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Abstract  

Inserting legumes in low-input innovative cropping systems can represent a good strategy to 

reduce current N fertilizer dependency while enhancing ecosystem services. However, 

although the impact of the use of legumes as cover crops has been broadly studied, very little 

is known about the effects of grain legume-based rotations on soil organic carbon (SOC) and 

nitrogen (SON). A cropping system experiment with three 3-year rotations with different 

levels of inclusion of grain legumes: GL0, GL1 and GL2 (none, one, and two grain legumes, 

respectively), with (CC) or without (BF, bare fallow) cover crops was established in SW 

France (Auzeville) under temperate climate. Durum wheat was present in all the rotations to 

act as an indicator of their performance. Soil organic C and SON were quantified before the 

beginning of the experiment and after 3 and 6 years (i.e. after one and two complete 3-yr 

rotations). Aboveground C and N inputs to the soil, and C and N harvest indexes and grain 

yield of the cash crops were also measured. Inserting grain legumes in the rotations 

significantly affected the amount of C and N inputs and consequently SOC and SON. After 

two cycles of the 3-yr rotation, the GL1 and GL2 treatments showed a greater decrease in 

SOC and SON when compared to GL0. However, the inclusion of cover crops in the 

rotations led to mitigate this loss. Durum wheat produced significantly greater grain yields in 

GL1 when compared to GL0, while GL2 presented intermediate values. In turn, the 

incorporation of cover crops did not reduce C and N harvest indexes or the grain yield of the 

different cash crops. We concluded that, in such conventionally-tilled grain legume-based 

rotations, the use of cover crops was efficient to mitigate SOC and SON losses and then 

increase N use efficiency at the cropping system level without reducing productivity.  

Keywords 

Grain legumes; Cover crop; Rotation; Soil organic carbon; Soil organic nitrogen. 
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1. Introduction 

Agricultural activity faces the challenge of maintaining current productivity while 

minimizing environmental risks in order to attain its sustainability. Nitrogen nutrition is a key 

element to reach this objective due to its implications in crop productivity. Since the 

discovery of the Haber-Bosch process, the anthropogenic fixation of reactive nitrogen has 

doubled the natural terrestrial sources of this element (Fowler et al., 2013). In arable cropping 

systems an overuse of this nutrient has led to major losses such as nitrate leaching to 

groundwater or gaseous emissions to the atmosphere as nitrous oxide (N2O) (Bouwman et al., 

2013). Moreover, substantial quantities of carbon dioxide (CO2) are produced during the 

synthetic fixation of N2 to NH3, given the large energetic requirements of this process 

(Jenkinson, 2001). As a consequence, research efforts must be placed on the design and 

optimization of arable cropping systems in order to better couple crop N needs and nutrient 

availability while reducing current dependence on synthetic N fertilizers.  

The design of low-input innovative cropping systems with the inclusion of legumes in the 

rotations as cash or cover crops is a major tool for reducing N losses and N fertilizer- 

dependence. Crop diversification with legumes not only has advantages in terms of plant N 

nutrition but also contributes to a breakage effect on pest and disease cycles and to the 

development of populations of beneficials for crop defense (Voisin et al., 2014). Moreover, 

the establishment of those cropping systems can improve the current budget of N in areas of 

the world such as Europe, where nitrogen efficiency (being the quotient between the product 

output and the total N inputs in the system) is calculated to be around 36% compared to a 

global average of 50% (Erisman et al., 2011). However, a proper cropping systems design 

must also take into account the effects on soil quality and fertility, natural resource 

conservation and agricultural productivity. 
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Soil organic matter represents one of the main indicators of soil quality and fertility 

(Franzluebbers, 2002). As a consequence, it has a direct impact on plant productivity. Carbon 

sequestration in soils is assumed to be a useful strategy to reduce the concentration of CO2 in 

the atmosphere (Lal, 2004). Recent meta-analyses have summarized the impact of cropping 

intensification and different management practices such as tillage and fertilization on soil 

organic matter (e.g. Luo et al., 2010; Maillard and Angers, 2014; McDaniel et al., 2014). 

Cropping intensification, i.e. the reduction of the bare fallow periods between cash crops, 

usually results in SOC and SON sequestration due to the increase in the amount of C and N 

returned to soil as a result of a longer photosynthesis and improved N cycling by legumes 

(Franzluebbers, 2005; Sainju et al., 2003). In this line, the use of autumn cover crops with the 

ability to scavenge nutrients can lead to the reduction of nitrate leaching to groundwater 

(Brennan and Boyd, 2012; Tosti et al., 2014) and other ecosystem services such as an 

increase in biodiversity (Lal, 2004) and the abatement of soil erosion (Dabney et al., 2001).  

In addition to C and N inputs, one determinant aspect of the cropping system capacity to 

increase SOC and SON is the C:N ratio of crop residues. This ratio is affected by the nutrition 

status of the plants and their phenological stage. The ratio is greater in mature plants as a 

consequence of a reduction in N concentration followed by a diminution of water soluble 

compounds and an increase of more lignified constituents. All the last biochemical attributes 

are directly related to the decomposition of biomass (Justes et al., 2009; Thorup-Kristensen et 

al., 2003) which is faster for crop residues with a low C:N ratio such as the leguminous 

(Sanchez et al., 2004). The addition of easily decomposable plant material to the soil can also 

lead to a priming effect which entails a burst of microbial activity leading to enhanced SOC 

decomposition (Kuzyakov, 2010). Regarding to this, Jensen et al., (2012) pointed out the key 

role of the net N-balance of the soil-plant system as a driver of soil C changes. They also 

suggested that legumes with a high N harvest index such as soybean do not maintain SOC 



6 

 

levels due to the large amount of N that is exported. Moreover, other aspects can also regulate 

the stocks of SOC and SON when legumes are incorporated in the rotations: (i) the inherent 

characteristics of legumes in below-ground biomass production, (ii) the amount and quality 

of root exudates, (iii) the impacts on the microbial community and (iv) the effects on soil 

structure and C and N protection within soil aggregates (Drinkwater et al., 1998).  

