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ABSTRACT 
 
The paper analyses the fracture behaviour of several rocks, namely a sandstone, a limestone and two marbles, 
one of them being a Carrara marble. The experimental program comprises in total 216 fracture specimens, 
tested in 4-point bending conditions and including specimens with notch radii varying from 0.15 mm up to 15 
mm. The notch effect is analysed through the evolution of the apparent fracture toughness and the application 
of the Theory of Critical Distances.  
 
The present study aims to generalize a previous study on a granite and a limestone to a broader range of rocks. 
The point and line methods of the Theory of the Critical Distances successfully explain the notch effect on the 
fracture specimens. The value of the critical distance of these rocks is of the order of mm. Finally, the results 
show a correlation between the microstructural features of the rocks, specifically the grain size, and their 
critical distances. 
 
KEYWORDS: Notch effect, Apparent fracture toughness, Theory of Critical Distances, marble, sandstone, 
limestone. 
 
 
 
1. INTRODUCTION 
 
It is well known that stress risers have a direct influence on the load-bearing capacity of structural components 
no matter what their nature: cracks, notches, holes, etc. Their presence plays a key role in the analysis of the 
corresponding structural integrity, and there are different approaches depending on the kind of stress riser that 
is studied. With regard to rocks, they cannot be considered a homogeneous continuum due to the small 
discontinuities like microcracks, pores, grain boundaries, etc. that accompany the rock matrix. These defects 
act as stress risers generating stress concentrations around them, leading to crack initiation and propagation 
and, eventually, to brittle failure. This problem can be of interest for several fields within civil (e.g., slopes, 
foundations), mining (e.g., tunnelling, drilling) and energy engineering (e.g., exploitation of geothermal 
energy). In addition to the above geometric aspects, stress concentration can also be caused by loading 
conditions such as bending and torsion, which tend to concentrate stresses at the surface leading to stress 
gradients. However, this paper will focus on the effect of geometric features, since loading stress concentration 
is generally negligible in comparison to the other aspects [1]. 
 
Microscopic defects are certainly likely to be found in geological materials. However, notches or defects with 
relatively large radii should not use the same expression as cracks to describe the stress field near the defect. 
Stress fields in the notch tip have already been modelled by numerous authors who generally observe a stress 
reduction acting perpendicular to the notch plane [2-5]. This stress reduction becomes more significant with 
the increase in the notch radius, which means that a given component will have a higher load-bearing capacity 
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and apparent fracture toughness in notched conditions rather than in sharp cracks. However, the term ‘sharp’ 
depends on the analysed material, as there may be materials that behave as notches for very small notch radii 
[6] while others require relatively large radii to develop a notch effect [7]. It is therefore necessary to search 
for specific tools for the assessment of notch components, leaving aside the over-conservative application of 
the ordinary fracture mechanics that have commonly been used to deal with this problem. For this reason, the 
fracture analysis of rocks containing notch-type defects will be the main objective of this paper, aiming to 
apply a more accurate and less over-conservative approach than those assuming that all stress risers behave as 
crack-type defects.  
 
 
2. THEORETICAL BACKGROUND ON NOTCH FRACTURE AND THE THEORY OF CRITICAL 

DISTANCES 
 
The stress distribution normal to the notch plane (ߪ௬௬) has been represented by many authors over the last few 

decades [3,5,8-11]. Basically, they all suggest a distribution function with a form similar to  ߪ௬௬ ൌ ݂ሺ1 ⁄ݎ√ ሻ 
but with certain differences, ݎ being the distance to the notch tip. If we represent the stress distribution at the 
notch tip in a bi-logarithmic form (Figure 1), we can distinguish three different regions [4,12]: the first one is 
located at the closest zone to the notch tip (I) and corresponds to an almost constant stress zone, followed by 
a transition zone (II) that leads to region III, which can be considered as a zone of pseudo-singularity of stress, 
where the stress normal to the notch plane follows the next expression: 
 

௬௬ߪ	 ൌ
ఘܭ

ሺ2ݎߨሻఈ
																																																																																																																																																																			ሺ1ሻ 

 
where ܭఘ is the notch stress intensity factor (NSIF) and ߙ is a material constant for a given notch radius. 

 

 

 

 

 

 
 

Figure 1. Bi-logarithmic representation of the stress distribution at a notch tip. 
 
