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ABSTRACT 

 

This paper presents the analysis of the notch effect on granite and limestone fracture specimens. 

The research is based on the results obtained in an experimental programme composed of 84 

fracture specimens, combining the two materials and 7 different notch radii varying from 0.15 

mm up to 10 mm. The notch effect is analysed through the evolution of the apparent fracture 

toughness and the application of the Theory of the Critical Distances. 

 

The results reveal a significant notch effect in the limestone, whereas the notch effect in the 

granite is negligible for the range of notch radii analysed. Both observations are justified by the 

corresponding critical distance of the material. 

 

Keywords: Granite, limestone, notch effect, apparent fracture toughness, Theory of Critical 

Distances 
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1. Introduction 

 

On many occasions, the load-bearing capacity of a structural component is conditioned by the 

existence of stress risers. These may have very different natures: cracks, notches, holes, welded 

joints, corners, etc, all of them having different approaches when the corresponding structural 

integrity is analysed. Rocks, whether they are naturally in the crust or whether they are 

industrially exploited (e.g., quarries, masonry) or operated (e.g., slopes, foundations, boreholes), 

have to sustain loads, and the presence of stress risers may play a key role in the corresponding 

structural integrity.  

 

This paperfocuses on the fracture analysis of rocks containing notch-type defects and subjected 

to tensile stresses. Rock fracture mechanics (e.g., Aliabadi, 1999; Jeager et al., 2007 Whittaker 

et al., 1992) conveniently addresses those situations where it may be assumed that the analysed 

stress riser behaves as a crack-type defect, such as different applications of rock cutting, 

hydraulic fracturing or underground excavation. However, notch-type defects generate less 

demanding stress fields than crack-like defects, so it may be overly conservative to proceed on 

the assumption that notches behave like sharp cracks, coupled with the use of ordinary fracture 

mechanics. Numerous papers may be found in the literature providing different models of the 

stress field in the notch tip (e.g., Creager and Paris, 1967; Glinka and Newport, 1987; 

Pluvinage, 1998; Timoshenko and Goodier, 1951; Weiss, 1962). Basically, they all suggest a 

reduction in the stress acting perpendicular to the notch plane, in such a way that the larger the 

notch radius the more significant the stress reduction. This generally has direct consequences on 

the resistant behaviour of structural components (e.g., Cicero et al., 2012; Madrazo et al., 2012; 

Neuber, 1958; Peterson, 1958; Pluvinage, 1998; Taylor, 2007). Thus, in most cases, a given 

component has a higher load-bearing capacity and apparent fracture toughness in notched 

conditions than in cracked conditions. However, sometimes sharp notches behave like cracks 

and also blunt notches may not penalise the load-bearing capacity (beyond the corresponding 
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reduction in the resistant section). Additionally, the terms “sharp” and “blunt” are not absolute, 

but rather they depend on the material: there are materials that present a clear notch effect (e.g., 

increase in load-bearing capacity and apparent fracture toughness) for very small notch radii 

(e.g, Madrazo et al., 2012), and there are others that require a certain notch radius to develop a 

notch effect (e.g., Cicero et al., 2012). This particular nature of notches has led to a great deal of 

research work over the last few decades, aiming to provide specific tools for the assessment of 

notched components, beyond the simple and generally overconservative application of ordinary 

fracture mechanics. However, the analysis of these phenomena in rocks has been scarce, as 

detailed in the following section. 

 

Moreover, size effects are an important issue in rock fracture mechanics, given that the material 

behaviour (e.g., fracture toughness, tensile strength) and the notch sensitivity may change with 

the size of the component being analysed (Bazant (1984), Bazant (1997), Bazant (2000), 

Borodich (1999), Carpinteri (1982), Carpinteri (1984), Dyskin (1997), Gjorv et al. (1977), Shah 

(1990)). Here, it should be noted that size effects are not directly addressed in this work, so that 

the obtained material parameters may not be transferable to different scales (e.g., massive 

rocks).  

 

With all this, Section 2 of this paper presents the Theory of Critical Distances (TCD) as a tool 

for the assessment of notch-type defects in rocks, Section 3 gathers the description of the 

materials and the experimental programme, Section 4 provides the results and the corresponding 

discussion and, finally, Section 5 presents the conclusions.  

