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Abstract Malware authors introduced obfuscation tech-

niques to existing malware in order to evade detection

and hide its purposes. As a result, the number of ma-

licious programs has grown in both volume and so-

phistication. Thus, effective categorization of malware

based on its characteristics and behavior is required.

In this paper, malicious software is visualized as gray

scale images since its ability to capture minor changes

while retaining the global structure helps to detect vari-

ations. Motivated by the visual similarity between mal-

ware samples of the same family, we propose a file ag-

nostic deep learning approach for malware categoriza-

tion to efficiently group malicious software into fami-

lies based on a set of discriminant patterns extracted

from their visualization as images. The suitability of

our approach is evaluated against two benchmarks: the
MalImg dataset and the BigData Innovators Gather-

ing. Experimental comparison demonstrates its supe-

rior performance with respect to state-of-the-art tech-

niques.
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1 Introduction

Malware, short for malicious software, refers to software

programs designed to perform any kind of unwanted

or harmful action on a computer system. Malware can

be divided into the following categories, not mutually

exclusive, depending on their purpose:

– Adware. It is designed to automatically render ad-

vertisements. Advertising-supported software often

comes bundled with software and applications and

serves as a revenue tool.

– Spyware. It spies and gathers user information with-

out their knowledge and permission. Spyware pro-

grams are used to record keystrokes, to harvest fi-
nancial data or monitoring user activity.

– Virus. It is capable of reproducing itself and spread-

ing to other computer systems.

– Worm. It exploits vulnerabilities of the operation

system to spread. The major difference between worms

and viruses is the ability of worms to independently

self-replicate and spread while viruses depend on hu-

man activity.

– Trojan. It disguises itself as a benign program to

deceive users.

– Rootkit. It is designed to enable remotely access to

a computer or its software without permission.

– Backdoor. It is designed to bypass system’s security

mechanisms.

– Ransomware. It essentially restricts user access to

the computer by encrypting the files or locking down

the system while demanding a ransom.

– Bot. They are created to automatically perform spe-

cific operations such as DDoS attacks or malware

distribution.
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Moreover, malicious software can be grouped to-

gether into families depending on their behavior and

capabilities and, consequently, these shared character-

istics between samples belonging to the same family

might be used for detection and classification of unseen

programs.

According to McAfee [15] more than 600 million

types of malware were detected during the first quarter

of 2017. The proliferation of malicious software has in-

creased quickly thanks to the utilization of polymorphic

and metamorphic techniques used to evade detection

and hide its malicious purpose. On the one hand, poly-

morphic malware uses a polymorphic engine to mutate

the code while keeping the original functionality intact.

Packing and encryption are the two most common ways

to hide code. On the other hand, metamorphic mal-

ware rewrites its code every time it is propagated to an

equivalent one. Traditionally, antivirus solutions relied

on signature-based and heuristic-based methods. A sig-

nature is an algorithm or hash that uniquely identifies a

specific malware. Heuristics is a set of rules determined

by experts after analyzing the behavior of malware. The

main drawback of both approaches is that the malware

has to be analyzed prior to the creation of these rules

and heuristics. Broadly speaking, there are two kind of

approaches: static analysis and dynamic analysis.

Static analysis consists of examining the code or

structure of a program without executing it. This kind

of analysis can confirm whether a file is malicious, pro-

vide information about its functionality and can also be

used to produce a simple set of signatures. The most

common static analysis approaches are:

– Finding sequences of characters or strings. Search-

ing through the strings of a program is the most sim-

ple way to obtain hints about its functionality. For

instance, you can find strings related to printed mes-

sages, URLs to which the program accesses, the lo-

cation of files modified by the executable and names

of common Windows dynamic link libraries (DLLs).

– Analysis of the Portable Executable File Format.

The Portable Executable(PE) file format is used

by Windows executables, object code and DLLs.

Among the information it includes, the most use-

ful pieces of information are the linked libraries and

functions as well as the metadata about the file in-

cluded in the headers.

– Searching for packed/encrypted code. Malware writ-

ers usually use packing and encryption to make their

files more difficult to analyze. Software programs

that have been packed or encrypted usually contain

very few strings and higher entropy compared to

legitimate programs.

– Disassembling the program, i.e. recovering the sym-

bolic representation from the machine code instruc-

tions.