According to the notch theory, we can basically identify three brittle fracture criteria: global, local and non-
local fracture criterion [1,4,13]. The first one is designed to predict fracture by considering the entire body 
(e.g., Linear Elastic Fracture Mechanics models) and states that the NSIF is limited by a certain critical value, 
ఘܭ) ఘ௖, which depends on the material and notch radius. When this critical value is reached, failure occursܭ ൌ
 ఘ௖ represents theܭ ఘ defines the stress and strain fields next to the notch tip (see Eq. (1)), andܭ ఘ௖ሻ, whereܭ
fracture toughness. It can be seen that this approach is analogous to the one proposed by linear-elastic fracture 
mechanics for the analysis of cracks (KI = KIC), but limited by the lack of analytical solutions for ܭఘ and 
standardised procedures for the experimental definition of ܭఘ௖. 
 
With regard to local and non-local fracture criteria, they are both based on the stress-strain field at the notch 
tip and are relatively easy to implement in complex bodies. The main difference lies in the fact that local 
models use only data from a particular point for the calculations at that point, while non-local models also take 
information from other points that usually prescribe a surrounding volume. However, the distinction between 
local and non-local models is not always clear in practice, as in the case of the Theory of Critical Distances 
(TCD). 
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The TCD can be considered a group of methods with certain common features: the use of a characteristic 
material length parameter (the critical distance, L) and the use of linear elastic analyses when performing 
fracture assessments [1,14]. It was first used by [15,16], but it has been over the last few years, with the 
development of finite element stress analyses, that it has been scientifically studied and applied to different 
materials (ceramics, polymers, metals and composites). Despite its simplicity and potential for the analysis of 
fracture processes as demonstrated for a wide range of materials, scarce work can be found about the 
application of the TCD in rocks [17-19], it having started relatively recently to gain importance [20]. 
Geological materials should, in general, be suitable for the application of the TCD due to their mechanical 
properties. Their brittle behaviour, high inherent strength and low toughness make rocks highly sensitive to 
the presence of stress risers such as notches, cracks or any other defects. This simplifies to a great deal the 
performance of the experimental program from a scale point of view, since relatively large values of L might 
be expected, of the order of few millimetres. The expression for the critical distance L is as follows: 
 

ܮ	 ൌ
1
ߨ
൬
ூ஼ܭ
଴ߪ
൰
ଶ

																																																																																																																																																																				ሺ2ሻ 

 
where ܭூ஼  is the material fracture toughness and ߪ଴ a characteristic material strength parameter (inherent 
strength), which, in the case of rocks, may be assumed to roughly coincide with the tensile strength ߪ௨, due to 
the linear-elastic behaviour at micro and macroscale [1]. 
 
All the methodologies included within the TCD are linear and allow the use of elastic continuum mechanics 
approaches. Some of the methods (Imaginary Crack Method, ICM; Finite Fracture Mechanics, FFM) are based 
on energy concepts for the assessment of a finite size crack propagation and thus use material parameters such 
as the critical strain energy release rate during crack growth, ܩ௖, or the fracture toughness, ܭ௖. However, other 
methods like the Point Method (PM) or the Line Method (LM) focus on the stress field at the defect tip, where 
they calculate a stress value and equate it to a characteristic strength of the material. All these methods consider 
the material inhomogeneity through a single parameter with length dimensions and offer quite similar 
predictions [1]. For this reason, those methods with far simpler and more straightforward application will be 
used in this work (PM and LM). 
 
The Point Method (PM) is the simplest form of the TCD and states that failure will occur when stress at a 
certain distance ݎ௖ reaches the inherent stress (ߪ௨ for rocks). This method assumes linear-elastic behaviour of 
the material and can easily be demonstrated from both the stress field in the crack tip at failure defined by 
[1,21], and from the definition of L shown in Eq. (2): 
 

	
ூ஼ܭ
ඥ2ݎߨ௖

ൌ ଴ߪ 		→ 		 ௖ݎ ൌ
1
ߨ2

൬
ூ஼ܭ
଴ߪ
൰
ଶ

ൌ
ܮ
2
																																																																																																																								ሺ3ሻ 

 
Thus, the PM prediction can be written as σ (L/2) = σ0. The Line Method (LM) is based on the same principles 
as the PM, with the only difference that the stress parameter used is the average stress over a distance d starting 
at the defect tip instead of the stress at a distance rc: 
 

	
1
݀
න ݎሻ݀ݎሺߪ ൌ ଴ߪ	

ௗ

଴

																																																																																																																																																												ሺ4ሻ 

 
Once again, from the stress field at the crack tip and the definition of L exposed in Eq. (2), we can analytically 
demonstrate that d = 2L: 
 

	
1
݀
න

ூ஼ܭ
ݎߨ2√

ݎ݀ ൌ
2

ߨ2√

ூ஼ܭ
݀଴.ହ

ൌ 	଴ߪ 	→ 		݀ ൌ 	ሺ5ሻ																																																																																																												ܮ2

