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Abstract  

The aim of this study was to characterize alterations in vascular structure and mechanics in 

murine mesenteric arteries from obese non-hypertensive mice, as well as their relationship 

with adipokines. Four-week old C57BL/6J male mice were assigned either to a control (C, 

10% kcal from fat) or a high-fat diet (HFD, 45% kcal from fat) for 32 weeks. HFD animals 

weighed 30% more than controls (p<0.001), exhibited similar blood pressure, increased 

leptin, insulin and superoxide anion (O2
.-
) levels, and reduced adiponectin levels and nitric 

oxide (NO) bioavailability. Arterial structure showed an outward remodelling with an 

increase in total number of both adventitial and smooth muscle cells in HFD. Moreover, 

HFD mice exhibited an increased arterial stiffness assessed by -values (C=2.4±0.5 vs 

HFD=5.3±0.8; p<0.05) and aortic pulse wave velocity (PWV, C=3.4±0.1 vs HFD=3.9±0.1; 

p<0.05). -values and PWV positively correlated with leptin, insulin or O2
.- 

levels, whereas 

they negatively correlated with adiponectin levels and NO bioavailabilty (p<0.01). A 

reduction in fenestrae number together with an increase in type-I collagen amount (p<0.05) 

were observed in HFD. These data demonstrate that HFD accounts for the development of 

vascular remodeling and arterial stiffness associated with adipokine dysregulation and 

oxidative stress, independently of hypertension development. 
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1. Introduction 

Obesity is associated with progressive vascular dysfunction leading to elevated morbidity 

and mortality due to early cardiovascular events
1
. Mechanisms of vascular dysfunction 

include vascular remodeling and arterial stiffness, both actively contributing to the 

development of cardiovascular disease
2-4

. 

Obesity has emerged as a potential risk factor for arterial remodeling in both humans and 

rats 
2-5

. In this direction, severe human obesity has been associated with profound structural 

alterations of subcutaneous small resistance arteries
6
. Likewise, studies performed in obese 

Sprague Dawley (SD)
7
, obese Zucker

8 
and diabetic rats

3
 show vascular remodeling of 

middle cerebral and/or mesenteric arteries. Nevertheless, in most cases, the concomitant 

presence of diabetes and hypertension
9
, both linked to vascular remodeling, makes difficult 

to discriminate the role of obesity per se in the development of the observed structural 

abnormalities.  

Chronic alterations in vascular structure may lead to significant changes in mechanical 

properties, such as compliance and distensibility
3
, thus accounting for arterial stiffness, an 

independent risk factor for cardiovascular disease
10

. Obesity is associated with an increase 

in aortic pulse wave velocity (PWV) and/or intrinsic stiffness (assessed by the stress-strain 

relationship) in human subcutaneous small resistance arteries
6, 11-13

, as well as in aorta of 

high-fat/high-sucrose SD
7 

or in genetic models of obesity, i.e. ob/ob mice 
14

 and
 
insulin-

resistant Zucker fa/fa rats
8
. Recent evidence suggests that arterial stiffness associated to 

obesity might appear in the absence or prior to the development of hypertension in patients 

with metabolic syndrome
13

. In obese children, arterial stiffness seems to be influenced by 

body mass index and pulse pressure independently of systolic and diastolic blood pressure 

values
15

. Conversely, weight loss in overweight and obese individuals is associated with a 

reduction in arterial stiffness
7
. In this context, some studies suggest a possible link between 

adipokine levels and the development of arterial stiffness in patients with abdominal 

obesity
16

  or increased adiposity
17

.  

Passive arterial mechanical properties are mainly conferred by collagen, elastin content and 

elastin organization
18, 19

. Enhanced vascular stiffness of resistance arteries has been 

attributed to increases in collagen content
20, 21

, non-fibrous extracellular matrix proteins, 

and adhesion molecules [for review, see
22

], as well as to alterations in elastic fiber 
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organization in the internal elastic lamina
23

. According to this, several studies have shown a 

link between arterial stiffness and abnormal increase in the collagen/elastin ratio in 

hypertension
18, 24-26

. However, very few studies
11, 12

 have been performed in the context of 

obesity, and the role of obesity per se in the development of mechanical abnormalities 

remains to be elucidated.  