Dynamic analysis involves executing the program

and monitoring its behavior on the system. Unlike static

analysis, dynamic analysis allows to observe the actual

actions executed by the a program. It is typically per-

formed when static analysis has reached a dead end,

either due to obfuscation and packing, or by having

exhausted the available static analysis techniques. A

survey on automated dynamic analysis techniques and

tools is found in M. Egele et al [6]. Some techniques are:

– Function Call Monitoring. The behavior of the pro-

gram is analyzed by using the traces containing the

sequence of functions invoked by the executable un-

der analysis.

– Function Parameter Analysis. Consists of tracking

the values of parameters and function return values.

– Information Flow Tracking. Analyze how a program

processes data and how data is propagated through

the system.

– Instruction Trace. Analysis of the complete sequence

of machine instructions executed by the program.

However, both static and dynamic analysis tech-

niques have their own drawbacks. Static analysis is faster

but suffers from code obfuscation, techniques used by

malware authors to conceal the malicious purpose of the

program. Dynamic analysis does not need to unpack or

decrypt the executable but is more resource-consuming.

Additionally, both approaches require past detection of

the malware to generate signatures. Unfortunately, such

systems fail to predict new unseen malware and it is

unfeasible to analyze manually every sample received.

Thus, techniques to automatically categorize malware

are required.

Recently, machine learning techniques have been em-

ployed as a solution against malware. The success of

these approaches has increased thanks to: (1) the rise of

commercial feeds of malware; (2) the reduction in cost

of computing power; and (3) the advances made in the

machine learning field. Several methods have been ap-

plied based on features extracted from both static and

dynamic analysis. A review of the most common fea-

tures used by machine learning techniques is presented

in Section 2.

Based on the work of Nataraj et al. [19], in this

paper we present a file agnostic deep learning system

to classify malware into families based on the repre-

sentation of their binary content as gray-scale images.

Our work is based on the observation that samples of

the same family appear to be visually similar while dis-

tinct from samples of other families. To demonstrate
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the suitability of our novel approach we make use of two

publicly available datasets, one containing 9458 samples

of 25 different malware families and a second contain-

ing 10868 samples of 9 different families. Experiments

show that our method is capable of classifying samples

from both datasets with 98.48% and 97.49% of accu-

racy, respectively, outperforming state-of-the-art meth-

ods in the literature.

The rest of the paper is organized as follows: Section

2 discusses the related research. Section 3 describes the

insights from representing malicious software as gray

scale images. Section 4 introduces our deep learning

approach for malware classification. Section 5 evaluates

the performance of our method. Finally, Section 6 con-

cludes with our remarks and future work suggestions.

2 Related Work

The use of machine learning algorithms to address the

problem of malicious software detection and classifica-

tion has increased during the last decade. An overview

is provided in [22,7]. Instead of directly digesting raw

malware, machine learning solutions first extract fea-

tures that provide an abstract view of the software pro-

gram. Then the features extracted are used to train the

model. The type of features can be broadly divided into

two groups just like the types of malware analysis.

Static features are those extracted from the binary

of the malware without executing it. One of the most

common types of features is byte n-grams. An n-gram is

a contiguous sequence of n items from a given sequence

of text. In the work of Tesauro et al. [28] they extracted

a list of byte-sequence trigrams and used an artificial

neural network to classify malware. Similar to byte-

sequence n-grams, approaches in the literature have

used opcodes n-grams [24,4]. An opcode (abbreviated

from operation code) is the portion of machine language

instruction that specifies the operation to be performed.

In particular, D. Yuxin et al. [29] used deep belief net-

works as a feature extractor to generate deep features

to represent executables from their opcodes sequences.

Features can also be extracted from the Portable Exe-

cutable (PE) Header. The PE Header contains informa-

tion about the files themselves such as the associated

dynamically linked libraries and the sections of the pro-

gram and their sizes. For instance, Ravi and Manoharan

et al. [5] proposed a malware detection system based on

Windows API call sequences. In addition, entropy has

proven to be an effective feature to detect malware. The

entropy of a program, refers to the amount of disorder

(uncertainty) or its statistical variation. Entropy has

commonly been used to detect encrypted and packed

executables because these programs often have higher

entropy. For example, in the dataset studied by Lydia

et al. [16], native executables had an average entropy of

5.099 while packed and encrypted executables had an

average entropy of 6.801, 7.175, respectively. Moreover,

Bat-Erdene et al. [3] used entropy analysis to classify

packing algorithms of given unknown packed executa-

bles.

Furthermore, dynamic features are those extracted

by executing and observing the behavior of malware.

