (DPSNet).

In most evaluation metrics, the proposed method outperformed the fine-
tuned MVDepthNet, demonstrating the effectiveness of our dehazing cost vol-
ume. For the RGB-D SLAM dataset, the fine-tuned MVDepthNet was com-
parable to the proposed method. This is because many scenes in the RGB-D
SLAM dataset are close to a camera. In such case, the degradation of an ob-
served image is small and exists uniformly in the image, which has little effect
on photometric consistency.

The proposed method also performed better than the sequential methods
of dehazing [24, 30] and MVDepthNet [35]. Therefore, we can see that the
simultaneous modeling of dehazing and 3D reconstruction on the basis of our
dehazing cost volume is effective. DPSNet [34] first extracts feature maps from
input images, and then constructs a cost volume in the feature space. Thus, the
feature extractor might be able to deal with image degradation caused by light
scattering. Nevertheless, our dehazing cost volume allows the consideration of
image degradation with a simple network architecture.

The output depth of each method is shown in Fig. 3.8. From top to bot-
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Table 3.3: Quantitative results of depth and scattering parameter estimation.
“MVDepthNet w/ dev, pe” denotes the proposed method with scattering pa-
rameter estimation. Red and blue values are best and second-best, respectively.
As evaluation metric of A and (3, we used mean absolute error (MAE,4 and

MAEj).
Dataset Method Ll-rel Ll-inv sciinv C.P. (%) MAE, MAEg
FFA-Net + MVDepthNet  0.141  0.104 0.152 _ 57.0 - -
MVDepthNet 0130 0.9 0135  59.9 - -
lgéze‘l[ = 01‘3 DPSNet 0.109  0.069 0125  65.2 - -
sampies MVDepthNet w/ dev ~ 0.069  0.043  0.104  80.7

MVDepthNet w/ dev, pe 0.081  0.050 0.116 76.3 0.028 0.043
FFA-Net + MVDepthNet  0.154  0.102  0.172 52.4 - -

MVDepthNet 0.138 008 0152  56.0 - -
QIége,lf 012 DPSNet 0120 0072 0138 611 - -
Sampies MVDepthNet w/ dev ~ 0.077  0.044 0116 784

MVDepthNet w/ dev, pe 0.092  0.053  0.132 72.9 0.028 0.042
FFA-Net + MVDepthNet  0.162  0.103  0.182 50.7 - -

MVDepthNet 0.143 0089 0.158  54.7 - -
31‘1;';6,15 Ol‘f\ DPSNet 0124 0072 0144  59.9 - -
sampies MVDepthNet w/ dev ~ 0.079  0.045 0120  77.6

MVDepthNet w/ dev, pe  0.100  0.056  0.141 70.3 0.027 0.044

tom, each row shows the results of the input images in the SUN3D, RGB-D
SLAM, MVS, and Scenesl1 datasets, respectively. DPSNet failed to construct
correspondence in some scenes, although it has the multi-scale feature extrac-
tor. Note that the results from the Scenesll dataset indicate that the proposed
method can reconstruct the 3D geometry of a distant scene where the image is
heavily degraded due to scattering media.

3.4.4 Evaluation of scattering parameter estimation

Next, we evaluated the proposed method with scattering parameter estimation.
Each sample of the test dataset presented above consists of image pairs. Pa-
rameter estimation requires a 3D point cloud obtained by SfM. To ensure the
accuracy of SfM, which requires high visual overlap between images and a suf-
ficient number of images observing the same objects, we created a new test
dataset for the evaluation of the scattering parameter estimation. From the
SUN3D dataset [43], we selected 68 scenes and extracted 80 frames from each
scene. The resolution of each image is 680 x 480. We cropped the image patch
with 512 x 384 from the center and downsized the resolution to 256 x 192 for
the input of the proposed method. Similar to the previous test dataset, missing
regions were compensated with the output of MVDepthNet [35]. The scattering
parameters were randomly sampled for each scene, where the sampling ranges
were A € [0.7,1.0] and S5 € [0.4,0.8]. SfM [38, 3] was applied to all 80 frames of
each scene to estimate a sparse 3D point cloud, and then the proposed method
took the image pair as input. To evaluate the output depth on the ground-truth
depth of the original SUN3D dataset, the sparse depth obtained by SfM was
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Figure 3.9: Output depth after scattering parameter estimation. (a) Hazy input,
(b) ground-truth depth, (c) DPSNet [34], (d) proposed method with ground-
truth scattering parameters, (e) proposed method with scattering parameter
estimation, and (f) sparse depth obtained by SfM.

rescaled to match the scale of the ground-truth depth, and we used the camera
parameters of the original SUN3D dataset.

For the parameter search, we set the first 8 range as 8,in = 0.4 and B4 =
0.8 with 10 steps for the grid search. We then searched for A and 8 with the
search range A4 = 0.05, Ag = 0.05 and 4 x 4 steps. The total number of the
forward computation of the network was 26, and the total computation time
was about 15 seconds in our computational environment.

Table 3.3 shows the quantitative results of depth and scattering parame-
ter estimation. “MVDepthNet w/ dev, pe” denotes the proposed method with
scattering parameter estimation. As the evaluation metric of A and 3, we used
mean absolute error (MAE 4 and MAEg). To evaluate the effect of the error at
the SfM step, we created three test datasets, where the relative L1 error of the
sparse SfM depth of the samples is less than 0.1, 0.2, and 0.3, respectively, and
show the number of samples in the table. These results indicate that the pro-
posed method with ground-truth scattering parameters (MVDeptNet w/ dcv)
performed the best. On the other hand, even when we incorporated scatter-
ing parameter estimation into the proposed method, it outperformed the other
methods. In addition, scattering parameter estimation is robust to the estima-
tion error of the sparse depth at the SfM step since the MAE values for A and
B did not vary so much for the three datasets with different SfM errors.

The qualitative results of the following depth estimation after scattering
parameter estimation are shown in Fig. 3.9. Figure 3.9(f) shows the input sparse
depth obtained by SfM. Compared with the proposed method with ground-truth
scattering parameters, the method with the scattering parameter estimation
resulted in almost the same output depth. In the third row in the figure, the
left part in the image has slight error because no 3D sparse points were observed
in that region.
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Figure 3.10: Experimental results on bali [41]. (a) foggy input, (b) estimated
depth of Li et al. [41], (c) output of DPSNet [34], (d) output of fine-tuned
MVDepthNet [35], (e) output of proposed method with scattering parameter
estimation, and (f) sparse depth obtained by SfM.

3.4.5 Experiments with actual foggy scenes

Finally, we give an example of applying the proposed method to actual outdoor
foggy scenes. We used the image sequence bali [41] for the actual data. This data
consists of about 200 frames, and we applied the SfM method [38, 3] to all these
frames to obtain camera parameters and a sparse 3D point cloud. The proposed
method took the estimated camera parameters, a sparse depth, and image pair
as input. We set the search space of the scattering parameter estimation as
Brmin = 0.01, Brmae = 0.1, Ag = 0.05, and Ag = 0.01 with the same step size in
the experiments of the synthesized data.

The results are shown in Fig. 3.10. The output depths of the proposed
method were rescaled to match the scale of the output of [41], because the
camera parameters were different between these methods. Compared with [41],
the proposed method can reconstruct distant region, which have large image
degradation due to light scattering, and the other learning-based methods also
failed to reconstruct such distant regions. Moreover, the proposed method could
recover less noisy depth maps as a trade-off for loss of small details due to over-
smoothing. The method proposed by Li et al. [41] requires iterative graph-cut
optimization, so it takes a few minutes to estimate depth for one image. Our
method, on the other hand, requires only a few seconds to estimate depth for
one reference image after estimating scattering parameters. Although scattering
parameter estimation takes several ten of seconds, if we assume the medium den-
sity of a scene is homogeneous, the estimated scattering parameters at a certain
frame can be used for another frame without additional parameter estimation.

We also captured a video with a smartphone camera in an actual foggy scene.
Similar to the previous experiments, we applied the SfM method [38, 3] to all
frames. The proposed method took the estimated camera parameters, a sparse
depth, and image pair as input, and the parameters search space was set as the
same in the previous experiments.

The results are shown in Fig. 3.11. Figures (a) and (b) show the input
reference and source images, respectively. This results also indicate that the
proposed method can reconstruct distant regions with large image degradation
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Figure 3.11: Experimental results on our captured data in actual foggy scenes.
(a) input reference image, (b) input source image, (¢) output of DPSNet [34],
(d) output of fine-tuned MVDepthNet [35], (e) output of proposed method with
scattering parameter estimation, and (f) sparse depth obtained by SfM.
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due to light scattering.

3.5 Conclusion

In this chapter, we discussed a disparity-based 3D reconstruction method in
scattering media. We proposed a learning-based MVS method with a novel cost
volume, called the dehazing cost volume, which enables MVS methods to be
used in scattering media. Differing from the ordinary cost volume, our dehazing
cost volume can compute the cost of photometric consistency by taking into
account image degradation modeled by the atmospheric scattering model. This
is the first study to solve the chicken-and-egg problem of depth and scattering
estimation by computing the scattering effect using each swept plane in the
cost volume without explicit scene depth. We also proposed a method for esti-
mating scattering parameters such as airlight and a scattering coefficient. This
method leverages geometric information obtained at an SfM step, and ensures
the correctness of the following depth estimation. The experimental results on
synthesized hazy images indicate the effectiveness of our dehazing cost volume in
scattering media. We also demonstrated its applicability using images captured
in actual foggy scenes.



Chapter 4

Photometric Stereo in
Scattering Media

In this chapter, we discuss a shading-based 3D reconstruction method in scatter-
ing media. Shading-based methods, such as shape-from-shading [5] and photo-
metric stereo [6], directly use the pixel intensity of input images. These methods
are thus affected by light scattering and attenuation in scattering media. We
propose a photometric stereo method in scattering media as shown in Figure
4.1.

Several shading-based 3D reconstruction methods in scattering media have
been proposed. Photometric stereo methods are an effective approach for recon-
structing a 3D shape in scattering media [50, 15, 51]. They reconstruct surface
normals from images captured under different lighting conditions. As described
in Chapter 2, the single scattering model can be used for modeling light scatter-
ing under active light sources. Figure 4.2 shows a capture setting with a single
camera and light source under the single scattering model. As shown, backscat-
ter and forward scatter occur in scattering media; thus, the irradiance observed
at a camera includes a direct component reflected on the surface, as well as a
backscatter and forward scatter components. Narasimhan et al. [50] modeled
single backscattering under a directional light source in scattering media and
estimated surface normals using a nonlinear optimization technique. Tsiotsios
et al. [15] assumed that backscatter saturates close to the camera when illu-
mination follows the inverse square law, and subtracted the backscatter from
the captured image. Note that forward scatter is not modeled in these meth-
ods. Forward scatter depends on the object’s shape locally and globally, and in
highly turbid media such as port water, 3D reconstruction accuracy is affected
by forward scatter. Although Murez et al. [51] proposed a photometric stereo
technique that considers forward scatter, they assumed that the scene is approx-
imated as a plane, which enables prior calibration of forward scatter. Therefore,
this assumption deteriorates the estimation of normals because forward scatter
is intrinsically dependent on the object’s shape.