In this context, the aim of this study was to prove the hypothesis of a direct link between 

obesity-derived adipokine dysregulation
27, 28

, vascular remodeling and arterial stiffness in 

obesity, without the influence of hypertension as confounding factor. Therefore, we sought 

to characterize structural and mechanical changes in a mouse model of long-term diet-

induced obesity (DIO), which exhibits endothelial dysfunction together with an increase of 

oxidative stress, but does not develop hypertension
29

. We have analyzed in mesenteric 

arteries: i) vascular structure, ii) mechanical properties, iii) elastin content and organization, 

iv) type I and III collagen content, iv) the correlation between adipokine dysregulation and 

arterial stiffness and v) the correlation between oxidative stress and arterial stiffness. 
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2. Material and methods  

2.1. Animals and dietary treatment 

Four-week old male C57BL/6J mice (Harlan, Spain) weighing 16-18 g were housed under 

controlled light (12-hour light/dark cycles from 8:00 am to 8:00 pm) and temperature (22-

24ºC) conditions with standard food and water ad libitum. After one week, animals with 

similar average body weight, were divided into two groups and housed 8-10 per cage and 

assigned either to a control (C) or to a high-fat diet (HFD). Control (D12450B, 10 kcal % 

fat, 70 kcal % carbohydrates and 20 kcal % protein; 3.85 kcal/g) and high-fat (D12451, 45 

kcal % fat, 35 kcal % carbohydrates, 20 kcal % protein; 4.73 kcal/g) diets were supplied by 

Test Diet Limited BCM IPS Ltd (London, UK). HFD and their respective control mice had 

free access to food during 32 ± 1 weeks. The investigation conform the guidelines from 

Directive 2010/63/EU of the European Parliament on the protection of animals used for 

scientific purposes and it was approved by the ethics committee of the University CEU-San 

Pablo (SAF 2009-09714, SAF2011-25303). 

 

2.2. Pulse wave velocity and arterial wave reflection index determination 

On the last day, both carotid and femoral arteries were catheterized under anaesthesia (80 

mg·kg-1 ketamine hydrochloride and 12 mg·kg-1 xylazine hydrochloride, ip) and blood 

pressure waves were recorded in a PowerLab system (ADInstruments). Pulse wave velocity 

(PWV) represents the pressure waveform that travels along the aorta and large arteries 

during each cardiac cycle and it was calculated with the following formulae: D (meters)/Δt 

(seconds), where the time delay (Δt) was measured by using the two pressure waves 

(carotid and femoral) and D was the distance between the two arteries. Arterial wave 

reflection was determined by using arterial pressure waveforms from the right
 
carotid artery 

and the augmentation index (AIx, magnitude of wave reflection) was calculated as 

previously described
30

. After pulse wave determination, anesthetized animals were 

euthanized by decapitation. The mesenteric bed was immediately dissected, blood was 

collected in chilled EDTA-coated polypropylene tubes and plasma samples were frozen at -

80ºC for further analysis. 

 

2.3. Plasma measurements 
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Plasma leptin and adiponectin concentrations were analyzed by specific RIA for murine 

leptin (Linco Research) and adiponectin (Linco Research). Insulin was determined by 

means of a specific EIA kit for mouse insulin (Mercodia). 

 

2.4. Structural and mechanical properties in mesenteric arteries 

Mesenteric bed was removed and placed in Krebs-Henseleit solution (KH, in mM: 115 

NaCl, 4.6 KCl, 2.5 CaCl2, 25 NaHCO3, 1.2 KH2PO4, 1.2 MgSO4, 0.01 EDTA and 11.1 

glucose). A first-order branch of mesenteric artery (MA) was isolated from the mesenteric 

bed and was carefully cleaned of surrounding adipose tissue under a dissecting microscope. 

MAs structural and mechanical properties were studied with a pressure myograph (Model 

P100, Danish Myo-Tech), as previously described
23, 31

.  Briefly, vessels were placed on two 

glass cannulas, secured with surgical nylon suture and vessel length was adjusted so that 

the vessel walls were parallel without stretch. To equilibrate MA segments, intraluminal 

pressure was set at 70 mmHg for 60 min at 37ºC in calcium-free KH (0Ca
2+

; omitting 

calcium and adding 10 mM EGTA), bubbled with carbogen (95% O2 / 5% CO2). 