ௗ

଴
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Thus, the LM criterion can be written as: 
 

	
1
ܮ2

න ݎሻ݀ݎሺߪ ൌ ଴ߪ	

ଶ௅

଴

																																																																																																																																																										ሺ6ሻ 

 
Finally, an Area Method (AM) and a Volume Method (VM) could also be included within the TCD, which 
basically involve, respectively, an average stress over a certain area in the neighbourhood of the notch or over 
a volume. These methods have not been considered here, since fracture assessment becomes much more 
complicated and requires finite element analyses. By contrast, both PM and LM allow fracture assessment of 
components with any kind of stress risers in a simple way. In the case of the PM, it is enough to carry out two 
fracture test with specimens of the same material and geometry but with different type of defects (e.g., with 
different notch radii). The resulting stress-distance curves at fracture shown in Figure 2 can be obtained either 
by analytical solutions or by finite element analyses, and will theoretically cross each other at a distance L/2 
from the tip and with a stress equal to ߪ଴, as predicted by Eq. (3). 
 

 
Figure 2. Stress distribution at a notch tip of blunt and sharp notches. Obtaining L and σ0 parameters. 

 
To conclude, components containing U-shaped notches can easily be analysed by the TCD. One important 
reason for using these notched specimens is the simplicity they offer from a technical point of view to perform 
tests that enable fracture toughness, ܭ௖, to be measured. Metallic materials do permit pre-cracking by fatigue 
loading for example, but introducing macroscopic cracks of controlled length into rocks is much more difficult 
due to their brittle condition which makes crack propagation unstable. The easiest way to introduce a crack-
like defect without causing residual stresses is by means of a sharp slot machined into the specimen with a 
diamond wire for instance. Of course, this slot will have a finite radius, so we will obtain an apparent fracture 
toughness	ሺܭூே) different from the strictly true fracture toughness of the material, assuming that the notch is a 
sharp crack (ߩ	0 =). In essence, fracture analysis of U-shaped notch components is equated to a situation in a 
cracked component, where ܭூே is considered instead of ܭூ஼: 
 
ூܭ	 ൌ  ሺ7ሻ																																																																																																																																																																													ூேܭ
 
Fracture will occur when Eq. (7) is fulfilled, where ܭூ is the SIF for a crack with the same length as the notch. 
The PM and LM within the TCD provide expressions for the calculus of ܭூே based on the stress distribution 
of [2] as a function of distance, which is only valid for long and narrow notches: 
 

ሻݎሺߪ	 ൌ
ூܭ

ݔߨ2√
ቀ1 ൅

ߩ
ݔ2
ቁ																																																																																																																																																		ሺ8ሻ 

 
where x represents the distance from a point halfway between the notch tip and its centre of radius. This 
expression can be rewritten in terms of the distance (r) from the notch tip, keeping in mind that x = r + 2/ߩ:   
 

ሻݎሺߪ	 ൌ
ூܭ
ߨ√

ቆ
2ሺݎ ൅ ሻߩ

ሺ2ݎ ൅ ሻߩ
ଷ
ଶൗ
ቇ																																																																																																																																													ሺ9ሻ 
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We can apply once again the PM by setting ߪሺݎሻ ൌ ݎ ଴ andߪ ൌ  which means that failure will occur and ,2/ܮ
Eq. (7) will be fulfilled: 
 

ூேܭ	 ൌ 	ߨ√଴ߪ ൥
ඥሺܮ ൅ ሻଷߩ

ܮ ൅ ߩ2
൩																																																																																																																																											ሺ10ሻ 

 
The apparent fracture toughness is equal to the real fracture toughness when 0 = ߩ, so Eq. (10) can be rewritten 
as follows: 
 

ூேܭ	 ൌ ூ஼ܭ
ቀ1 ൅

ఘ

௅
ቁ
ଷ
ଶൗ

ቀ1 ൅
ଶఘ

௅
ቁ
																																																																																																																																																			ሺ11ሻ 

 
The difference between the apparent fracture toughness and the real fracture toughness is a function of the root 
radius normalised by the critical distance. In the case of the LM, stress needs to be calculated as an average 
through a certain distance, from r = 0 to r = 2L as seen in Eq. (5). This requires integrating Eq. (9) in that 
domain, obtaining the following result: 
 

௔௩ߪ	 ൌ
ூܭ

ߨ2√ܮ2
ۉ

2ටۇ
ߩ
2
൅ ܮ2 െ

ߩ

ට
ఘ

ଶ
൅ ܮ2

ی

 ሺ12ሻ																																																																																																																	ۊ

 
The analytical solution for the LM is once again obtained proceeding in the same way as for the PM: 
 

ூேܭ	 ൌ ூ஼ටܭ
ߩ
ܮ4

൅ 1																																																																																																																																																								ሺ13ሻ 

 
According to [1], both Eq. (11) and Eq. (13) offer similar and reliable solutions as long as infinite body 
dimensions can be considered.  
 