Malware API calls have been used to model the be-

havior of malware. In [23], Z. Salehi et al. constructed

dynamic features based on the name of API calls and

each argument and return value recorded in a controlled

environment during runtime. M. Ghiasi et al. [8] pre-

sented a framework for malware detection based on

the changes in register contents. In [27], C.Storlie et

al. presented a spine logistic regression model for mal-

ware detection, trained on the instruction traces ex-

tracted dynamically from computer programs. Addi-

tionally, B.Anderson [2] constructed graphs from the

instruction traces of executables and applied graph ker-

nels to create and compare similarity matrices of differ-

ent computer programs.

Besides, several visualization techniques have been

proposed in the literature to help malware analysis.

Nataraj et al. [19] used image processing techniques

to classify malware according to its visualization as

grayscale images. Their method represented a binary

file as a grayscale image by converting each bit value

into an image pixel. Han et al. [9] converted the images

into entropy graphs. Their system used the bitmap im-

age to calculate the entropy value of each line and gen-

erate an entropy graph. Lastly, Sorokin et al. [25] visual-

ized a given executable using its structural entropy, ob-
tained by dividing a binary into non-overlapping chunks

and computing the entropy for each chunk.

3 Malware Visualization

Our approach is motivated by the results of the exper-

iments of Nataraj et al.[19]. Their work is based on the

observation that images of malware samples from the

same family appear to be similar while distinct from

samples belonging to different families.

3.1 Visualizing Malware as an Image

To visualize a malware sample as an image, every byte

has to be interpreted as one pixel in an image. Then, the

resulting array has to be organized as a 2-D array and

visualized as a gray scale image. In our work, we tried

to keep an aspect ratio of 3:2. Note that the resulting
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gray-scale images will have distinct widths and heights

because the size of each sample is different. Values are

in the range [0,255] (0:black, 255:white).

Fig. 1 shows the representation of samples of mal-

ware belonging to nine different families as gray-scale

images. It can be observed that images of software ex-

ecutables from a given family are similar visually while

distinct from those belonging to a different family. The

main benefit of visualizing a malicious executable as

an image is that the different sections of a binary can

be easily differentiated. In addition, malware authors

only used to change a small part of the code to produce

new variants. Thus, if old malware is re-used to create

new binaries the resulting ones would be very similar.

Additionally, by representing malware as an image it

is possible to detect the small changes while retaining

the global structure of samples belonging to the same

family.

Fig. 1: Gray-scale images of malicious software belong-

ing to various families. Note that the images of malware

belonging to the same family are similar while distinct

from the images of malware from the rest of families.

In most cases, when observed in detail, one can

notice several sections in the program, which usually

have distinct feature patterns. Furthermore, the im-

ages stored in the resources section (.rsrc) of the PE

file are also displayed (See Fig. 2). In addition, with

this kind of representation you can detect where zero-

padding has been applied. Zero-padding is mainly used

for block alignment but malware authors also use it to

reduce the overall entropy of an executable.

Fig. 2: Gray-scale image representation of a malware

sample containing a logo on their resources section

3.2 Texture Analysis and Feature Extraction

Traditional recognition approaches are composed of two

stages: (1) feature extraction, transforming an observed

signal into a robust representation, and (2) classifica-

tion to model decision-making. Consequently, their per-

formance relies heavily on the discriminative power of

the features extracted. Image-based hand-designed fea-

ture extractors in the literature [19,1,18] gather rele-

vant information about an input and eliminate irrele-
vant variabilities. In summary, Nataraj et al. [19] and

Narayanan et al. [18] extracted GIST and PCA fea-

tures, respectively, and Ahmadi et al. [1] extracted both

Haralick and local binary pattern features. Below is a

brief description of the aforesaid methods.

GIST descriptors [21]. Given an image, the process

to compute a GIST descriptor is as follows. First, the

image is convolved with 32 Gabor filters with 8 orienta-

tions and 4 scales. Second, each feature map is divided

into 16 regions of 4x4 values, and then the feature values

are averaged within each region. Last, the 16 averaged

values of all feature maps are concatenated.

PCA [11] features. Principal Component Analysis

is a statistical procedure used for dimensionality reduc-

tion. It uses an orthogonal transformation to convert

a set of observations of n possible correlated variables

into a set of values with m linearly uncorrelated vari-

ables named principal components, where n ≤ m.

Haralick [10] features. Haralick features have been

used for image classification for years. The features are
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calculated by constructing a co-occurrence matrix. Then,

they are computed by using the equations defined by

Haralick such as the angular second-moment, contrast,

correlation, etc.