Thereafter, intraluminal pressure was increased at 20 mmHg intervals (3, 20, 40, 60, 80, 

100, 120, and 140 mmHg), and external and internal diameters (Di0Ca, De0Ca) were recorded 

at each pressure level with a video camera coupled to Myoview software. After maximal 

relaxation in 0Ca
2+

, MA segments were pressure-fixed at 70 mmHg with 4% 

paraformaldehyde (PFA, in 0.2 mol/l phosphate buffer, pH 7.2-7.4) at 37ºC for 45 min and 

stored at 4ºC for confocal microscopy studies. 

From the De0Ca and Di0Ca values we calculated structural [wall thickness, cross-sectional 

area (CSA), and wall-to lumen ratio] and mechanical parameters [incremental distensibility, 

circumferential wall straincircumferential wall stress, andvalues obtainedfromstress-

strain relationship] as described
23

. 

 

2.5. Confocal microscopy  

2.5.1. Confocal microscopy study of nuclei distribution  

Pressure-fixed intact MA arteries were stained with the nuclear dye DAPI (1:500, 

Molecular Probes) for 15 min at room temperature (RT) in the darkness. After washing, the 

arteries were mounted on a slide provided with a small well of spacers to avoid artery 
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deformation, filled with Citifluor (glycerol-antifade agent; Sigma Aldrich) mounting 

medium, and visualized with a Leica TCS SP5 confocal system (Leica Mycrosystems) and 

the cell nuclei in the adventitia, media, and endothelium were visualized at excitation 405 

nm/ emission 410-475 nm. For each artery, a single image was captured in the midpoint of 

the artery with an x20 objective. In addition, three randomly selected regions were 

visualized with an x63 objective zoom 4. In each of the regions, stacks of 1- m-thick serial 

optical sections were taken from the first visible adventitia cell nuclei to the first visible 

endothelial cell nuclei. An additional group of images focusing of the endothelial 

monolayer were captured along the entire segment length. Metamorph images analysis 

software (Universal Imaging) was used for quantification. To allow comparison of C and 

HFD animals, the following calculations were performed on the basic of 1-mm-long 

segments: artery volume (in mm
3
) (volume = wall CSA (mm

2
) x 1 mm); total number of 

adventitial and smooth muscle cells (cell n = n of nuclei per stack x n of stack per artery 

volume). Endothelial cells were quantified in several single images obtained along the 

arterial length and calculated per area, since endothelium is a monolayer. Data are 

expressed as endothelial cell number per luminal surface area of each vessel, which was 

calculated from the internal diameter measured from images captured with the x20 

objective. CSA (m
2
) was calculated on the basis of the wall and lumen measurements.  

 

2.5.2.  Confocal microscopy study of elastin content and organization  

The content and organization of elastin in the external (EEL) and internal elastic lamina 

(IEL) was assessed in intact pressure-fixed MA by fluorescent laser scanning confocal 

microscopy (Leica TCS SP5) as previously described
23, 32

. Arterial segments were mounted 

as described above and they were visualized at a wavelength of the 488 /515 nm. Serial 

optical sections (stacks of images) from the adventitia to the lumen (z step = 0.5 m) and 

the assessment of fenestrated elastic lamella were captured with a x63 objective, zoom 4. 

Three randomly selected regions were studied for quantitative analysis. A minimum of two 

stacks of images of different regions were captured in each arterial segment. All the images 

were taken under identical conditions of laser intensity, brightness and contrast.  

Quantitative analysis was performed with Metamorph images analysis software as 

described
23

. Briefly, from each stack of serial images, individual projections of IEL were 
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reconstructed and total fenestra number, fenestra area were measured. In addition, elastin 

density was estimated from fluorescence intensity values
33

. The EEL was also 

reconstructed and the content of elastin fibres in the image was also quantified (% of fibres 

versus background). 