 

2. Theoretical background: analysis of notches and the Theory of Critical Distances. 

 

The stress distribution at the region ahead of a notch tip may be represented in a bi-logarithmic 

plot, as shown in Figure 1, where three regions can be distinguished (Niu et al., 1994; 
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Pluvinage, 1998). Region I corresponds to a nearly constant stress zone, region II is a transition 

zone, and region III is a zone where stresses follow the expression: 

 
 α

ρ

yy
πr2

K
=σ          (1) 

where K is the notch stress intensity factor and α is a material constant for a given notch radius. 

There are two main failure criteria in notch theory: the global fracture criterion and local 

fracture criteria (Bao and Jin, 1993; Pluvinage, 1998). The global criterion establishes that 

failure occurs when the notch stress intensity factor reaches a critical value, Kρ
c
, which depends 

on the notch radius and the material: 

c

ρρ K=K          (2) 

Kρ defines the stress and strain fields in the vicinity of the notch tip, as shown in equation (1). 

This approach is analogous to that proposed by linear-elastic fracture mechanics for the analysis 

of cracks, but its application is very limited because of the lack of analytical solutions for Kρ (in 

contrast with the case of KI, e.g., API579-1/ASME FFS-1, 2007; BS7910, 2005; FITNET FFS 

Procedure, 2008; R6, 2001) or/and standardised procedures for the experimental definition of 

Kρ
c
 (in contrast with the case of KIC, e.g., ASTM E 1820-09e1, 2009).  

Concerning local criteria, these are based on the stress-strain field on the notch tip and have 

more applicability than global criteria from a practical point of view. Among them, those 

criteria belonging to the TCD stand out. The Theory of Critical Distances (TCD) is essentially a 

group of methodologies, all of which use a characteristic material length parameter (the critical 

distance, L) when performing fracture assessments (Taylor, 2007; Taylor et al., 2004). The 

origins of the TCD date back to the middle of the twentieth century, with the works of Neuber  

(1958) and Peterson (1959), but it has been in the last years, driven by the proliferation of finite 

element stress analyses, that this theory has been scientifically analysed and applied to different 

types of materials (metals, ceramics, polymers and composites), failure or damage processes 
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(basically fracture and fatigue) and conditions (e.g., linear-elastic vs. elastoplastic) (e.g., Cicero 

et al., 2012; Cicero et al., 2013; Madrazo et al., 2012; Susmel and Taylor, 2003; Susmel and 

Taylor, 2010; Taylor, 2001; Taylor, 2007; Taylor and Wang, 2000; Taylor et al, 2004).  

The above-mentioned critical distance is usually referred to as L and its expression is:   

2

0

1













ICK

L         (3) 

where KIC is the material fracture toughness and σ0 is a characteristic material strength 

parameter named the inherent strength, usually larger than the ultimate tensile strength (σu), 

which requires calibration. Only in those situations where there is a linear-elastic behaviour at 

both the micro and the macroscale (e.g., fracture of rocks) does σ0 coincide with σu.  

Among the different methodologies included within the TCD, two of them are particularly 

simple to apply: the Point Method (PM), also known as the Stress Method, and the Line Method 

(LM).  Both of these are based on the stress field at the defect tip. Other methodologies, such as 

Finite Fracture Mechanics (FFM) and the Imaginary Crack Method are based on the stress 

intensity factor and their application is not so straightforward. In any case, as stated by Taylor 

(2007), the predictions made by all these methodologies are very similar, so that only the PM 

and the LM, those with a far simpler application, will be considered here.  

The Point Method (PM) is the simplest methodology, and it assumes that fracture occurs when 

the stress reaches the inherent strength (σ0) at a certain distance from the defect tip, rc. It 

considers that the material has linear-elastic behaviour, and from the stress field in a crack tip at 

failure (Anderson, 2004; Taylor, 2007) and the definition of L (equation (3)), it is 

straightforward to demonstrate that rc is L/2: 

22
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The PM failure criterion is, therefore: 
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On the other hand, the Line Method (LM) assumes that fracture occurs when the average stress 

along a certain distance, d (starting from the defect tip), reaches the inherent strength, σ0. Again, 

from the stress field in a crack tip at failure and the definition of L, it is easy to demonstrate that 

d is equal to 2L: 
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   (6) 

Therefore, the LM failure criterion is: 

  