37
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Figure 4.1: Photometric stereo in scattering media

We propose a forward scatter model and implement the model into a photo-
metric stereo framework. Differing from previous studies [52, 51], we compute
forward scatter, which depends on the object’s shape. To overcome the mu-
tual dependence between shape and forward scatter, we develop an iterative
algorithm that performs a forward scatter removal and 3D shape reconstruction
alternately.

As mentioned in Chapter 2, the single scattering model is more complicated
model than the atmospheric scattering model. We thus also propose an effec-
tive method for computing forward scatter with an analytical form of single
scattering. In computer graphics, Monte Carlo and finite element techniques
have been used to simulate light scattering in scattering media. Although such
techniques provide accurate simulations, realtime rendering is difficult. Thus,
analytical or closed-form solutions have been proposed for efficient computa-
tion [11, 53, 54]. For example, Sun et al. [11] proposed an analytical single
scattering model of backscatter and forward scatter between the source and
the surface (source-surface forward scatter) using 2D lookup tables. Similar to
their model, in this study, forward scatter between the surface and the camera
(surface-camera forward scatter) is computed using a lookup table.

The rest of this chapter is organized as follows: In Section 4.1, we describe
the theory of photometric stereo including surface normal integration to recon-
struct a 3D shape. In Section 4.2, analytical solution of the single scattering
model by using lookup tables is introduced. In Section 4.3, an efficient method
for removing forward scatter components is described. Shape-dependent for-
ward scatter is modeled as spatially-variant kernels. To address computational
complexity issues, we approximate the kernel matrix as a sparse matrix. In
Section 4.4, we discuss the approximation in the proposed method using syn-
thesized data, then demonstrate the effectiveness of the proposed method with
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Figure 4.2: Single scattering model. Observed irradiance at camera includes
direct component reflected on surface, and both backscatter and forward scatter
components.

real data. Finally, Section 4.5 concludes this chapter.

4.1 Photometric stereo

4.1.1 Theory of photometric stereo

In this section, we explain the theory of photometric stereo, which is related to
radiometry. The details also can be seen in [6, 55].

Here a surface is illuminated by a point light source as shown in Figure 4.3.
In radiometry, the intensity of the light source is represented as a radiant flux ®
[W]. Let the distance between the light source and surface be d. Light arrived
at the surface is described by irradiance E [W/m?] as follows:

I +
E=2n'l, (4.1)
where Iy [W/sr] is a radiant intensity, n is a surface normal, and 1 is a lighting
direction. If the light source is isotropic, Iy is given as

)

Iy = —.
07 4r

(4.2)
Now, we assume that the light source is infinitely distant from the surface. In
this case, radiance at the surface Ly = I/d?> [W/m? - sr] is constant and the
lighting direction 1 is all the same in the scene.
The radiance of light that bounces off the surface then arrives at the camera
is described as follows:
L= f(n,1,v)Lon'l, (4.3)

where v is a viewing direction and f(n,l,v) is a bidirectional reflectance dis-
tribution function (BRDF). BRDF takes a surface normal and the directions of
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Figure 4.3: Camera, light source, and surface

incident and reflected light for modeling the distribution of reflected light. For
Lambertian surfaces, BRDF becomes isotoropic:

L=pLon'l, (4.4)

where p is called a diffuse albedo. This is the basics of photometric stereo and
the goal of photometric stereo is to estimate the surface normal n from the
observed irradiance L and known lighting direction 1.

We assume that three images are captured under different lighting conditions
and each lighting direction is calibrated beforehand (These lighting directions
must be linearly independent). For the sake of brevity, each radiance of the
light source is normalized as Ly = 1. The following equation can be obtained
from Eq. (4.4):

L, 1]
Ly |=p| 1 |n (4.5)
L 1

We can then compute the surface normal n as follows:

717 Ly

Ai=pn=|1] Ly |, (4.6)
1] Ls
i
n= —0, p=|al. (4.7)
5]

If we have more light sources, the surface normal is computed in the least squares
sense.

Traditional photometric stereo assumes Lambertian surfaces and distant
light sources whose directions are known as described above. Thus, recent works
focus on uncalibrated and near lighting photometric stereo [56, 57], arbitrary
BRDF [58, 59], and robustness to outliers like shadows or specular reflection
[60, 61]. In addition, several works deal with global effects (e.g., ambient light
[62], interreflection [63, 64, 65], or subsurface scattering [66, 67]), and our study
is related to these works.
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4.1.2 Shape reconstruction from surface normals

The output of photometric stereo is surface normals, which requires the integral
of surface normals for reconstructing a 3D shape. In this section, we first explain
the integral of surface normals under orthogonal projection formulated as Pois-
son’s equation [68]. Then, it is extended to the case of perspective projection
[69].

First of all, we rewrite a surface normal n as follows:

_oz 0z
_6.1:7 q_ay7

n=pq-1" /Vpr+q+1, (4.9)

where (z,y) is the coordinates of 3D space, which are aligned with the image
axes in the case of orthogonal projection. The output normal map of pho-
tometric stereo is thus represented as a vector field N : R? — R2 (x,y) —
(p(z,y),q(x,y)). We aim to reconstruct a depth map Z : R? — R from this vec-
tor field. Here, let VZ : R? — R?, (z,y) — (Zz(z,y), Z,(z,y)) be the gradient
field of Z. The depth map is obtained by solving the functional minimization
problem as follows:

2* = axgmin [ [ ((Zulo,g) = ) + (2,(0.9) ~ o(o.9)?) dody. (110)

p (4.8)

The Euler-Lagrange equation yields
V2Z = div(p, q). (4.11)

This solution is called Poisson Solver [68].
To extend this solution to perspective projection, we first introduce the
intrinsic parameters of the camera as follows:

Ju v cu
0 fo o |, (4.12)
0 0 1

where f, and f, represent focal lengths, ¢, and ¢, represent the coordinates of
the principal point, and - describes the skew of the two image axes. Here, the
image coordinate is defined as (u,v), and a depth map and its gradient field
are represented as Z : R? — R, (u,v) — Z(u,v) and VZ : R? — R?, (u,v)
(Zy(u,v), Z,(u,v)), respectively. Z,(u,v) and Z,(u,v) are computed as follows:

Zo(uw) = 2£0u,0Z0v
A W P W
= Zu(u7v)fu
= Z(U, ’U) + Zu(u, ’U)(u - Cu) + Zv(u, U)(U — Cv) ) (413)
Zy(u,v) = aﬁ@ + 872@
e  Oudy  Ov Oy
- Z(u,0)y + Zy(u,0) fo e

Z(u,v) + Zy(u,v)(u — cy) + Zy(u,v)(v — ¢)
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The depth map reconstruction under perspective projection is formulated as
follows:

g(u,v) =log (Z(u,v)), (4.15)

09 _ Zy(u,v)

_ 99 _ Zy(u,v)
gu(u,v) - au - Z(U,U) ) g’U

() = N Z(u,v)’

(4.16)

o = avgmin | [ ((9u0.0) = 5u(0.0))? + (900.0) = o 0.0))?) dud. (417
The Euler-Lagrange equation yields
V29 = div(jus §u), (4.18)
where g, and g, are computed with the output surface normal defined as
n(u,v) = [n(u,v,z),n(u,v,y),n(u,v,2)]". (4.19)

To compute g, and g, r1(u,v) and ro(u,v) are introduced as follows:

)
ri(u,v) = (0 0,2) Z(u,v), (4.20)
ro(u,v) = m =—Z,(u,v). (4.21)

From Egs. (4.13) and (4.14), we can obtain
r1(u, v)Z (u,v) + (r1(w, v)@ + fz)Zy(u,v) + 71 (0, v) Zy (u, v)0 = 0, (4.22)

ro(u, v)Z(u,v)) + (r2(u, V)0 + v) Zy(u, v) + (ro(u, v)0 + fy) Zy(u,v) =0, (4.23)

where @ = v — ¢; and ¥ = v — ¢,. From Egs (4.16), (4.22), and (4.23), we can
obtain g, and g, as follows:

- _ r1(u,v)f,
Gulw,v) = r1(u, v)y0 — r1(u,v) fy@ —?;"z(u, V) o0 — fufy’ (4.24)

N r2(u,v) fo — r1(u,v)y

R TR0 AT Ry ey M A

Note that in div(Gy, §,) = 0G./Ou+ 0§, /Ov, derivatives 8§, /0u and 9§, /Ov
can be computed on image space as

0gu _
u Gu(u,v) — gulu — 1,v), (4.26)
990 _ Go(u,v) — gol(u,v —1). (4.27)

ov



4.2. ANALYTICAL FORM OF SINGLE SCATTERING MODEL 43

4.2 Analytical form of single scattering model

First of all, we provide an analytical form of the single scattering model us-
ing lookup tables. In computer graphics, analytical or closed-form solutions for
single scattering in scattering media have been proposed to overcome computa-
tional complexity issues. Sun et al. [11] assumed single and isotropic scatter-
ing and used 2D lookup tables to analytically describe backscatter and source-
camera forward scatter. Zhou et al. [53] extended this approach to inhomoge-
neous single scattering media with respect to backscatter. Pegoraro et al. [54]
derived a closed-form solution for single backscattering under a general phase
function and light distribution. In this study, owing to its simplicity, we use a
lookup table similar to that of Sun et al. [11], and we model surface-camera
forward scatter analytically. Note that we assume perspective projection, near
lighting, and Lambertian objects.

Here, let L(p) be irradiance at a camera when the 3D position p on an object
surface is observed. As shown in Fig. 4.2, L(p) is decomposed into a reflected
component Ls(p) (orange arrow), a backscatter component Ly(p) (blue arrow),
and a surface-camera forward scatter component L (p) (green arrow) as follows:

L(p) = Ly(p)e” %> + Ly(p) + Ly(p). (4.28)

Here, parameters o and d,, denote an extinction coefficient and the distance
between the camera and position p, respectively. In scattering media, light is
attenuated exponentially relative to distance. The extinction coefficient ¢ is the
sum of the absorption coefficient o and the scattering coefficient [ as described
in Eq. (2.3).

As shown in Fig. 4.4, the reflected component Ls(p) consists of a direct com-
ponent L 4(p) (yellow arrow) and a source-surface forward scatter component
Ls ¢(p) (red arrow),

Lu(p) = Loalp) + L1 (p)- (4.29)

Thus, the observed irradiance is written as follows:

Ly(p) = (Ls,a(p) + Ls,f(p)) e 7% + Ly (p) + Ly (p). (4.30)

In the rest of this section, we describe these four components.