 

2.5.3.  Confocal microscopy study of determination of collagen fiber content 

Type I and III collagen content was assessed in MA fixed in PFA 4% by 

immunofluorescence. Briefly, arteries were incubated with anti-type I or type III collagen 

antibodies (1:200, Abcam) for 60 min at RT. Segments were washed and incubated with 

Alexa Fluor 647® anti-rabbit IgG (1:200 dilution, 1h, RT, Molecular Probes). Finally, 

nuclei were stained with DAPI. After rinsing, MA segments were mounted as described 

above and visualized with a confocal microscope (SP5 Leica Microsystems) by using x40 

objective zoom 2. A minimum of three regions, were randomly selected. To avoid biased 

selection, the regions were chosen in the DAPI wavelength, as described above. Once 

selected the images were acquired at identical conditions of brightness, contrast, and laser 

power at 633 nm excitation/-640-650 nm emission wavelength (secondary antibody-Alexa 

647) to detect collagen, either type I or type III. Quantitative analysis of collagen content in 

vascular wall was performed with Metamorph images analysis software as follows. An 

extended focus image was reconstructed from the serial images. Thereafter, total and 

background fluorescence intensity values were measured in the reconstructed image. 

Collagen content was then estimated by subtracting the background from the total intensity 

fluorescence values. 

 

2.5.4. Confocal microscopy study of determination of superoxide anion (O2
·-
) 

availability and nitric oxide (NO) bioavailability  

Basal O2
.- 

availability and NO bioavailability were determined with dihidroethidium (DHE, 

3 µM) and 4,5-diaminofluorescein diacetate (DAF-2DA, 10 µM), respectively in MA 

segments fixed in PFA 4%. Both O2
.- 

and NO levels in MA were determined by 

quantification DHE and DAF-2DA fluorescence intensity, respectively in MA as 

previously described
29, 34

.  
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2.6. Statistical analyses  

Results are expressed as mean + SEM and n denotes the number of animals used in each 

experiment. Statistical analyses were performed with Stat View software (SAS Institute, 

EEUU). One-way ANOVA followed by Newman-Keuls post hoc test were used as 

appropriate. Differences were considered statistically significant at p<0.05. 

 

2.7. Chemical compounds 

DHE and DAF-2DA were obtained from Sigma Aldrich, DHE was dissolved in 

dimethylsulfoxide (DMSO) and kept in dark conditions under argon.  
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Results 

Physiological variables and plasma parameters after 32-week HFD 

As previously shown
29, 35

, HFD animals exhibited an increase in body and adipose tissue 

weight as well as in glucose levels, together with an impairment of insulin sensitivity 

(results not shown). No changes were detected in both systolic (C=85.7±6.3 mmHg, 

HFD=90.1±5.5mmHg; p=0.639) or diastolic blood pressure levels (C=63.8±5.1 mmHg, 

HFD=60.6±2.4 mmHg; p=0.644).  

32-wk of HFD induced a 3-fold increase in plasma insulin (Figure 1A; p<0.001) and a 2-

fold increase in plasma leptin concentrations (Figure 1B; p<0.01). However, plasma 

adiponectin levels were significantly lower (Figure 1C; p<0.01) in HFD compared to 

controls. In MA from HFD, basal O2
.-
 levels (Figure 1D; p<0.05) were significantly higher, 

whereas endothelial NO availability (Figure 1E; p<0.001) was significantly lower. 

 

32-week HFD induced a hypertrophic outward remodeling in mesenteric arteries  

Figure 2 shows structural parameters of MA from HFD and control animals mounted on a 

pressure myograph and measured under fully relaxed conditions. Internal and external MA 

diameters were significantly higher after 32-wk of HFD compared with control diet at all 

intraluminal pressure levels (3-140 mmHg) tested (Figure 2A and B; p<0.05). As a result, 

wall-to-lumen ratio was significantly decreased in HFD compared to control animals 

(Figure 2C; p<0.05). Wall thickness was similar in both groups (Figure 2D). 

Confocal microscopy in pressure-fixed segments at 70 mmHg allowed confirming that 

adventitial and medial layer thickness was not different between control and HFD animals 

(data not shown). Total wall CSA was significantly higher after 32-wk of HFD compared to 

control diet (1-ANOVA, F(1,15)=7.318, p<0.05; Figure 3A). These differences were due to a 

significant increase in both the adventitial CSA (1-ANOVA, F(1,16)=4.457; p<0.05) and the 

medial CSA (1-ANOVA, F(1,14)=5.216; p<0.05). Total number of adventitial and smooth 

muscle cells (SMC) were significantly increased in HFD compared with the control group 

(Figure 3B; p<0.05). As result, cell density was not different between experimental groups 

in any layer, although SMC density showed a tendency to be reduced in HFD animals 

(Figure 3C; p=0.081). Endothelial cell density was higher in HFD group, but it did not 

reach statistical significance (Figure 3D; p=0.075), probably due to the fact that luminal 
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surface area was also significantly increased in HFD animals (C=0.27±0.04; 

HFD=0.46±0.06; p<0.05). These data evidenced a hypertrophic outward remodeling after 

32-wk of HFD. 

