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ABSTRACT 9 
To remove peak and spike artifacts in biological time series has represented a hard challenging in the last decades. Several methods have been implemented 10 
mainly based on adaptive filtering in order to solve this problem. This work presents an algorithm for removing peak and spike artifacts based on a threshold 11 
built on the analytic signal envelope. The algorithm was tested on simulated and real EEG signals that contain peak and spike artifacts with random amplitude 12 
and frequency occurrence. The performance of the filter was compared with commonly used adaptive filters. Three indexes were used for testing the 13 
performance of the filters: Correlation coefficient (ρ), mean of coherence function (C) and rate of absolute error (RAE). All these indexes were calculated 14 
between filtered signal and original signal without noise. It was found that the new proposed filter was able to reduce the amplitude of peak and spike artifacts 15 
with ρ > 0.85, C > 0.8, RAE < 0.5. These values were significantly better than the performance of LMS adaptive filter (ρ < 0.85, C < 0.6, and RAE > 1). 16 
 17 

Keywords: Biomedical signal processing, electroencephalography, digital filters. 18 
 19 

1. Introduction 20 
 21 

Electroencephalographic (EEG) signal is very susceptible to a variety of large signal contamination such as power line noise, 22 
biological or electrode artifacts. As these artifacts can be associated to cerebral activity they should be removed by filtering 23 
before further signal analysis. However, traditional methods, such as band-pass filter, are not adequate if the frequency band of 24 
the contaminant signal is within the band of the true signal, for example the electromyographic signal and the power line noise. 25 
There exist other kinds of artifacts that need different approaches to be removed, for example, certain peak and spike noise, heart 26 
electrical activity present throughout the body [1], short-time high-amplitude events in the recorded EEG for the evaluation of 27 
epileptic seizures that mask the quasi-periodic structure of the seizures [2]. The most commonly used approaches for these 28 
problems are filters mainly based on adaptive algorithms with linear and nonlinear structures [3, 4] or eigenvalue decomposition 29 
[5]. Furthermore, eye blinks and movements of the eye balls produce electrical activity along the scalp that interferes with the 30 
EEG. In order to remove ocular artifacts from EEG, many regression-based techniques have been proposed [6-11]. They require 31 
calibration trials in order to estimate the electrooculogram (EOG) component from each one of the EEG channels and then they 32 
remove it by subtraction. Independent component analysis (ICA) represents an efficient way [12, 13] to perform EOG signal 33 
separation from the EEG signals. Several methods for dealing with ocular artifacts in the EEG were reviewed by Croft et al. [14], 34 
focusing on the relative merits of a variety of EOG correction procedures. A noise cancellation method based on adaptive 35 
filtering was implemented by He et al. [15] with the aim of removing ocular artifacts from on-line EEG without calibration trials 36 
but using the EOG signal as reference. Furthermore, the acquisition of EEG during functional magnetic resonance imaging 37 
(fMRI) procedure is contaminated by numerous possible sources of artifacts, such as short-time and high-amplitude events for 38 
instance burst suppression, artifacts originated from the surrounding electromagnetic field, the fMRI-related gradient artifacts, 39 
and cardiac pulse interference [16]. These are induced effects due to alterations in the magnetic field gradient [17-20]. Artifacts 40 
induced in EEG recordings by electrical impedance tomography (EIT) are analogous to those generated by interictal spike-41 
triggered fMRI during simultaneous EEG and fMRI monitoring. In order to remove EIT artifacts, Fabrizi et al. [21] used a bank 42 
of hardware filter (first-order passive high-pass filters and second-order passive low-pass filters) associated with a digital filter 43 
based on a single template of the EIT noise. A new methodology to reduce these artifacts was proposed by Melia et al. [22] 44 
where a filter based on the analytic signal envelope was designed. This filter can be applied to each single-channel recording 45 
without using any reference signal. In the present work, an improvement of the filter algorithm is presented, that consists in 46 
introducing a threshold calculated on the analytic signal envelope. The algorithm was tested using simulated and real EEG 47 
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signals corrupted by noise with peaks and spikes of high amplitude. Spike refers to sharp impulses of linearly rising and falling 48 
edges with a pointed peak and duration of about 80 ms. Peak refers to an isolated event with value out of the range of the signal 49 
variance. 50 

