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Summary 

The assessment of genetic differentiation in functional traits is fundamental towards 

understanding the adaptive characteristics of forest species. While traditional phenotyping 

techniques are costly and time-consuming, remote sensing data derived from cameras 

mounted on UAVs (unmanned aerial vehicles) provide potentially valid high-throughput 

information for assessing morphophysiological differences among tree populations. In this 

work, we test for genetic variation in vegetation indices and canopy temperature among 

populations of Pinus halepensis as proxies for canopy architecture, leaf area, photosynthetic 

pigments, photosynthetic efficiency and water use. The inter-population associations between 

vegetation properties and above-ground growth (stem volume) were also assessed. Three 

flights (July-2016, November-2016 and May-2017) were performed in a genetic trial 

consisting of 56 populations covering a large part of the species range. Multispectral (visible 

and near infrared wavelengths), RGB (red, green, blue) and thermal images were used to 

estimate canopy temperature and vegetation cover (VC) and derive several vegetation indices. 

Differences among populations emerged consistently across flights for vegetation cover and 

vegetation indices related to leaf area, indicating genetic divergence in crown architecture. 

Population differences in indices related to photosynthetic pigments emerged only in May-

2017 and were probably related to a contrasting phenology of needle development. 

Conversely, the low population differentiation for the same indices in July-2016 and 

November-2016 suggested weak inter-population variation in the photosynthetic machinery 

of mature needles of P. halepensis. Population differences in canopy temperature found in 

July-2016 were indicative of variation in stomatal regulation under drought stress. Stem 

volume correlated with indices related to leaf area (positively) and with canopy temperature 

(negatively), indicating a strong influence of canopy properties and stomatal conductance on 

above-ground growth at the population level. Specifically, a combination of vegetation 

indices and canopy temperature accounted for about 60% of population variability in stem 

volume of adult trees. This is the first study to propose UAV remote sensing as an effective 

tool for screening genetic variation in morphophysiological traits of adult forest trees. 

 

 

Key-words: Aleppo pine, common garden experiment, functional traits, leaf area, population 

differentiation, spectral imaging, stem volume, stomatal regulation 
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Introduction 

The analysis of genetic variation in functional traits is fundamental towards understanding the 

adaptive properties of forest trees and to forecast responses to ongoing environmental changes 

(Bussotti et al., 2015). Genetic trials are well suited for assessing adaptive variation among 

tree populations (Mátyás, 1996). Traits such as growth or phenology are typically evaluated in 

field trials (i.e. common garden experiments), occasionally in conjunction with functional 

characteristics such as reproductive effort (Santos-del-Blanco et al., 2013), stem hydraulic 

properties or leaf gas exchange (Klein, 2014). However, large-scale phenotyping of forest 

genetic trials is methodologically challenging. The need to implement costly and time-

consuming techniques is often a limitation for extensive phenotyping of adult trees (Ludovisi 

et al., 2017). This constraint impacts negatively on the number of populations and traits that 

can be evaluated simultaneously, and may lead to the inadequate coverage of the suite of 

adaptive and plastic responses that are typical of forest species (Savolainen et al., 2007). 

Conversely, high-throughput phenotyping tools have been developed in plant sciences 

that enable a straightforward evaluation of hundreds of individuals with reduced economic 

and time costs (Großkinsky et al., 2015; Lobos et al., 2017). In this regard, remote sensing 

imagery acquired with unmanned aerial vehicles (UAVs) allows for an efficient 

morphophysiological characterization of a large number of experimental units (Tattaris et al., 

2016). UAV-mounted multispectral and RGB (red, green, blue) cameras can detect light 

reflectance variation, while thermal cameras estimate canopy temperature (Sankaran et al., 

2015). Several vegetation indices can be derived through RGB and multispectral sensors, 

providing information about canopy properties, leaf area, leaf chemical composition and 

photosynthetic efficiency (Casadesús et al., 2007; Fahlgren et al., 2015; Xue & Su, 2017). 

Specific associations between functional traits and vegetation indices have been long 

established and are well described in the scientific literature (e.g., Roberts et al., 2016; Xue & 

Su, 2017). These indices have been shown to be good predictors of physiological performance 

and productivity in field crops (Yu et al., 2016; Gracia-Romero et al., 2017) and forest species 

(Hernández-Clemente et al., 2012). Moreover, thermal imagery provides information on 

canopy temperature that is linked to transpiration and plant water status (Costa et al., 2013; 

Gonzalez-Dugo et al., 2013). UAV-based remote sensing allows for high spatial resolution 

imagery and, therefore, is a promising tool for forest tree phenotyping. Indeed, UAVs are 

already being used for different purposes in forestry, including inventories, species 

classification, spatial gaps quantification, fire monitoring, and pest and pathogen mapping 

(Tang & Shao, 2015; Torresan et al., 2017). To date, however, the potential of UAVs as a tool 



4 
 

for remote sensing assessments of intra-specific differentiation in phenotypic traits remains 

untested in adult forest trees (Ludovisi et al., 2017). 

In this work, we characterise the extent of inter-population differences in functional 

traits related to canopy architecture and tree physiology through high-resolution remote 

sensing data obtained in a common garden experiment. We focus on Aleppo pine (Pinus 

halepensis Mill.), the most widespread conifer of the Mediterranean basin. Aleppo pine is a 

drought-avoidant species that is prevalently distributed in the central-western part of the 

Mediterranean basin, where it provides important ecosystem services and it is widely used for 

reforestation (Pausas et al., 2004; Choury et al., 2017). Due to its circum-Mediterranean 

distribution range, P. halepensis can be found under contrasting growing conditions which, 

coupled with a complex history of demographic contractions and expansions, have shaped 

current intra-specific patterns of genetic variation (Serra-Varela et al., 2017). In particular, 

population differentiation has been reported in this species for many key traits, including 

aerial growth (Schiller & Atzmon, 2009; Voltas et al., 2018), phenology (Klein et al., 2013), 

water uptake patterns (Voltas et al., 2015), hydraulic conductivity (Tognetti et al., 1997) and 

reproductive effort (Climent et al., 2008). 

We hypothesised that (i) morphophysiological properties related to drought resistance 

and inferred through remote sensing data should vary among populations of P. halepensis 

(Otieno et al., 2005; Voltas et al., 2008), and (ii) population differentiation in such properties 

can explain variation in above-ground growth. To test these hypotheses, we used UAV 

imagery as high-throughput phenotyping tool in a genetic trial of this conifer composed of 

adult individuals. More specifically, we sought to (i) assess genetic variation in canopy 

architecture, leaf area, photosynthetic pigments and stomatal regulation in three consecutive 

seasons of the year (summer, autumn, spring) as indicated by differentiation in vegetation 

cover, vegetation indices and canopy temperature, and (ii) explore the associations between 

ecophysiological properties and above-ground growth (stem volume) at the intra-specific 

level.  