 

32-week HFD induced an increase in arterial stiffness in mesenteric arteries 

Incremental distensibility was significantly lower at low pressure (20 and 60 mmHg) in 

HFD compared with control animals (Figure 4A). Media stress (Figure 4B) was similar in 

MA from both groups. However, media strain (Figure 4C) was significantly smaller in MA 

from HFD animals than controls. In addition, MA from HFD animals also exhibited a 

decreased elasticity as shown by the leftward shift of the stress-strain relationship and the 

significantly larger -value compared with the control diet (1-ANOVA, F(1,7)=8.848, 

p<0.05; Figure 4D).  

A positive correlation was found between stiffness index  and plasma levels of insulin 

(Figure 5A) or leptin (Figure 5B). A negative correlation was found between MA -value 

and plasma adiponectin levels (Figure 5C). In addition, stiffness index  positively 

correlated with O2
.-  

levels in MA (Figure 5D), but it negatively correlated with arterial NO 

bioavailability (Figure 5E).  

PWV, an index of aortic stiffness, was significantly higher after 32-wk of HFD compared 

with the control diet (C=3.4±0.1m/s vs HFD=3.9±0.2 m/s; 1-ANOVA, F(1,7)=6.354; 

p<0.05). Similarly, data obtained from carotid blood pressure waveform revealed a 

significant increase in AIx in HFD compared with control animals (C=-12.88±4.5% vs 

HFD=13.6±0.3%; p<0.05; supplementary Figure 1A). Interestingly, a negative correlation 

was observed between AIx and both NO bioavailability and p-eNOS/e-NOS expression in 

MA (supplementary Figure 1B and 1C). We also found a positive correlation between 

PWV and insulin (Supplementary Figure 2A) or leptin plasma levels (Supplementary 

Figure 2B), as well as with arterial O2
.-
 levels (Supplementary Figure 2D). By the contrary, 

plasma adiponectin concentrations (Supplementary Figure 2C) and NO bioavailability in 

MA (Supplementary Figure 2E) negatively correlated with PWV.  

 

32-weeks HFD-induced alterations in elastin organization and collagen content 
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In order to assess the role of collagen and elastin in arterial elasticity changes, they were 

analysed in MA by confocal microscopy. Elastin organization in the IEL was altered in MA 

from HFD animals (Figure 6A) that showed a significant reduction (p<0.05) in total 

number of fenestrae than the control group (Figure 6C) without changes in fenestrae area 

(Figure 6B). No differences were found neither in elastin content in the EEL (C=65.6 ± 

5.1% vs HFD=63.06 ± 3.4%; p=0.68) nor in elastin density in the IEL, estimated from 

autofluorescence values (C=68.0±10.4 vs HFD=74.8±9.1; p=0.64).  

HFD significantly increased type I collagen content in the arterial wall (p<0.05, Figure 7A 

and 7B). However, HFD did not affect type III collagen content (Figure 7C and 7D). 

Altogether, these data demonstrate that reduced elasticity in MA from HFD animals results 

from both an increased type I collagen content and alterations in IEL organization.  

Simple regression analysis revealed a positive correlation between type I collagen content 

and plasma insulin (r=0.676; p<0.01) and leptin (r=0.559; p<0.05) concentrations and 

aortic PWV (r=0.786; p<0.01) and a negative correlation with plasma adiponectin levels 

(r=0.57; p<0.05).  
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Discussion 

The present study provides first evidence for the development of arterial stiffness by long-

term high-fat feeding per se independently of hypertension. The observed increase in PWV 

is likely due to an outward remodeling together with an increase in total number of 

adventitial and SMC. Reduced intrinsic vascular elastic properties go along with an 

increase in collagen type I and an alteration in elastin organization. We propose a key 

contribution of adipokine dysregulation and oxidative stress in this process, since vascular 

stiffness correlates with altered adipokine levels and superoxide (O2
.-
)

 
anion levels.  