L

drr
L

2

0

0
2

1
         (7) 

The TCD, and then the PM and the LM, allows the fracture assessment of components with any 

kind of stress riser to be performed. As an example, when using the PM it would be sufficient to 

perform two fracture tests on two specimens with different types of defects (e.g., sharp notch 

and blunt notch). The corresponding stress-distance curves at fracture, which can be determined 

by using analytical solutions or finite element methods, cross each other at a point with 

coordinates (L/2,σ0), as shown in Figure 2. The prediction of the fracture load of any other 

component made of the same material and containing any other kind of defect would require the 

definition of the corresponding stress field, the fracture load being that one for which equation 

(5) is fulfilled.  

In the case of rocks, with linear-elastic behaviour at both the micro and the macro scales, the 

application of the TCD is even simpler, given that there is no need to calibrate σ0 (it coincides 

with σu) and L (directly provided by equation (3) once both KIC and σu are known). Despite such 

simplicity and the enormous potential of the TCD for the analysis of fracture processes, as it has 

been demonstrated for a wide variety of materials, the application of this theory in rocks has 
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been very limited. To the knowledge of the authors, Lajtai (1972) was the first author applying 

the PM on rocks, being followed by Ito and Hayashi (1991) and Ito (2008), who successfully 

applied the PM for the analysis of hydraulic fracturing in a wellbore. Such works have been 

cited by other authors (e.g., Bunger et al., 2010; Shimizu et al., 2011), but the application of the 

TCD in rocks has not been further developed.  

To finish with this overview of the TCD, it should be noted that this theory allows components 

containing U-shaped notches to be analysed relatively simply: the PM and the LM provide 

expressions (whose justification, based on the Creager and Paris (1968) notch tip stress 

distribution, may be found in Taylor (2007)) for the apparent fracture toughness (KIN) exhibited 

by this type of notched components. This parameter reduces the fracture analysis in a 

component having a U-shaped notch to an equivalent situation in a cracked component, with the 

only particularity of considering KIN instead of KIC. Thus, fracture occurs when: 

INI KK           (8) 

KI is the stress intensity factor for a crack with the same extension of the notch, and KIN may be 

obtained using the following expressions (ρ being the notch radius): 



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2
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       (9) 

when using the PM , and 

L
KK ICIN

4
1


         (10) 

when using the LM. Equations (9) and (10) are valid for long narrow notches, given that the 

application of the Creager-Paris stress distribution is limited to such geometric conditions. 
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3. Materials and experimental programme 

 

3.1. Materials 

 

The analysis of the notch effect in rocks is particularised here to two representative hard brittle 

rocks: biotite granite and oolitic limestone. The geological location of these rocks is the centre 

and the south-east of Spain, respectively. Table 1 present some of their nominal technical 

properties (obtained following UNE-EN 12407, 2007; UNE-EN 13755, 2008; UNE-EN 14157, 

2005; UNE-EN 14231, 2004; UNE-EN 1936, 2007), while figures 3 and 4 show the 

corresponding microstructures observed with optical and scanning electron microscopy (SEM). 

These two rocks are used for industrial applications and, consequently, they are highly 

homogeneous (at the macro-scale), isotropic, non-weathered rocks. 

 

3.2.  Compression tests and splitting tensile strength tests 

 

Six compression tests were performed on each material following UNE-EN 1936 (2007) and 

UNE-EN 14580 (2006). Analogously, six splitting tensile tests (Brazilian test) were performed 

on both the granite and the limestone following UNE 22950-2 (1990). Here, it should be noted 

that the tensile strength is a key parameter for the application of the TCD (see equation (3), 

where σ0 coincides with σu). 

 

3.3.  Fracture toughness tests 

 

As shown and summarised by Amaral et al. (2008), there are several methodologies for the 

assessment of fracture toughness in rocks (e.g., ASTM-PS70, 1997; CEN/TS 14425-1, 2003; 

Fowel and Xu, 1994; Hashida and Takahashi, 1993; Lim et al., 1994; Ouchterlony, 1988). Here 

the CEN/TS 14425-1 (2003) methodology has been selected to determine this material property. 