 

Material and Methods 

Study site and plant material 

The study was performed in a common garden experiment of P. halepensis located in Altura 

(39°49′29ʹʹN, 00°34′22ʹʹW, 640 m a.s.l.; Castellón province, eastern Spain, Fig. 1A; Fig. S1). 

The site has a mean annual temperature of 13.8°C and mean annual precipitation of 652 mm, 
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of which 19% falls in summer (June to August). These climatic conditions are representative 

of the average values of the species’ distribution range (Fig. 1B). Seeds were collected in 

1995 in 56 natural populations of P. halepensis covering most of the range of the species 

(Supporting Information, Table S1, Fig. S1). Seeds were harvested from 20-30 trees that were 

spaced at least 100 m apart and planted in a forest nursery in Spain. In 1997, one year old 

seedlings were planted systematically (2.5 m spacing within rows and columns) at the study 

site. Four seedlings from each provenance were planted in experimental units consisting of 

linear plots (Fig. 1C). Four replicates were established following a Latinised row-column 

design (John & Williams, 1998) for a total of 896 seedlings (16 per population) tested in the 

trial. Each row had approximately 70 m long corresponding to seven plots and four trees per 

plot. In 2010 (at age 13), height and diameter at breast height were registered per tree, and 

data were used to calculate the stem volume over bark (Vob) following the equation: 

 

Vob = (π/12) × D2 × H                                                                                                              (1)                                                                                                                                                                                                                                                            

 

where D is the diameter at breast height and H is the tree height, assuming the stem to be 

conical. Vob was used as surrogate of total above-ground biomass (Reinhardt et al., 2006). In 

2016, survival was recorded at the plot level with a ground-based visual inspection.                                                                                                   

 

Aerial data collection 

Aerial images of the trial (Fig. 1A) were obtained through a UAV (Mikrokopter OktoXL, 

Moormerland, Germany) flying under remote control at around 100 m of altitude. Three 

different cameras were mounted down-looking on the UAV in consecutive flights done during 

the same day. First, a multispectral camera (MCA12; Tetracam Inc., Chatsworth, CA, US) 

was operated which simultaneously captured 15.6-megapixel images in 10 wavelengths (450 

± 40, 550 ± 10, 570 ± 10, 670 ± 10, 700 ± 10, 720 ± 10, 840 ± 10, 860 ± 10, 900 ± 20, 950 ± 

40 nm) in the visible and near infrared (NIR) regions of the spectrum. An extra sensor, 

incorporated in the multispectral camera, registered incident light (IL), hence resulting in real-

time calibration of reflectance for each of the 10 wavelength images recorded during a flight. 

These images were pre-processed with the Tetracam PixelWrench software (Tetracam Inc., 

Chatsworth, CA, US) in order to correctly align the images. To ensure high quality image 

registration in the pre-processing stage, care was taken to keep forward motion limited to less 

than 5 m s-1 in the UAV flight. The accuracy of the reflectance measurements of the 
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multispectral camera was evaluated in a previous study using the same sensor and UAV 

platform (Kefauver et al., unpublished data). Particularly, the camera records were compared 

with the spectral reflectance of the same plots of a durum wheat trial measured with an ASD 

field spectrometer (ASD, Boulder, CO, USA), resulting in simple correlations varying 

between 0.95 and 0.97 for the 10 wavelengths. Second, a Mirrorless Interchangeable Lens 

Camera (MILC) with an image sensor size of 17.3 × 13.0 mm was used for the acquisition of 

RGB images (Lumix GX7; Panasonic, Osaka, Japan). Images were taken at 16-megapixel 

resolution using a 20-mm focal length. Third, a FLIR (Tau2 640; FLIR Systems, Nashua, NH, 

USA) camera carrying a vanadium oxide uncooled microbolometer equipped with a TEAX 

ThermalCapture module (TEAX Technology, Wilnsdorf, Germany) was employed for the 

acquisition of thermal images. The temperature measurements obtained with the UAV-

mounted thermal camera for a vegetated, a completely white and a completely black surface 

were compared with ground-based measurements of the temperature recorded with an infrared 

thermometer, resulting in a correlation of 0.96.  

The spatial resolution of the photographs was ca. 1, 2.7 and 5.4 cm per pixel in the 

case of RGB, multispectral and thermal cameras, respectively. Images were taken at the rate 

of one every 5 s for the RGB and multispectral cameras, resulting in ca. 120 pictures obtained 

per flight (ca. 10 minutes long). In the case of the thermal camera, images were extrapolated 

from a video with a frame (image) rate of 20 images per second. Flights were done in summer 

(26 July 2016), autumn (17 November 2016) and spring conditions (25 May 2017) in two 

consecutive growing seasons, following a trajectory designed to spatially cover the entire 

study site (Fig. 1A). The flights took place at noon and with a completely clear sky to 

minimize shadow effects and changes in light intensity. Environmental and sun conditions at 

the moment of the flights are reported in Table 1.  

 

Image processing 

For each flight the raw multispectral, RGB and thermal images were combined to produce 

orthomosaic images. The Agisoft PhotoScan Professional software (Agisoft LLC, St. 

Petersburg, Russia) was employed for this purpose using a variable number of images with at 

least 80% overlap. Nine orthomosaics resulted from this process (i.e. three orthomosaics per 

flight – one multispectral, one RGB and one thermal – and three flights) which were used for 

subsequent analyses. The open-source image analysis platform Fiji (Schindelin et al., 2012) 

was used to identify and crop single linear plots (corresponding to four trees) in each 
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orthomosaic (Fig. 1C, 1D). In total, 224 single images (corresponding to the experimental 

units of the trial) were obtained for each flight and imagery (multispectral, RGB and thermal).  

 

Multispectral indices 

A number of vegetation indices (VIs) were derived from multispectral data based on the 

reflectance at 10 wavelengths (Table 2). The VIs were calculated for each pixel using a macro 

code in the Fiji platform, and a mean value per plot was obtained afterwards. The indices are 

linked to different functional traits in relation to the wavelengths used for calculations. 

Several indices (based on red and NIR reflectance) are mainly linked to leaf area, being 

relatively insensitive to leaf chlorophyll content (Roberts et al., 2016; Xue & Su, 2017). 

Specifically, these are: 

• the Normalized Difference Vegetation Index (NDVI), which is broadly used and based 

on the reflectance in red and NIR wavelengths (Rouse et al., 1974);  

• the Enhanced Vegetation Index (EVI, Huete et al., 2002), which is an optimized 

NDVI-based index developed to minimize the noise due to atmospheric reflectance; 

• the Renormalized Difference Vegetation Index (RDVI, Roujean & Breon, 1995);  

• the Optimized-Soil Adjusted Vegetation Index (OSAVI, Rondeaux et al., 1996). 

RDVI and OSAVI were both proposed to minimize the effect of the background (i.e. 

soil) reflectance.  