Local binary pattern [20] features. The local bi-

nary pattern (LBP) feature of a given pixel is computed

as follows. First, an 8 bit binary array is initialized as

0. Then, each pixel is compared with its neighboring

pixels in clockwise direction. If the value of the neigh-

boring pixel is greater or equal 1 is assigned to its corre-

sponding position. This gives an 8 bit binary array with

zeros and ones. The 8-bit binary pattern is converted

to a decimal number and is stored in the corresponding

pixel location in the LBP mask. This process is applied

to all pixels in an image. Once all LBP values have

been calculated, the mask is normalized, resulting in

256 features.

Following recent advances in the machine learning

community, we propose a system that automatically ex-

tracts local and invariant features with convolutional

neural networks. Experiments in Section 5 demonstrate

its superior performance in comparison to the afore-

mentioned methods.

4 Convolutional Neural Networks for Malware

Classification

Convolutional neural networks (CNNs) [14] are a type

of artificial neural network biologically inspired by the

mammals visual cortex [12], whose receptive field com-

prises sub-regions layered over each other to cover the

entire visual field. This type of networks has long been

used in visual recognition tasks such as image classi-

fication or object detection due to its ability to auto-

matically extract discriminant and local features from

images.

The core of a convolutional neural network consists

of one or more convolutional layers and one or more

fully connected layers. In particular, convolutional lay-

ers act as detection filters for the presence of specific

features or patterns present in the data. The first layers

detect lower level features whereas later layers detect

increasingly high level features. On the contrary, fully

connected layers are used at the end of a CNN to com-

bine all the specific features detected by the previous

layers and determine a specific target output. Figure 3

presents an overview of our CNN architecture.

The input of the network is an executable repre-

sented as a grayscale image xw,h,d, where w and h are

the width and the height of the image, respectively,

and d is the depth (d = 1). Following the input layer

are three 4-stage feature extractors which learn hierar-

chical features through convolution, activation, pooling

and normalization layers.

1. Convolution. Convolution is a mathematical op-

eration that takes an input signal of size w × h× d

and a filter of size k × k × d, where k ≤ w, h, and

produces one output signal. The kernel slides over

each value of the input signal, multiplies the corre-

sponding entries of the input signal and the kernel

and adds them up. Figure 4 presents three of the

filters learned in the first convolutional layer. It can

be observed that the features these kernels detect

are high changes in the pixels intensities. In partic-

ular, the convolutional layers are composed of 50,

70 and 70 filters of size 5x5x1, 3x3x50 and 3x3x70

for the first, second and third convolutional layers,

respectively.

2. Activation function. The activation function is

used to signal distinct identification of likely fea-

tures. Specifically, we used the ReLU [17] non-linear

function y(x) = max(x, 0) in all activation layers.

3. Pooling. The pooling operation reduces the spatial

size of the features and provides some sort of ro-

bustness against noise and distortion. We applied

max-pooling with filters of size 2x2x1 with stride

1, which reduces the input signal by half, i.e. if the

input signal’s size is 128x128x1, the output of apply-

ing max-pooling is an output signal of size 64x64x1.

4. Normalization. The input values for different neu-

rons in the layer are normalized using local response

normalization [13] to inhibit and boost the neurons

with relatively larger activations.

At the end of the extractor, the feature maps are flat-

tened and combined to be used as input of the follow-

ing feed-forward layer composed of 256 neurons. Lastly,

the output of the aforementioned layer passes to a soft-

max layer to classify the binary program into its corre-

sponding family. In addition to normalization, to pre-

vent overfitting we employed dropout [26], a regular-

ization mechanism which randomly drops a proportion

of p units during forward propagation and prevents the

co-adaptation between neurons.

5 Evaluation

This section presents an empirical evaluation of the re-

sults obtained by our method in two datasets: (1) the

MalImg dataset [19]; (2) the dataset provided by Mi-

crosoft for the Big Data Innovators Gathering Anti-

Malware Prediction Challenge.
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Fig. 3: Convolutional neural network for classification of malware represented as gray-scale images. It is composed

by 3 convolutional layers followed by one fully-connected layer. The input of the network is a malicious program

represented as a gray-scale image. The output of the network is the predicted class of the malware sample.

Fig. 4: Images of 3 filters randomly selected from the

first convolutional layer

5.1 Experimental Setup

The experiments were run on a single computer with

the following hardware specifications:

– CPU: Intel i7-7700K

– Memory: 32 GB RAM

– GPU: Nvidia GTX 1080 Ti

To estimate the generalization performance of our ap-

proach we used K-fold cross validation. The dataset is

divided into K equal size folds. Of the K subsamples, a

single subsample is retained as the validation data for

testing the model and the remaining subsamples are

used as training data. This procedure is repeated as

many times as there are folds, with each of the K folds

used exactly once as the validation data.