 51 
  52 

2. Materials and Methods 53 

2.1 The Hilbert Transform and the Analytic Signal 54 
 55 
The Hilbert transform 𝑥�(𝑡) is a linear function of a signal x(t). It is obtained from the convolution of x(t) with (𝜋 t)−1 [23, 24]. 56 

The analytic signal 𝑦(𝑡) of a real signal x(t) can be written as 57 
 58 

𝑦(𝑡) = 𝑥(𝑡) + 𝑗𝑥�(𝑡) =  𝑚(𝑡) cos�𝜙(𝑡)� + 𝑗 𝑚(𝑡)𝑠𝑖𝑛�𝜙(𝑡)� (1) 

where x(t) can be expressed as the product of two signals 59 
 60 

𝑥 (𝑡) = 𝑚(𝑡)cos (𝜙(𝑡)) (2) 
 61 
Expression (2) shows that x(t) can be modified in two different ways, by varying the amplitude m(t) and/or by varying the 62 

phase 𝜙(𝑡). The simultaneous dual behavior of x(t) in amplitude and frequency modulation suggests that changes in the signal 63 
amplitude leave its zero crossings unchanged. Therefore, the aim of this procedure is to modify the amplitude without altering 64 
the components that could cause the zero crossings on the time axis. 65 

The contribution of the amplitude 𝐵𝐴𝑀2 and phase 𝐵𝐹𝑀2  of a signal to its bandwidth [24] is defined by (3-5), where 𝑚(𝑡)2 =66 
|𝑦(𝑡)|2 = 𝑦(𝑡) 𝑦∗(𝑡) is the instantaneous power or energy density (see Appendix).  67 

 68 

 69 
where B is the total bandwidth of the signal 𝑥(𝑡)  70 
 71 

𝐵𝐴𝑀2 =
1

4𝜋2
��

𝑚(𝑡)′

𝑚(𝑡)
�
2

𝑚(𝑡)2𝑑𝑡 
(4) 
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 𝐵𝐹𝑀2 = ��𝑓𝑖(𝑡) −  𝑓̅�2𝑚(𝑡)2𝑑𝑡  (5) 

where m(t)' is the derivative of the analytic signal envelope m(t), 𝑓𝑖(𝑡) = 1
2π

d𝜙(t)
d𝑡

  is the instantaneous frequency function and 73 
𝑓 ̅ is the mean frequency of the spectral density of y(t).  74 

The term 𝐵𝐴𝑀2  associated with the analytic signal amplitude contributes to the low frequencies of 𝐵 and the term 𝐵𝐹𝑀2  75 
associated with the analytic signal phase contributes to the high frequencies of 𝐵. In this way, the expression 𝐵𝐴𝑀  determines the 76 
bandwidth with which m(t) contributes to the signal x(t) and thus it adjusts the bandwidth of a filter that applied to m(t) removes 77 
the peaks and spikes from x(t).  78 

 79 

2.2 Description of the Filter Algorithm 80 
 81 

The proposed algorithm consists of an analytic signal envelope filtering (ASEF) that reduces the amplitude of peaks or spikes 82 
in the EEG signals. Firstly, the envelope m(t) of a signal x(t) is filtered using a low-pass filter with a pass band BAM, then a 83 
threshold Th(t) based on the filtered envelope mfilt(t) is defined and finally this threshold is applied to the envelope m(t). This 84 
Th(t) is calculated at each time sample of mfilt(t) as 85 

 86 
𝑇ℎ(𝑡) = 𝑚𝑓𝑖𝑙𝑡 (𝑡) + 𝑘 𝑚𝑓𝚤𝑙𝑡 ������� (6) 

 87 
where 𝑚𝑓𝚤𝑙𝑡������ is the mean value of 𝑚𝑓𝑖𝑙𝑡 (𝑡) and k is an arbitrary constant. 88 

The main steps of the proposed filter algorithm applied to a signal x(t) are: 89 
1) To calculate the analytic signal y(t) of x(t). 90 