We observe a hypertrophic outward remodeling in MA from animals fed a long-term high-

fat diet. Similarly, MA from Zucker rats, a model of obesity associated to type 2 diabetes, 

show a hypertrophic outward remodeling
2, 36

. However, these rats show elevated blood 

pressure, which is a strong stimulus for vascular remodeling. In contrast, our DIO model 

does not exhibit hypertension
29

 but is characterized by a progressive development of insulin 

resistance during the onset of obesity
35

. In accordance, hypertrophic outward remodeling 

has been found in type 2 diabetic db/db mice
37

 and in obese humans
6
 in the absence of 

hypertension. Therefore, we might exclude elevated blood pressure as the initiating 

stimulus for remodeling. 

One plausible candidate implicated in the development of obesity-derived hypertrophic 

outward remodeling seems to be oxidative stress. Indeed, excessive reactive oxygen species 

production in MA from Zucker rats might affect the remodeling process by reducing nitric 

oxide (NO) availability, thus accounting for peroxinitrite (ONOO
-
) production and matrix 

metalloproteinase activation, both essential in the remodeling process
38-40

. Interestingly, our 

HFD model also exhibits a significant increase in superoxide (O2
.-
)

 
anion production 

together with a reduced NO bioavailability, thus leading to endothelial dysfunction
29

. 

Hypertrophic outward remodeling can be also attributed to chronic flow alterations, which 

is another stimulus able to modify vascular structural and mechanical properties 
3
. This 

hypothesis is supported by the fact that vascular disorders associated with metabolic 

syndrome involve alterations in local flow supply. In this context, genetic models of obesity 

show a chronic elevation of blood flow in mesenteric resistance arteries
41, 42

, which results 

in a higher lumen diameter and outward remodeling
43

. In addition, chronic increases in 

blood flow are often accompanied by wall hypertrophy to normalize circumferential wall 



 

 

  

 

14 

stress that increases during vessel expansion
43

. This is likely what occurs in our HFD mice, 

where circumferential stress was not different between control and obese mice.  

Obesity is also associated with arterial stiffness in patients determined by PWV 

representing an integrated index of aortic stiffness
11, 12, 44, 45

. Similarly, an increased arterial 

stiffness has been described in conduit arteries from ob/ob mice
14

, Zucker fa/fa rats
8
 and 

humans with insulin resistance
46

. In accordance, MA from our HFD animals exhibit i) 

higher values of both aortic PWV and AIx and ii) a significant increase in the -values 

indicative of elevated intrinsic stiffness of the wall material independently of the geometry. 

Moreover, our results are in the same line as the results obtained by Weisbrod et al. in a 

model of high-fat/high-sucrose feeding, in which arterial stiffness in conduit arteries 

precedes the onset of hypertension
7
.  

Since elastin contributes to arterial biomechanical properties at low pressures
23

, both 

reduced distensibility and the leftward shift of the stress-strain relationship at the low 

pressure range, suggest alterations in this protein in MA from HFD. We did not find 

modifications in elastin content, but a change in elastin organization, characterized by a 

reduction in fenestrae number in the IEL. We have previously demonstrated that a 

reduction in the proportion of fenestrae versus elastin, either due to smaller fenestrae or to 

reduced total number, affects vascular mechanical properties, thus making the vessel 

stiffer
19, 23, 32

. Moreover, IEL organization is more relevant than elastin content as 

contributor to arterial stiffening
23

. These results evidence the role of elastin to the observed 

mechanical alterations in HFD. 

Moreover, alterations in collagen turnover that favor type I collagen synthesis are also 

related to a decreased aortic elasticity
47, 48

. Fibrillar type I/III collagens are the most 

abundant in vascular walls
49

 and they play an important contribution to the rigidity of the 

arterial wall of resistance arteries in hypertension
6, 9, 31, 50

. In this study, MA from HFD 

show augmented content of type I collagen, which comprises 60% of the vascular wall 

collagens 
51

, without changes in type III collagen. Similar findings have been described in 

conduit arteries from a Wistar rat DIO model 
52

.  