Furthermore, to select the best model, additional

evaluation metrics have been used: precision, recall and

F1 score. This is because accuracy can be a mislead-

ing measure. Sometimes it may be desirable to select

a model with a lower accuracy but with a greater pre-

dictive power on the problem (aka. accuracy paradox).

This occurs when there is as large class imbalance, where

a model can predict the value of the value of the major-

ity class for all predictions and achieve a high classifi-

cation accuracy while making mistakes on the minority

or critical classes.

Precision (P ) is defined as the number of true pos-

itives (Tp) over the number of true positives plus the

number of false positives (Fp).

P =
Tp

Tp + Fp

Recall (R) is defined as the number of true positives

(Tp) over the number of true positives plus the number

of false negatives (Fn).

P =
Tp

Tp + Fn

The F1 score is the weighted average of precision, de-

fined as following:

F1 = 2 · P ·R
P + R

Since our target task is a multi-class classification prob-

lem, we used an adapted version of the score named

macro-averaged F1 score, defined as the average of the

individual F1 scores obtained for each class.

macro F1 =
1

q

q∑
i=1

F i
1

where q is the number of classes in the dataset and F i
1

is the F1 score of class i. Macroaveraging gives equal

weight to each class. Thus, large classes will not domi-

nate over small classes.
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5.2 MalImg dataset

The MalImg dataset was provided by Nataraj et al.

[19] and consists of 9342 gray scale images of 25 mal-

ware families. It contains samples of malicious soft-

ware packed with UPX from different families such as

Yuner.A, VB.AT, Malex.gen!J, Autorun.K and Rbot!gen.

Additionally, there are images of family variants like the

C2Lop.p and the C2Lop.gen!g or the Swizzor.gen!I and

the Swizzor.gen!E. For more details, see Table 1.

Table 1: MalImg: Distribution of Samples

Family Class ID #samples
Adialer.C 1 125
Agent.FYI 2 116
Allaple.A 3 2949
Allaple.L 4 1591
Allueron.gen!J 5 198
Autorun.K 6 106
C2Lop.P 7 146
C2Lop.gen!g 8 200
Dialplatform.B 9 177
Dontovo.A 10 162
Fakerean 11 381
Instantaccess 12 431
Lolyda.AA1 13 213
Lolyda.AA2 14 184
Lolyda.AA3 15 123
Lolyda.AT 16 159
Malex.gen!J 17 136
Obfuscator.AD 18 142
Rbot!gen 19 158
Skintrim.N 20 80
Swizzor.gen!E 21 128
Swizzor.gen!I 22 132
VB.AT 23 408
Wintrim.BX 24 97
Yuner.A 25 800

5.2.1 Results

In order to train the network we downsampled the im-

ages to a fixed size. The width and height of the new

images were set to 256. A lower value did not retain all

the important information (i.e. lost discriminative in-

formation about a family) while higher values only in-

creased the computational time without increasing the

overall accuracy. For instance, if images were downsam-

pled to 28x28 pixels, samples from the Yuner.A and

the Autorun.K families became indistinguishable from

one another and the model failed to classify correctly

any sample belonging to the Autorun.K family. On the

contrary, if images were downsampled to 128x128 pix-

els, the model classified correctly 42.45% of samples

belonging to the Autorun.K family. Finally, if images

are downsampled to 256x256 pixels, the percentage of

(a) Autorun.K (b) Yuner.A

Fig. 5: Autorun.K and Yuner.A samples downsampled

to 256x256 pixels. The left image corresponds to the

gray-scale visualization of a malware sample belonging

to the Autorun.K family while the image in the right

belongs to the Yuner.A family. Notice that both images

are indistinguishable by the human eye.

correctly classified samples belonging to the Autorun.K

family increased to 80.02%. In consequence, the macro-

averaged F1 score increased from 0.948 to 0.958. See

Table 2 and Table 3 for more information.