 
3. ANALYSED MATERIALS 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Analysed rocks:  a) Floresta sandstone, Sedarenite (4x, crossed Nicol); b) Moleano limestone, 
Intrasparitic-pelsparitic or grainstone (4x, crossed Nicol); c) Macael marble (4x, parallel Nicol); d) Italian 

marble (4x, crossed Nicol). 
 
3.1. Floresta Sandstone (F) - classification: sedarenite 
 
(F) is a sedarenite that consists of abundant carbonated grains and quartz (monocrystalline, polycrystalline and 
chert grains) (Figure 3a). Carbonates [C] are mainly subrounded, medium size (250-500 µm) and consist of 

b) c) d) a) 
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intraclastic grains (mudstone texture), sparitic crystals and dolomite. Quartzes [Q] are mainly subrounded and 
subangular shaped, angular occasionally, and sizes varies in the range of medium and very fine grain (62-500 
µm). Large packing and dissolution voids [V] are common, cement [Sp] is very scarce and depositional 
structures are not recognizable. 
 
3.2. Moleano Limestone (C) - classification: intrasparitic – pelsparitic limestone [22] or grainstone [23] 
 
(C) is a limestone that consists of intraclasts, bioclasts, pellets and sparite crystals (Figure 3b). Intraclasts 
[Intra] show a micritic texture, are subrounded-rounded shaped and the size varies in the range of coarse sand 
and microconglomerate (500–2000 µm). Bioclasts [Bio] are mainly fragments of bivalves and corals, which 
occasionally show internal sparitic recrystallization. Pellets [Pel] are the dominant allochemical component, 
size varies in the range of fine - medium sand (125–500 µm) and always show a micritic internal texture. 
Sparite crystals [Sp] totally cement allochemical components. 
 
3.3. Macael (M) and Carrara/Italian (I) marbles 
 
Marbles show a very well developed granoblastic texture with equidimensional idiomorphs leucocratic 
crystals. Porosity is null (Table 1) in both of them and occasionally it is possible to identify opaque [Op] 
minerals in Macael (Figure 3c). The most important difference between the two types is crystal size. Italian 
marble crystals (Figure 3d) are smaller and better shorted (112–500 µm) than in Macael (200-1180 µm). 
     

Table 1. Some technical properties of each material. 
 (F) (C) (M) (I) 

Bulk density (kg/m3) 2320 2500 2715 2709
Open porosity (%) 16.3 6.4 - - 
Water absorption (%) 4.8 2.7 0.075 0.15
Abrasion resistance (mm) 31 20 22.25 2.65

 
 
4. EXPERIMENTAL PROGRAM AND RESULTS 
 
4.1. Splitting tensile strength tests 
 
A good characterisation of the tensile strength is crucial for the correct application of the TCD, since the 
inherent strength (ߪ଴) is equivalent to the ultimate strength (ߪ௨) in the case of rocks and brittle materials that 
do not experience plastification at the notch tip [1]. For this reason, twelve Brazilian tests were performed on 
each material following [24]. The results are presented in Table 2. 
 

Table 2. Average tensile strength of each material. 
 (F) (C) (M) (I) 

Tensile strength (MPa) 3.38 ± 0.40 7.08 ± 1.05 8.15 ± 1.61 8.69 ± 1.56 
 
4.2. Fracture toughness & apparent fracture toughness 
 
At present, a wide range of testing methods can be found for fracture toughness evaluation in rocks with 
different specimen geometries (e.g. [25-27]). However, none of them has yet stood out enough to oust the other 
methodologies, and even those ‘suggested methods for determining fracture toughness of rock’ [26] specified 
by the International Society for Rock Mechanics (ISRM) have been frequently questioned or modified. 
 
Among the several methodologies collected by [28] for fracture toughness assessment in rocks, [27] was 
selected for this work with some modifications based on [29]. This methodology was first proposed by [30] 
for ceramic materials, and makes use of single edge notch beam (SENB) specimens tested in 4-point bending, 
which ensures pure (without shear forces) and constant bending conditions among the inner loading points.  
The tested specimens consist of parallelepiped beams of 180x30x30 mm (length, width, depth), where a 
straight notch is cut in the middle to a depth of half-height (see Figure 4). Although the original method 
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proposed by [30] establishes a height of 20 mm, 30 mm allows the tests to be performed with larger notch 
radii, while maintaining plane strain conditions. On the other hand, relative crack length (α0), which is defined 
as the ratio between the initial crack length (ܽ଴) and the total height of the specimen (h), has been limited to 
0,45	൑ ଴ߙ ൑	0,55 in order to guarantee a high confinement.  
 