The methodology, which was originally proposed by Srawley and Gross (1976) for ceramic 
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materials, uses SENB specimens tested in 4-point bending conditions, whose geometry is shown 

in Figure 5. A straight notch was cut using diamond-wire saw equipment with a wire of 0.3 mm 

diameter (notch radius, ρ= 0.15 mm). The tests, six for each material, were performed in 

displacement control, the loading rate being 0.05 mm/min. In all the tests, both the applied load 

and the vertical displacement were recorded, so that the fracture (failure) load (F) could be 

easily determined. The material fracture toughness (KIC) is then obtained through the following 

formulation (CEN/TS 14425-1, 2003; Srawley and Gross, 1976): 

 

2/1·

·

hb

YF
K IC           (11) 

 

where b is the specimen thickness, h is the specimen height and Y is the compliance factor 

given by: 
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
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Lo and Li being the spans between the outer and inner loading points, respectively, and α0 = a0/h. 

In this case Lo=120mm, Li=60 mm. a0 (the notch length) was measured through an optical 

microscope at 50x magnification and varies between 7 mm and 8 mm (0.35 ≤ α0 ≤ 0.40). 

 

The experimental setup is shown in Figure 6. 
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3.4.  Apparent fracture toughness tests 

 

The experimental procedure explained above was applied to fracture specimens with notch radii 

of 0.5 mm, 1 mm, 2 mm, 4 mm, 7 mm and 10 mm (see Figure 5), in order to obtain the 

corresponding apparent fracture toughness (KIN), which is that one obtained by the application 

of the cracked specimen formulation to notched specimens. Here, it should be noted that 

fracture toughness testing methodologies for rocks accept a limited finite radius on the notch tip 

(e.g., 0.15 mm), assuming a similar behaviour to that obtained in cracked conditions and 

considering that the introduction of a proper crack with controlled geometry is not feasible. 

Thus, the results of fracture toughness tests are actually apparent fracture toughness values on 

which the notch effect is considered to be negligible.  

 

With all this, six specimens per material and notch radius were tested, obtaining the 

corresponding fracture load. Then, equations (11) to (13) were applied, providing the apparent 

fracture toughness. 

 

4. Results and discussion 

 

The mechanical properties obtained in compression and splitting tensile strength tests are shown 

in Table 2, where E50 represents the tangent elastic modulus at 50% of fracture load. As an 

example, Figure 7 presents two examples of experimental curves obtained in the compression 

tests. The results are consistent with the literature (e.g., Kulhawy, 1975; Stagg and Zienkiewicz, 

1969). 

 

Tables 3 and 4 gather the results of fracture toughness tests (specimens with 0.15 mm notch 

radius) and apparent fracture toughness tests (specimens with notch radii from 0.5 mm up to 10 

mm), respectively. Here it should be noted  that, in all tests, fracture took place across the 
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middle plane of the specimens, starting from the notch tip. The fracture surfaces were basically 

flat and had a brittle aspect. 

 

Figure 8 shows, as an example, the obtained load-displacement curves of the fracture toughness 

tests, where it can be observed how the granite develops higher values of load-bearing capacity, 

also leading to higher values of fracture toughness. Analogously, Figure 9 shows the load-

displacement curves obtained in the apparent fracture toughness tests performed on specimens 

with 10 mm notch radii. In the case of the granite (Figure 9a), it can be observed that the load-

bearing capacity is rather similar in terms of average values to that obtained in fracture 

toughness tests (see Figure 8a); in the case of the limestone (Figure 9b) there is a noticeable 

increase in the loadbearing capacity when compared to the results obtained in fracture toughness 

tests (Figure 8b).  

 

The resulting average fracture toughness values are 1.24 MPam
1/2 

for the granite and 0.72 

MPam
1/2 

for the limestone. These values, together with the corresponding tensile strength values 

(see Table 2), allow the critical distance (L) of the materials to be obtained using equation (3) 

and assuming that σ0 is equal to σu. Thus, L gives 6.04 mm in the granite and 2.71 mm in the 

limestone, that is, 6.0 and 3.4 times the corresponding grain size. This is in agreement with the 

relation provided by Usami et al. (1986) for ceramic materials, in which L ranges between one 

and ten times the grain size, or the values obtained by Ito and Hayashi (1991) for Kofu andesite 

(L=6.8 mm) and Honkomatsu andesite (L=3.2 mm). As mentioned below, this may have a 

physical meaning in the fracture process. 