The overall classification accuracy achieved by our

method for the 25 malware families is higher than the

approach of Nataraj et al., 0.9848 and 0.9718, respec-

tively. As can be observed in Table 3, there were two

major sources of misclassifications. On the one hand,

the model classified incorrectly 21 samples of the Au-

torun.K family as belonging to the Yuner. That is be-

cause both families are compressed with UPX and their

corresponding executables visualized as gray scale im-

ages only differ in the .rsrc section. As can be seen in
Fig. 5, samples from the Autorun.K and Yuner.A fam-

ilies are indistinguishable to the human eye. On the

other hand, the model had problems classifying samples

belonging to variants of the same family, such as Swiz-

zer.gen!E and Swizzer.gen!I. In particular, it only clas-

sified correctly 71% and 62% of their samples. If family

variants are combined as one, the overall accuracy and

F1 score is increased to 0.993 and 0.984, respectively.

Specifically, the following families were grouped in one.

– Allaple.A and Allaple.L as Allaple.

– C2Lop.P and C2Lop.gen!g as C2Lop.

– Lolyda.AA1, Lolyda.AA2, Lolyda.AA3 and Lolyda.AT

as Lolyda.

– Swizzor.gen!E and Swizzor.gen!I as Swizzor.

As observed in Table 4, by grouping the samples of

family variants into a single family, the number of sam-

ples incorrectly classified was reduced. In particular,

the samples misclassified belonging to variants of the

Swizzor family was reduced from 87 to 26.
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Table 2: MalIMG dataset confusion matrix for 10-fold cross validation using images of 128x128 pixels

Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Precision Recall F1 Score
1 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
2 0 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
3 0 0 2949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
4 0 0 0 1591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
5 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
6 0 0 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 0.42 1.0 0.59
7 0 0 0 0 0 0 131 8 0 0 0 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0.94 0.90 0.92
8 0 0 0 0 0 0 4 191 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0.96 0.93 0.95
9 0 0 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
10 0 0 0 0 0 0 0 0 0 162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
11 0 0 0 0 0 0 0 0 0 0 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
12 0 0 0 0 0 0 0 0 0 0 0 431 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
13 0 0 0 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
14 0 0 0 0 0 0 0 0 0 0 0 0 3 181 0 0 0 0 0 0 0 0 0 0 0 0.98 0.99 0.99
15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0 2 0 0 0.98 1.0 0.99
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 158 0 0 0 0 0 0 1 0 0 0.99 1.0 0.99
17 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 134 0 0 0 0 0 0 0 0 0.99 0.99 0.99
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 0 0 0 0 0 0 0 1.0 1.0 1.0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 156 0 1 0 0 0 1 0.99 1.0 0.99
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 1.0 1.0 1.0
21 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 86 38 0 0 0 0.67 0.72 0.69
22 0 0 0 0 0 0 11 2 0 0 0 0 0 0 0 0 0 0 0 0 27 92 0 0 0 0.69 0.67 0.68
23 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 405 0 0 0.99 0.99 0.99
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 1.0 1.0 1.0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 800 1.0 0.93 0.96

Macro-averaged F1 Score = 0,948

Table 3: MalIMG dataset confusion matrix for 10-fold cross validation using images of 256x256 pixels

Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Precision Recall F1 Score
1 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
2 0 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
3 0 0 2949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
4 0 0 0 1591 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
5 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
6 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0.80 1.0 0.89
7 0 0 0 0 0 0 138 6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0.95 0.87 0.88
8 0 0 0 0 0 0 5 192 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0.96 0.94 0.95
9 0 0 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
10 0 0 0 0 0 0 0 0 0 162 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
11 0 0 3 0 0 0 1 0 0 0 376 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.99 1.0 0.99
12 0 0 0 0 0 0 0 0 0 0 0 431 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
13 0 0 0 0 0 0 0 0 0 0 0 0 213 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
14 0 0 0 0 0 0 0 0 0 0 0 0 3 181 0 0 0 0 0 0 0 0 0 0 0 0.98 0.99 0.98
15 0 0 0 0 1 0 0 0 0 0 0 0 0 0 121 0 0 0 0 0 0 0 1 0 0 0.98 1.0 0.99
16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 157 0 0 0 0 0 0 0 0 0 0.99 1.0 0.99
17 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 134 0 0 0 0 0 0 0 0 0.99 0.99 0.99
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 142 0 0 0 0 0 0 0 1.0 1.0 1.0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157 0 1 0 0 0 0 0.99 1.0 0.99
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 1.0 1.0 1.0
21 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0 91 31 0 0 0 0.71 0.71 0.71
22 0 0 0 0 0 0 14 2 0 0 0 0 0 0 0 0 0 0 0 0 32 82 1 0 1 0.62 0.71 0.66
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 406 0 0 0.99 0.99 0.99
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 1.0 1.0 1.0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 800 1.0 0.97 0.98