 
Figure 4. Scheme of fracture specimens. Notch radii (ρ) vary from 0.15 mm up to 15 mm. 

 
Despite the simplicity of the bending tests, it should be noted that the rollers are to be designed in such a way 
that they minimise friction between them and the specimens, and reduce possible torsion effects that may arise 
when opposite faces are not perfectly parallel. For this reason, the rollers will allow rotation as well as lateral 
tilting with the aim of improving their support conditions. In addition, the upper head of the device has been 
provided with a spherical joint that allows a greater degree of movement and adjustment, while ensuring that 
the axis of load application always remains centered.  
 
Finally, fracture toughness values (ܭூ஼) for SENB specimens can be calculated with the following formulation 
initially developed and defined by [27,30]: 
	

ூ஼ܭ	 ൌ
ܨ ൉ ܻ
ܾ ൉ ݄ଵ/ଶ

																																																																																																																																																																	ሺ14ሻ 

 
where b is the specimen depth, h is the specimen height, F is the failure load that can be easily determined 
with the applied load and vertical displacement records obtained from the 4-point bending tests, and Y is the 
compliance factor given by the following expression: 
 

	ܻ ൌ
3 ൉ ሺܮ଴ െ ௜ሻܮ ൉ ଴ߙ

ଵ/ଶ ൉ ܺ
2݄ ൉ ሺ1 െ ଴ሻଷ/ଶߙ

																																																																																																																																									ሺ15ሻ 

 
with 
 

ܺ ൌ 1.9887 െ ቈ
ሺ3.49 െ ଴ߙ0.68 െ ଴ߙ1.35

ଶሻ ൉ ଴ߙ ൉ ሺ1 െ ଴ሻߙ
ሺ1 ൅ ଴ሻଶߙ

቉ െ1.32ߙ଴																																																																																	ሺ16ሻ	

 
where ܮ଴ and ܮ௜ are respectively the spans between the supporting rollers and the inner loading points as 
depicted in Figure 4 (in this case, following standards for 4-point bending tests [29],	ܮ଴ = 150 mm and ܮ௜ = 50 
mm), and α0 is the above mentioned relative crack length (ߙ଴ ൌ ܽ଴/݄). 
 