𝐵2 = 𝐵𝐴𝑀2 +  𝐵𝐹𝑀2  (3) 
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2) To calculate the envelope m(t) and the instantaneous phase ϕ(t). 91 
3) To filter the m(t) by using a FIR filter with a cut off frequency BAM  in order to obtain mfilt(t). 92 
4) To preserve the samples that satisfy m(t) < Th(t) in order to obtain the signal mTh(t) (7). 93 
5) To multiply the filtered envelope mTh(t) by 𝑐𝑜𝑠𝜙(𝑡), in order to obtain the final filtered signal xfilt(t) (8). 94 

𝑚𝑇ℎ (𝑡) = �
𝑚𝑓𝑖𝑙𝑡 (𝑡): 𝑖𝑓 𝑚(𝑡) ≥  𝑇ℎ(𝑡) 
𝑚(𝑡):       𝑖𝑓  𝑚(𝑡) <  𝑇ℎ(𝑡)

 
(7) 

 
𝑥𝑓𝑖𝑙𝑡(𝑡)=𝑚𝑇ℎ (𝑡)𝑐𝑜𝑠𝜙(𝑡) 

 
(8) 

 95 
This filter removes all or part of the peaks or spikes (depending on k value of Th(t) ) in the original signal x(t), preserving its 96 

frequency information. 97 
 98 

2.3 Simulated Time Series 99 
 100 
A set of simulated time series  𝑥(𝑡) of EEG signals corrupted by peak or spike noise was generated. 101 
 102 

𝑥(𝑡) = 𝑠(𝑡) + 𝑛(𝑡) (9) 
 103 

where s(t) represents the pure EEG signal and n(t) a signal containing random events of peak or spike waveforms. 104 
The signals s(t) were created by using functions that generate simulated EEG data [25]. These functions create uncorrelated 105 

noise generated such that its power spectrum matches the power spectrum of human EEG. The simulated EEG was constructed 106 
by summing together a number of phase-randomized sinusoids (frequencies from 0.1 to 125 Hz and phase between 0 and 2π), the 107 
amplitude of which varied with frequency according to the power spectrum of empirical EEG data. Because this process amounts 108 
to an inverse-Fourier transform (with randomized phase) of a spectral analysis of real data, the simulated data match closely the 109 
features of empirically observed EEG data [26-27]. The mean value of s(t) is 𝑠(𝑡)����� = 0 and the standard deviation is bounded 110 
0.6<σs <1 μV.  111 

The noise n(t) was created combining peak and spike events with random amplitude and random frequency of occurrence, in 112 
order to simulate the worsts noisy case in the EEG signal. The spike events were simulated with triangle waveforms, tri(t)  113 

 114 

𝑡𝑟𝑖(𝑡) = �𝜇𝑡𝑟𝑖(1 − |𝑡 − 𝑡𝑡𝑟𝑖|):  𝑖𝑓 0 ≤ 𝑡 ≤ 2𝑡𝑡𝑟𝑖 
0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 
(10) 

where 𝜇𝑡𝑟𝑖 is a random variable that has normal distribution with expected value 𝜇̅𝑡𝑟𝑖 = 0, standard deviation 20σs, and 𝑡𝑡𝑟𝑖 = 115 
0.04 s. These values permitted to create triangle waveforms with negative or positive values about 20 times the maximum EEG 116 
value and with duration that simulates short-time spike EEG artifacts. Then, the signal noise n(t) was built as 117 

 118 

𝑛(𝑡) = �
𝑡𝑟𝑖(𝑡 − 𝑡𝑛1):  𝑖𝑓 𝑡 = 𝑡𝑛1 

  𝜇𝑝𝑒𝑎𝑘: 𝑖𝑓 𝑡 =  𝑡𝑛2
0: 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 
(11) 

where 𝜇𝑝𝑒𝑎𝑘 is a random variable that has normal distribution with expected value 𝜇̅𝑝𝑒𝑎𝑘 =0 and standard deviation 20σs, 119 
𝑡𝑛1  ∈  𝑇1 = { 𝑡11,  𝑡21,  𝑡31, … , 𝑡𝑁1,}  and   𝑡𝑛2 ∈  𝑇2 = {𝑡12,  𝑡22, 𝑡32, … , 𝑡𝑁2,}, ∀ 𝑛 = 1, 2, … ,𝑁 with N = 40. Where 𝑡𝑛1 and 𝑡𝑛2 120 
are random variables with normal distribution and expected value  𝑡𝑛̅1 = 50 s and standard deviation σtn = 50 s. These values 121 
permitted to create noise events, with negative or positive values about 20 times the maximum EEG value, that occur between 0 122 
s to 100 s with Gaussian distribution. 123 