4.2.1 Direct component

The direct component reaches the surface directly from the source as shown in
Fig. 4.4. Considering diffuse reflection and attenuation in scattering media,
L q(p) is expressed as follows:

Lgq(p) = do -1y w71 (4.31)

s,d\P _d26 Pp p Lsps .
sp

where p,, is a diffuse albedo at p, n, is a surface normal, and I, is the direction
from p to the source. Ty, = od, is optical thickness. In the following, T,
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Figure 4.4: Reflected component L, (p) (yellow arrow) consists of direct compo-
nent L, 4(p) (red arrow) and source-surface forward scatter component L ¢(p).
Direct component reaches surface directly from light source. Source-surface
forward scatter is reflected component whose incident light reaches surface via
forward scatter.

denotes the product of o and distance d,,. Without the attenuation e~ Tor this
is the same as the formulation of traditional photometric stereo as described in
Section 4.1.

4.2.2 Backscatter component

Figure 4.5 shows the observation of the backscatter component. As described
in Section 2.2, the backscatter component is the sum of scattered light on the
viewline without reaching the surface. We rewrite Eq. (2.13) as follows:

dop
Ly(p) = / I—OBP(G)e’U(‘”d)dm, (4.32)
0

where d is the distance between the source and a scattering point, x is the
distance between the scattering point and camera, Iy denotes the radiant in-
tensity of the source, 6 is a scattering angle, and P(«) is a phase function that
describes the angular scattering distribution. Although Eq. (4.32) cannot be
computed in closed-form, an analytical solution can be acquired using a lookup
table. However, variables related to the integration in Eq. (4.32) are dyp, dsy,
v, and o (ds, is a distance between the source and camera, and + is an angle
between the light source and viewing ray. From d,p, ds, and 7, we can describe
complete geometry among the source, surface, and camera); thus, the entry
of the table is four-dimensional. Sun et al. [11] assumed isotropic scattering
(i.e., P(#) = 1/47) and derived an analytical solution using a 2D lookup table
F(u,v):

Lb(p) = IOHO(TS'ua'y) |:F(H1(Tsva’y)7HZ(Tvp7T5U7'7)) - F(Hl(Tsvu’Y)7 %)
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Figure 4.5: Backscatter component is sum of scattered light on viewline without
reaching surface.

where Ho(Tsy,7), H1(Tsv,7), and Ho(Typ, Tsy,y) are defined as follows:

BUB_TS'” cos 7y
Hy(Tsy, = — 4.34
of 7) 21T, siny ( )
Hyi(Tsy,y) = Tgpsinny, (4.35)
T 1 Top — Tsy cOSY
Hy(T,,, Ty, = — + —arctan 2" 1 4.36
2( P 7) 4 + 2 arctan Ty siny ( )

F(u,v) = fov e~ vtan& e ig a 2D lookup table computed numerically in advance.

4.2.3 Source-surface forward scatter component

The source-surface forward scatter is a reflected component whose incident light
reaches the surface via forward scatter (see Fig. 4.4). This component is the
integral of scattered light on a hemisphere centered on p:

Loso) = [ La@ipyn] e (437)
27

where 1, is a incident direction. We define Ly(w) as the sum of scattered light
from direction 1,:

> T
Ly(w) = / B pP()e e da,, (4.38)
0 )

where d,, is the distance between the source and a scattering point and =z, is
the distance between the scattering point and surface. As discussed in Section
4.2.2, Sun et al. [11] derived an analytical solution using a 2D lookup table as

follows:

ﬁO—IOPp T
Ls.s(p) = G(Tsp,my Lep), (4.39)
21Ty, P T tep




46 CHAPTER 4. PHOTOMETRIC STEREO IN SCATTERING MEDIA

where G(Tsp, n;lsp) is a 2D lookup table given as

—Tsp cosy T ")’I T
G(Tmn L) = /Q —_— {F(Hl(Tsp, ", =) = F(Hi(Tsp,y ),5) n, l,dw,
27

sin y/ 2
(4.40)

where 7/ is an angle between the light source and the incident direction.

4.2.4 Surface-camera forward scatter component

When we observe surface point p in scattering media, the light reflected on
point ¢ is scattered on the viewline, and the scattered light is also observed
as a forward scatter component (see Fig. 4.6). In this study, we describe this
component analytically using a lookup table.

As shown in Fig. 4.6, irradiance at the camera includes reflected light from
the small facet centered at ¢. If we consider this small facet as a virtual light
source, similar to Eq. (4.32), the irradiance can be expressed as follows:

d ’

v dA

/ ’ Mﬁp( 0)e= @y, (4.41)
0 d

where dA, is the area of the facet. At the camera, a discrete point on the surface

corresponding to the pixel is observed. Thus, L¢(p) is the sum of these discrete

points:

Z/ vp’ L quﬂP( ) 70'(Z+d (442)

q#p

Note that the domain of integration [0, d,,] differs from that of Eq. (4.32), i.e
[0,dyp]. We define p’ as the intersection point of the viewline and the tangent
plane to q. If dyy > dyp, le., p' is inside the object, we set dyp = dyp. If
dyp < 0 which means that p’ is behind the camera, we set d,,» = 0. Similar to
Eq. (4.33), the isotropic scattering assumption yields the following:

= 3" Ly(q)dA Ho(Tugs )[F(Hl(qu,v),Hg(Tvp/,Tvq,v))—F(Hl(Tvq,7)7

a#p
(4.43)

This is the analytical expression of the surface-camera forward scatter. Note
that we define the area of the small facet as follows [63]:

1
dA, = df, (4.44)
Vq T4

where dI is the area of the camera pixel and vgq is the direction from ¢ to the
camera.

2

1.
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Figure 4.6: Surface-camera forward scatter component. When we observe sur-
face point p in scattering media, light reflected on point ¢ is scattered on view-
line, and scattered light is also observed.

4.3 Photometric stereo considering shape-dependent
forward scatter

In Section 4.2, we model the image formation in scattering media using four
components in Eq. (4.30). To reconstruct surface normals using photometric
stereo, we must restore the direct component L 4(p). Previous photometric
stereo methods that only model backscatter [50, 15] consider the direct compo-
nent L 4(p) and the backscatter component Ly(p). Besides these components,
we deal with both the surface-camera forward scatter L;(p) and the source-
surface forward scatter L, s(p).

In this section, we first explain the compensation of the backscatter compo-
nent [15]. Then, we discuss how to remove the surface-camera forward scatter.
Finally, we explain photometric stereo that considers the source-surface forward
scatter.

4.3.1 Backscatter removal

As mentioned previously, to remove backscatter, Tsiotsios et al. [15] leveraged
backscatter saturation without computing it explicitly, i.e., subtracting no ob-
ject image from an input image. We also use an image without the target object
to remove the backscatter component Ly(p) from the input image. Figure 4.7
shows the example of the backscatter removal.

4.3.2 Approximation of a large-scale dense matrix

Here, let L' = [L(p') — Ly(p*),- -, L(p") — Lb(pN)]—r € RY be a backscat-
ter removed image, where N is the number of pixels. Then from Eq. (4.28)
and (4.43), reflected light at the surface Ly = [Ly(p'),--- ,LS(QUN)}T € RV is
expressed as follows:

L' = KL, (4.45)
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(a) Observed image (b) No object image (c) Subtracted

Figure 4.7: Example of the backscatter removal

where K € RV*V is a large-scale dense matrix. Each element K4 is given by

e"Tr (p=aq)
qu = dA HO( vgy Y )[F(H ( vgy Y )aHQ(Tvp aTqu )) (446)
_F(Hl( vgs Y 71 } (p#q)

Theoretically, the reflected light is recovered using an inverse matrix K~!.
L, =K 'L (4.47)

Our model is similar to that of Murez et al. [51], i.e., they also modeled
the surface-camera forward scatter as a kernel matrix. However, our model
is different in that each row of K is spatially-variant because we compute the
forward scatter considering the object’s shape. We show this difference in Figure
4.8. In the model presented by Murez et al. [51], the plane approximation of
the scene under orthogonal projection yields a spatially-invariant point spread
function. Therefore, Eq. (4.47) is effectively computed using a Fast Fourier
Transform. Our spatially-variant kernel matrix makes it infeasible to solve Eq.
(4.45) directly.

On the other hand, if the kernel matrix K can be regarded as a sparse ma-
trix, the computation is feasible. Unfortunately, although the forward scatter
effect from a sufficiently distant (infinite) point converges to zero due to atten-
uation, we found that the effect from points captured within an image cannot
be negligible. Figure 4.9(a) shows a row of K reshaped in a 2D when we ob-
serve a plane in a scattering medium. This shows how the observed irradiance
of the center of the plane is affected by other points. Figure 4.9(b) shows the
profile of the blue line in Fig. 4.9(a). From these figures, we observe that the
effect between two points gets close to a very small value as the distance of the
points increases; however, it does not converge to zero. Therefore, let S,.(p) be
a kernel support which is given as r x r region centered at pixel p, the total
amount ©(r) = >> g (1) 4zp Kpe has large effect. For example, in Fig. 4.9
(a), ©(51)/6(101) ~ 51.2%, and this means the region outside 51 x 51 has
48.8% effect due to forward scatter even though the contribution of each point
is small. Thus, K should be considered as a dense matrix and this also makes
the computation of solving Eq. (4.45) infeasible.
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Figure 4.8: Comparison between model of Murez et al. [51] and of ours. Murez
et al. [51] assumed that scene can be approximated as plane. Under orthogonal
projection, this assumption yields spatially-invariant point spread function. In
contrast, we compute forward scatter considering object’s shape under perspec-
tive projection. Thus, kernel is spatially-variant.

To overcome this problem, we propose an approximation of a large-scale
dense matrix K as a sparse matrix and a constant term which represents global
effect. Here, we assume that the value of K, is close to € (0 < € < 1) in the
neighboring support S(p), and we obtain the following approximation:

L'p) = Y KplLs(e) (4.48)
q
~ Z KpqLs(q) + Z eLs(q) (4.49)
q€S(p) q¢S(p)
Y KyLs(a) +C, (4.50)
q€S(p)

where C' =} €Ls(q) and we use 3 5, €Ls(q) ~ 0 from Eq. (4.49) to (4.50).

Then, we define a sparse matrix K as follows:

~ | Kpg (2€S()
K”q‘{ 0 (¢ S0)). (4.51)
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Figure 4.9: Visualization of kernel. (a) 2D visualization of row of K when we
observe plane; (b) profile of blue line in (a).

This yields the following linear system:

IR R [ A

We solve this linear system using BiCG stabilization [70] to remove the surface-
camera forward scatter.