 

The comparison between L and the notch geometry may provide interesting observations, as 

explained by Taylor (2012): 

 

- Comparing L to notch length (a): when the normalised notch length is much lower than 

the unity (a/L << 1) then the notch is harmless and it does not reduce the strength of the 
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body. Here the notch length varies between 7 mm and 8 mm, so the above mentioned 

condition is not fulfilled. In any case, as stated in Taylor (2012) this dimensionless 

number can be defined more generally as the normalised defect size (for any kind of 

defect, not just a notch), and as long as this number is sufficiently lower than one, the 

corresponding defect is harmless. As an example, an internal spherical pore with a 1 

mm radius would be harmless in the granite. 

 

- Comparing L to notch radius (ρ): when the normalised notch radius is lower than 1 (ρ/L 

< 1) the corresponding notch behaves as a crack of the same length (Taylor, 2012). If 

ρ/L is much higher than one (ρ/L >> 1) the corresponding notch may be simply 

analysed through the elastic stress concentration factor (Kt). Therefore, in the case of 

granite and for the size of components considered here, those notches whose notch 

radius is smaller than 6.04 mm would behave as cracks, whereas in the case of the 

limestone this crack behaviour would be observed for notch radii smaller than 2.71 mm. 

This is an important observation for geological materials: given that the values of the 

critical distance are relatively high in this type of materials (in the order of mm, see also 

Dempsey et al. (1999), and Ito and Hayasi (1991)), notches with significant root radii 

may behave as cracks and could be analysed by using ordinary fracture mechanics (i.e., 

not considering any notch effect).  

 

Another consequence of the high values obtained for the critical distance is the 

adequacy of using notched specimens (instead of cracked) to the experimental 

determination of the fracture toughness (KIC) in rocks: as long as the notch radius is 

smaller than the critical distance of the material being analysed (generally in the order 

of several mm), the obtained apparent fracture toughness (KIN) is equal to the material 

fracture toughness. 

 

Figure 10 presents the apparent fracture toughness results: 
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- In the case of the granite results, it can be observed that the notch effect is basically 

negligible for the range of notch radii considered in the analysis (up to 10 mm).  This 

basically agrees with the above comments concerning the normalised notch radius: 

given that L is 6.04 mm, the expected notch effect for notch radii below this value (0.5 

mm, 1 mm, 2 mm and 4 mm) is null, whereas some notch effect should be observed for 

higher notch radii (7 mm and 10 mm). Thus, the results corresponding to a 7 mm notch 

radius do present a slight notch effect (apparent fracture toughness higher than the 

fracture toughness obtained in 0.15 mm notch radius specimens). However, the results 

obtained in specimens with a 10 mm notch radius do not present any notch effect and 

their average value is very similar to that obtained with much lower radii. There is no 

physical explanation for this lack of notch effect, and here it has been attributed to the 

obtained experimental scatter (i.e., a higher number of tests would show the existence of 

notch effect).  

 

The figure also shows the predictions provided by the LM (for the sake of simplicity, 

the predictions provided by the PM are not included) when applying equation (10). It 

should be noted that blunter notches are beyond the theoretical application range of the 

apparent fracture toughness predictions provided by the TCD. The solid line represents 

the predictions obtained when the value of L provided by equation (3) is considered, 

whereas the dotted line represents the best fit of equation (10) providing least squares. 

The fitting process has been performed in a region dominated by negligible notch effect, 

so the obtained value of L (46.6 mm) has no physical meaning, and cannot be compared 

to that obtained through equation (3). 

 

- In the case of the limestone, its lower value of L allows the notch effect to be much 

clearer within the range of notch radii considered in this work. Those radii above 2.71 

mm (4 mm, 7 mm and 10 mm) should present notch effect, whereas the other radii (0.5 
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mm, 1 mm and 2 mm) should provide similar apparent fracture toughness values to 

those obtained in the fracture toughness tests. Considering average values, the 

experimental results confirm these predictions. 

 

In this case the LM provides reasonably good predictions of the apparent fracture 

toughness, regardless of the critical distance considered: that given by equation (3) 

(solid line) or the one given by the best fit providing least squares (L= 3.4 mm, dotted 

line). The two obtained values of L present certain difference, but it should be noted that 

the consequences of such difference is rather limited, given that L is squared in equation 

(10). Also, the predictions provided by the TCD are reasonable even for blunter notches,  

even though they are beyond the application range of equation (10). 