Two sets of 1000 signals x(t) were generated with a sampling frequency of 256 Hz and a length of 100 s: set EEG1, 1000 124 
signals corrupted with isolated peak and spike noise; set EEG2, 1000 signals corrupted with isolated peak and spike noise and 125 
with 20 consecutive triangle waveforms (𝑡𝑟𝑖(𝑡)) in two randomly selected windows of 2 s along the signal. In this way, set 126 
EEG2 contains signals more contaminated than EEG1. 127 

 128 
2.4 Calculation of parameters BAM and k of Th(t) 129 

In order to obtain the cutoff frequency value of the low-pass filter, equation (4) was applied to each signal s(t) and x(t) of the 130 
set EEG2, since it represents the worst case of noise. Then, the bandwidth BAM of the envelope m(t) was calculated for each 131 
signal. The values of BAM are shown in Fig. 1 where the mean value of BAM is 𝐵𝐴𝑀�����= 1.895 ± 0.0514 Hz for the signals x(t) and  132 
𝐵𝐴𝑀�����= 0.9068± 0.1068 for the signals s(t). This last value could represent the filter bandwidth value to theoretically eliminate all 133 



 4 

peaks. In this way, a bandwidth of BAM =1 Hz can be an acceptable value and it was taken into account for the present study. In 134 
the same way, the total bandwidth B was calculated from the equation (3) obtaining a mean value 𝐵�= 57.44± 2.86 Hz for x(t) 135 
signals and 𝐵�= 25.19± 3.00 Hz for s(t) signals. 136 

 137 

 138 

Fig.1  – Envelope bandwidth BAM: signal x(t) with noise (𝐵𝐴𝑀�����= 1.895 ± 0.0514) and signal s(t) without noise (𝐵𝐴𝑀�����= 0.9068± 0.1068). 139 
 140 
In order to find the best value of k to calculate Th(t) (6) that permits to have the best performance in peak and spike removal, 141 

the ASEF algorithm was applied to the x(t) signals of the set EEG2, varying k in the 0.1≤k≤1.2 range.  142 
For each xfilt(t) and s(t) signal, the coherence function (𝐶𝑥𝑠(𝑓) ) and an index based on the rate of the absolute error (RAE) 143 

before and after filtering were applied for validation. 144 
𝐶𝑥𝑠(𝑓) [28] is a function of the power spectral densities (Pxx and Pss) and the cross power spectral density (Pxs) of x(t) (or 145 

xfilt(t)) and s(t).  146 
 147 

𝐶𝑥𝑠(𝑓) =
|𝑃𝑥𝑠(𝑓)|2

𝑃𝑥𝑥(𝑓)𝑃𝑠𝑠(𝑓)
 

(12) 

 148 

where 0≤  𝐶𝑥𝑠(𝑓) ≤ 1 ∀f. The function 𝐶𝑥𝑠(𝑓) indicates how well the signal x(t) (or xfilt(t)) corresponds to s(t) at each frequency f. 149 
In this work, the index 𝐶 was defined as the mean value of 𝐶𝑥𝑠(𝑓)  with respect to  f. 150 

The index RAE was defined as 151 
 152 

𝑅𝐴𝐸 =
𝐸��𝑠(𝑡) − 𝑥𝑓𝑖𝑙𝑡(𝑡)��
𝐸[|𝑠(𝑡) − 𝑥(𝑡)|]  

(13) 

 153 

In this way, low values of RAE denote low absolute error after filtering, indicating good efficiency in the removal of peak and 154 
spike noise n(t). 155 

The optimum kb value was defined as the average of those k values corresponding to the minimum RAE and the maximum 𝐶. 156 
For the set EEG2, kb = 0.43±0.07 is the optimum value (as seen in Fig. 2) and this is the value of k that will be taken into account 157 
in the present study.  158 