Alternatively, other indices include the reflectance in the green wavelengths and are 

negatively related to leaf chlorophyll content. These indices are: 

• the Modified Chlorophyll Absorption Ratio Index (MCARI, Daughtry et al., 2000); 

• the Transformed Chlorophyll Absorption Ratio Index (TCARI, Haboudane et al., 

2002).   

However, these indices are also sensitive to background reflectance and can be influenced by 

differences in leaf area (Daughtry et al., 2000). A better estimation of leaf chlorophyll content 

can be obtained by correcting TCARI by an index that accounts for leaf area. In this regard, 

an index related to chlorophyll content and free of the effect of leaf area is: 

• the ratio between TCARI and OSAVI (TCARI/OSAVI, Haboudane et al., 2002; 

Zarco-Tejada et al., 2004).  

Alternative indices related to other leaf pigments and water content are: 

• the Anthocyanin Reflectance Index 2 (ARI2, Gitelson et al., 2001); 

• the Carotenoid Reflectance Index 2 (CARI2, Gitelson et al., 2002); 
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• the Water Band Index (WBI, Peñuelas et al., 1993), which is related to the water 

content of leaves.  

It must be taken into account that the values of vegetation indices, when calculated at the 

whole-plot level, arise as the combination of vegetation characteristics and vegetation cover 

(VC, or percentage of pixels containing vegetation). Phenotypic variation in vegetation 

properties within the canopy that influence such indices could be partly masked by 

phenotypic variation in crown size (i.e. VC). To overcome this issue, we applied a filter to 

distinguish between pixels containing vegetation and pixels containing soil. The filter was 

based on the NDVI index, which was first developed to discriminate between vegetation and 

other surfaces (Richardson & Wiegand, 1977). The reflectance in NIR wavelengths of pure 

soil surface is slightly higher than the reflectance in red wavelengths, resulting in NDVI 

values of 0-0.2. Conversely, the NDVI is higher in vegetation surfaces, due to the high 

absorption in red wavelengths and the high reflectance in NIR wavelengths. Based on this, we 

applied an NDVI threshold of 0.5, considering as vegetated pixels those showing NDVI > 0.5 

(Fig. 1E). The multispectral VIs were recalculated using vegetated pixels as to be 

representative of differences in the properties of the vegetation, excluding differences in VC.  

 

RGB vegetation indices 

While multispectral indices have been used for long time as proxies of specific vegetation 

characteristics, RGB imagery has been only recently proposed as a low-cost alternative for 

plant phenotyping (Kefauver et al., 2017; Gracia-Romero et al., 2018). Indeed, a clear 

association with specific phenotypic traits is still lacking in the scientific literature for many 

RGB-derived VIs. As potential alternative to multispectral indices, several VIs based on 

colour properties and related to the degree of greenness of the image were retrieved from 

RGB images (Casadesús et al., 2007), as described below.  

RGB images corresponding to single experimental units (Fig. 1C) were analysed using 

a version of the Breedpix 2.0 software implemented as a plug-in within Fiji (Casadesús & 

Villegas, 2014). This software calculates VIs on single pixels in each image and then provides 

a mean value per plot. In order to evaluate a wide range of RGB indices, three different 

models representing the colour space in different ways were considered to derive such 

indices. In the HSI (Hue, Saturation, Intensity) model (Judd, 1940), Saturation and Intensity 

describe the grade of purity of the colour and the light intensity, respectively, while Hue 

describes the colour itself in the form of an angle between 0° and 360°, where 0° means red, 



9 
 

60° means yellow, 120° means green and 180° means cyan. Derived from Hue, the Green 

Area (GA) index is defined as the percentage of green pixels in the image (Hue range from 

60° to 180°). Two alternative models to HSI (CIELab and CIELuv) are defined according to 

the International Commission of Illumination (http://www.cie.co.a).  In the CIELab model, 

the a* component represents the green to red range, with a more positive value representing a 

purer red, and a more negative value indicating a greener colour. The b* component defines 

the blue to yellow range, where more positive values are closer to a pure yellow and more 

negative ones are closer to pure blue. In the CIELuv model, the colour space is represented as 

a Cartesian system with two coordinates, u* and v*. The visible spectrum starts with blue at 

the bottom of the space, moving through green in the upper left and to red in the upper right. 

It must be noted that the RGB-derived VIs described above are not calculated based on 

reflectance in specific wavelengths; instead, they are descriptors of the colour space. 

Alternatively, the RGB images can be used to calculate additional indices based on the 

reflectance in different wavelengths of the visible spectrum: the normalized green red 

difference index (NGRDI), which is based on the reflectance in the red and green bands, and 

the triangular greenness index (TGI), which includes also the reflectance in blue bands (Table 

2). 

The NDVI-based filter that was applied to the multispectral images to remove non-

vegetated pixels could not be applied to RGB images due to the different type of imagery. For 

this reason, only whole plot RGB-indices (which includes vegetated and non-vegetated 

pixels) could be calculated. 

 

Thermal images 

Thermal images were used to retrieve information on canopy temperature. Since average plot 

temperature is related to vegetation cover, a filter based on an automatic Otsu’s classification 

(Otsu, 1979) was applied to the thermal images in order to discriminate between vegetated 

and non-vegetated pixels. The algorithm assumes that images contain two classes of pixels 

(ground and vegetation) and automatically finds an optimum threshold (temperature) to 

separate between classes. Based on the pixels classified as “vegetation”, a second estimation 

of vegetation cover was obtained (VCT); these pixels were later used to derive the mean 

canopy temperature of each plot.  

  

http://www.cie.co.a/
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Statistical analyses 

First, we evaluated the presence of significant inter-population variation in vegetation indices, 

vegetation cover and canopy temperature (as proxies of differentiation in canopy architecture, 

leaf area, photosynthetic pigments and water use) for each flight independently. Afterwards, 

the association between UAV-based vegetation characteristics and stem volume was tested. 

Prior to the analyses, plots having three dead trees were discarded, since dead trials could 

strongly bias the performance of neighbouring trees due to reduced competition. These plots 

represented only 2% of the total number of plots and showed strongly deviating values of VIs. 

Also, plots at the edges of the trial might have shown values influenced by reduced 

competition (i.e. border effects). Nevertheless, these plots (7%) were kept in the analyses 

because they did not show up as outliers. In total, 219 plots (corresponding to 818 trees) were 

used for statistical analyses.   

 

Analysis of variance of individual traits  

Stem volume, vegetation indices, vegetation cover and canopy temperature at the plot level 

were subjected to analysis of variance (ANOVA) for linear mixed-effects models in order to 

test for population differences in UAV-based phenotypic traits. ANOVAs were fitted 

independently for each flight date. Stem volume records were log-transformed prior to 

ANOVA to achieve homoscedasticity of residuals. ANOVAs consisted of fixed population, 

replicate and column terms and random column by replicate interaction and row nested to 

replicate terms.  

For those indices showing significant population differences, Spearman’s rank 

correlations involving population means were calculated across flights to check for 

consistency in population ranking.  