In contrast to cereal-based cropping systems, less attention has been paid to the effect of 

cover crop use on SOC and SON in grain legume-based rotations. Therefore, our objective 

was to quantify the impact of the incorporation of grain legumes and cover crops on SOC and 

SON in rotations with an increasing number of grain legumes managed under conventional 

tillage. We hypothesized that the inclusion of cover crops in grain legume-based rotations 

would mitigate the loss of SOC caused by the lower C inputs and C:N ratio of leguminous 

crop residues.  



7 

 

2. Materials and methods 

2.1 Experimental site and treatments 

The study was carried out in one experimental field of the Institut National de la Recherche 

Agronomique (INRA) station in Auzeville (SW France) established in 2003. Site 

characteristics and soil properties at the beginning of the experiment are detailed in Table 1. 

The location represents a temperate climate. Three 3-year rotations with different number of 

grain legumes (GL0, GL1 and GL2; no, one and two grain legumes included in the rotation, 

respectively) with (CC) and without (BF, bare fallow) cover crops were compared, resulting 

in six different cropping systems. The GL0 treatment consisted of a Sorghum (Sorghum 

bicolor L.) – sunflower (Helianthus annuus L.) – durum wheat (Triticum turgidum L.) 

rotation. The GL1 treatment was based on a sunflower – winter pea (Pisum sativum L.) – 

durum wheat rotation while the GL2 treatment consisted of a soybean (Glycine max L.) – 

spring pea – durum wheat rotation. Mustard (Sinapis alba L.), vetch (Vicia sativa L.) and a 

vetch – oat (Avena sativa L.) mixture were used as cover crops. Durum wheat was established 

in all rotations as an indicator of the performance of the different cropping systems studied. A 

conceptual diagram of the six cropping systems studied in the experiment is given in Fig. 1. 

The different cultivars and seeding rates of the cash and cover crops used in each rotation are 

shown in Table 2. Depending on the rotation, the use of cover crops aimed to (i) reduce 

nitrate leaching and (ii) reduce mineral fertilization needs with the use of a legume as a cover 

crop. The present work covers two rotation cycles (i.e. 2003-2006 for the first cycle and 

2006-2009 for the second one). The experiment was laid out with a split-plot design with 

three blocks with the amount of grain legumes in the rotation as the main plot and the cover 

crop treatments as the sub-plot. Sub-plot size was 200 x 15 m. Within each rotation, each 

crop was grown each year in order to take into account the interannual weather variability; 

hence each rotation was replicated three times but started with a different crop. 
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Prior to the establishment of the experiment the field had been devoted to low-input field 

crops production under conventional tillage. Further information regarding the set-up of the 

experiment can be found at Plaza-Bonilla et al., (2015). 

 

2.2 Crop management 

Soil tillage was performed with one pass of rotary harrow to prepare the soil for seeding, 

followed, when needed, by a pass of cultipacker. A disk plow was used to incorporate the 

cover crops into the soil. Moreover, when needed, a pass of moldboard plough was 

performed to 30 cm depth to mechanically control weeds reducing the use of herbicides. 

Durum wheat and winter and spring peas were seeded with a commercial combined seeding 

machine while summer crops (soybean, sunflower and sorghum) were seeded with a 

precision air seeder. Durum wheat was sown in November and harvested within the first 

fortnight of July. Winter pea was sown in December and harvested during June. Spring pea 

was sown during February and harvested late June. Sorghum cycle covered the period from 

late April-beginning of May to late September. Sunflower was sown during the last fortnight 

of April and harvested during September. Finally, soybean was sown the first week of May 

and harvested between late September and early October. Crops were sown at a depth of 2-4 

cm. The distance between rows was 17 and 50 cm for winter and summer crops, respectively. 

Mechanical hoeing was performed one or two times on sorghum and sunflower depending on 

the presence of weeds. The amount of N fertilizer applied in each crop was calculated by 

taking into account the mineral N in the soil before seeding, the requirements of the crop and 

an estimation of mineralization. Ammonium nitrate was used as fertilizer for wheat, while 

urea was used for sorghum and sunflower. No N fertilization was applied to legume crops. 

Nitrogen fertilization was performed with a pneumatic precision applicator being split two or 

three times in durum wheat according to the preceding crop: tillering (only if preceded by 
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sunflower), beginning of stem elongation and booting; corresponding to the 21, 31 and 41 

stages of the Zadoks scale (Zadoks et al., 1974). Contrarily, a single application of fertilizer 

was performed on sunflower and sorghum right after sowing. The use of crop protection 

products was decided according to plant sanitary status being minimized as much as possible 

following the principles of integrated pest management. The combination of high 

temperatures and low amounts of rainfall during the summer led to the need of irrigating 

soybean and sorghum crops with an annual average of 171 and 102 mm, respectively, in 

order to reach a target of ca. 80% of the maximum evapotranspiration of the crop. Irrigation 

was applied with the use of a large-volume sprinkler. Grain harvest was performed with a 

commercial harvesting machine. All crop residues were chopped and incorporated into the 

soil. Air temperature and rainfall values were recorded daily using an automated weather 

station located 200 m far from the experiment. 

 

2.3 Soil and biomass samplings and analysis  

In order to quantify the effects of the different treatments on SOC and SON, three soil 

samplings were performed in 2003, 2006 and 2009 in autumn, right after the harvest of 

summer crops. For each sub-plot (i.e. combination of the amount of legumes in the rotation 

and cover crop treatment), two sampling areas of 18 x 15 m were identified and 10 soil 

samples of 0-30 cm depth were obtained using a hydraulic coring device with a 15-mm 

diameter auger (MCL3, Geonor, Oslo, Norway). In turn, in 2006 and 2009 soil samples of the 

30-60 cm soil depth were also analyzed in order to check if the different cropping systems 

affected SOC and SON below the upper 30 cm. Since no differences between treatments 

were observed in this depth (30-60 cm), the present study is focused on the plough layer (0-

30 cm). 
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In order to minimize the effect of soil heterogeneity on SOC and SON and ease subsequent 

samplings, the coordinates of each sampling point were recorded with a GPS device. Soil 

bulk density (0-30 cm depth) was quantified with the cylinder method (Grossman and 

Reinsch, 2002) at the end of the experiment. Once in the laboratory, soil samples were air 

dried at room temperature and sieved to 2 mm. Soil C and N concentration were determined 

with the Dumas combustion method with a Leco-2000 analyzer (LECO, St. Joseph, MI, US).  