Note that the size of the kernel support S(p) and the convergence value e
have ambiguity. In Section 4.4.3, we evaluate and discuss the size of the kernel
support. The plausible value of € might be obtained if we compute all the
elements of K; however, it requires a large amount of computation. Therefore,
we approximated € as follows:

e =min{Ky [ ¢ € 5(p)}. (4.53)

4.3.3 Photometric stereo using approximation of lookup
table

After removing the backscatter and the surface-camera forward scatter, we can
obtain the reflected components L;(p). We reconstruct the surface normals by
applying photometric stereo to Ls(p). From Egs. (4.29), (4.31) and (4.39),
L (p) is given as follows:

Iy

= 5
ds,

ﬁUIOpP G(

Ly
() 2T,

e*TSPppn;lSp + Tep, n;,rlsp). (4.54)

Note that this equation is not linear with respect to the normal due to the
source-surface forward scatter. We use the following approximation of table
G(Tsp, n; l;,) to apply photometric stereo directly to the equation:

G(Typ,m, 1) ~ G(Typ, 1)(n,) Lp). (4.55)
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In Fig. 4.10, we plot G(Tsp,n;lsp) and G(Tswl)(n;lsp) when T,, = 0.6
and Ty, = 2. In each figure, the blue line represents G(Tsp,n;lsp) and the
green line represents G(Tsp, 1)(n;,r l;,). Although the error gets to be larger as
arccos(n;— l,,) increases, these graphs validate this approximation. The detailed
discussion of this approximation is given in Section 4.4.2. From this approxi-
mation, we can obtain

~ e T po T
Ls(p) =~ pplo TEP + mG(Tm 1) ) (0, Lsp). (4.56)

This is a linear equation about normal n,; hence we apply photometric stereo
to this equation as follows:

n, = pyn, = DF Lgi)(p) ) (4.57)
f, )
n, =—-, pp=|0, (4.58)
Tl !
where D € R™*3 is
VO , ,
D=| 1% <6d(f';§ + s GTY), 1)) 157 (4.59)

and DV is the pseudo-inverse matrix of D. m is the number of sources. With
this linearization, we can avoid the explicit initialization and estimation of the
albedo p, during the iteration.

Now, we explain the physical meaning of this approximation. Incident light
into a surface point via source-surface forward scatter is asymmetric with respect
to the source direction from the surface point. Murez et al. [51] assumed
symmetry and approximated these components as one direct beam (see Fig.
4(a) in [51]), i.e., they were described as the constant multiple of the cosine of
the source direction and the normal vector. While they estimated this constant

by optimization, we compute it by an analytical form "2”;%[3 :G(T spy 1)

4.3.4 Implementation

In this section, we explain our overall algorithm. Note that the kernel of Eq.
(4.46) is only defined on the object’s surface; thus, we input a mask image and
perform the proposed method on only the object region. In our implementation,
the mask image was generated manually, while it may be obtained using a stan-
dard segmentation method. Backscatter is removed using a previously proposed
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Figure 4.10: Approximation of lookup table. G(Tsp,n;— lsp) (blue line) and
G(Tsp,1)(n, 1y,) (green line) when (a) Ty, = 0.6 and (b) Ty, = 2. Although the
error increases as aurccos(n;,r l,,) increases, these graphs validate the approxima-
tion G(Tsp, n;lsp) ~ G(Tsp, 1)(n;—15p).

method [15]; however, the resulting image contains high-frequency noise due to
SNR degradation. Therefore, we apply a 3 x 3 median filter after removing
the backscatter to reduce this high-frequency noise. The optimization of Eq.
(4.52) has no restriction so that Ly > 0. Thus, the number of positive values
in {Lgl)(p)7 A (p)} might be less than three and this makes the normal
estimation impossible. We fill in the blanks with adjacent normals. We used
Poisson solver [68] extended to perspective projection [69], which is described in
Section 4.1.2, for normal integration to reconstruct the shape. We additionally
intoroduced the following weights to consider the smoothness of normals when
computing the derivatives (Eqgs. (4.26) and (4.27)):

% = ﬁ(gu(u +1,v) — gu(u,v)> + ﬁ(gu(uvv) = Gulu — 171’))7
(4.60)
wy = exp{_(l_n(u_|_817U)Tn(u’v))}7 (60

where we set s = 0.02. 9g,/0v is computed in the same manner.
The overall algorithm is described as follows:

1. Input images and a mask. Initialize the shape and normals.
2. Remove backscatter [15] and apply a median filter to the resulting images.
3. Remove surface-camera forward scatter (Eq. (4.52)).

4. Reconstruct the normals using Eq. (4.56).
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(a) (b) (c)

Figure 4.11: Examples of synthesized images. (a) Synthesized image without
scattering medium, (b) reflected component Ly, and (c) backscatter subtracted
image L.

5. Integrate the normals and update them from the reconstructed shape.

6. Repeat steps 3-5 until convergence.

4.4 Experiments

In this section, we describe experiments and evaluation of the proposed method.
First, the approximation in the proposed method is evaluated with synthesized
data. Then, we demonstrate 3D reconstruction in scattering media with real
data. All experiments were done on Intel Core i5 @3.1GHz with 8GB RAM and
code was written in C++.

4.4.1 Synthesized data

We evaluate the approximation of the lookup table G(Tsp, n;— l;,) and the size
of the kernel support for the approximation of the large-scale dense matrix
with synthesized data. We generated 8 synthesized images with a 3D model
of a sphere under different light sources using our scattering model in Section
4.2. The reflectance property of the surface is Lambertian, and the scattering
property was assumed to be isotropic and the parameters were set as 8 = o =
5.0 x 1073, We show the examples of the synthesized images in Fig. 4.11, where
(a) an image without a scattering medium, (b) a reflected component L, and
(¢) a backscatter subtracted image L’. Each image in Fig. 4.11 is 300 x 300
pixels in size.

4.4.2 Discussion of lookup table approximation

We evaluate the effect of the approximation of the lookup table G(Tp, n; Lp).
In the synthesized images, diffuse albedos of the 3D model are known. Thus, the
source-surface forward scatter component can be subtracted directly. We input
the ground truth shape and the synthesized images, and compare the output
normals with and without the approximation G(Ty,, 1, 1sp) = G(Tsp, 1) (1) Lp).
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Figure 4.12: Comparison between output normals (a) without and (b) with
lookup table approximation. Error maps show angular error of estimated nor-
mals. Mean angular error is shown below each figure.

Figure 4.12 (a) and (b) show the angular error of the output normals without
and with the lookup table approximation, respectively. These results demon-
strate that the accuracy of the normal estimation is more deteriorated as the
normal vector has a larger angle to the optical axis.

4.4.3 Discussion of kernel support

We discuss the size of the kernel support. Here, we define the support S(p) as
the set of 3D points captured in a r X r region centered at an observed pixel p.
The synthesized images and the ground truth shape are input to the proposed
method with a different support size r. The effects of the support size are
evaluated from the output normals.

The results are shown in Fig. 4.13. A horizontal axis in Fig. 4.13 denotes
the support size r and a vertical axis denotes the mean angular error of the
output normals. A green line and a blue line show the results without and with
the lookup table approximation, and two dashed lines show each error in Fig.
4.12, respectively. The memory complexity of the matrix K is O(Nr?) where
N is the number of processed pixels, and we show the actual computation time
for each support size by a red line in Fig. 4.13.

As can be seen in Fig. 4.13, the normals estimation is basically improved
as the support size r increases. However, when the support size is small, the
angular error without the lookup table approximation is larger than with the
approximation. The reason is that the estimated e in Eq. (4.53) is larger
than the true value when the support size is small. We approximate the large-
scale dense matrix to a sparse matrix by introducing the constant term C =
> q €Ls (¢). This constant term increases as € becomes larger.

Now, we discuss the influence of the larger constant term. In the following
discussion, for simplicity, the blur effect is not considered. Here, let [Lynin, Limaz)
be the range of the radiance of an original image. We quantify the contrast of
the image as & = Lyaa/Lmin > 1. If the constant C is added, the range
becomes [Lyin + C, Limar + C]. Similarly, let C’ be the estimated constant and
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Figure 4.13: Experiments with different support sizes. Horizontal axis denotes
size r and vertical axis denotes mean angular error of output normals. Green
line and blue line show results without and with lookup table approximation,
and two dashed lines denote each mean angular error in Fig. 4.12, respectively.
Red line shows actual computation time for kernel calculation.

(L ins Linae) b€ the range of the reconstructed image, that is,
L;nax = Lnae +C— C'. (464)

We define the contrast of the reconstructed image as ' = L}, ,../L. .. > 1. The
following relation can be obtained:
c-c

Lmin .

K —k=(1-x) (4.65)
When C" > C, the right side of this equation is positive. Thus, the larger
constant term increases the contrast of the image. As a result, the output
normals have larger curvature than the true normals.

On the other hand, the lookup table approximation yields globally smaller
curvature described in Sec. 4.4.2. As a result, these two approximation com-
pensate each error. Subsequently, each result without and with the lookup table
approximation approaches the dashed line as shown in Fig. 4.13. These dashed
lines correspond to the mean angular error in Fig. 4.12. However, when we
adopt a too large support size, the estimation is affected by the error due to the
assumption »_ s, €Ls(q) = 0.

From Fig. 4.13 and the above discussion, the error can be suppressed within
the almost ideal error, which is shown in Fig. 4.12, if we set sufficiently large
support size, whereas the small support size is preferable with respect to memory
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Figure 4.14: Results of synthesized data. (a) Ground truth and (b) output
of each iteration from left to right. (top row) output normals. (middle row)
reconstructed shapes.

Table 4.1: Mean angular error of output of each iteration with synthesized data
Iteration 1 2 3 4 5 | Input GT
Error (deg.) 5.20 4.65 1.43 1.29 1.29 1.30

and computational complexity. In our experiments with synthesized and real
data, the support sizes from r = 61 to r = 81 gave the efficient results.

4.4.4 Results and convergence

In this section, we describe experiments with synthesized data when the input
shape is initialized as a plane and demonstrate how the output shape converges
during the iteration. In this experiment, we set the support size as r = 81.

The results are shown in Fig. 4.14 and Table 4.1. Figure 4.14(a) shows the
ground truth and (b) shows the output of each iteration from left to right. The
top row shows the normals map, the middle row shows the angular error of the
output, and the bottom row shows the reconstructed shapes. Table 4.1 shows the
mean angular error of each output. Input GT in Table 4.1 denotes the error when
we removed scattering effects with the ground truth shape and reconstructed
the 3D shape inversely. As shown in Fig. 4.14, the shape converged while
oscillating in height. This convergence was seen in the experiments with the
real data (see Fig. 4.17). Murez et al. [51] approximated an object as a plane.
In this experiment, we initialized the object as a plane. The improvement from
the first to the last iteration shows the effect of our method.

4.4.5 Experiments with real data

In this section, we describe the results of experiments with real data. We demon-
strate that the proposed method can reconstruct the shapes of objects in scat-
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Figure 4.15: Experimental environment. This is top view of tank.

OlA (8]

(a) sphere  (b) tetrapod (c) shell (d) fish

Figure 4.16: Target object

tering media where forward scatter occurs.