Macro-averaged F1 Score = 0.958

Table 4: MalIMG dataset confusion matrix for 10-fold cross validation using images of 256x256 pixels with family

variants grouped into a single family. 1:Adialer.C; 2:Agent.FYI, 3:Allaple.A, Allaple.L; 4:Allueron.gen!J; 5:Au-

torun.K; 6:C2Lop.P, C2Lop.gen!g; 7:Dialplatform.B; 8:Dontovo.A; 9:Fakerean; 10:Instantaccess; 11:Lolyda,AA1;

Lolyda.AA2; Lolyda.AA3, Lolyda.AT, 12:Malex.gen!J; 13:Obfuscator.AD; 14:Rbot!gen; 15:Skintrim.N; 16:Swiz-

zor.gen!E, Swizzor.gen!I; 17:VB.AT; 18:Wintrim.BX; 19:Yuner.A

Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Precision Recall F1 Score
1 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
2 0 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
3 0 0 4540 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
4 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
5 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0,92 1.0 0.96
6 0 0 0 0 0 330 0 0 0 0 0 0 0 0 0 0 16 0 0 0.95 0.92 0.93
7 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
8 0 0 0 0 0 0 0 162 0 0 0 0 0 0 0 0 0 0 0 1.0 0.99 0.99
9 0 0 1 0 0 2 0 0 377 0 0 0 0 0 0 0 1 0 0 0.99 1.0 0.99
10 0 0 0 0 0 0 0 0 0 431 0 0 0 0 0 0 0 0 0 1.0 1.0 1.0
11 0 1 0 1 0 0 0 1 0 0 676 0 0 0 0 0 0 0 0 0.99 0.99 0.99
12 0 0 2 0 0 0 0 0 0 0 1 133 0 0 0 0 0 0 0 0.98 0.99 0.98
13 0 0 0 0 0 0 0 0 0 0 0 0 142 0 0 0 0 0 0 1.0 1.0 1.0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 158 0 0 0 0 0 1.0 1.0 1.0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 1.0 1.0 1.0
16 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 234 1 0 0 0.90 0.99 0.94
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 405 0 0 0.99 0.96 0.97
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 1.0 1.0 1.0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 800 1.0 0.99 0.99

Macro-averaged F1 Score = 0.984
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The main advantage of our approach with respect

to the method of Ahmadi et al. is two fold. First, our

classification time is not constrained by the size of the

training set, as it is the k-nearest neighbor algorithm;

i.e. k-nn has to compute the distance from the sample

to be predicted and all training data at each prediction.

Second, as GIST extracts features based on the global

structure of an image if an adversary knows the tech-

nique it could avoid detection by reallocating different

parts of the code. On the contrary, our approach is re-

silient to this technique because convolutional networks

extract local and invariant features from an image and

thus, it would be able to find the patterns indepen-

dently of their position.

5.3 Microsoft Malware Classification Challenge

Microsoft provided a dataset composed of 21741 sam-

ples for the Big Data Innovators Gathering (BIG 2015)

Anti-Malware Prediction Challenge, 10868 for training

and 10873 for testing. Every program in the dataset

has a file containing the hexadecimal representation of

the malware’s binary content and its corresponding as-

sembly file. However, only the label for the samples

belonging to the training dataset is provided. Table 5

shows the distribution of malware programs present in

the training dataset.

Table 5: BIG 2015: Distribution of Samples

Family Class ID #samples
Ramnit 1 1541
Lollipop 2 2478
Kelihos ver3 3 2942
Vundo 4 475
Simda 5 42
Tracur 6 751
Kelihos ver1 7 398
Obfuscator.ACY 8 1228
Gatak 9 1013

5.3.1 Results

Similar to the MalImg dataset, we downsampled the

gray scale images. In particular, images of the BIG

dataset were downsampled to 128x128 pixels because

greater width and height did not improve the perfor-

mance of the classifier. In addition, we performed 5-fold

and 10-fold cross validation to evaluate our model. Ta-

ble 6 and Table 7 show the confusion matrices obtained

for 5-fold cross validation and 10-fold cross validation.