 159 
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 160 
Fig.2  – Mean value of RAE and C with respect to k for all x(t) signals of EEG2 set. The obtained k value is k = kb=0.43. 161 

 162 

2.5 Performance Test 163 
 164 

In order to test the performances of the proposed ASEF algorithm and compare it with other filters [29-31], several known 165 
filters were applied to each simulated signal x(t) for obtaining a set of filtered signals xfilt(t). These selected filters are:  166 

• FIR (Finite Impulse Response) filter of 200th-order with a bandwidth of 0.1-30 Hz, since the calculated B value of s(t) 167 
signals is 𝐵�= 25.19± 3.00. 168 

• LMS (Least Mean Square) adaptive filter of 500th-order with step size of 0.0001, using s(t) as reference signal.  169 
• NLMS (Normalized Least Mean Square) adaptive filter of 300th-order with step size of 0.1, no leakage and using s(t) as 170 

reference signal.  171 
• RLS (Recursive Least Square) adaptive filter of 100th-order, using s(t) as reference signal. 172 
All parameters of the adaptive filters were chosen after several tests on a subset of simulated EEG data randomly chosen, in 173 

order to provide the highest correlation coefficient (ρ) and C and the lowest RAE, to guarantee filter stability with a reasonable 174 
computational cost. 175 

The performances of ASEF filtering were evaluated using: 176 
• ASEF without using the threshold Th(t) [22]. 177 
• ASEF using the threshold Th(t) with k=0.43. 178 
In order to evaluate the performance of each filter, the correlation coefficient (ρ), 𝐶 and RAE were calculated between signal 179 

xfilt(t) and s(t).  180 
 181 

 182 

2.6 Real EEG Data 183 
 184 

Finally, ASEF was tested on real EEG data (s(t) signal). Noise signal n(t) was added to each signal s(t) and then the ASEF was 185 
applied to the corrupted signal x(t) (9).  186 

The recordings s(t) belong to the EEG database that are available online by Andrzejak et al (2001) at the Department of 187 
Epileptology, University of Bonn (Germany) [32]. For the evaluation, two different subsets (A, B) were used, which contain 188 
surface EEG signals recorded from five healthy volunteers who were relaxed in the awaking state. Whereas the subjects had their 189 
eyes open during the recording of the EEG in subset A, the EEG signals of subset B were acquired with eyes closed. Each subset 190 
contains 100 single-channel EEG signals of 23.6 s, recorded with a sampling frequency of 173.6 Hz (4096 sample points). 191 

 192 
 193 

 194 
3. Results 195 

3.1 Simulated Time Series 196 
 197 
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The ASEF filtering reduces the amplitude of the peak and the triangular waveforms n(t) without changing in a significant way 198 
the components of the pure signal s(t). This effect can be observed in Fig. 3a where ASEF filtering was applied to a simulated 199 
corrupted signal x(t). A segment of 5 seconds of the signal x(t) and its corresponding filtered signal xfilt(t) are shown in in Fig. 3b. 200 
In a similar way, Fig. 3c presents the same five-second segment of the x(t) signal and its corresponding filtered signal xfilt(t) by an 201 
adaptive filter LMS. Comparing Fig. 3b and Fig. 3c, it can be observed that ASEF filtering (Fig. 3b) and the adaptive filter (Fig. 202 
3c) both present a reduction of the noise n(t), but ASEF does not present any distortion of the s(t) signal such as adaptive filter 203 
does.  204 

 205 

 206 
(a) 207 

 208 
(b) 209 

 210 
(c) 211 

 212 
Fig. 3. (a) A simulated signal x(t) with peaks and its filtered signal xfilt(t) with ASEF filtering using the threshold Th(t) with k = 0.43. (b) Zoom of 5 second 213 

segment of the x(t) and xfilt(t) signals. In red xfilt(t), and in blue x(t). (c)  Zoom of 5 second segment of x(t) and xfilt(t) signals filtered with an adaptive filter LMS. 214 
In red xfilt(t), and in blue x(t). 215 