 

Relationships between vegetation indices 

The use of RGB-derived vegetation indices is relatively recent compared to multispectral 

imagery. While multispectral VIs based on specific reflectance bands have been linked to 

particular phenotypic traits (Roberts et al., 2016; Xue & Su, 2017), few literature is available 

for many RGB indices considered in this work. In order to compare the information retrieved 

by RGB and multispectral VIs, simple correlations were calculated across populations. 

Moreover, the populations’ least square means of the different vegetation indices and of 

canopy temperature were subjected to Principal Component Analysis (PCA) for each flight 
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date and index type independently (multispectral, multispectral corrected by vegetation cover 

and RGB-derived), and PCA loadings were plotted to summarise the information contained in 

the different variables.  

 

Population-level associations between stem volume and UAV-based imagery information 

When significant population effects were detected, simple correlations involving log-

transformed stem volume and VIs, vegetation cover or canopy temperature were calculated 

for each flight date using population means. This analysis aimed at indirectly test for the 

effects of a number of functional traits related to UAV imagery (canopy architecture, leaf 

area, photosynthetic pigments and water use) on population differentiation in above-ground 

growth. We assumed that the ranking of populations for stem volume remained stable at adult 

stage (age > 10 in P. halepensis), as reported elsewhere for pines (Li & Wu, 2005). Hence, 

growth data obtained in 2010 (at age 13) was compared with UAV imagery records.  

The variability in stem volume across populations explained by vegetation properties 

(vegetation cover, vegetation indices and canopy temperature) was assessed through stepwise 

linear regression in July-2016 and May-2017. This analysis was not performed in November-

2016 due to the lack of reliable VIs estimation (see “Methodological limitations” in the 

Discussion section). The analyses were carried out using a bidirectional (forward and 

backward) elimination procedure based on input and output F probabilities of 0.15. The 

goodness of fit was evaluated considering the coefficient of determination (R2) and the root-

mean-square error (RMSE) of the regression. Different models were tested, either considering 

one particular family of VIs (RGB-derived indices, multispectral indices measured in either 

whole plots or vegetated pixels) or, alternatively, combining RGB-derived and multispectral 

indices. Vegetation cover was also included in the regressions involving multispectral indices. 

In the case of July-2016, the analyses were also performed including canopy temperature in 

the models (canopy temperature was not included in May-2017 because of lack of population 

differentiation for this trait). 

 

Results 

Population variation in UAV-based imagery information and stem growth 

The population term in the ANOVAs was significant (P < 0.05) for many VIs related to 

different functional traits and, also, for log-transformed stem volume (log-Vob, Table 3). 
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Average population values of VIs are reported in Supporting Information for each flight 

(Table S2).  

Most multispectral indices obtained at the plot level showed significant differences 

among populations, with the exceptions of TCARI/OSAVI, which was non-significant 

regardless of flight date. However, significant population differences in vegetation cover 

(VC), which may influence the variation in multispectral VIs, were found regardless of flight 

date (Table 3). Population means for VC varied between 52% and 69% in July-2016, between 

51% and 67% in November-2016, and between 53% and 66% in May-2017. VC estimates 

were consistent across flights, as indicated by significant rank correlations and low absolute 

differences (<10%) at the plot level. Once the multispectral VIs were recalculated considering 

vegetated pixels only, significant population differences emerged for indices related to leaf 

area (i.e. NDVI, OSAVI, RDVI, EVI, MCARI and TCARI) across flight dates (Table 3). For 

those indices related to needle pigment composition (i.e. TCARI/OSAVI, ARI2 and CRI2) 

and water content (i.e. WBI), significant population differences were found only in May-

2017. In the case of RGB-derived VIs, population differences were found in July-2016 (with 

the exception of TGI and Intensity) and May-2017. Population differentiation was also 

observed in November-2016, but only for three indices (a*, u* and GA).  

For thermal data, we could not distinguish between soil and vegetation pixels in 

November-2016 owing to small differences in temperature between soil and canopy. For this 

particular flight date, the mean temperature of the whole plot was used as response variable in 

the ANOVA. In July-2016 and May-2017, VCT was significantly correlated with VC at the 

plot level, even if VCT estimates were usually higher. Based exclusively on vegetated pixels, 

the ANOVA revealed population differences in canopy temperature only in July-2016, while 

population differentiation in temperature was not significant based on whole-plot (in 

November-2016) or vegetated pixels (in May-2017, Table 3). 

For those indices showing population variation in different flights, significant 

Spearman correlations across flight dates indicated consistent population rankings (Table S3). 

Population ranking for vegetation cover was also consistent across flights.  

 

Relationships between vegetation indices 

The relationships between RGB-derived indices and multispectral indices at the population 

level provided information regarding the functional traits that could be potentially inferred by 

RGB imagery. Specifically, most RGB VIs were significantly correlated with the suite of 
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multispectral indices related to leaf area obtained either for whole plots or for vegetated pixels 

only (Supporting Information, Table S4, S5, S6). Exceptions were TGI and Intensity (in July-

2016) and Hue (in May-2017). Correlations between RGB-derived indices and multispectral 

indices related to pigment content (e.g. TCARI/OSAVI as indicator of needle chlorophyll 

content) were poorer and less consistent across flight dates (Supporting Information, Table 

S4, S5, S6). As an exception, TGI and Intensity were significantly correlated (r ≥ 0.55) with 

TCARI/OSAVI in May-2017. Most RGB-derived and multispectral indices were also 

significantly correlated with VC across flight dates at the population level (Table 4).  

The PCA loadings provided insights into the existing relationships among vegetation 

indices (see Fig. 2 for the case of July-2016). For multispectral data, the relationships between 

indices were quite consistent across flights (with the exception of November-2016; results not 

shown), regardless of whether they were calculated on whole plots (Fig. 2A) or on vegetated 

pixels only (Fig. 2B). The indices related to leaf area (i.e., NDVI, RDVI, OSAVI, EVI, 

MCARI and TCARI) grouped together in the plot of loadings, opposite to canopy temperature 

(Fig. 2A; Fig. 2B). In turn, TCARI/OSAVI (informative of chlorophyll content) and WBI (of 

leaf water content) were negatively associated and unrelated to most other indices. Finally, 

ARI2 and CRI2 (informative of anthocyanins and carotenoid leaf content respectively) were 

poorly explained by the first two PCA dimensions. For RGB-derived indices, two patterns of 

associations could be distinguished regardless of flight date (see Fig. 2C for the case of July-

2016). TGI and Intensity clustered together, being independent of the rest of indices, which in 

turn were tightly associated among them.  

 

Population-level associations between stem volume and UAV-based imagery information 

VIs often correlated significantly with log-Vob across populations (Table 4). The 

highest correlations were found in July-2016 and involved multispectral indices related to leaf 

area estimated on vegetated pixels (r ≥ 0.50, Table 4). Significant correlations were often 

observed also in November-2016, regardless of index type. In May-2017, correlations with 

log-Vob were similar across different classes of indices (multispectral or RGB), with the 

exception of multispectral indices related to leaf pigments and water content, which resulted 

poorly correlated with log-Vob (Table 4). Vegetation cover was significantly correlated with 

log-Vob in July-2016, November-2016 and May-2017 (r ≥ 0.27).  