Insulin resistance has been proposed as a link between obesity and vascular stiffness. In this 

context, studies in humans show a strong correlation between visceral adipose tissue and 

stiffness index suggesting that aortic stiffness might be mediated through elements of the 
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insulin resistance syndrome 
53

. In addition, elevated circulating insulin levels stimulate 

proliferation and growth of SMC and the increase collagen formation 
54, 55

. According to 

this, we show an increase in adventitial and SMC number, as well as a strong correlation 

between insulin levels and stiffness index  in HFD animals. Therefore, our data support 

the theory of insulin resistance as one possible connexion between obesity and arterial 

stiffness.  

A further question raised by our data concerns the eventual influence of hyperleptinemia 

and/or hypoadiponectinemia on mechanical alterations. We show a positive correlation 

between plasma leptin and stiffness index  or PWV, as well as collagen type I in HFD. 

These results are in agreement with the association between leptin levels and impaired 

arterial distensibility in humans
56

. A possible underlying mechanism for this association 

might be a leptin-induced increase of collagen type I and O2
.- 

levels in vivo. Results in 

cultured VSMC suggest that leptin could participate in vascular remodeling and stiffness 

through the activation of oxidative stress-PI3K/Akt pathway and the production of the 

profibrotic factors TGF-β and CTGF
52

. Accordingly, the correlation between both stiffness 

index  or PWV and O2
.- 

levels (Figure 5 and Supplemental Figure 1), as well as with NOX 

(Supplemental Figure 2) supports the role for oxidative stress in these alterations.  

Hypoadiponectinemia has been associated with a decreased arterial elasticity in both 

hypertensive and diabetic conditions
16, 50, 57

. Moreover, hypoadiponectinemia is associated 

with SMC hypertrophy, as well as collagen accumulation
58, 59

. Accordingly, we also find a 

negative correlation between adiponectin levels and collagen type I in our non-hypertensive 

obese mice, as well as with stiffness index  or PWV. A possible mechanism for the 

described changes might be the decrease in NO availability since hypoadiponectinemia is 

closely associated with endothelial dysfunction in humans
60

 and reduced p-eNOS levels
61

. 

The correlation between stiffness index , PWV and AIx with p-eNOS levels 

(Supplemental Figure 1 and Figure 2) also supports this mechanism. 

 

5. Conclusions 

The present data show that diet-induced obesity per se might account for the development 

of vascular remodeling and arterial stiffness through mechanisms independent of 

hypertension. Since vascular stiffness correlates with adipokine levels, we do suggest a key 
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contribution of adipokine dysregulation in this process. Hyperleptinemia and 

hypoadiponectinemia might initiate the observed alterations in vascular cells and 

extracellular matrix through an increase in oxidative stress. However, further work at 

cellular and molecular level will be required to elucidate the precise mechanisms 

underlying the alteration of arterial mechanical properties. Understanding these 

mechanisms might lead to additional options for prevention and treatment of obesity-

related vascular complications. 
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FIGURE LEGENDS 

Figure 1: Effect of HFD on plasmatic parameters. Plasmatic (A) insulin, (B) leptin and 

(C) adiponectin levels and (D) superoxide anion (O2
.-
) levels and (E) NO bioavailability in 

mesenteric artery (MA) segments of C and HFD animals. O2
.- 

levels were determined by 

quantification DHE fluorescence intensity and NO bioavailability was determined by 

quantification DAF-2DA fluorescence intensity. Data are expressed as mean ± S.E.M. of 

seven determination by group. Statistical analysis was performed by 1-way ANOVA. 

***p<0.001, **p<0.01, *p<0.05, HFD compared with C group. Newman-Keuls test. 

 

Figure 2: Effect of HFD on structural parameters. (A) Internal diameter, (B) external 

diameter, (C) wall-to-lumen ratio and (D) wall thickness-pressure curves in fully relaxed 

MA segments of C and HFD animals, determined with pressure myography. Data are 

expressed as mean ± S.E.M. (n≥5). Statistical analysis was performed by 1-way ANOVA. 

*p<0.05, HFD compared with C group. Newman-Keuls test. 

 

Figure 3: Effect of HFD on wall composition. Diagram bars show (A) layers cross 

sectional area (CSA), (B) total number of cells and (C) cell density in pressure-fixed MA 

segments of C and HFD animals at 70 mmHg and visualized intact with a laser-scanning 

confocal microscope (excitation 405 nm/emission 410-475 nm). Quantification was 

obtained with Metamorph analysis software. All calculations were performed on the basis 

of 1-mm-length segment. Data are expressed as mean ± S.E.M. (n≥5). Statistical analysis 

was performed by 1-way ANOVA. *p<0.05, HFD compared with C group. Newman-Keuls 

test. 