Cash crop aboveground biomass was measured right before their harvest and before the 

termination of cover crops by cutting 6 m2 of plants at soil surface level. Once in the 

laboratory, the samples were dried at 80 ºC for 48 h and weighed. Afterwards, the grain was 

threshed (in the case of cash crops) and the rest of biomass was finely grinded and analyzed 

for C and N concentration using the same method as for soil samples. The aboveground C 

and N inputs to the soil were calculated by multiplying the weight of biomass excluding the 

grain (in the case of cash crops) by its C and N concentration, respectively, and dividing by 

the area sampled. In turn, grain yield was calculated dividing the weight of grain by the area 

sampled and adjusted to 100 g kg-1 moisture content. The C:N ratio of the residues of the 

different crops was also calculated by dividing the C concentration of the biomass by the N 

concentration. Finally, C and N harvest indexes of the different cash crops were calculated by 

dividing the amount of C and N in the grain by the amount of C and N in the whole 

aboveground biomass (i.e. including grain).   

2.4 Data analysis 

A linear relationship between SOC and SON and the year of sampling was performed using a 

mixed linear model with random effect in order to take into account that the intercept could 

differ between replications (i.e. random effect). This procedure aimed to take into account 

differences in initial soil organic C and N in the experimental plots as a result of their 
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previous history and soil spatial variability. In turn, the slope (i.e. rate of SOC and SON 

change over time) was considered equal for the different replications of a given treatment (i.e. 

fixed effect). The regressions were carried out taking into account SOC and SON 

concentration values since no differences between treatments were found on soil bulk 

density. 

An analysis of variance (ANOVA) was performed to analyze differences between cropping 

systems (i.e. combinations of number of grain legumes in the rotation and cover crop 

treatments) on soil aboveground C and N inputs. Moreover, for each cash crop, differences 

between cover crop treatments on grain yield and C and N harvest indexes were also 

analyzed. Grain yield and C and N harvest indexes of durum wheat were used as indicators of 

the performance of the different cropping systems studied, since durum wheat was used in all 

the rotations. When significant, differences between treatments were identified at 0.05 

probability level of significance using a LSD test. Finally, the impact of C and N inputs and 

their C:N ratio on the changes of SOC and SON stocks was tested using the standard least 

square personality of the JMP 11 Pro statistical package (SAS Institute Inc., 2014).  
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3. Results 

3.1 Environmental conditions during the experiment  

Rainfall and air temperature during the experimental period are shown in Fig. 2. Annual 

rainfall ranged from 501 to 744 mm, values that represent only 55% and 82% of the mean 

potential evapotranspiration of the area (i.e. 905 mm). Rainfall was quite lower than the 30-

year average (685 mm) in four of the six cropping seasons studied. February, June and July 

were the months with the lowest amount of rainfall with 25, 33 and 26 mm, respectively, as 

an average of the six cropping seasons. Mean annual temperature varied from 13.3 to 14.2 ºC, 

being lower than the 30-yr average (13.7 ºC) in four of the six cropping seasons.  

3.2 Grain yields and C and N harvest indexes  

The results of the analysis of variance of the effects of the different treatments on grain yields 

and C and N harvest indexes are shown in Table 3. Climatic variability led to differences 

between years in grain production of the different cash crops (Tables 3 and 4). For instance, 

over the 6 years of the experiment, durum wheat grain yield ranged between 4143 and 7414 

kg ha-1 and sunflower grain yield between 1881 and 3982 kg ha-1. The use of cover crops did 

not lead to significant changes in grain production of the different cash crops as it was 

planned with the adaptation of fertilizer-N to the preceding crop (Tables 3 and 4). Contrarily, 

significant differences between cropping systems were found on durum wheat grain yield 

(Table 3), with significantly greater values under the GL1-BF, GL1-CC and GL2-BF 

treatments when compared to GL0-BF and GL0-CC, as an average of the 2003-2009 period 

(Table 4). Cover crop treatments did not significantly affect C and N harvest indexes of the 

different cash crops studied, except for sorghum N harvest index (Tables 3 and 5). The 

different cropping systems significantly affected the C harvest index of durum wheat, with 

slightly greater values in the GL0 and GL2 treatments, when compared to GL1 (Table 5). 
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Contrarily, N harvest index was not significantly affected by the cropping systems compared 

(Table 3). 

3.3 Cash crop and cover crop residues C and N concentration and C and N inputs to the soil  

Average aboveground crop residue C inputs ranged between 2192 and 3118 kg ha-1 yr-1 for 

the different treatments studied (Fig. 3A). Aboveground biomass of cover crops represented 

12, 23 and 25% of the whole amount of aboveground C residue inputs incorporated to the soil 

in the GL0-CC, GL1-CC and GL2-CC treatments, respectively. Cover crop treatments 

significantly affected C inputs with greater values when using cover crops (2978 kg C ha-1 yr-

1), compared to the bare fallow treatment (2385 kg C ha-1 yr-1) as an average of the three GL 

rotations (Fig. 3A). Contrarily, no significant effects of the number of grain legumes and the 

interaction between cover crops and grain legumes were found on this variable. Similarly, the 

use of cover crops significantly affected the inputs of N with greater values in the CC 

treatment compared to BF (Fig. 3B). A greater amount of N inputs as crop residues was 

found in the GL1-CC treatment when compared to GL0-CC, with intermediate values in 

GL2-CC (Fig. 3B). 