Canopy temperature was negatively correlated with log-Vob across populations in 

July-2016 (Fig. 3). Also, canopy temperature was negatively and significantly correlated with 
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multispectral indices related to leaf area as measured on vegetated pixels (i.e. NDVI, OSAVI, 

RDVI, EVI; r = ≤ - 0.52). To account for the effect of leaf area on the relationship between 

canopy temperature and log-Vob, partial correlations controlling for such indices (NDVI, 

OSAVI, RDVI or EVI) were calculated across populations. These correlations were also 

significant (r ≤ - 0.49). 

Over 60% of the variability in growth was explained by a combination of vegetation 

properties. The best stepwise regression model of population differences in log-Vob was 

obtained in May-2017, and included a combination of multispectral and RGB indices 

measured on vegetated pixels (R2 = 0.63, RMSE = 0.198, Table 5). Alternative regressions 

based on combinations of multispectral VIs showed lower R2 and higher RMSE. In July-

2016, the best predictive model was obtained combining canopy temperature and a 

multispectral index related to leaf area such as EVI (R2 = 0.60, RMSE = 0.278). In general, 

regressions including canopy temperature were better predictors of log-Vob in July-2016, 

regardless of VI. Indeed, canopy temperature alone explained 57% variability among 

populations.  

 

Discussion 

The potential of UAV-derived remote sensing data as phenotyping tool is widely 

acknowledged in plant sciences (Sankaran et al., 2015). In this work, we have proposed a 

straightforward strategy for UAV-based characterisation of population differentiation in key 

functional traits of a forest tree species. Although several UAV-based applications have been 

described in forest sciences (e.g., Hernández-Clemente et al., 2012; Tang & Shao, 2015; 

Torresan et al., 2017), this is to the best of our knowledge the first attempt to apply high-

throughput phenotyping techniques based on aerial imagery in forest genetic trials comprising 

adult trees.   

 

The extent of population differentiation in vegetation indices and canopy temperature as 

proxies of functional traits 

Many multispectral indices measured on the whole plot varied among populations, suggesting 

genetic differentiation in several functional traits. However, these indices were also sensitive 

to variations in vegetation cover, which could have determined population differences for 

these indices (Purevdorj et al., 1999). In particular, the confounding effect of vegetation cover 

on plot-level multispectral indices may explain the lack of population differentiation for some 
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indices (e.g. NDVI, TCARI/OSAVI or CRI2), otherwise relevant when considering only 

vegetated pixels. Indeed, multispectral indices measured on vegetated pixels are free of 

changes in vegetation cover (i.e. canopy width), being representative of variations in other 

canopy properties (Xue & Su, 2017). In general, however, multispectral indices showed 

similar relationships when measured on the whole plot or on vegetated pixels, as revealed by 

PCAs.  

NDVI-related multispectral indices (i.e. OSAVI, RDVI, EVI, MCARI and TCARI) 

measured on vegetated pixels showed significant population variation and similar population 

ranking across seasons, suggesting the existence of constitutive population differences in 

within-canopy characteristics in P. halepensis. As already stressed, these indices have been 

long used as indicators of variation in leaf area (e.g., Roberts et al., 2016; Xue & Su, 2017) 

also at the individual tree level (Berni et al., 2009). These evidences point to the existence of 

population differentiation in the number or area of needles per pixel, thereby indicating 

differences in canopy density as previously reported for other pine species (McRady & 

Jokela, 1996). Population differentiation was also found for vegetation cover across flights. 

Canopy structural properties such as branches’ surface and distribution can impact on crown 

shape and concur with leaf area to determine differentiation in vegetation cover (Baldwin et 

al., 1997; Weiskittel & Maguire, 2006). These findings suggest complex patterns of canopy 

architecture among populations of P. halepensis. Canopy structural properties have significant 

implications in many physiological traits, including foliage surface exposure and total 

radiation absorption (Niinemets, 2010). Reduced leaf area in some populations may also be 

associated to drought resistance as the result of a lower transpiring surface (Eamus et al., 

2000; Otieno et al., 2005). 

MCARI and TCARI take into account the reflectance in the green spectral region at 

550 nm, revealing also potential differences in chlorophyll content of leaves (Daughtry et al., 

2000). However, MCARI and TCARI were probably indicative of differences in leaf area, 

rather than in chlorophyll content, according to population differentiation observed across 

flight dates. This is because significant population differences emerged only in spring for 

TCARI/OSAVI, which is an index specifically informative of leaf chlorophyll content (Zarco-

Tejada et al., 2004; Wu et al., 2008). In this regard, MCARI and TCARI (but also EVI, which 

includes reflectance in the blue band) showed lower, although significant, Spearman’s 

correlations across flights compared to indices that consider only the reflectance in red and 

NIR (i.e. NDVI, OSAVI and RDVI). Other indices related to carotenoid, anthocyanin or 

water content in leaves also showed significant population variation in spring if calculated on 
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vegetated pixels, which reinforces the existence of population differences in needle 

biochemical composition early in the growing season. Contrasting photosynthetic spring 

recovery or different phenology of needle emergence could explain variation in pigments and 

water content among pine populations in spring (Wong & Gamon, 2015). The scarce 

information available on needle phenology in P. halepensis indicates that new needles draw 

apart from the shoot in mid-spring, reaching the final size only in full summer (Weinstein, 

1989). This evidence is consistent with our findings and points to differential needle 

development among populations of P. halepensis. On the other hand, our results indicate a 

lack of genetic differentiation in the photosynthetic apparatus (i.e. photosynthetic pigments) 

of mature needles of P. halepensis, which is consistent with a previous work carried out in the 

same trial suggesting weak differentiation in photosynthetic capacity among populations of P. 

halepensis (Voltas et al., 2008).   

In recent years, RGB imagery has been proposed as cost-effective alternative to 

multispectral records for plant phenotypic characterization (Kefauver et al., 2017; Gracia-

Romero et al., 2018). RGB imagery has limited possibilities for studying physiological 

processes such as gas exchange or leaf biochemistry (Großkinsky et al., 2015). However, 

RGB-derived vegetation indices can be easily obtained from standard cameras and are 

suitable for studying the morphological characteristics of the vegetation. In this work, two 

distinct groups of RGB indices provided contrasting information on functional traits of P. 

halepensis populations. The first group included the Intensity parameter, which is indicative 

of the brightness of the picture, and the TGI index, which has been related to leaf chlorophyll 

content (Hunt et al., 2011). The population differentiation in TGI in spring indicates 

variability in chlorophyll content in needles among populations of P. halepensis during 

spring, as suggested also by some multispectral indices. However, the tight association of TGI 

with Intensity cannot exclude a preponderant effect of pictures’ brightness on TGI variation, 

making the interpretation of this index difficult. Conversely, a second group of indices 

showed significant population variation and consistent genetic ranking across flights. Most of 

these indices are related to the overall “greenness” of the image and have been linked to leaf 

area in field crops (Hunt et al., 2005; Casadesús & Villegas, 2014). In this regard, the strong 

and consistent correlations found at the population level between RGB and multispectral 

indices related to leaf area suggest that RGB indices are indicative of population differences 

in number of needles, in their total surface, or in both factors simultaneously. Our results 

suggest that RGB imagery can be a (partial) alternative to multispectral indices for tree 
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phenotyping with UAV, as already proposed for herbaceous crops (Casadesús et al., 2007; 

Kefauver et al., 2017; Gracia-Romero et al., 2018). 