Table 6: BIG 2015 dataset confusion matrix for 5-fold

validation using images of 128x128 pixels

Family 1 2 3 4 5 6 7 8 9 Accuracy
1 1492 7 0 2 2 11 3 19 5 0.968
2 6 2424 0 1 3 10 0 3 31 0.978
3 1 0 2937 0 0 0 4 0 0 0.998
4 2 1 2 461 2 2 1 2 2 0.971
5 3 3 0 4 25 1 0 6 0 0.595
6 10 5 1 3 1 701 1 18 11 0.933
7 2 0 1 0 0 0 392 0 3 0.985
8 36 4 1 13 2 19 5 1144 4 0.932
9 2 6 0 1 0 2 2 2 998 0.985

Table 7: BIG 2015 dataset confusion matrix for 10-fold

validation using images of 128x128 pixels

Family 1 2 3 4 5 6 7 8 9 Accuracy
1 1490 4 2 2 2 9 1 28 3 0.967
2 6 2440 0 0 1 7 0 8 16 0.985
3 0 1 2938 1 0 0 2 0 0 0.999
4 3 0 2 461 2 1 1 3 2 0.971
5 3 2 0 1 29 2 0 5 0 0.690
6 8 6 1 2 0 713 2 10 9 0.948
7 1 0 5 1 0 0 391 0 0 0.982
8 44 4 2 8 2 17 5 1138 8 0.923
9 2 2 0 0 0 6 2 5 996 0.983

Table 8: Performance comparison of various methods

for classification of BIG 2015 training dataset. 1-nearest

neighbor (1-NN). Support vector machines (SVM).

Static feed-forward network (SFN1 & SFN2). Dynamic

feed-forward network (DFN)

Method 5-fold accuracy
Macro-averaged
F1 Score

Haralick features + XGBoost 0.955 -
LBP features + XGBoost 0.951 -
CNN 0.973 0.927

10-fold accuracy
12 PCA features + 1-NN 0.966 0.910
10 PCA features + SVM 0.946 0.864
52 PCA features + SFN1 0.956 0.884
52 PCA features + SFN2 0.942 0.849
52 PCA features + DFN 0.955 0.889
CNN 0.975 0.940

Table 8 presents the results obtained by state-of-

the-art approaches in the literature that had extracted

image-based features to classify malware from the BIG

dataset. To sum up, Narayanan et al. [18] used PCA

to extract the first 10, 12 and 52 principal components

and classify malware using different machine learning

classification algorithms. Moreover, Ahmadi et al. [1]

extracted Haralick and local binary pattern features

from images and trained an ensemble of trees for classi-

fication. Their approaches were evaluated using 5-fold

and 10-fold cross validation, respectively. As can be ob-

served, our method outperformed the rest of approaches

in the literature, achieving 0.973 and 0.975 accuracy,

for 5-fold and 10-fold cross validation, respectively. Fur-

thermore, the average classification time of our approach

is 0,001 seconds. Fig. 6 shows the computational time

of every feature extraction method evaluated. The im-

provement of our method is equal to 99.98%, 98.47%
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Fig. 6: The required time of feature extraction from the grayscale representation for each program. The time in

brackets shows the total time of extraction for all training samples. LBP stands for local binary patterns. IMG

denotes how much time it takes to transform a binary executable into a gray-scale image. PCA 10, PCA 12 and

PCA 52 refer to the number of principal components used. CNN A refers to the time needed to extract the features

by the convolutional network and CNN B refers to the time the networks needs to extract features and classify a

sample.

and 96.06% with respect to the computational time

needed to extract GIST, Haralick and local binary pat-

tern features. Additionally, our method is 67.35%, 68.29%

and 83.13% faster than the calculation of the 10, 12 and

52 principal components.

6 Conclusions

This paper presents a novel file agnostic deep learn-

ing system for classification of malware based on its

visualization as gray-scale images. As far as we know,

it is the first approach to apply deep learning to find

patterns from malware’s binary content represented as

images. The proposed solution has a number of advan-

tages that allow malicious programs to be detected in a

real-time environment. Firstly, it is file agnostic and is

based solely on the binary code of an executable. Sec-

ondly, the transformation of an executable into a gray-

scale image is inexpensive. Thirdly, the prediction time

is minimal. Fourthly, it obtained greater classification

accuracy than all previous methods in the literature

that were based on the representation of malware as

gray-scale images.

6.1 Limitations and Future Work

Despite the fact that our approach was able to outper-

form state-of-the-art methods in terms of accuracy and

classification time, it has some issues that are directly

related to the visualization of malware as grayscale im-

ages. Even though it can be seen that the visualiza-

tion of malware programs belonging to the same family

has similar patterns, this approach has problems with

some samples that have been compressed or encrypted,

which may have a completely different overall structure.

For instance, the visualization of samples from the Au-

torun.K and Yuner.A families are almost equal. To deal

with such cases, we suggest combining the features ex-

tracted by the convolutional neural network with hand-

designed features as input of a machine learning model

based on distinct types of file features [1].
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