Experimental environment

The experimental environment is shown in Fig. 4.15. We used a 60-cm cubic
tank and placed a target object in it. We used diluted milk as the scattering
medium. The medium parameters were set with reference to [71]. Table 4.2
shows medium parameters used in our experiments. A ViewPLUS Xviii 18-bit
linear camera whose spatial resolution is 1024 x 1280 pixels was mounted in
close contact with the tank, and eight LEDs were located in the tank. The
input images were captured at an exposure of 33 ms. We captured 60 images
under the same condition, and these images were averaged to make input images
robust to noise caused by the imaging system; thus, eight averaged images were
input to the proposed method.

The camera was calibrated using the method presented in [72]. To consider
refraction on the wall of the tank, calibration was performed when the tank was
full of water. The locations of the LEDs were measured manually, and each
radiant intensity Iy was calibrated using a white Lambertian sphere.

The target objects are shown in Fig. 4.16 (sphere, tetrapod, shell, and fish).
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Table 4.2: Medium parameters used in our experiments

Milk / Water || Scattering coef. 8 [/mm]| | Extinction coef. o [/mm]
10mL / 120L 1.67 x 1073 1.67 x 1073
20mL / 120L 3.33 x 1073 3.33 x 1073
30mL / 120L 5.00 x 1073 5.00 x 1073

. 8 N —~ 8 — |
[ . d | i | I | )
. ; R B RS

o ENOAN
(a) (b) (c)

Figure 4.17: Results of sphere. (a) Ground truth, (b) result of [15], and (c)
proposed method. (top row) output normals, (middle row) error map of angles,
(bottom row) reconstructed shape. These experiments demonstrate that our
method can reconstruct shape in highly turbid media, in which forward scatter
is caused.

Results

We compared the proposed method with a previously proposed method [15] that
models only backscatter. In each experiment, the target object was initialized
as a plane for the iteration. We set the size of the kernel support as r = 61.

First, we evaluated the proposed method quantitatively using sphere. In this
experiment, we placed 120 L of water and 30 mL of milk in the tank. In Fig.
4.1, a part of the input images are shown. The size of the image is 280 x 280
pixels.

The results are given in Fig. 4.17, where Fig. 4.17(a) shows the ground
truth, (b) shows the result of the backscatter-only modeling [15], and (c¢) shows
the result of the proposed method, which depicts the output of each iteration
from left to right. The top row shows the output normals, the middle row
shows the error maps of angles, and the bottom row shows the reconstructed
shapes. These experimental results demonstrate that the proposed method can
reconstruct the object’s shape in highly turbid media, in which the method
that does not consider forward scatter fails. Table 4.3 shows the mean angular
error of the results of the backscatter-only modeling [15] and the output of each
iteration of the proposed method. The error reaches convergence during a few
iterations. This convergence is similar to that of the synthesized result (see Fig.
4.14).

Figures 4.18, 4.19, and 4.20 show the results for tetrapod, shell, and fish.
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Table 4.3: Mean angular error of sphere. Error of proposed method is lower
than that of backscatter-only modeling [15], and a few iterations are sufficient
to reach convergence.

[15] | Iteration 1 2 3 4 5
Error (deg.) | 19.48 5.96 4.38 3.62 3.66 3.66

In each figure, (a) shows the result obtained in clear water and (b) shows the
results of the existing [15] (second and third rows) and proposed (fourth and fifth
rows). The top row shows one of the input images. The size of each input image
shown in Figs. 4.18, 4.19, and 4.20 is 250 x 290, 420 x 400, and 200 x 320 pixels,
respectively. We changed the concentration of the scattering medium during
these experiments (we mixed 10, 20, and 30 mL of milk with 120 L of water
from left to right). As can be seen, the result of the existing method [15] becomes
flattened as the concentration of the scattering medium increases. In contrast,
the proposed method reconstructs the shape correctly in highly turbid media.
However, although the proposed method can reconstruct the local gradient of
shell, the results have globally larger curvature than reconstruction in clear
water. As mentioned previously, a larger constant term makes the image more
contrasted. The constant term C' = ) €L;(q) also depends on the number of
processed pixels. In this experiment, the number of the processed pixels in the
shell image is more than that in the other object images due to its size. As a
result, the reconstructed shape of shell has a large curvature.

The result of fish in Fig. 4.20 demonstrates the effectiveness on objects with
texture. The bottom row of Fig. 4.20(b) is estimated surface albedos. The
proposed method can recover albedos as well as a 3D shape.

4.5 Conclusion

In this chapter, we have proposed a photometric stereo method in scattering
media that considers forward scatter. The proposed analytical model of the
single scattering model differs from the previous works [51] in that forward
scatter depends on the object’s shape. The shape dependency of the forward
scatter makes it infeasible to remove. To address this problem, we have proposed
an approximation of the large-scale dense matrix that represents the forward
scatter as a sparse matrix. Our experimental results demonstrate that the
proposed method can reconstruct a shape in highly turbid media.

However, the ambiguity of the optimized support size of the kernel remains.
We set aside an adaptive estimation of the support size for future work. A
limitation of the proposed method is that it requires a mask image of the target
object. However, in highly turbid media, it may be difficult to obtain an effective
mask image. In addition, we must initialize the object’s shape, which may be
solved using a depth estimation method in scattering media [14, 73, 74].
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Figure 4.18: Results of tetrapod. (a) Reconstruction in clear water and (b)
results of [15] (second and third rows) and proposed method (fourth and fifth
rows). Top row is one of input images. Concentration of scattering medium
increases from left to right. Result of [15] becomes flattened as concentration of

scattering medium increases. In contrast, proposed method reconstructs shape
correctly in highly turbid media.

(a)
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(a) (b)

Figure 4.19: Results of shell. Details are similar to those of Fig. 4.18. Although
proposed method can reconstruct local gradient of shell, globally, results have
larger curvature than reconstruction in clear water due to constant term in-
crease.
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Figure 4.20: Results of fish. Regardless of texture, proposed method can im-
prove 3D reconstruction in scattering media. Bottom row of (b) shows estimated
albedos. Proposed method is also effective on albedos recovery.



Chapter 5

Time-of-Flight in Scattering
Media

In thic chapter, we discuss depth measurement with a ToF camera in scattering
media. There are several architectures for ToF cameras. We use a continuous-
wave ToF camera that emits a modulated sinusoid signal into a scene and then
measures the amplitude of light that bounces off an object surface and the
phase shift between the illumination and received signal. These observations
are represented as an amplitude image and a phase image as shown in Fig.
5.1(b). Since the phase shift depends on an optical path, we can reconstruct
the depth from the phase shift. We denote the observation of an object surface
by direct component.

This architecture assumes that each camera pixel observes a single point
in a scene. Similar to common RGB cameras, however, the observed signal
in scattering media includes a scattering component due to light scattering as
well as a direct component. The amplitude and phase shift suffer from the
scattering effect, and this causes error of depth measurement as shown in Fig.
5.1(a). In Chapter 2, we provided scattering models where the pixel intensity of
common RGB cameras is considered. In this chapter, we formulate a scattering
model in amplitude and phase space. ToF cameras emit light signals from an
internally mounted light source. Thus, the single scattering model can be used
for the observation of ToF measurement in scattering media. We also leverage
the saturation of a backscatter component, which occurs in RGB space [14, 15],
to recover the direct component. We assume that a target scene consists of
an object region and a background that only contains a scattering component.
This allows us to estimate the scattering component simply by observing the
background. The proposed automatic scene segmentation enables simultaneous
obstacle detection and depth reconstruction as shown in Fig. 5.1(a).

The rest of this chapter is organized as follows: In Section 5.1, we overview
related work on ToF measurement in scattering media, which can be considered
as multipath interference (MPI) problems. In Section 5.2, the observation of

63
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(a) Depth error due to light scattering (b) Overview of proposed method

Figure 5.1: ToF in scattering media. (a) Depth measurement suffers from scat-
tering effect in scattering media such as foggy scene. (b) Overview of proposed
method. Continuous-wave ToF camera captures amplitude image and phase
image. From these images captured in participating media, we estimate object
region and recover depth simultaneously.

a ToF camera is modeled with the single scattering model in amplitude and
phase space. In Section 5.3, we discuss a method for scene segmentation that is
formulated as robust estimation where the object region is regarded as outliers,
and it enables the simultaneous estimation of an object region and depth on
the basis of an iteratively reweighted least squares (IRLS) optimization scheme
[75, 76, 77, 78]. In Section 5.4, we demonstrate the effectiveness of the proposed
method using captured images from a ToF camera in real foggy scenes and
evaluate the applicability with synthesized data. Finally, Section 5.5 concludes
this chapter.

5.1 Related work

A ToF camera assumes that each camera pixel observes a single point in a
scene. In scattering media, however, the measurement also includes scattered
light. This problem is known as multipath interference (MPI). MPI is caused
not just by light scattering in scattering media but also by subsurface scattering
or interreflection in common scenes. Thus, many previous studies have tackled
MPI compensation [79, 80, 81, 82, 83].

In this dissertation, we limit our focus to MPI caused by light scattering in
scattering media. ToF measurement in scattering media has been proposed by
[84, 85]. Heide et al. [84] developed a scattering model based on exponentially
modified Gaussians for transient imaging using a photonic mixer device (PMD)
[86]. Satat et al. [85] demonstrated that scattered photons observed with a
SPAD have gamma distribution and leveraged this observation to separate re-
ceived photons into a directly reflected component and a scattering component.
Our method differs from these approaches in that we just use an off-the-shelf
ToF camera such as Kinect v2 with no special hardware modification. The
concurrent work by Muraji et al. [87] also used a continuous-wave ToF cam-
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Scattering medium
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Figure 5.2: ToF camera with limited beam angle in scattering media. Light
interacts with scattering medium on line of sight and then arrives at camera
pixel. Total scattering component is sum of scattered light on red line in figure,
which depends on limited beam angle of light source.

era. They removed scattering effect using multiple modulation frequencies. We
address different problem settings as follows: (1) we model spatially varying
scattering components due to a limited lighting angle as explained in Section
5.3.1; (2) we model the simultaneous estimation of object regions and scattering
components as a single optimization problem.

5.2 ToF observation in scattering media

In this section, we describe our image formation model for a continuous-wave
ToF camera in scattering media on the basis of the single scattering model.
In Chapter 4, we introduce a backscatter component and a forward scatter
component which is caused in highly turbid media. We assume here that the
effect of forward scattering are negligibly small.