The population differentiation in canopy temperature observed in summer is indicative 

of divergence in transpiration rate (Gonzalez-Dugo et al., 2013). Disentangling the effects of 

total leaf area and stomatal conductance on canopy temperature is complex, and canopy 

temperature was found to be correlated with vegetation indices related to leaf area. Notably, 

canopy temperature measured in July-2016 was also positively correlated with the carbon 

isotope composition (δ13C) of wood holocellulose for a subset of 25 populations evaluated in 

the same trial by Voltas et al. (2008, Fig. S2). δ13C is a commonly used integrative indicator 

of photosynthetic performance, with higher values implying reduced stomatal conductance in 

the absence of differences in photosynthetic rate (Farquhar et al., 1989). This finding suggests 

that thermal imagery is indicative of variation in both leaf area and stomatal regulation of gas 

exchange at the needle level (Gonzalez-Dugo et al., 2013), and is supportive of population 

differentiation in stomatal conductance in P. halepensis during the peak of summer (Voltas et 

al., 2008).  

 

Relationships between vegetation indices and stem volume 

Volume over bark (Vob) is a good indicator of above-ground growth in P. halepensis as 

height versus diameter allometry is relatively constant among populations of the species 

(Vizcaíno-Palomar et al., 2016). However, genetic differences have been described for P. 

halepensis in the allocation of resources to other functions such as reproduction, or to other 

compartments such as roots (Climent et al., 2008; Cuesta et al., 2010; Voltas et al., 2015). 

Therefore, population differentiation in Vob could be indicative of either contrasting 

strategies in resource allocation or superior performance of specific populations showing 

enhanced growth. We can assume a strong influence of total needle area on Vob as indicated 

by consistent associations between Vob and NDVI-related indices across populations. This 

finding indicates that investment in needles is coupled with enhanced above-ground growth in 

P. halepensis, as already reported for other pines (Vose & Allen, 1988; McDowell et al., 

2007). Vegetation cover was also correlated with Vob, suggesting complex associations 

between canopy architecture, canopy density and above-ground growth at the population 

level. 

A negative relation between canopy temperature and Vob among populations was also 

detected. High canopy temperatures are indicative of decreased transpiration as combination 
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of reduced leaf area and stomatal conductance (González-Dugo et al., 2013). Since partial 

correlations between canopy temperature and stem volume were significant after accounting 

for indices related to leaf area, stomatal regulation is possibly concurring with decreasing 

transpiring area to limit carbon uptake, leading to reduced growth (Fardusi et al., 2016). Thus, 

our results suggest that stomatal regulation is a crucial factor accounting for population 

differentiation in photosynthetic performance of P. halepensis under drought conditions. 

Conversely, low correlations between Vob and pigment-related indices (i.e. TCARI/OSAVI, 

CRI2 and ARI2) indicate a limited influence of needle phenology and development on 

population differentiation in above-ground growth.  

RGB vegetation indices also showed significant correlations with stem volume, 

comparable to those obtained from multispectral indices, at least in May-2017. RGB-derived 

indices have been shown to be good predictors of aerial biomass and yield in crops 

(Casadesús & Villegas, 2014), in some cases outperforming multispectral indices (Kefauver 

et al., 2017; Gracia-Romero et al., 2018). Our results show that they can represent a cost-

effective alternative to multispectral imagery as a surrogate of above-ground biomass in adult 

trees. Finally, the outcome of the stepwise regression analyses indicated that a combination of 

vegetation indices and thermal images can predict up to 60% of population differences in 

stem volume of adult trees. The best predictive models, involving either RGB and 

multispectral indices in May-2017, or a combination of a multispectral index and canopy 

temperature in July-2016, confirmed the concurring role of total leaf area and stomatal 

regulation in determining stem volume of P. halepensis.  

 

Methodological limitations   

UAVs are increasingly used to characterise genotypic variation in crop trials, which usually 

consist of isolated plots that are easily recognizable through aerial imagery (Sankaran et al., 

2015). In the case of genetic trials of forest species, a high tree density along with 

heterogeneous trial conditions can hamper the identification of experimental units, especially 

at adult stages. Moreover, forest trees are characterized by an extreme plasticity in the 

development of the crown, which can unpredictably grow to exploit the available light 

(Purves et al., 2007). In aerial imagery, these issues can lead to important disturbances owing 

to the effects of overlapping crowns of neighbouring plots. We tried to overcome these issues 

by visually delimiting as carefully as possible crown expansions for each individual plot. 
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Another potential caveat is related to the existence of unwanted shading effects, which 

may affect vegetation reflectance and impact on the estimation of indices (Yamazaki et al., 

2009). Indeed, phenotypic variation in tree height could lead to systematic shading of some 

populations. We attempted to minimise this issue by performing flights at noon, but a shading 

influence on these indices cannot be ruled out, especially in November-2016, when the sun 

elevation over the horizon was low. In this regard, intricate relationships among indices, weak 

population differentiation and poor correlations with Vob were observed for this flight date, 

which suggests that autumn results should be taken cautiously. Finally, another possible 

limitation towards a precise phenotyping is that UAV-based imagery retrieves information 

mainly from the top crown of the tree, being less adequate to capture within-crown 

differences in functional characteristics. These differences are indeed relevant in forest 

species (Aranda et al., 2004; Yamazaki et al., 2009). 

 

Concluding remarks 

Plant phenotyping based on UAV remote sensing is coming to an increasing popularity in 

breeding programs for evaluating and selecting crop varieties for improved yield (Sankaran et 

al., 2015; Lobos et al., 2017). Here we assessed patterns of genotypic variability in functional 

traits of adult trees, which is a fundamental step towards the assessment of the adaptive 

potential of forest species to environmental changes (Bussotti et al., 2015). By using well- 

established vegetation indices and aerial imagery, our results point to range-wide population 

differentiation in morphophysiological features related to stem volume in P. halepensis, 

indicating divergent ecophysiological responses and, possibly, changes in resource allocation 

to growth. This study therefore highlights UAV imagery as a valid high-throughput 

phenotypic tool with promise to bridge the gap between the molecular and field 

characterisation of forest tree species, potentially improving the prediction of adaptive 

responses in the context of global change. 
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Supporting Information 

Table S1. Geographic origin of the 56 Pinus halepensis populations tested in the trial. 