The aboveground biomass C concentration ranged between 414 and 472 kg C t-1 dry matter, 

being similar for all crops of the experiment (data not shown). Contrarily, and as expected, 

the N concentration presented great variation among crops, ranging from 6.6 (wheat and 

sorghum) to 18.5 kg N t-1 dry matter (winter pea) for cash crops and from 20.8 (mustard) to 

40.9 kg N t-1 dry matter (vetch) for cover crops (Table 6). In turn, the C:N ratio of crop 

residues presented a great variation between the different crops of the experiment being 66, 

74 and 37 for durum wheat, sorghum and sunflower, respectively (data not shown). In the 

case of the grain legumes, the C:N ratios were 27, 32 and 37 for winter pea, spring pea and 

soybean, respectively. Cover crops presented the lowest C:N ratio: 12 for vetch, 16 for 



14 

 

mustard and 17 for the vetch-oat mixture (data not shown). Once weighted by the amount of 

residues incorporated to the soil by each crop, mean C:N ratios were 59, 39 and 41 for the 

GL0-CC, GL1-CC and GL2-CC treatments, respectively. In the case of the treatments 

without cover crops the incorporation of grain legumes in the rotations also reduced the 

weighted C:N ratios of aboveground crop residues being 62, 47 and 50 for the GL0-BF, GL1-

BF and GL2-BF treatments, respectively (data not shown). As an average of BF and CC 

treatments, the amounts of C from aboveground crop residues returned to the soil were 3122, 

1905 and 2718 kg C ha-1 yr-1 for the sorghum, sunflower and durum wheat crops in GL0, 

1946, 2004 and 3171 kg C ha-1 yr-1 for the winter pea, sunflower and durum wheat crops of 

GL1 and 2090, 1647 and 2829 kg C ha-1 yr-1 for the spring pea, soybean and durum wheat 

crops of GL2 (Fig. 4). However, no differences between BF and CC treatments were found 

on crop residue C inputs for any of the cash crops of the experiment (Fig. 4). In the case of 

the cover crops the amount of C returned to the soil by the cover crops ranged between 349 

and 1287 kg C ha-1 yr-1 for the vetch and mustard cover crops of the GL0-CC and GL2-CC 

treatments, respectively (Fig. 4).  

3.4 SOC and SON change versus time 

The mixed effects linear regressions between the number of years since the beginning of the 

experiment and SOC and SON concentrations are shown in Figs. 5 and 6, respectively. Soil 

organic carbon and SON concentration values were used since no differences between 

treatments were found on soil bulk density. A significant reduction in SOC was observed in 

the GL1-BF, GL2-BF and GL1-CC treatments (Fig 5). Taking into account the average bulk 

density measured in the experiment (1.55±0.10 Mg m-3) and the slope of the regressions, the 

GL0-BF, GL1-BF and GL2-BF treatments led to a change in SOC stocks in the plough layer 

(0-30 cm) of -233, -595 and -735 kg C ha-1 yr-1, respectively. In turn, the estimated change in 
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SOC stocks was +284, -493 and -246 kg C ha-1 yr-1, for the GL0-CC, GL1-CC and GL2-CC 

treatments, respectively.  

A significant reduction of SON concentration was observed in the GL1-BF and GL2-BF 

treatments (Fig. 6). In this case, the change in SON stocks in the plough layer (0-30 cm soil 

depth) was -33, -47 and -74 kg N ha-1 yr-1 in the GL0-BF, GL1-BF and GL2-BF treatments, 

respectively. However, when cover crops were used, the change in SON stocks was not 

significant with +9, -19 and -9 kg N ha-1 yr-1 for the GL0-CC, GL1-CC and GL2-CC 

treatments, respectively. No significant relationships were found between the amount and 

quality of the aboveground crop residues and SOC and SON changes.  
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4. Discussion 

4.1 Cash crop performance under the cropping systems studied 

The use of cover crops did not significantly have a negative impact on the yield and C and N 

mobilization into the grain of the subsequent cash crops. Then, the similar global 

performance of the cash crops in the BF and CC treatments could be the result of three 

causes: (i) the correct degree of synchronization attained between cash crop N uptake and 

cover crops N release (Dabney et al., 2001), (ii) the early finalization of cover crops in 

autumn that was carried out to avoid competition for water and nutrients in particular for 

spring and summer cash crops, appearing then as a relevant management in such 

pedoclimatic conditions (Plaza-Bonilla et al., 2015) and (iii) the slight increase in durum 

wheat N fertilization that was carried out in the GL1-CC and GL2-CC when compared to 

GL1-BF and GL2-BF (Plaza-Bonilla et al., 2015). In turn, the inclusion of one grain legume 

every three years (i.e. GL1 treatment) improved the performance of durum wheat (i.e. the 

common crop of all the cropping systems studied used as a revelator of GL effect) when 

compared to the rotation without grain legumes (GL0). This finding would be explained by 

the positive effect of the presence of winter pea before durum wheat in GL1 instead of 

sunflower in GL0 due to the greater quality of pea crop residues in terms of N concentration 

(i.e. 12 and 19% in sunflower and winter pea, respectively). As a summer crop, sunflower is 

harvested later than pea and usually depletes soil water and mineral N at depth fact that could 

have led to pre-emptive competition for resources with the succeeding durum wheat 

(Kirkegaard et al., 2008; Rachidi et al., 1993). Moreover, the time of crop residue 

incorporation, later for sunflower when compared to pea (i.e. three months in our conditions), 

could have increased N immobilization after the emergence of the crop and during autumn, 

reducing tillering due to temporary N deficiency which in turn could reduce the potential 

performance of the succeeding durum wheat crop.  
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4.2 SOC and SON as affected by the incorporation of grain legumes in the rotations  

The loss of SOC was aggravated in the bare fallow treatment, which reached an estimated 

rate of -595 and -735 kg C ha-1 yr-1 when one (GL1-BF) and two (GL2-BF) grain legumes 

were incorporated as cash crops, respectively. In contrast, the rotation without grain legumes 

(GL0-BF) lost SOC at a lower rate of 233 kg C ha-1 yr-1. Similar to our results, in a 10-yr 

study carried out in southwestern Saskatchewan (Canada), Campbell et al., (2000) found a 

loss of SOC of 100 kg C ha-1 yr-1 when incorporating a lentil (Lens culinaris Medik.) every 

three years in a continuous wheat monocropping. Different findings were reported by 

Rochester (2011) when comparing different cotton-based cropping systems. After 10 years of 

experiment he observed an increase in SOC when cropping systems produced crop residues 

of greater N concentration, this is those that included legumes. However, as a difference with 

our study, the cropping systems studied by Rochester (2011) were based on minimum tillage. 