A continuous-wave ToF camera illuminates a scene with amplitude-modulated
light and then measures the amplitude of received signal o and phase shift ¢
between the illumination and received signal. This observation can be described
using a phasor [88], as

ae’? € C. (5.1)
Since the phase shift is proportional to the depth of an object, we can compute
the depth as
cp
2= 7 (5.2)

where z is depth, ¢ is the speed of light, and f is the modulation frequency of
the camera.
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In scattering media, the observation contains scattered light. Figure 5.2
shows the observation of a ToF camera in scattering media. Similar to a RGB
camera described in Chapter 2, light interacts with the medium on the line
of sight and then arrives at the camera pixel. Thus, the observed scattering
component is the sum of scattered light on the line of sight. Now, we consider
the 3D coordinate, the origin of which is the camera center. When the camera
observes a surface point p* € R? at a camera pixel (u,v), the total observation
a(u, v; p*)ed?(WUP7) can be written as

d(u,v;p*)ej‘z’(“’”;p*)
] . [lp™ |l )
= ag(u,v; p*)elPe (0P )+/ a(u,v;p)e? VP p|, (5.3)
Ipll=llPo (u,v)]l

where ag4(u,v;p*) and pq(u,v; p*) are the direct components. aq4(u,v; p*) de-
pends on the surface albedo, shading, and attenuation, which is caused by the
medium as well as the inverse square law. a(u,v;p)e’ ¢(u,viP) ig the observation
of scattered light at a position p. Note that although the scattering component
can be written using an integral, the domain of the integral (red line in Fig. 5.2)
depends on the relative position between the light source and camera pixel. This
is because an ideal point light source irradiates a scene with isotropic intensity,
while a practical illumination such as a spotlight has a limited beam angle [15].

In Section 4.3.1, the backscatter component is assumed to be saturated close
to the camera in RGB space. This assumtion holds under a near light source in
scattering media [14, 15]. We also leverage this assumtion for ToF measurement,
that is, there exists psaturate for which

IPll = IPsaturatell = a(u,v; p) = 0. (5.4)
Therefore, we can rewrite Eq. (5.3) as
&(u, v; p*)edPwviP")
IPsaturatell

= aglu, v p*)eie P | / o(u, v; p)eP* P g pl . (5.5)
Ilell=llpo(u,v)]|

=0, (u,v)ed®s (1)

where a,(u,v) and @4(u,v) are the scattering components, which depend on
only the camera pixel (u,v) rather than the object depth.

Although the observation consists of the direct component ay(u, v; p*)ej“’d(“’"?p*)
and the scattering component a (u, v)el?:(**) | the attenuation due to the medium
reduces the direct component dramatically. Thus, if the camera observes a dis-
tant point Py, the amplitude of the reflected light fades away, that is,

aq(u, v; Prar) = 0. (5.6)

Therefore, the observation of the distant point includes only a scattering com-
ponent: N ,
alu, v; pfar)ew(uw;pfar) = as(u,v)e“’S(“’“). (5.7)
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Figure 5.3: Observation of black surface in foggy scene. Black surface approx-
imates distant observation where only scattering component can be observed
because reflected light from scene gets attenuated. Note that observed scatter-
ing component is inhomogeneous due to limited beam angle of illumination.

Figure 5.3 shows amplitude and phase images when the camera observes a
black surface in a foggy scene. The intensity of reflected light from the black
surface is very small, so this approximates a distant observation where only a
scattering component can be observed. As discussed above, in both the ampli-
tude and phase images, the scattering component is inhomogeneous because the
illumination has a limited beam angle.

The proposed method is based on the assumption that the scattering com-
ponent is saturated close to the camera. However, this assumption is not precise
in some cases, for example, when a scene is extremely close to the camera. The
measurement range of our method is between a saturation point and a back-
ground point that has no direct component. We investigate the effective range
of the proposed method in Section 5.4.3.

5.3 Simultaneous estimation of object region and
depth

As explained in the previous section, a scattering component depends on the
position of a camera pixel rather than a target object. In addition, only the
scattering component is observed in the background where an object is farther
away. Thus, our goal is to estimate the scattering component in an object region
from the observation of the background. After estimating scattering components
as(u,v) and ¢, (u,v) at each pixel, we compute the amplitude and phase shift
of a direct component from Eq. (5.5):

ag = /(@cosp — a,cosp,)? + (asing — a,sin g,)2, (5.8)
wa = arg((acosp — ascosps) + j(dsing — assingy)), (5.9)

where an operator arg returns the argument of a complex number. Then, depth
is recovered substituting the phase into Eq. (5.2).

In this section, we describe how our method divides camera pixels into an
object region and a background, and simultaneously estimates the scattering
component in the object region. First, we introduce two priors to estimate the
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Figure 5.4: Local quadratic prior. We assume that scattering component can
be represented with quadratic function in local image patch.

scattering component, and then the problem is formulated as robust estimation,
which allows us to extract the object region as outliers. In the following, with a
slight alteration of notation, we refer to both an amplitude image and a phase
image as an image, since we process both images in the same manner.

5.3.1 Prior of scattering component

We can estimate the scattering component of an object region from a back-
ground because the component does not depend on the object. Tsiotsios et
al. [15] approximated backscatter as a quadratic function in a captured image.
Similarly to their work, we also introduce priors, local quadratic prior and global
symmetrical prior, that allow us to estimate the scattering component.

Local quadratic prior In our ToF setting, we found that a scattering compo-
nent cannot be approximated globally with a simple function such as Tsiotsios
et al. [15] where a scattering component is fitted with a quadratic function all
over an image. Thus, as shown in Fig. 5.4, we assume that a scattering compo-
nent can be represented with a quadratic function in a local image patch, that
is,

rp(u,v) = afu® + abuv + afv? + afu + afv 4 ab
- alu (5.10)

where x(u,v) is the value at a pixel (u,v) in a local image patch x;. u =
[u?> wv v? u v 1]T is a 6-dimensional vector and a;, = [a} a5 af af af ak]T

denotes the coefficients of the quadratic function in patch xj.

Global symmetrical prior However, this local prior is not useful when there
exists a large object region and a quadratic function is also fitted into the values
in that region. To address this problem, we introduce a global prior to the
scattering component.
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A

Figure 5.5: Global symmetrical prior. When camera and light source are col-
located on line that is parallel to horizontal axis of image, observed scattering
component has symmetry because integral domain of pixel is consistent with
that of symmetrical pixel with respect to central axis of image.

As discussed in section 5.2, a scattering component depends on the relative
position between a camera pixel and a light source. This is because the individ-
ual starting points of the integral in Eq. (5.3) differ from each other. Meanwhile,
as shown in Fig. 5.5, we assume that the camera and light source are collocated
on the line that is parallel to the horizontal axis of the image. ToF devices can
easily be built on the basis of this setting (e.g., Kinect v2 has this setting). In
this case, the integral domain of a pixel is consistent with that of the symmet-
rical pixel with respect to the central axis of the image. Thus, the observed
scattering component also has symmetry, and we leverage this symmetry as a
global prior.

5.3.2 Formulation as robust estimation

We formulate the scattering component estimation problem as robust estima-
tion. Specifically, we solve the following optimization problem:

N ~ K
. Ti — Ty 2 2 2
mnzp( 5 ) Y Va4 P al V. (510

= k=1
The first term of Eq. (5.11) is a data term where X = [#; --- Zy]' and x =
[£1 --+ xxn]" are a captured image and a scattering component, respectively. N

is the number of camera pixels, and o is a scale parameter. We use a nonlinear
differentiable function p(z) rather than square error 22, which allows us to make
the estimation robust against outliers. In this study, we simply use the residual
of the observation and the scattering component as the data term, i.e., pixels
that contain a direct component are regarded as outliers.
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Algorithm 2 Simultaneous estimation of scattering component and object re-
gion

Require: Image x
Ensure: Scattering component x and object mask w
Coarse level optimization (Eq. (5.16)):
W I, a;, < argmin || Uay — xx||?

ag
repeat

Solve Eq. (5.12) for x
Solve Eq. (5.12) for a;,--- ,ag
if first iteration then
Compute oo
end if
Update w in patch-wise
until converged
Fine level optimization (Eq. (5.11)):
Initialize w and aj,--- ,ag with the output of the coarse level
repeat
Solve Eq. (5.12) for x
Solve Eq. (5.12) for a;,--- ,ag
if first iteration then
Compute o1
end if
Update w in pixel-wise
until converged
Binarize w

We use three additional regularization terms. The second term represents
the local prior. K is the number of patches for local quadratic function fitting.
U is an N, x 6 matrix where N}, is the number of pixels in patch x; € RM+
and each row of U is a vector u that corresponds to each pixel coordinate. In
this study, these patches do not overlap each other. The third term represents
the global prior where F € RV*YN is a matrix that flips an image vertically.
The last term is a smoothing term where V denotes a gradient operator. This
smoothing accelerates the optimization. Hyperparameters 71,2, y3 control the
contribution of each term.

5.3.3 IRLS and object region estimation

We minimize Eq. (5.11) with respect to a scattering component x and the
coefficients of quadratic functions ay, - - - ,ax. However, the nonlinearity of p(x)
makes it difficult to obtain a closed-form solution. For efficient computation,
the IRLS optimization was developed in the literature [75, 76]. IRLS minimizes
weighted least squares iteratively and the weight is updated using the current
estimate in each iteration. The objective function in Eq. (5.11) is transformed
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into weighted least squares as follows:

K
min  (x = %) TW(x =%) +7 ) [Uar — xxl|* + ) Fx —x||* + 3] Vx|,

X,a1, AR
k=1
(5.12)
where W = diag(w) is an N x N matrix and w = [wy,--- ,wy]" is the weight
for each error x; — ¥;. Hyperparameters are given as 7. = 2077.. Equation
(5.12) is quadratic with respect to the scattering component x, and thus is easy
to optimize. In each iteration, we solve Eq. (5.12) for x and a;,--- ,ax, and
the weight can be updated using the current estimate as
p -
w; = P ((xl _ffi)/gl). (513)
(zi — Ti) /o1
The specific update rule of the weight depends on the nonlinear function
p(x). In this study, we use the following function as p(z):

p(z) = C{[l_{l_(i)z}g] if lel e (5.14)

% otherwise.

This function yields the following update:

wz‘:{ {1_(%)2}2 of Irif <e (5.15)

0 otherwise,

where r; = (z; — Z;)/01, and ¢ is a tuning parameter. This update is referred
to as Tukey’s biweight [89, 76], where 0 < w; < 1.

Object region from IRLS weight The weight controls the robust estima-
tion, that is, a large error term reduces the corresponding weight. In this study,
we consider the object region as outliers, and thus the weight in the object re-
gion should be small. Therefore, we can leverage the IRLS weight to extract
the object region from the image.

Selection of p(x) In Eq. (5.11), any robust functions can be selected for p(x)
(e.g., Huber loss [90] or t-distribution [91]). However, we found that Tukey’s
biweight [89, 76] is suitable because of its property. The robustness of Tukey’s
biweight is achieved by truncating outliers (Eq. (5.15)), which is an object
region in our case. This property results in a clear object boundary as shown
in the experiments. In contrast, the weight of Huber loss, for example, has long
tails, and this makes the optimization unstable.

5.3.4 Coarse-to-fine optimization

The accurate object region extraction is critical for the effectiveness of the scat-
tering component estimation. In Section 5.3.1, we introduced the local and
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(b)

Figure 5.6: (a) Experimental environment. (b) Target objects

global priors of the scattering component to deal with a large object region.
To make the region extraction more robust, we developed a coarse-to-fine opti-
mization scheme. Before solving Eq. (5.11), we optimize the following objective
function:

K - K
. [xx — Xg|| 2 2 2
m _ Ua; — Fx — \Y% .
i, S (P20 00 3 va = sl + el = x4 2]

X,a1,
k=1 k=1

(5.16)

This is similar to the patch-based robust regression proposed by [92]. The
difference from Eq. (5.11) is that the data term consists of patch-wise errors.
Equation (5.16) can be transformed into IRLS as well as Eq. (5.11) where
v = 2037., and the IRLS weight is updated patch-wise rather than pixel-wise.