Table S2. Average values and standard deviation of vegetation indices, vegetation cover and 

canopy temperature in July-2016, November-2016 and May-2017. 

Table S3. Sperman’s rank correlations between population means of VIs across flights. 

Table S4. Association between RGB and multispectral indices in July-2016. 

Table S5. Association between RGB and multispectral indices in November-2016. 

Table S6. Association between RGB and multispectral indices in May-2017. 

Fig. S1. Map of the origin of the 56 Pinus halepensis populations tested in the trial. 

Fig. S2. Association between canopy temperature in July-2016 and carbon isotope 

composition of wood holocellulose reported in Voltas et al. (2008) 
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Table 1. Environmental and sun conditions at the moment of each flight. Air temperature (T) 

and relative humidity (RH) were measured in situ and used to estimate vapour pressure deficit 

(VPD). Azimut and sun elevation were calculated based on the position of the trial, the period 

of the year and the time of the flight. Sun radiation was retrieved for the time of the flight 

from a meteorological station located ca. 10 km away from the trial.  

 

Variable July 2016 Nov. 2016 May 2017 
T (°C) 33.2 18.6 32.2 
RH (%) 38.8 37.3 23.0 
VPD (kPa) 3.1 1.3 3.7 
Azimut (°) 225 207 232 
Sun elevation (°) 62.8 26.3 63.0 
Sun radiation (W m-2) 846 527 863 
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Table 2. Multispectral and RGB-derived vegetation indices (VIs) considered in this study. For those indices based on specific bands of the light 

spectrum, the formula used for calculation is reported. R indicates the reflectance in a single or in a range of wavelengths (in nm). RGB indices 

were calculated considering a continuous range of wavelengths, while single bands were used for multispectral VIs. The calculation of other indices 

that are not based on the reflectance in specific bands (Intensity, Hue, Saturation, a*, b*, u*, v* and GA) is described in the text.   

Index Descriptor Wavelengths Formula Reference 
Multispectral VIs     
NDVI Leaf area Red, NIR (R840 – R670)/(R840 + R670) Rouse et al., 1973 
OSAVI Leaf area Red, NIR (R840 – R670)/(R840 + R670 + 0.16)×1.16 Rondeaux et al., 1996 
RDVI Leaf area Red, NIR (R840 – R670)/(R840 + R670)^1/2 Roujean & Breon, 1995 
EVI Leaf area Blue, Red, NIR 2.5×(R840 – R670)/[(R840 + 6×R670 – 7.5×R450) + 1] Huete et al., 2002 
MCARI Leaf chlorophyll content; leaf area Green, Red, NIR [(R700 – R670)-0.2×(R700 - R550)]×(R700/R670) Daughtry, 2000 
TCARI Leaf chlorophyll content; leaf area Green, Red, NIR 3×( R700 –  R670)-0.2×( R700 –  R550)×( R700/ R670) Haboudane et al.,2002 
TCARI/OSAVI Leaf chlorophyll content Green, Red, NIR - Haboudane et al.,2002 
ARI2 Anthocyanins content Blue, NIR R840×(1/R550 – 1/R700) Gitelson et al., 2001 
CRI2 Carotenoid content Blue, NIR 1/R550 – 1/R700 Gitelson et al., 2002 
WBI Water content NIR R900 / R950 Peñuelas et al., 1993 
RGB VIs     
NRGDI Leaf area Green, Red (R490:570  – R640:760 )/(R490:570  + R640:760 ) Hunt et al., 2005 
TGI Leaf chlorophyll content Green, Red, Blue -0.5×[(R665:675 – R475:485)×( R670 – R550) – (R665:675 – R445:555)×( R670 – R480)] Hunt et al., 2011 
Intensity - Visible spectrum - Casadesús et al., 2007 
Hue - Visible spectrum - Casadesús et al., 2007 
Saturation - Visible spectrum - Casadesús et al., 2007 
a* - Visible spectrum - Casadesús et al., 2007 
b* - Visible spectrum - Casadesús et al., 2007 
u* - Visible spectrum - Casadesús et al., 2007 
v* - Visible spectrum - Casadesús et al., 2007 
GA - Visible spectrum - Casadesús et al., 2007 
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Table 3. F statistics and P values of the fixed population effect of the ANOVA fitted for each 

vegetation index and flight. 

         July 2016    Nov. 2016 May 2017 
        F P - value  F P - value F P - value 
Multispectral VIs (plot)               

  
NDVI  1.16 0.25 1.51 0.03 1.39 0.07 

  
OSAVI  1.68 0.01 1.49 0.04 1.77 <0.01 

  
RDVI   1.74 <0.01 1.59 0.02 1.91 <0.01 

  
EVI  1.83 <0.01 1.28 0.13 0.85 0.74 

  
MCARI  2.16 <0.01 1.74 <0.01 2.88 <0.01 

  
TCARI  1.86 <0.01 1.44 0.05 2.29 <0.01 

  
TCARI/OSAVI 1.20 0.21 1.00 0.48 1.27 0.13 

  
ARI2  1.67 0.01 1.30 0.11 1.69 <0.01 

  
CRI2  1.45 0.05 1.20 0.21 1.35 0.09 

  
WBI  1.21 0.19 1.12 0.30 1.97 <0.01 

Multispectral VIs (vegetation)             

  
NDVI  1.68 0.01 1.99 <0.01 1.75 <0.01 

  
OSAVI  2.61 <0.01 1.88 <0.01 2.41 <0.01 

  
RDVI   2.72 <0.01 1.95 <0.01 2.60 <0.01 

  
EVI  2.36 <0.01 1.93 <0.01 2.43 <0.01 

  
MCARI  3.26 <0.01 2.01 <0.01 3.48 <0.01 

  
TCARI  2.27 <0.01 1.47 0.04 2.38 <0.01 

  
TCARI/OSAVI 1.20 0.21 1.22 0.18 1.48 0.04 

  
ARI2  1.33 0.10 1.01 0.47 1.86 <0.01 

  
CRI2  1.12 0.29 1.05 0.41 1.69 <0.01 

  
WBI  1.05 0.39 1.07 0.36 2.35 <0.01 

RGB VIs                 

  
NGRDI  1.89 <0.01 1.34 0.09 1.87 <0.01 

  TGI  1.16 0.24 0.22 0.88 1.46 0.05 

  
Intensity  1.15 0.25 0.26 0.81 1.47 0.04 

  
Hue  1.96 <0.01 0.12 1.30 1.43 0.05 

  
Saturation 1.73 <0.01 1.34 0.09 2.01 <0.01 

  
a*  1.91 <0.01 1.59 0.02 2.35 <0.01 

  
b*  1.46 0.04 1.24 0.16 2.10 <0.01 

  
u*  1.61 0.02 1.53 0.03 2.30 <0.01 

  
v*  1.39 0.07 1.25 0.15 2.12 <0.01 

  
GA  2.25 <0.01 1.85 <0.01 2.25 <0.01 

Vegetation cover                 

   
 

1.78 <0.01 1.56 0.02 1.49 0.04 
Canopy temperature*               
        1.54 0.03 1.01 0.47 0.92 0.63 

*only pixels classified as “vegetation” in July-2016 and May-2017; whole-plot temperature (all pixels) in November-

2016. 
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Table 4. Pearson correlation coefficients between population means of vegetation indices (VI) and 

either vegetation cover (VC) or log-transformed stem volume (Vob). Empty cells indicate lack of 

population differentiation for the corresponding VI as found in the ANOVAs. 