Regarding to this, Jensen et al., (2012) pointed out that N2-fixing grain legumes have 

potential for SOC sequestration provided that no-tillage is used. This requirement is related to 

the deep soil C sequestration that occurs when no-till is performed. Thus, the conventional 

tillage management of our experiment could explain the high loss of C in the GL1 and GL2 

treatments. Moreover, the time of tillage operations could have also influenced the dynamics 

of SOC in our experiment. Studdert and Echeverría (2000) observed greater SOC loss in 

summer crops-based sequences involving more tillage operations during spring. They 

hypothesized that those results could be the consequence of faster SOC decomposition when 

tillage is performed at greater temperatures. 

Since C inputs were similar among grain legume treatments in BF and CC, we hypothesize 

that other variables could have played a major role on SOC dynamics in our experiment. It 
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has to be taken into account that sorghum residues of high C:N ratio and lignin content were 

incorporated into the soil in the GL0 treatment. It is known that greater residue lignin and 

C:N ratios impact positively on SOC accumulation (Paustian et al., 1992). Contrarily, legume 

crop residues tend to decompose faster (Schomberg et al., 1994). Thus, the lower C:N ratio of  

crop residues returned to the soil in the GL1 and GL2 treatments would have hastened the 

decomposition of SOC. Interestingly, it must be noted that the weighed (taking into account 

all crop sequences) crop residue C:N ratios in the GL1 and GL2 treatments were 43 and 44, 

as an average of the BF and CC treatments, respectively. Those values are close to the 

threshold established by Vigil and Kissel (1991) below which net mineralization occurs. Low 

C:N ratio crop residues not only decompose faster but can also lead to a priming effect by 

altering soil microbial community due to a greater C use efficiency which accelerates the 

mineralization of native organic matter (Derrien et al., 2014; Kuzyakov, 2010; Manzoni et al., 

2008). Thus, given the short-term nature of our experiment (i.e. 6 years), we could 

hypothesize that this effect could have played a major role in the turnover of the initial SOC 

in the GL1 and GL2 treatments. In addition, it has also been suggested that the incorporation 

of highly-decomposable plant material usually leads to a lower protection of C and N within 

aggregates. For instance, Martens (2000a) observed a decrease in soil aggregate stability 

when adding soybean (C3 plant) crop residues to the soil in comparison to maize (C4 plant) 

residues. This hypothesis is supported by the findings of Huggins et al., (1998), who observed 

a greater degree of humification under maize than under soybean due to the greater content of 

phenolic acids in the first. Similarly, Martens (2000b) observed a significant relationship 

between crop residue phenolic acid content and aggregate stability. Thus, a lower stability of 

soil aggregates could have led to a greater decomposition of soil organic matter in the GL1 

and GL2 rotations. Contrarily, the presence of a C4 plant with a high phenolic acid content in 
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the GL0 treatment (i.e. sorghum) would have led to a greater degree of soil organic matter 

humification reducing SOC losses. 

 

4.3 SOC and SON as affected by the use of cover crops in grain legume-based rotations  

The use of cover crops mitigated the loss of SOC and SON in the rotations studied. The rate 

of SOC loss was reduced by 13 and 67% when incorporating cover crops in the GL1 and 

GL2 treatments, respectively, while the loss of SON was reduced by a 59 and a 88% in the 

same treatments. Those findings are in line to those reported by Poeplau and Don (2015) in 

their 139-plots meta-analysis, who found an annual increase of SOC of 320 kg C ha-1 when 

including cover crops. The low C:N ratio of cover crop residues (i.e. lower than the one of 

grain legumes) would indicate that other factors different than the greater amount of 

aboveground C inputs would have counterbalanced the above-supposed priming effect. 

Different aspects could explain the mitigation of SOC and SON loss when using cover crops 

in arable cropping systems. First, cover crops usually grow during a short period of time in 

our conditions (2-4 months after emergence) and periods of autumn where the temperatures 

decrease, fact that leads to both reduced shoot to root ratios (Marcelis et al., 1998) and 

increasing soil C and N sequestration. As it was concluded by Rasse et al., (2005) and 

Kätterer et al., (2011), root-derived C usually contributes more significantly to the stable soil 

C pool than aboveground biomass-C. Secondly, the growth of cover crops implies a 

consumption of soil water and mineral N could result in less advantageous conditions for soil 

organic matter decomposition compared to a long bare fallow, due to N limiting conditions 

for microbial biomass.  

In the literature different studies reported an increase of SOC with cover crops. For instance, 

Franzluebbers (2005) reported a sequestration rate of 250 kg C ha-1 yr-1 when using cover 
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crops compared to bare fallow in southeastern United States. In turn, Follett (2001) reported 

an accumulation of SOC between 100 and 600 kg C ha-1 yr-1 when eliminating bare fallow 

periods. In the same line, in a factorial tillage, nitrogen and cover crop long-term experiment 

carried out in Italy, Mazzoncini et al., (2011) observed an increase of 80, 330 kg C ha-1 yr-1 

and -10 and 35 kg N ha-1 yr-1 when non-legume, and legume cover crops were used, 

respectively, compared to bare fallow. Similarly, in a simulation study with the STICS soil-

crop model, Constantin et al., (2012) reported a long-term maintenance of soil organic matter 

when cover crops were used in using the data of one rainfed arable cropping system of the 

center of France, under the same type of climate than our experiment. .  