 

Hence, the critical distance of these two materials (and the ratio ρ/L) reasonably explains why, 

for the notch radii considered here, the notch effect has been found to be negligible in the 

granite and significant in the limestone. This may be physically related with the corresponding 

material microstructure:  Taylor (2007)  presents  a summary of works that have analysed the 

physical meaning of the critical distance. The first comment on this is that, depending on the 

material being analysed, L may take values that range from the atomic separation (Pugno and 

Ruoff, 2004) up to meters (Dempsey et al, 1999), for certain specific situations such as 

nanomaterials and sea ice, respectively, with typical values from tens of microns up to a number 

of centimetres. Taylor (2007) distinguishes here two situations when trying to relate the critical 

distance to the material characteristics: in materials such as ceramics and steels the critical 

distance is simply related to the microstructure, especially to the grain size (d), which acts as a 

barrier to crack propagation and thus plays a key role in  the crack growth; in other materials 

such as composites and certain polymers L is associated to a damage zone. Here, the average 

grain size of the granite is significantly larger (25%) than the average grain size of limestone 

(see Table 1). Moreover, the grains in the granite have less uniform sizes (see figures 3 and 4), 
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so this material presents much higher maximum grain sizes than the limestone. These larger 

grains may facilitate the fracture process even when the notch radius is significant.  

Finally, as mentioned in the introduction, the transferability of the results obtained here to other 

scales is not straightforward, and it is not addressed in this work. Size effects have basically two 

components: a geometric component (stress gradients may vary with the scale) and a statistical 

component associated to the increasing possibility of large defects in larger volumes of material. 

The TCD implicitly includes the geometric component but it does not consider any statistical 

effect. Moreover, the fracture toughness and the ultimate tensile strength may vary with the size 

of the component, so L may also have a scaling effect. 

 

5. Conclusions 

 

This paper presents the analysis of the notch effect on biotite granite and oolitic limestone. The 

analysis is based on two main questions: firstly, the results obtained in an experimental 

programme composed of 84 SENB specimens tested in 4-point bending conditions, covering 

notch radii from 0.15 mm (which are assumed to have crack-like behaviour) up to 10 mm. The 

programme also includes compression and splitting tensile strength tests. Secondly, the Theory 

of Critical Distances (Line Method approach) is applied to the fracture tests. The main 

conclusions, for the component sizes considered here, are the following: 

 

- The critical distance (L) gives 6.04 mm for the granite and 2.71 mm for the limestone. 

These values allow the load-bearing capacity of any structural element made of these 

materials to be predicted by applying the TCD approaches (e.g., the PM or the LM). 

- Those defects whose size is much smaller than L are harmless (e.g., in granite, a pore 

with a 1 mm radius) 

- Those notches whose radius is smaller than L behave as cracks. This means, for 

example, that granite specimens containing notches with a 4 mm notch radius provide 
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the same fracture resistance (apparent fracture toughness) as that obtained with a lower 

radius (including crack-type defects). 

- This supports the hypothesis of the different fracture toughness testing procedures, 

consisting in the assumption of a similar behaviour between crack-type defects and 

notch-type defects, as long as the notch radius is sufficiently limited. 

- Finally, the TCD justifies the negligible (or very limited) notch effect observed in the 

granite, as well as the significant notch effect observed in the limestone. In both cases 

the predictions provided by the TCD (through the LM) are reasonable when compared 

to the experimental results. However, a more sound validation of the application of the 

TCD in rocks would require additional testing in other types of rocks, as well as a wider 

range of notch geometries (e.g., larger notch radii and notch depths).  
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Figures 

 

 
Figure 1. Schematic showing the stress distribution at a notch tip (bi-logarithmic). 
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Figure 2. Obtaining L and σ0 parameters. 
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Figure 3. Microstructure of the granite being analysed: a) optical microscopy; b) SEM. 
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Figure 4. Microstructure of the oolitic limestone being analysed: a) optical microscopy; b) SEM. 
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Figure 5. Schematic of fracture specimens. Dimensions in mm. Notch radii (ρ) varies from 0.15 

mm (fracture toughness specimens) up to 10 mm. 
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Figure 6. Experimental setup in fracture toughness tests. 
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Figure 7. Stres-strain curves obtained in compression tests: a) granite; b) limestone. 
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Figure 8. Load-displacement curves obtained in fracture toughness tests: a) granite; b) 

limestone. 
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Figure 9. Load-displacement curves obtained in apparent fracture toughness tests (ρ=10 mm): a) 

granite; b) limestone. 
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Figure 10. Fracture toughness and apparent fracture toughness experimental results, and 

comparison with the TCD (LM) predictions: a) granite; b) limestone. 
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Tables 