Algorithm 2 shows the overall procedure of the simultaneous estimation of
a scattering component and an object region. We first solve Eq. (5.16) for
the weight in a patch level and then solve (5.11) in a pixel level. Each scale
parameter is computed only at the first iteration and is fixed during subsequent
iterations. We compute the scale parameters using a median absolute deviation,
which is the robust measure of a deviation [76]. At the end of the algorithm, we
binarize the IRLS weight to generate an object mask. This procedure is applied
to an amplitude and a phase image in the same manner, and thus we can obtain
the object mask in each domain. In this study, we determine the final object
mask as their intersection.

5.4 Experiments

We evaluated the effectiveness of the proposed method using real and synthetic
data. First, we show the experiments with real data, and then, the applicability
to various scenes is discussed using synthetic data. Finally, we investigate the
effective measurement range of the proposed method. All experiments were done
on Intel Core i5@3.1GHz with 8GB RAM and code was written in Python.
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b) Scattering estimation of amplitude

(a) Scene under thin fog
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(d) Depth and object mask estimation

Figure 5.7: Results under thin fog. (a) Target scene. (b)(c) Left to right: input
image, estimated scattering component, and IRLS weight for amplitude and
phase image, respectively. (d) Left to right: depth without fog, depth with fog,
reconstructed depth, masked reconstructed depth, and estimated object mask.

(b) Scattering estimation of amplitude

(a) Scene under
medium fog g

Scatterlng estimation of phase

(d) Depth and object mask estimation

Figure 5.8: Results under medium fog. (a) Target scene. (b)(c) Left to right:
input image, estimated scattering component, and IRLS weight for amplitude
and phase image, respectively. (d) Left to right: depth without fog, depth with
fog, reconstructed depth, masked reconstructed depth, and estimated object
mask.
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(d) Depth and object mask estimation

(a) Scene under thick
fog

Figure 5.9: Results under thick fog. (a) Target scene. (b)(c) Left to right:
input image, estimated scattering component, and IRLS weight for amplitude
and phase image, respectively. (d) Left to right: depth without fog, depth with
fog, reconstructed depth, masked reconstructed depth, and estimated object
mask.

5.4.1 Experiments with real data

First, we performed the experiments in a scene shown in Fig. 5.6. We set up a
fog generator and a Kinect v2 in a closed space sized 186 x 161 cm with black
walls and floor. This ToF camera has an IR camera and a light source inside
it. This is a common configuration in ToF cameras. The light source emits
modulated infrared light. Fog generated by the fog machine is made of liquid of
propylene glycol. After generating fog, we waited for a few minutes so that fog is
filled in the closed space and regarded as a homogeneous medium. The observa-
tion of the wall includes only a scattering component because incident light into
the wall is absorbed. The Kinect v2 has three modulation frequencies: 120, 80,

Table 5.1: Mean / max depth error on each object of without considering scat-
tering (top) and proposed (bottom) under different density conditions. [cm)]
Plane Chair Desk Hand Duck
Thin 11.7 /644 199 /83.1 46.0/93.0 425/938 57.4/105.0
1.8/47.7 6.5/8)4 83/70.0 3.2/43.6 4.5/39.9
Medium | 25.3 / 97.3 372 /98.2 65.6 /92.1 67.9 /102.5 79.8/111.0
2.1 /28.5 6.0 /49.8 10.7/78.6 5.1 /571 11.8/74.9
Thick 42.1 /1055 53.1 /110.6 79.9 /1104 84.4 /1232 954 /121.9
2.0/39.7 7.1/71.2 20.2/99.2 7.6/759 14.3/67.9
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Figure 5.10: Error histograms of each object. (a)-(c) show error under thin,
medium, and thick fog, respectively. Blue and orange bars represent error with-
out and with proposed method.

and 16 MHz. We used images obtained with 16 MHz. Larger frequencies have
shorter depth measurement range due to phase wrapping. The measurement
capability of 16 MHz is about 9 meters, which is the largest measurement range
of the frequencies of the Kinect v2. To acquire an amplitude and phase image,
we used the source code given by [93]. Their code provides the average image of
several frames, and we modified the code so that only a single frame was input.
If we use multiple frames, the estimation will get to be more robust, while our
method works well given only a single frame as shown in the experiments. To
compensate for high frequency noise, we used a bilateral filter as preprocessing.

The spatial resolution of an image captured by Kinect v2 is 424 x 512 pixels.
We divided a captured image into 4 x 4 patches (K = 16) for local quadratic
prior. In Section 5.3.1, we assumed that the camera and the light source are
collocated on a line that runs parallel to the horizontal axis of the image. In prac-
tice, the camera and light source in the Kinect v2 are slightly out of alignment,
and it is difficult to modify the setup. Although this violates the symmetry
of the scattering component, we found that error due to this misalignment is
negligibly small as shown in Figs. 5.3(b)(c). In our implementation, we defined
F as a matrix that flips an image with respect to the 200th row of the image. In
addition, we did not use the 24 rows of the lower part of the image for the third
term of Eq. (5.11), as these pixels have no information of global symmetrical
prior. Just modifying the flip matrix F by changing the flip center is enough
to estimate scattering components instead of modifying the hardware setup.
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Figure 5.11: Results of other real scene. (a) Target scene without and with fog.
(b)(c) Left to right: input image, estimated scattering component, and IRLS
weight for amplitude and phase image, respectively. (d) Left to right: depth
without fog, depth with fog, reconstructed depth, masked reconstructed depth,
and estimated object mask.

For amplitude images, we set the hyperparameters of the objective function as
[v1, 75, 4] = [0.1,0.1,10], and the tuning parameter of the function p(x) is set
as ¢ = 4,7 in the coarse and fine level optimization, respectively. For phase
images, we set [v1,7%,7v5] = [0.01,0.1,50] and ¢ = 2,3. The numbers of IRLS
iterations were 5 and 50 for the coarse and fine optimization. One iteration
required about from 0.3 to 1.0 seconds.

The results are shown in Figs. 5.7, 5.8, and 5.9. We tested the proposed
method under different density conditions for investigating the robustness to
the density (In Figs. 5.7, 5.8, and 5.9, the density is thin, medium, and thick,
respectively). In each image, we show (a) the RGB image and (b)(c) the input
image, the estimation of the scattering component, and object region for the
amplitude and phase image. The object region depicted here is the IRLS weight
before binarization. In (d), we show the depth without and with fog, the re-
constructed depth, the masked depth, and the estimated object mask from left
to right. The depth measurement in the foggy scene had large error here due
to fog. On the other hand, the proposed method could estimate the scattering
component and object region, and improve the depth measurement regardless
of medium density. Of particular note is that thin regions such as the legs of
the chair could be extracted. On the other hand, as shown in Fig. 5.9(b), some
background pixels were regarded as outliers simply due to the fitting error of
the quadratic function. Although the error will be suppressed by using smaller
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Figure 5.12: Procedure of synthesizing images. First, we captured scene that
has calibration objects in foggy scene and masked region of calibration objects
manually. After that, we compensated for defective region to estimate scat-
tering component. Using observation without fog, scattering coefficient can be
computed. Images of target scene without fog were captured separately, and at-
tenuated direct component and estimated scattering component were combined
into synthesized images.

patches for the fitting, this also lead to increase in the risk that the quadratic
function is completely fitted to an object when the patch is enclosed by the ob-
ject region. The mean and max depth error without considering scattering and
with the proposed method under different density conditions is listed in Table
5.1; here, we define the ground truth as the measured depth without fog. The
object label corresponds to that of Fig. 5.6(b). As shown, the proposed method
could reduce the error significantly regardless of fog density. We also show the
error histograms of each object in Fig. 5.10, where (a)-(c) show the error under
thin, medium, and thick fog, respectively. The blue and orange bars represent
the error without and with the proposed method. Under thick fog, there are
more pixels with large error than under thin and medium fog. In each density, a
few pixels have so large error even with the proposed method and they contain
the max error shown in Table 5.1, while it is difficult to measure these pixels
even in clear scenes due to sensor sensibility (e.g., object boundaries).

Next, we tested the proposed method in a scene shown in Fig. 5.11. We
artificially generated fog in the same manner as the previous experiments, while
the scene in Fig. 5.11 has neither dark walls nor floor. Note that the scene
has materials with various types of reflectance, including a lamp made from
paper, a glossy vase, and a wooden ornament. The estimation of the scattering
component and object region for the amplitude and phase image is shown in
Fig. 5.11(b)(c), respectively, and the result of the depth reconstruction is shown
in Fig. 5.11(d). The proposed method could also extract the object region and
improve the depth measurement in a scene that has a general background.

5.4.2 Experiments with synthesized data

To investigate the effectiveness in more varied scenes, we evaluated the proposed
method with synthesized data. The procedure of generating the synthesized
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data is shown in Fig. 5.12. We assume that a scattering component does
not depend on object depth, and thus we observed a direct component and a
scattering component separately and then combined them into a synthesized
image. First, we captured a foggy scene that includes calibration objects for the
estimation of the scattering coefficient, and the region of the calibration objects
was masked manually. After that, we compensated for the defective region by
solving Eq. (5.12) to estimate the scattering component. In the scene in Fig.
5.12, a scattering coefficient was computed as 8 = 3.5 x 10~* /mm. We also
observed a scene without fog, which was used for the direct component after
being attenuated by the scattering coefficient. We combined the attenuated
signal and the scattering component to synthesize amplitude and phase images.

The results are shown in Figs. 5.13, 5.14, and 5.15. In each scene, we
show (a) the target scene, (b)(c) the estimated scattering component and the
IRLS weight for the amplitude and phase image, and (d) the result of the depth
reconstruction. In Figs. (a)-(c), the proposed method effectively extracted the
object region and estimated the scattering component. However, in Fig. 5.14,
the center of the object region was regarded as the background. This is due to
the quadratic function was partially fitted to the object region. This might be
solved by introducing the spatial smoothness of the IRLS weight. We also show
a failure case in Fig. 5.16. In a scene that has a large object region, our method
was less effective because a quadratic function also fits to values in the object
region. In Fig. 5.16, a large textureless object region exists on the left side. In
addition, the global symmetrical prior did not work in this region because the
object occupied the pixels from top to bottom in the image.

5.4.3 Discussion of measurement range

We assume that a scattering component is saturated close to a camera and there
exists a background that has only a scattering component. In this section, we
discuss the measurement capability of our method in this context.