One explanation to the lack of SOC and SON sequestration in our experiment could be 

related by the low amount of biomass produced by cover crops due to the short growing time 

that was managed in order to avoid (i) delays in the sowing time of the succeeding cash crops 

and (ii) an excessive competition for water and nutrients. In turn, in our experiment the use of 

conventional tillage –with ploughing two times within three years and incorporation of 

residues by disking each year after harvest– could have maximized the decomposition of soil 

organic matter. When green manures are added to conventionally-tilled rotations, the increase 

in tillage frequency could mask their effect on organic matter accretion (Campbell et al., 

1992; Drinkwater et al., 2000). Tillage accelerates SOC decomposition due to the breakage of 

soil macroaggregates reducing the formation of microaggregates with long-lasting C and N 

protective capacity (e.g. Plaza-Bonilla et al., 2013). Moreover, tillage buries crop residues 

deep in the soil where better conditions for decomposition occur (i.e. greater moisture and 

mineral nutrient contact) (Paustian et al., 1997). Regarding to this, Franzluebbers (2005) 

showed that SOC sequestration potential at the 0-20 cm soil depth increased around 20% 

when using cover crops under conservation tillage systems. In turn, Mazzoncini et al., (2011) 

concluded that cover crops can help to compensate the high mineralization rate found under 
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intensively-tilled cropping systems. Those findings are in line with the results of Boddey et 

al., (2010) who studied the impact of cover crop legumes on SOC stocks in subtropical 

Oxisols concluding that C sequestration strongly depended on the type of tillage performed. 

The last authors found an increase of SOC from 5000 to 8000 kg ha-1 when using no-tillage 

in three long-term (15-26 years) rotations containing intercropped or cover-crop legumes, in 

comparison with the use of conventional tillage.   
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5. Conclusions 

The results of our experiment show a significant decrease in SOC when introducing grain 

legumes in conventionally-tilled rotations cropped in European temperate climatic conditions. 

This finding suggests that the incorporation of crop residues with a low C:N ratio into the soil 

enhanced SOC decomposition that is aggravated due to tillage during bare fallow periods. 

However, the use of cover crops in these arable rotations mitigated the loss of SOC and SON 

without affecting the transfer of C and N to the grain and the final production of the cash 

crops. Given the low C:N ratio of cover crop residues, other factors supplemental to the 

amount of C incorporated to the soil would have contributed to the mitigation of soil organic 

matter losses. Thus, in grain legume-based cropping systems managed under conventional 

tillage, cover crops play an important role to maintain soil organic matter and crop 

productivity by recycling N from legumes and increasing the amount of C returned to the 

soil. Consequently, in these temperate climatic conditions, inserting grain legumes in 

cropping systems must be accompanied to the concomitant inclusion of cover crops in order 

to obtain a benefit from grain legumes. 
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Figure captions 

Fig. 1 Conceptual diagram of the six 3-year cropping systems tested in the experiment. GL0, 

GL1 and GL2 refer to the number of grain legumes included in each rotation (0, 1 and 2, 

respectively), CC and BF refer to cover crop and bare fallow, respectively. Main crops are 

shown in continuous line rectangles. Cover crops and bare fallow periods (in italics) are 

shown in dashed line rectangles. 

 

Fig. 2 Monthly rainfall (columns) and air temperature (line) in the experimental area starting 

in September 2003 until end of August 2010. Rainfall and mean temperature for each 

growing season are shown at the top of the figure. 

 

Fig. 3 Aboveground C (A) and N (B) inputs as affected by the number of grain legumes in a 

3-year rotation (GL0, GL1 and GL2, 0, 1 and 2 grain legumes in the rotation) and cover crop 

treatments (CC, cover crop; BF, bare fallow). Values correspond to the annual average of two 

3-year rotations (2003-2009). For total inputs, different lower-case letters indicate significant 

differences between rotations and cover crops at P < 0.05. * Indicates significant differences 

between cover crop treatments on the amount of inputs at P < 0.05. Vertical bars indicate 

standard deviation.  

 

Fig. 4 Crop residue-C inputs of the different cash (A) and cover crops (B) (Mu, mustard; Sf, 

sunflower; Sg, sorghum; sP, spring pea; Sy, soybean; V, vetch; VO, vetch-oat mixture; W, 

durum wheat; wP, winter pea) as affected by the number of legumes in a 3-year rotation 

(GL0, GL1 and GL2, 0, 1 and 2 grain legumes in the rotation). The values are the mean of 

two 3-year rotations (2003-2009). For the cover crops, the preceding cash crop is shown 

between brackets. Vertical bars indicate standard deviation. 
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Fig. 5 Linear relationship (mixed linear model) between soil organic carbon concentration (0-

30 cm soil depth) and the number of years since the beginning of the experiment as affected 

by the number of grain legumes in a 3-year rotation (GL0, GL1 and GL2, 0, 1 and 2 grain 

legumes in the rotation) and cover crop treatment (cover crop, CC; bare fallow, BF). Vertical 

bars indicate standard deviation.   

 

Fig. 6 Linear relationship (mixed linear model) between soil organic nitrogen concentration 

(0-30 cm soil depth and the number of years since the beginning of the experiment as affected 

by the number of grain legumes in a 3-year rotation (GL0, GL1 and GL2, 0, 1 and 2 grain 

legumes in the rotation) and cover crop treatment (cover crop, CC; bare fallow, BF). Vertical 

bars indicate standard deviation.    
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Table 1. General site and soil characteristics in the 0- to 30-cm and 30- to 60-cm soil depths 

at the beginning of the experiment in 2003. Values between brackets correspond to the 

standard deviation.  