With all this, six tests have been performed with this configuration for each material and notch radius, with a 
constant loading rate of 0.05 mm/min till failure, which is consistent with the limit loading rate of 0.25േ0.05 
MPa/s established at [29]. Basically, cracked specimen formulation is being applied to notched specimens and, 
therefore, apparent fracture toughness (ܭூே) values and not real fracture toughness will be obtained. This will 
allow the limit where notch effect can no longer be negligible to be found. 
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Table 3. Results of  ܭூே and failure load for (F), (C), (M) and (I). 
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F-015-T1-1 193.8 0.42 C-015-T1-1 377.7 0.70 M-015-T1-1 610.8 1.19 I-015-T1-1 302.1 0.67 
F-015-T1-2 175.2 0.37 C-015-T1-2 319.1 0.64 M-015-T1-2 429.7 0.94 I-015-T1-2 418 0.87 
F-015-T1-3 99.4 0.28 C-015-T1-3 485.7 0.94 M-015-T1-3 577.3 1.19 I-015-T1-3 259.5 0.56 
F-015-T1-4 137.4 0.32 C-015-T1-4 303.2 0.65 M-015-T1-4 654.4 1.30 I-015-T1-4 332.4 0.68 
F-015-T1-5 264.5 0.43 C-015-T1-5 337.4 0.68 M-015-T1-5 518.9 1.17 I-015-T1-5 406.2 0.77 
F-015-T1-6 180.7 0.39 C-015-T1-6 355.3 0.78 M-015-T1-6 521.7 1.03 I-015-T1-6 402.4 0.90 
F-05-T1-1 188.9 0.37 C-05-T1-1 340.6 0.86 M-05-T1-1 542 1.11 I-05-T1-1 245.8 0.50 
F-05-T1-2 172.7 0.34 C-05-T1-2 286.7 0.73 M-05-T1-2 551.6 1.10 I-05-T1-2 431.9 0.99 
F-05-T1-3 143 0.28 C-05-T1-3 412.7 0.84 M-05-T1-3 649.8 1.27 I-05-T1-3 358.3 0.71 
F-05-T1-4 188.1 0.36 C-05-T1-4 315.3 0.80 M-05-T1-4 504.2 1.01 I-05-T1-4 413.2 0.86 
F-05-T1-5 177.3 0.34 C-05-T1-5 366 0.76 M-05-T1-5 604 1.22 I-05-T1-5 318.3 0.64 
F-05-T1-6 192.5 0.40 C-05-T1-6 358.9 0.73 M-05-T1-6 608.4 1.25 I-05-T1-6 301 0.74 
F-1-T1-1 133.7 0.28 C-1-T1-1 363 0.78 M-1-T1-1 406.9 0.87 I-1-T1-1 353.2 0.76 
F-1-T1-2 135 0.28 C-1-T1-2 421.9 0.90 M-1-T1-2 559.5 1.22 I-1-T1-2 276.5 0.61 
F-1-T1-3 158.9 0.36 C-1-T1-3 430.5 0.89 M-1-T1-3 528.5 1.30 I-1-T1-3 271.8 0.59 
F-1-T1-4 138.5 0.35 C-1-T1-4 341.6 0.77 M-1-T1-4 566.9 1.21 I-1-T1-4 426.2 0.87 
F-1-T1-5 161.4 0.40 C-1-T1-5 431.3 0.91 M-1-T1-5 539.8 1.31 I-1-T1-5 327.6 0.68 
F-1-T1-6 187.5 0.41 C-1-T1-6 478.3 1.01 M-1-T1-6 528.1 1.28 I-1-T1-6 347.4 0.71 
F-2-T1-1 161.7 0.37 C-2-T1-1 398.6 0.88 M-2-T1-1 605.9 1.24 I-2-T1-1 351.4 0.83 
F-2-T1-2 169.3 0.38 C-2-T1-2 318 0.70 M-2-T1-2 625.7 1.43 I-2-T1-2 329.8 0.78 
F-2-T1-3 215.9 0.45 C-2-T1-3 400.2 0.90 M-2-T1-3 455.6 1.04 I-2-T1-3 382.4 0.92 
F-2-T1-4 208.4 0.42 C-2-T1-4 402.2 0.88 M-2-T1-4 569.5 1.27 I-2-T1-4 308.9 0.64 
F-2-T1-5 179.1 0.39 C-2-T1-5 415.5 0.93 M-2-T1-5 297.4 0.68 I-2-T1-5 374.5 0.90 
F-2-T1-6 163.7 0.37 C-2-T1-6 376.7 0.84 M-2-T1-6 487.7 1.12 I-2-T1-6 293.8 0.70 
F-4-T1-1 137.2 0.32 C-4-T1-1 382.4 0.85 M-4-T1-1 601.5 1.66 I-4-T1-1 406.2 0.95 
F-4-T1-2 197.6 0.44 C-4-T1-2 342.5 0.74 M-4-T1-2 594.1 1.16 I-4-T1-2 279.9 0.65 
F-4-T1-3 181.7 0.43 C-4-T1-3 388.2 0.86 M-4-T1-3 677 0.94 I-4-T1-3 302.4 0.70 
F-4-T1-4 179.5 0.36 C-4-T1-4 360.2 0.79 M-4-T1-4 703.9 0.68 I-4-T1-4 274.1 0.62 
F-4-T1-5 188.1 0.37 C-4-T1-5 420 0.93 M-4-T1-5 771.1 0.79 I-4-T1-5 302.3 0.71 
F-4-T1-6 176 0.35 C-4-T1-6 324.8 0.72 M-4-T1-6 634 1.00 I-4-T1-6 359.8 0.86 