Significant correlations are indicated by * (P < 0.05) or ** (P < 0.01) 

  

    VC        Vob 
    July 16 Nov. 2016 May 2017   July 16 Nov. 2016 May 2017 
Multispectral VIs (plot) 

 NDVI - 0.47** -  - 0.35** - 

 OSAVI 0.65** 0.63** 0.72**  0.68** 0.62** 0.59** 

 RDVI  0.62** 0.64** 0.72**  0.69** 0.60** 0.57** 

 EVI 0.54** - -  0.66** - - 

 MCARI 0.44** 0.55** 0.52**  0.65** 0.54** 0.35** 

 TCARI 0.43** 0.64** 0.34*  0.58** 0.57** 0.17 

 TCARI/OSAVI - - -  - - - 

 ARI2 - - -0.31*  - - -0.03 

 CRI2 -0.32* - -0.41**  -0.35** - -0.10 

 WBI - - -0.28*  - - -0.19 
Multispectral VIs (vegetation) 

 NDVI 0.23 0.20 0.54**  0.52** 0.41** 0.60** 

 OSAVI 0.33* 0.26 0.60**  0.69** 0.63** 0.58** 

 RDVI  0.30* 0.23 0.58**  0.69** 0.65** 0.57** 

 EVI 0.34* 0.28* 0.44**  0.70** 0.65** 0.39** 

 MCARI 0.13 0.24 0.31*  0.60** 0.57** 0.28* 

 TCARI 0.21 0.28* 0.22  0.62** 0.66** 0.16 

 TCARI/OSAVI - - -0.26  - - -0.35** 

 ARI2 - - -0.07  - - 0.02 

 CRI2 - - -0.32*  - - -0.12 
  WBI - - -0.39**   - - -0.30* 
RGB VIs 
 NGRDI 0.57** - 0.71**  0.47** - 0.59** 
 TGI - - -0.44**  - - -0.60** 
 Intensity - - -0.45**  - - -0.62** 
 Hue 0.59** - 0.05  0.53** - 0.00 
 Saturation 0.48** - 0.59**  0.60** - 0.57** 
 a* -0.60** -0.50** -0.66**  -0.51** -0.56** -0.49** 
 b* 0.55**  0.62**  0.53** - 0.48** 
 u* -0.52** -0.46** -0.62**  -0.44** -0.37** -0.44** 
 v* - - 0.62**  - - 0.42** 
 GA 0.37** 0.53** 0.68**  0.51** 0.46** 0.49** 
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Table 5. Stepwise multiple linear regression of stem volume (log-transformed) based on the different categories of vegetation indices (multispectral 

on the whole plot [Multispectral P], multispectral on pixels containing vegetation [Multispectral V], or RGB-derived) in July-2016 and May-2017. 

RGB indices were also combined with the two groups of multispectral indices. Only the combination showing the highest R2 (with either 

multispectral indices measured on the whole plot or on pixels containing vegetation) is reported.  

 

a regression performed without considering canopy temperature; b regression including canopy temperature 

 

 
Indices categories Model R2 RMSE 

July 2016a Multispectral P Log(Vob) = 14.44 × OSAVI - 2.85 0.48 0.311 

 
Multispectral V Log(Vob) = 7.02 × OSAVI + 4.68 × EVI + 0.02 × VC - 4.09 0.50 0.314 

 RGB Log(Vob) = 15.49 × Saturation - 1.87 0.35 0.353 

 
RGB + Multispectral P   Log(Vob) = 9.88 × Saturation + 0.30 × u* + 18.09 × OSAVI - 8.35 0.57 0.292 

    July 2016 - Tb Multispectral P Log(Vob) = 6.09 × OSAVI -0.38 × T + 12.88 0.61 0.276 

 
Multispectral V Log(Vob) = 3.90 × EVI - 0.40 × T + 14.06 0.60 0.278 

 RGB Log(Vob) = -0.53 × T + 20.30 0.57 0.287 

 
RGB + Multispectral V   Log(Vob) = 3.90 × EVI - 0.40 × T + 14.06 0.60 0.278 

    May 2017 Multispectral P Log(Vob) = 19.11 × OSAVI – 15.82 × MCARI 3.49 - 3.23 0.40 0.241 

 
Multispectral V Log(Vob) = 12.80 × NDVI + 5.21 × EVI -  11.09 × MCARI – 7.59 0.46 0.235 

 RGB Log(Vob) = 0.77 × NGRDI - 4.12 × Intensity + 0.57 × b* - 1.55 × v* - 6.15 0.57 0.210 

 
RGB + Multispectral V   Log(Vob) = 0.71 × NGRDI - 5.98 × Intensity + 0.60 × b* - 0.69 × v* + 2.43 × GA + 11.93 × MCARI + 6.88 0.63 0.198 
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Figure legends 

 

Figure 1 Aerial images of the genetic trial of P. halepensis considered for this study and main 

characteristics of the 56 populations tested. A) Aerial image of the complete trial; the black line 

represents the approximate trajectory followed by the UAV. B) Mean annual precipitation (Pan) and 

temperature (Tan) for the distribution range (EUFORGEN distribution map 

(http://www.euforgen.org/species/pinus-halepensis/) of P. halepensis (grey dots) calculated in 10’ 

resolution grids from the WorldClim database (period 1960-1990). Temperature and precipitation of 

the site where the 56 populations were located at origin (black dots) and of the trial site (red dot) are 

shown. C) Aerial image of one experimental unit in RGB. D) Aerial image of one experimental unit 

as in C) in infrared (false colour). E) Aerial image of one experimental unit as in C) in infrared, but 

cropped for pixels containing vegetation (NDVI > 0.5). 

 

Figure 2 Component loadings of the Principal Component Analysis for multispectral indices 

measured on whole plot (A), multispectral indices measured on vegetation pixels only (B) and of 

RGB-derived indices (C) plus canopy temperature (T) measured in July-2016 based on population 

means. Abbreviations are as reported in the “Material and Methods” section. 

 

Figure 3 Correlation between canopy temperature (measured on pixels containing vegetation) and 

stem volume (log-transformed) calculated at the population level in July-2016. Codes represent the 

populations tested in the trial as in Supporting Information (Table S1).  

 

http://www.euforgen.org/species/pinus-halepensis/
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Figure 1 (Online colour only) 
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Figure 2  
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 