Site and soil characteristics 
Latitude 43º 31’ N 
Longitude 1º 30’ E 
Elevation, m 150 
Soil depth (cm) 0 - 30 30 - 60 
pH (H2O, 1:2.5) 7.0 (0.5) 7.3 (0.7) 
CEC, cmol+ kg-1 18.1 (3.6)  
Organic C, g kg-1 8.7 (1.0) 6.6 (0.8) 
Organic N, g kg-1 1.1 (0.1) 0.9 (0.1) 
Particle size distribution, %   
Sand (2000-50 µm) 37.6 (6.4) 29.9 (5.1) 
Silt (50-2 µm) 36.8 (2.9) 37.9 (2.1) 
Clay (<2 µm) 25.6 (3.7) 30.0 (2.8) 
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Table 2. Cultivars of the different cash and cover crops (in italics) established in the cropping systems studied. GL0, GL1 and GL2 stand for 0, 1 1 

and 2 grain legumes in the rotation. Values between brackets correspond to the seeding rate (seeds m-2). 2 

Rotation 
Crop 

Cover crop 

 Year 

 First cycle of the three-year rotation  Second cycle of the three-year rotation 

 2003 2004 2005 2006  2007 2008 2009 

GL0 

Durum 
wheat 

 
Provenzal 

(317) 
Biensur 
(337) 

Biensur 
(301) 

Biensur 
(278) 

 
Biensur 
(300) 

Biensur 
(413) 

Biensur 
(322) 

Vetch-Oat  - 
Topaze+Chantilly 

(73+170) 
Topaze+Chantilly 

(37+170) 
Topaze+Chantilly 

(50+43) 
 Topaze+Chantilly 

(31+140) 
Topaze+Ranch 

(83+93) 
Topaze+Ranch 

(44+100) 

Sorghum  - 
Solarius 

(31) 
Solarius 

(29) 
Solarius 

(29) 
 Fulgus 

(30) 
Fulgus 
(30) 

Fulgus 
(30) 

Sunflower  - 
Melody 

(7) 
Melody 

(7) 
Melody 

(7) 
 Melody 

(7) 
Melody 

(7) 
Melody 

(7) 

Vetch  - 
Alfalfa undersown 

(550) 
Topaze 

(73) 
Topaze 

(50) 
 Topaze 

(50) 
Topaze 

(73) 
Topaze 

(76) 
           

GL1 

Durum 
wheat 

 
Provenzal 

(317) 
Biensur 
(337) 

Biensur 
(301) 

Biensur 
(278) 

 Biensur 
(300) 

Biensur 
(413) 

Biensur 
(322) 

Vetch-Oat  - 
Topaze+Chantilly 

 (73+170) 
Topaze+Chantilly 

(37+170) 
Topaze+Chantilly 

 (50+43) 
 Topaze+Chantilly 

 (31+140) 
Topaze+Ranch 

(83+93) 
Topaze+Ranch 

 (44+100) 

Sunflower  - 
Melody 

(7) 
Melody 

(7) 
Melody 

(7) 
 Melody 

(7) 
Melody 

(7) 
Melody 

(7) 

Mustard  - 
Twist+Concerta 

 (160) 
Twist+Concerta 

(172) 
Twist+Concerta 

 (172) 
 Twist+Concerta 

 (160) 
Albatros 

(171) 
Albatros 

 (135) 

Winter pea  
Ideal 
(72) 

Ideal 
(71) 

Ideal 
(79) 

Cartouche 
(70) 

 Cartouche 
(79) 

Hardy* 
(100) 

Izar 
 (83) 

Mustard  - 
Twist+Concerta 

 (160) 
Twist+Concerta 

(172) 
Twist+Concerta 

 (172) 
 Twist+Concerta 

 (160) 
Albatros 

(171) 
Albatros 

(135) 
           

GL2 

Durum 
wheat 

 
Provenzal 

(317) 
Biensur 
(337) 

Biensur 
(301) 

Biensur 
(278) 

 Biensur 
(300) 

Biensur 
(413) 

Biensur 
(322) 

Mustard  - 
Twist+Concerta 

 (160) 
Twist+Concerta 

(172) 
Twist+Concerta 

 (172) 
 Twist+Concerta 

 (160) 
Albatros 

(171) 
Albatros 

 (135) 

Soybean  - 
Dekabig 

(39) 
Dekabig 

(38) 
Dekabig 

(39) 
 Isidor 

(39) 
Isidor 
(36) 

Isidor 
(36) 

Spring pea  - 
Hardy 
(110) 

Hardy 
(109) 

Hardy 
(100) 

 Hardy 
(101) 

Hardy 
(113) 

Hardy 
(100) 

Mustard  - 
Twist+Concerta 

 (160) 
Twist+Concerta 

(172) 
Twist+Concerta 

 (172) 
 Twist+Concerta 

 (160) 
Albatros 

(171) 
Albatros 

 (135) 
* In 2008 a spring pea cultivar was sown instead the winter one due to excessively humid soil conditions at the end of autumn.3 
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Table 3. Results of the analysis of variance (probability level) of the effects of the six cropping systems studied (combination of number of grain 4 

legumes in a 3-year rotation and cover crop treatments), the year of sampling and their interaction on durum wheat grain yield, and durum wheat 5 

C and N harvest indexes. For the rest of crops (i.e. sorghum, sunflower, winter pea, soybean and spring pea) the results of the analysis of 6 

variance of the effects of the use of cover crops, year of sampling and their interaction on grain yield and C and N harvest indexes are shown.  7 

ANOVA Durum wheat Sorghum Sunflower Winter pea Soybean Spring pea 
 Grain yield 

Cover crop  0.531 0.657 0.388 0.874 0.482 
Year <0.001 <0.001 0.012 <0.001 0.583 <0.001 

Cover crop x Year  0.076 0.966 0.454 0.944 0.577 
Cropping system 0.047      

Cropping system x Year 0.045      
       
 C harvest index 

Cover crop  0.820 0.958 0.592 0.250 0.661 
Year <0.001 <0.001 <0.001 0.026 0.002 0.002 