F-4-T1-1C 205 0.40 C-4-T1-1C 524.5 1.01 M-4-T1-1C 589.7 1.17 I-4-T1-1C 261.2 0.54 
F-4-T1-2C 194 0.40 C-4-T1-2C 355.5 0.68 M-4-T1-2C 700 1.13 I-4-T1-2C 344.5 0.70 
F-4-T1-3C 203 0.40 C-4-T1-3C 591.4 1.16 M-4-T1-3C 730 1.31 I-4-T1-3C 314.2 0.61 
F-4-T1-4C 213.2 0.43 C-4-T1-4C 514.4 0.92 M-4-T1-4C 939.4 1.36 I-4-T1-4C 323 0.64 
F-4-T1-5C 149.9 0.29 C-4-T1-5C 374.7 0.72 M-4-T1-5C 739.4 1.44 I-4-T1-5C 316.6 0.62 
F-4-T1-6C 208.6 0.40 C-4-T1-6C 386.8 0.75 M-4-T1-6C 793.7 1.26 I-4-T1-6C 267.8 0.53 
F-7-T1-1 223.8 0.44 C-7-T1-1 446.2 0.92 M-7-T1-1 589.6 1.15 I-7-T1-1 374.5 0.74 
F-7-T1-2 241.5 0.47 C-7-T1-2 500.3 1.05 M-7-T1-2 700 1.35 I-7-T1-2 309.4 0.62 
F-7-T1-3 211.2 0.42 C-7-T1-3 523 1.04 M-7-T1-3 730 1.42 I-7-T1-3 298.2 0.59 
F-7-T1-4 237.7 0.46 C-7-T1-4 431.8 0.86 M-7-T1-4 939.4 1.79 I-7-T1-4 299.2 0.59 
F-7-T1-5 214.1 0.42 C-7-T1-5 550.3 1.08 M-7-T1-5 739.4 1.37 I-7-T1-5 422 0.85 
F-7-T1-6 246.6 0.47 C-7-T1-6 512.5 1.00 M-7-T1-6 793.7 1.50 I-7-T1-6 425.5 0.84 

F-10-T1-1 201.5 0.40 C-10-T1-1 641.5 1.23 M-10-T1-1 801.9 1.54 I-10-T1-1 488.7 0.98 
F-10-T1-2 190.4 0.37 C-10-T1-2 480.3 0.96 M-10-T1-2 716.5 1.43 I-10-T1-2 384.2 0.77 
F-10-T1-3 214 0.42 C-10-T1-3 436.2 0.89 M-10-T1-3 719.3 1.45 I-10-T1-3 308.7 0.61 
F-10-T1-4 226.2 0.44 C-10-T1-4 456.6 0.92 M-10-T1-4 745.3 1.40 I-10-T1-4 346.8 0.70 
F-10-T1-5 200.6 0.39 C-10-T1-5 399.2 0.80 M-10-T1-5 831.5 1.61 I-10-T1-5 339.8 0.68 
F-10-T1-6 220.9 0.43 C-10-T1-6 450.3 0.91 M-10-T1-6 692.2 1.35 I-10-T1-6 340.1 0.68 
F-15-T1-1 211.1 0.42 C-15-T1-1 395.3 0.80 M-15-T1-1 501 0.99 I-15-T1-1 410 0.83 
F-15-T1-2 225.5 0.44 C-15-T1-2 401.8 0.84 M-15-T1-2 821.3 1.65 I-15-T1-2 405.2 0.85 
F-15-T1-3 213.9 0.44 C-15-T1-3 383.5 0.80 M-15-T1-3 528.9 1.05 I-15-T1-3 391.3 0.79 
F-15-T1-4 188.8 0.38 C-15-T1-4 485 1.03 M-15-T1-4 500.7 1.00 I-15-T1-4 349.6 0.69 
F-15-T1-5 201.5 0.42 C-15-T1-5 391.1 0.81 M-15-T1-5 863.9 1.73 I-15-T1-5 391.4 0.79 
F-15-T1-6 193.9 0.38 C-15-T1-6 525.6 1.10 M-15-T1-6 820.1 1.65 I-15-T1-6 281.7 0.55 
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Table 3 gathers the results of ܭூே for the four analysed rocks with notch radii of 0.15 mm, 0.5 mm, 1 mm, 2 
mm, 4 mm, 7 mm, 10 mm and 15 mm. Those notches with ρ = 0.15 mm can be assumed to behave as cracks 
providing a reasonable approximation to the real fracture toughness despite their finite radius. It can be 
observed how Macael Marble (M) develops the highest values of load-bearing capacity and fracture toughness, 
while Floresta Sandstone (F) shows the smallest values (but with less dispersion) as a consequence of the 
scarce cement between particles and homogeneity in grain size. Rocks are natural materials with large 
variability, and consequently there is an important scatter in the results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Apparent fracture toughness test results and comparison with the TCD (LM) for each material. 
 
Figure 5 presents the experimental results for each material and establishes the best-fit curves (solid lines) and 
calculated curves (dotted lines) in each case, according to Eq. (13), which corresponds to the LM of the TCD. 
The calculated curves consider the averaged apparent fracture toughness values for ρ = 0.15 mm (Eq. (14)) 
and the resulting critical distance L from Eq. (2), while best-fit curves are obtained by fixing the value of the 
apparent fracture toughness to the calculated one and leaving the critical distance L as the only free variable. 
With all this, Table 4 includes the results of the calculated L and ܭூ஼ , as well as the values of L for best-fit 
curves providing least squares. The predictions provided by the PM have also been included in Table 4. 
 