As shown in Fig. 5.17, a scene has a saturation point and a background point
denoted as Psaturate a0d Ppackground- For simplicity, the camera and light source
are assumed to be collocated in the same place. Far from psaturate, @ scattering
component is constant due to its saturation, while a direct component fades
away far from ppackground- Therefore, the measurement range of our method is
between Psaturate and Pbackground-

We simulated the measurement range to evaluate the capability. Similarly
to the process of synthesizing images, a scattering coefficient was computed for
the scene in Fig. 5.8 to use for the simulation (8 = 3.2 x 107* /mm). We use
the Henyey-Greenstein phase function for scattering property (Eq. (2.10)). The
parameter g was set as 0.9 for fog [13]. A scattering component from a camera
to depth z is given as

ege, (5.17)

z
as(Z)ej%(z) :/ 26P(7T)€_2’62€]
z

20

We set the starting point of the integral as zp = 10 mm. A direct component
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Figure 5.13: Results of synthesized data. (a) Target scene. (b)(c) Left to right:
input image, estimated scattering component, and IRLS weight for amplitude
and phase image, respectively. (d) Left to right: depth without fog, depth with
fog, reconstructed depth, masked reconstructed depth, and estimated object
mask.

Figure 5.14: Results of synthesized data. (a) Target scene. (b)(c) Left to right:
input image, estimated scattering component, and IRLS weight for amplitude
and phase image, respectively. (d) Left to right: depth without fog, depth with
fog, reconstructed depth, masked reconstructed depth, and estimated object
mask.
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(a) Scene
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d) Depth and object mask estimation

Figure 5.15: Results of synthesized data. (a) Target scene. (b)(c) Left to right:
input image, estimated scattering component, and IRLS weight for amplitude
and phase image, respectively. (d) Left to right: depth without fog, depth with
fog, reconstructed depth, masked reconstructed depth, and estimated object
mask.
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(d) Depth and object mask estimation

Figure 5.16: Failure case. (a) Target scene. (b)(c) Left to right: input image, es-
timated scattering component, and IRLS weight for amplitude and phase image,
respectively. (d) Left to right: depth without fog, depth with fog, reconstructed
depth, masked reconstructed depth, and estimated object mask.
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Figure 5.17: Simulation setting. Measurement range of our method is between
Psaturate a0d Ppackgrounda Where scattering component is saturated and direct
component remains.

from depth z is computed as

C —28z 'mz
ok Wzl Temz (5.18)

ovg(z)e?e) =
where C' consists of a surface albedo and shading, and we set C' = 1 in this
simulation. The total observation &(z)e?(*) is the sum of these components as
with Eq. (5.3).

Figure 5.18 shows the simulation results. In (a) and (b), the horizontal axis
denotes depth z and the vertical axis denotes a scattering component for ampli-
tude and phase. These figures validate the saturation characteristic. Meanwhile,
in Fig. 5.18(c) and (d), the vertical axes denote the residual of the observation
and scattering component. Ay is given by the residual angle of & (z)e’?(*) and
as(2)e?#+(*) on the complex plane. These values represent the remaining direct
components from depth z.

Now, we can set ||Poackground|| = 2500 mm and 5000 mm for amplitude
and phase from Fig. 5.18(c) and (d) because the direct component is close to
zero. In contrast, in Fig. 5.18(a) and (b), if we set ||pPsaturate] = 1000 mm, the
estimation error of the scattering component for amplitude due to the saturation
assumption can be considered almost zero because 1 — a5(1000)/a5(8000) = 0,
and for phase, the error is 1 — ¢,(1000)/¢5(8000) =~ 6.0%.

In the experiments with real data, all of the target objects were located
between 1000 mm and 2000 mm. If we assume the measurement range between
IPsaturate]] = 1000 mm and ||Ppackground|| = 2500 mm, the target objects are
located in that range, and from above discussion, we have just 6.0% error of the
scattering component estimation for phase due to the saturation assumption.
As shown in the experiments, we can effectively reconstruct the object depth
regardless of the error. The measurement range depends on the density of a
participating medium, and it will get larger under thinner fog.
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Figure 5.18: Simulation result. (a)(b) Scattering components for amplitude and
phase observed at scene point whose depth is z. (c¢)(d) Residuals of observation
and scattering component, which represent remaining direct components.

5.5 Conclusion

In this chapter, we discussed ToF-based depth measurement in scattering me-
dia. The proposed method simultaneously estimates an object region and depth
with the observation of a continuous-wave ToF camera, which consists of an am-
plitude image and phase image. We modeled the effect of scattering media in
amplitude and phase space. We leveraged the saturation of a scattering compo-
nent and the attenuation of a direct component from a distant point in a scene.
The formulation with a robust estimator and the IRLS optimization scheme al-
lows us to estimate the scattering component and object region simultaneously.
The limitation of the proposed method is that a scene is assumed to have a
background region, which makes it difficult to apply the method to scenes filled
with objects. This problem should be addressed in order to further enhance the
real-world applicability of the proposed method.



Chapter 6

Conclusion

In this dissertation, we discussed 3D reconstruction in scattering media. Image
degradation due to light scattering and attenuation in scattering media dete-
riorates the accuracy of traditional 3D reconstruction methods. Thus, image
degradation should be taken into account when developing 3D reconstruction
methods in scattering media. We divided the 3D reconstruction methods into
three categories on the basis of their principles i.e., disparity-, shading-, and
ToF-based methods. Each method was applied to scattering media with an
appropriate scattering model.

In Chapter 2, the single scattering model and atmospheric scattering model,
which are commonly used in computer vision and image processing, were dis-
cussed. The difference between these two models is the requirement of active
light sources and thus this is a major factor to determine the scattering model.
For example, the atmospheric scattering model can be used for conventional
disparity-based methods that consist of only cameras. On the other hand, the
single scattering model is suitable for shading- and ToF-based methods since
they use avtive light sources.

Chapter 3 discussed MVS in scattring media as a disparity-basaed method.
We used a learning-based MVS method, which takes a plane sweep volume
as input to represent geometric constraints between multi-view images. Image
degradation under the atmospheric scattering model depends on scene depth
and thus we proposed the dehazing cost volume where input images are restored
with the depth of a swept plane. The dehazing cost volume can model the im-
age degradation and multi-view constraints simultaneously. We also proposed
a method for estimating scattering parameters such as airlight and a scattering
coefficient in the same framework. The output depth of the network with our
dehazing cost volume can be regarded as a function of scattering parameters.
Thus, these parameters are optimized so that the output depth map corresponds
to a sparse depth map obtained at a SfM step. The experiments with actual
foggy images demonstrated the effectiveness of the depth estimation in scatter-
ing media against an ordinary cost volume, particularly at distant regions with
highly opacue haze.
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Chapter 4 discussed photometric stereo in scattering media as a shading-
based method. We used the single scattering model for modeling image degra-
dation because photometric stereo requires multiple light sources. However, the
analysis of shape-dependent forward scatter in the single scattering model is
complicated. We proposed an analytical solution with lookup tables for the
efficient computation of forward scatter. The effect of forwad scatter was then
divided into a shape-dependent term and a global constant term for efficient
image restoration. The proposed method was able to reconstruct the 3D shape
of an object in highly turbid media, where the effect of forward scatter is not
negligible.

Chapter 5 discussed depth measurement with a continuous-wave ToF camera
as a ToF-based method in scattering media. Light scattering was modeled in
amplitude and phase space as the image formation model of a continuous-wave
ToF camera. Similar to RGB space, we exploited the assumption that backscat-
ter is saturated close to a camera. We also assumed that a target scene consists
of an object region and a background that only contains a scattering component,
and then the formulation with a robust estimator and the IRLS optimization
scheme enabled to estimate the scattering component and object region simul-
taneously. The experiments with Kinect v2 demonstrated the applicability of
the proposed method in real foggy scenes.

The proposed methods rely on some assumptions about the physical phe-
nomena of scattering media. We finally describe future work with the limitation
of the current work.

Multiple scattering

As described in Chapter 2, multiple scattering is assumed to be negligibly small
in the single scattering model. The analysis of this multiple scattering is often
infeasible because we should take into account all multiple-scattered light that
occurs at any aribirary point in a scene. Therefore, approximate models have
been proposed for the analysis of the multiple scattering. In real situations, the
multiple scattering causes a glow around light sources. For example, if a street
lamp is observed by a camera under bad weather, the captured image contains
the spread of glows around the lamp. Narasimhan and Nayar [13] proposed the
atmospheric point spread function (PSF) for modeling such glows. This PSF-
based model is similar to that of subsurface scattering, where multiple scattering
beneath surfaces are modeled with PSF [67]. This model could be incorporated
into the proposed 3D reconstruction methods for additionally modeling the effect
of multiple scattering.

Inhomogenous or dynamic fluid media

This dissertation assumed that the density of scattering media is homogeneous.
On the other hand, scattering media is often inhomogeneous or dynamically
changing in the real world. A typical example is flowing water or smoke. How-
ever, it is difficult to model such inhomogeneous media with spatially-varying
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scattering and attenuation coefficients. Gu et al. [94] proposed a projector-
camera system to reconstruct 3D volumes where each voxel contains the density
of scattering media. The projector emits coded light patterns and the synchro-
nized camera captures a scene at a high frame rate. The density volume is then
reconstructed on the basis of compressive sensing. Satat et al. [85] uses a SPAD
to observe photons bouncing off an object surface for depth measurement in
inhomogeous scattering media. Instead of modeling light scattering explicitly,
they demonstrated that scattered photons observed with a SPAD have gamma
distribution. Wang et al. [95] combined a line sensor and line laser to generate
a programmable light curtain. Light is adaptively emitted so that the sensor
does not observes scattered light, and this enables depth measurement in inho-
mogeous scattering media. The use of these methods is however hindered due
to the requirement of expensive sensors or special hardware settings.

As discussed in Chapter 2, most single image dehazing techniques also focus
on homogeneous media with the atmospheric scattering model. Some attempts
have been recently made to design dehazing methods for inhomogeneous scat-
tering media [96, 97, 31]. However, these methods heavily rely on the represen-
tation ability of deep neural networks without physics-based models. Thus, it is
left open to apply dehazing and 3D reconstruction methods to inhomogeneous
scattering media.

Learning-based rendering or analysis

Light interaction in homogeneous or inhomogeneous scattering media including
multiple scattering can be described with the radiative transfer equation (RTE)
[98]. The single scattering model discussed in Chapter 2 is the specific case
of the RTE. In computer graphics, scattering media such as clouds is rendered
by solving the RTE. However, similar to the analysis of multiple scattering
and inhomogeneous media, such rendering is also a challenging problem due to
heavy computational cost in Monte Carlo integration. Recently, learning-based
approaches have been proposed to achieve efficient and high-quality rendering.
Kallweit et al. [99] replaced a multiple scattering term in the RTE with the
output of a deep neural network. Learning-based approaches enable the anal-
ysis of complicated physical phenomena. There also have been some methods
where scene geometry and reflectance is modeled with volume representation
and images are rendered from the volume in learning framework [100, 101]. The
simultaneous analysis of complicated scattering effect and scene geometry could
be possible by combining these learning-based approaches.
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