Cover crop x Year  0.993 0.518 0.933 0.190 0.567 
Cropping system 0.013      

Cropping system x Year 0.005      
       
 N harvest index 

Cover crop  0.747 0.628 0.247 0.800 0.936 
Year <0.001 0.102 <0.001 <0.001 0.566 <0.001 

Cover crop x Year  0.013 0.897 0.853 0.622 0.454 
Cropping system 0.230      

Cropping system x Year 0.373      
  8 
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Table 4. Grain yield of the different cash crops used in each treatment (GL0, GL1 and GL2, 3-year rotation with 0, 1 and 2 grain legumes, 9 

respectively; BF and CC, bare fallow and cover crops, respectively) at 100 g kg-1 grain moisture content. Values between brackets correspond to 10 

the standard deviation. For durum wheat, different lower-case letters indicate differences between cropping systems (i.e. combination of GL 11 

rotations and cover crop treatments) at P<0.05.  12 

Rotation Crop 

 Year 

Average  First cycle of the three-year rotation  Second cycle of the three-year rotation  

 2004  2005  2006  2007  2008  2009  

 BF CC  BF CC  BF CC  BF CC  BF CC  BF CC  BF CC 

GL0 

Sorghum  9410 8443  7008 7017  7673 6813  7444 7522  8182 8477  7501 8348  7870 (840) 7709 (786) 

Sunflower  3140 2196  3191 3164  2346 2148  3322 3261  3312 3163  2717 2460  3004 (653) 2692 (765) 

Durum wheat  6208 c 6309 bc  5617 6181  5085 b 4637 b  6519 6331  5015 b 5859 ab  4840 a 4309 ab  5547 (897) c 5604 (918) c 

                       

GL1 

Sunflower  3982 3976  3139 3112  1881 2256  3298 3261  2836 3031  2452 2769  2931 (852) 3067 (674) 

Winter pea  3854 4394  5252 4834  2947 2806  2111 2117  2725 2931  869 1638  2960 (1464) 3120 (1240) 

Durum wheat  7077 abc 7200 abc  6019 5615  6859 a 5604 b  6387 6977  5965 ab 5918 ab  4143 ab 4842 a  6075 (1026) a 6026 (893) ab 

                       

GL2 

Soybean  2989 3894  4025 3715  3803 3737  3371 3534  3708 3842  2888 2459  3464 (787) 3530 (915) 

Spring pea  3699 3893  3735 4560  3797 3711  4738 4743  5032 4755  1541 1639  3757 (1236) 3883 (1179) 

Durum wheat  7414 a 7272 ab  5573 5657  5423 b 5294 b  6207 6285  6167 a 6073 a  4865 a 3329 b  5941 (919) abc 5652  (1365) bc 



35 

 

Table 5. Carbon and nitrogen harvest indexes of the different crops used in each rotation 13 

(GL0, GL1 and GL2, 3-year rotation with 0, 1 and 2 grain legumes, respectively). Values are 14 

the mean of two 3-year rotations (from 2003 to 2009). Values between brackets correspond to 15 

the standard deviation.  16 

Rotation Crop 
C harvest index  N harvest index 

Bare fallow Cover crop  Bare fallow Cover crop 

GL0 
Sorghum 0.50 (0.04) 0.50 (0.04)  0.67 (0.04) 0.68 (0.04) 
Sunflower 0.37 (0.03) 0.36 (0.05)  0.52 (0.06) 0.50 (0.07) 

Durum wheat 0.46 (0.04) a 0.46 (0.05) a  0.74 (0.07) 0.75 (0.06) 
       

GL1 
Sunflower 0.36 (0.03) 0.37 (0.03)  0.53 (0.08) 0.53 (0.07) 
Winter pea 0.40 (0.06) 0.40 (0.05)  0.53 (0.11) 0.56 (0.08) 

Durum wheat 0.43 (0.04) b 0.43 (0.04) b  0.72 (0.06) 0.72 (0.05) 
       

GL2 
Soybean 0.48 (0.03) 0.47 (0.05)  0.81 (0.03) 0.80 (0.04) 

Spring pea 0.44 (0.06) 0.43 (0.07)  0.59 (0.09) 0.60 (0.11) 
Durum wheat 0.45 (0.04) a 0.46 (0.04) a  0.74 (0.08) 0.74 (0.07) 

 17 
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Table 6. Nitrogen concentration of the different crops used in each rotation (GL0, GL1 and 18 

GL2, 3-year rotation with 0, 1 and 2 grain legumes, respectively) (kg N t-1 dry matter). 19 

Values are the mean of two 3-year rotations (from 2003 to 2009). In the vetch-oat mixture, 20 

the values correspond to the crop between brackets. Values between brackets correspond to 21 

the standard deviation.  22 

Rotation Crop 
Cover crop treatments 

Bare fallow  Cover crop 

GL0 

Sorghum 6.6 (1.7)  6.6 (1.6) 
Sunflower 11.9 (2.3)  12.7 (3.6) 

Vetch -  40.9 (4.4) 
Durum wheat 7.2 (1.9)  6.6 (1.0) 
(Vetch)-Oat -  38.2 (5.3) 
Vetch-(Oat) -  26.8 (8.3) 

     

GL1 

Sunflower 12.1 (2.0)  12.0 (1.9) 
Mustard -  28.6 (8.2) 

Winter pea 18.5 (4.3)  17.7 (3.2) 
Mustard -  29.1 (5.5) 

Durum wheat 7.3 (2.3)  7.3 (1.6) 
(Vetch)-Oat -  39.9 (5.1) 
Vetch-(Oat) -  26.9 (10.0) 

     

GL2 

Soybean 14.4 (3.2)  14.1 (3.0) 
Spring pea 15.6 (4.4)  15.4 (1.0) 
Mustard -  26.3 (5.6) 

Durum wheat 6.8 (1.8)  7.2 (2.3) 
Mustard -  20.8 (7.0) 

  23 
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