 

 

Table 1. Some technical properties of the granite and limestone 

 Granite Limestone 

Bulk density (kg/m
3
)  2660 2540 

Water absorption (%)  0.18 3.01 

Abrasion resistance (mm)  19 22.5 

Slip resistance (SRV)  73 42 

Grain size (μm)  1000 800 
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Table 2. Compression and tensile properties of the granite and limestone. The results shown the 

average and the standard deviation 

 Granite Limestone 

Compressive strength (MPa)  122.5 ± 4.8 135.7 ± 12.7 

Elastic modulus, E50 (GPa)  45.6 ± 7.9 64.1 ± 2.2 

Tensile strength (MPa)  9.0 ± 1.3 7.8 ± 1.1 
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Table 3. Results of fracture toughness tests.  

Specimen 

(granite) 
KIC (MPam

1/2
) 

Specimen 

(limestone) 
KIC (MPam

1/2
) 

G-0-1 1.33 L-0-1 0.75 

G-0-2 1.12 L-0-2 0.74 

G-0-3 1.17 L-0-3 0.71 

G-0-4 1.18 L-0-4 0.71 

G-0-5 1.32 L-0-5 0.69 

G-0-6 1.31 L-0-6 0.73 
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Table 4. Results of apparent fracture toughness tests.  

Specimen 

(granite) 

Notch radius 

(mm) 

KIN  

(MPam
1/2

) 

Specimen 

(limestone) 

Notch radius 

(mm) 

KIN  

(MPam
1/2

) 

G-05-1 

0.5 

1.29 L-05-1 

0.5 

0.78 

G-05-2 1.36 L-05-2 0.74 

G-05-3 1.32 L-05-3 0.70 

G-05-4 1.12 L-05-4 0.74 

G-05-5 1.22 L-05-5 0.85 

G-05-6 1.14 L-05-6 0.73 

G-1-1 

1.0 

1.09 L-1-1 

1.0 

0.78 

G-1-2 1.18 L-1-2 0.78 

G-1-3 1.05 L-1-3 0.73 

G-1-4 1.27 L-1-4 0.75 

G-1-5 1.28 L-1-5 0.79 

G-1-6 Not valid L-1-6 0.82 

G-2-1 

2.0 

1.36 L-2-1 

2.0 

0.75 

G-2-2 1.10 L-2-2 0.79 

G-2-3 1.09 L-2-3 0.76 

G-2-4 1.41 L-2-4 0.78 

G-2-5 1.32 L-2-5 0.77 

G-2-6 1.26 L-2-6 0.75 

G-4-1 

4.0 

1.09 L-4-1 

4.0 

1.09 

G-4-2 1.18 L-4-2 0.76 

G-4-3 1.13 L-4-3 0.73 

G-4-4 1.18 L-4-4 0.71 

G-4-5 1.41 L-4-5 0.78 

G-4-6 1.38 L-4-6 0.80 

G-7-1 

7.0 

1.29 L-7-1 

7.0 

0.90 

G-7-2 1.34 L-7-2 0.92 

G-7-3 1.45 L-7-3 0.85 

G-7-4 1.38 L-7-4 0.92 

G-7-5 1.42 L-7-5 0.89 

G-7-6 1.40 L-7-6 0.97 

G-10-1 

10 

1.33 L-10-1 

10 

0.94 

G-10-2 1.23 L-10-2 0.89 

G-10-3 1.42 L-10-3 0.86 

G-10-4 1.06 L-10-4 0.97 

G-10-5 1.06 L-10-5 0.98 

G-10-6 1.10 L-10-6 Not valid 
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Research highlights: 

 

 

- The notch effect is analysed in granite and limestone 
 

- The Theory of Critical Distances is applied to fracture analysis of granite and limestone 
 

- The corresponding critical distances are obtained 
 

- Notch effect in limestone is noticeable, whereas it is very limited in granite  