Table 4. Summary of the obtained results for L and ܭூ஼ . 
 (F) (C) (M) (I) 

Calculated ܭூ஼  (MPam1/2) 0.37 0.73 1.14 0.74 
Calculated L (mm) 3.79 3.39 6.19 2.33 
Best fit of L (mm) – LM (fixed ܭூ஼) 9.95 3.99 6.01 - 
Best fit of L (mm) – PM (fixed ܭூ஼) 3.66 2.30 2.85 8.81 

 
According to [31], when ρ/L < 1, the corresponding notch behaves as a crack of the same length, which means 
that notches whose radii are smaller than the obtained L can be analysed by using ordinary fracture mechanics 
without considering notch effects and, therefore, ܭூே ൌ  ூ஼. In the case of rocks, L is of the order of mm, soܭ
notches with significant root radii may behave as cracks. In Floresta Sandstone (F), for example, it can be 
observed that the notch effect is almost negligible up to ρ ≈ 4 mm (Figure 5a), which agrees well with the 
expression of the normalised notch radius (ρ/L < 1). Good agreement between TCD predictions and laboratory 
results is obtained in all the cases except in the Carrara Marble (Figure 5d), where no tendency can be seen. 
This means that the notch effect is not appreciable for the considered notch radii as a consequence of the large 
value of L, so larger radii should be tested in order to appreciate that effect. Besides, noticeable differences 
were seen in the experimental results depending on the block of Carrara Marble (I) from which the specimens 
were extracted, which introduces an important source of variability into the results.  

a) 

c) 

b) 

d) 
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The adjustment between curves becomes less accurate as the notch radius gets larger (see Figures 5a, 5b). This 
is because the range of application of Eq. (13) that corresponds to the LM is limited by the stress distribution 
of [2], which is theoretically only valid for long and narrow notches. However, the predictions provided have 
proved to be reasonable even when this hypothesis is not totally fulfilled, as in the case of Figure 5c. This 
inaccuracy is the main factor responsible for the differences between the calculated and best-fit values of L 
(see Table 4), although consequences due to variations in L are rather limited since this variable is squared in 
Eq. (13). 
 
Finally, the physical meaning of L seems to be related to the corresponding material microstructure [1]. In the 
case of rocks, this correlation is thought to be somehow influenced by the grain size, which plays an important 
role in crack growth acting as an obstacle for propagation. Figure 6 shows, for each material, the range of 
values of L (dashed lines) between the one corresponding to the best-fit of the LM (empty symbols) and that 
calculated by Eq. (2) (filled symbols) Both axes are in millimetres and are represented in a logarithmic scale. 
It seems to indicate the existence of some kind of relationship between both variables, although this is not 
totally clear yet. According to [32], the value of L of a certain material is usually on a range between the mean 
grain size D and ten times this value. This approximation is reasonably fulfilled in most of the analysed rocks. 
The calculated values of L (Eq. (2)) for the Granite and the Carrara Marble are also within the mentioned range, 
although the values obtained by the best-fit curves (LM) of the experimental results are considerably far from 
the expected range in these two cases. In this sense, not only mean grain size but some other aspects like grain 
size density function, porosity and grain composition are likely to affect the resulting critical distance. 
Consequently, all these variables (especially the grain size density function) will be analysed in future research, 
in order to determine their influence on the corresponding value of critical distance L.  
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 6. Relation between grain size and L. Rocks studied at [20] have also been included. 
 

 
5. CONCLUSIONS 
 
This paper aims to analyse notch-type defects in four kinds of rocks with different microstructures and 
characteristics. The study is based on the application of the TCD to the results of an exhaustive experimental 
program that includes 216 SENB specimens tested in 4-point bending conditions, with notch radii (ρ) varying 
from 0.15 mm up to 15 mm.  
 
The obtained values of L allow the load-bearing capacity of any structural component made of these materials 
to be predicted by the TCD approaches (e.g., PM or LM). In fact, predictions provided by LM have proved to 
be reasonable even for blunter notches beyond the application range of Eq. (13). Notches with radii smaller 
than L (which in rocks is of the order of a few mm) behave as cracks, which supports the followed procedure, 
in which similar behaviour for crack and notch-type defects has been assumed for sufficiently limited radii. 
 
Finally, a preliminary microstructural analysis has been performed in order to define the correlation between 
the critical distance and the grain size of each material. However, further research is required as this relation 
does not seem to be sufficiently clear. Other possible variables such as grain size density function, porosity or 
grain composition may also affect the critical distance L. 
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