 

Figure 4: Effect of HFD on mechanical parameters. (A) Incremental distensibility-

pressure curve, (B) stress and (C) strain-pressure curves and (D) stress-strain relationships 

with -values obtained from fully relaxed MA segments of C and HFD animals, calculated 

from pressure myography data. Data are expressed as mean ± S.E.M. (n≥5). Statistical 

analysis was performed by 1-way ANOVA. **p<0.01, *p<0.05, HFD compared with C 

group. Newman-Keuls test. 
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Figure 5: Association between adipokines and plasmatic parameters, superoxide 

anion  (O2
.-
) levels and NO bioavailability in mesenteric arteries with arterial stiffness 

(-values). Correlation between values and plasmatic insulin (A), leptin (B) and (C) 

adiponectin concentrations, superoxide anion (O2
.-
) levels (D) and NO bioavailability (E) in 

MA segments of C and HFD animals.  

 

Figure 6: Effect of HFD on elastin organization in the internal elastic lamina (IEL) in 

mesenteric arteries. (A) Representative confocal projections of the IEL of MA segments 

from C and HFD animals. Arteries were pressure-fixed at 70 mmHg and mounted intact on 

a slide. Projections were obtained from serial optical sections captured with a fluorescence 

confocal microscope (x63 oil immersion objective, zoom x4, scale bar = 10m). Diagram 

bars show quantification of (B) fenestrae area and (C) fenestrae number/area by Metamorph 

analysis software. Results are expressed as mean ± SEM of n ≥ 5. *p<0.05, HFD compared 

with C group. Newman-Keuls test. 

 

Figure 7: Effect of HFD on type I and III collagen content in mesenteric arteries. 

Laser confocal microscopic images of type I collagen (A) and type III collagen (C) in MA 

segments from C and HFD animals. Vessels were labeled with DAPI for nuclei (blue), anti-

collagen I/III for type I and III collagen (pink). Projections were obtained from serial 

optical sections captured with a fluorescence confocal microscope (x40 objective, zoom x4, 

scale bar = 25m). Diagram bars show quantification of type I collagen (B) and type III 

collagen (D) by Metamorph analysis software. Results are expressed as mean ± SEM of n ≥ 

5. *p<0.05, HFD compared with C group. Newman-Keuls test. 

 

Supplemental Figure 1: Effect of HFD on arterial wave reflection index. Diagram bars 

show quantification of the augmentation index (AIx, %) calculated by using arterial 

pressure waveforms from the right carotid artery (A). Results are expressed as mean ± SEM 

of n ≥ 4. *p<0.05, HFD compared with C group. Newman-Keuls test. Correlation between 

AIx and NO bioavailability (B) and between AIX and phosphorylated endothelial nitric 

oxide synthase (p-eNOS-Ser
1177

/eNOS expression) (C) in MA segments from C and HFD 

animals.  
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Supplemental Figure 2: Association between adipokines and superoxide anion (O2
.-
) 

levels and NO bioavailability in mesenteric arteries with aortic pulse wave velocity 

(PWV). Correlation between PWV and plasmatic insulin (A), leptin (B), adiponectin (C) 

concentrations, superoxide anion (O2
.-
) levels (D) and NO bioavailability (E) in MA 

segments of C and HFD animals.  

 

Supplemental Figure 3: Association between stiffness (-values) and aortic pulse wave 

velocity (PWV) with NADPH-oxidase activity and phosphorylated endothelial nitric 

oxide synthase (p-eNOS-Ser
1177

/eNOS) expression in mesenteric arteries. Correlation 

between values and NADPH-oxidase activity (A) and p-eNOS-Ser
1177

/e-NOS ratio (B) 

in MA segments of C and HFD animals. Correlation between PWV and NADPH-oxidase 

activity (C) and p-eNOS-Ser
1177

/e-NOS ratio (D) in MA segments of C and HFD animals. 

NADPH-oxidase activity and p-eNOS/eNOS expression was determined in MA segments 

as previously described
29

.  
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