 216 
Table 1 shows that the value of ρ between s(t) and xfilt(t) was in the range of 0.5<ρ<0.85 for the adaptive filters and the ASEF 217 

filtering without Th(t). However, only the ASEF filtering with Th(t) could obtain ρ > 0.85.  218 
 219 

Table 1. Evaluation Performance: Pearson Correlation Coefficient (ρ) 220 
Filter EEG1 (m±σ)  
ASEF TH k=0.43 0.9085 ±0.0149  
ASEF no TH 0.8283±0.0182  
FIR 0.3839±0.0853  
LMS 0.8075±0.0578  
NLMS 0.7629±0.0643  
RLS 0.5366±0.1562  

m, mean; σ, standard deviation 221 
 222 

Fig. 4 presents the boxplot of the 𝐶 and RAE values calculated for all signals of EEG1 sets, in order to compare the performance 223 
of all filters. As it can be noted, ASEF filtering with Th(t) gives the best values of the RAE and the 𝐶.  224 
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The performance of the ASEF without Th(t) was quite similar to the adaptive filters in terms of RAE but present higher value 225 
of 𝐶. Considering the performance of the best adaptive filter (LMS), it can be noted that even if the peak noise n(t) is reduced, 226 
the filtering affects also the pure signal s(t) and consequently RAE is higher in LMS than in ASEF and 𝐶 is lower in LMS than in 227 
ASEF.  228 

 229 
(a)                                                                                               230 

 231 
(b)                                                                                                232 

Fig. 4. (a) Distribution of 𝐶 values and (b) distribution of RAE values calculated for all simulated signals x(t) of the EEG1 set. On each box, the central mark 233 
is the median, the edges of the box are the 25th and 75th percentiles. The whiskers are lines extending from each end of the boxes to show the extent of the rest 234 

of the data. Values beyond the end of the whiskers are considered outliers and marked with a  +. 235 
 236 

3.2 Real EEG data 237 
 238 
Fig. 5a shows an example of an EEG signal before and after ASEF filtering with Th(t). The effect of the filtering was tested by 239 

calculating the indexes RAE and 𝐶 on unfiltered EEG, on EEG filtered with ASEF (without and with Th(t)) and on adaptive filter 240 
(LMS). The LMS adaptive filter was chosen because it gave better performance than all other adaptive filters when applied to the 241 
simulated dataset (as seen in Fig. 4). The results of RAE and 𝐶 indexes calculated from s(t) and xfilt(t) are presented in Fig. 5b and 242 
Fig. 5c. It can be observed a quite low value of RAE and high value of 𝐶 when ASEF is applied with k=0.43. Also, it can be 243 
noted that RAE of LMS and ASEF without Th(t) get values higher than the unit, that corresponds to non-filtered EEG (x(t) = 244 
xfilt(t)). This means that filtering with these procedures introduces other type of noise to the original signal s(t), consequently, the 245 
absolute error value in the signal xfilt(t) is higher than in the signal x(t). The obtained values of ρ between s(t) and xfilt(t) were 246 
similar to those of simulated data: 0.55<ρ<0.85 for the LMS and the ASEF filtering without Th(t) and ρ > 0.85 for ASEF 247 
filtering with threshold Th(t). 248 

These results denote a good performance in the removal of peaks and spikes also in real EEG data as well as in simulated EEG 249 
data.  250 

 251 
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(a) 

 
(b) 

 
(c) 

 252 
Fig. 5. (a) x(t) is a real EEG signal s(t) with peaks n(t) and xfilt(t) is the filtered signal by using ASEF. (b) Distribution of 𝐶 values and (c) distribution of RAE 253 

values calculated between x(t) and the filtered xfilt(t) in a set of 200 real EEG signals. EEG box represents the index calculated taken x(t) instead of xfilt(t). On each 254 
box, the central mark is the median, the edges of the box are the 25th and 75th percentiles. The whiskers are lines extending from each end of the boxes to show 255 

the extent of the rest of the data. Values beyond the end of the whiskers are considered outliers and marked with a  +. 256 
 257 

3.3 Uncorrupted signals 258 
 259 
Finally, the algorithm was applied to signals without any contamination. Table 2 shows 𝐶, RAE and ρ values obtained applying 260 
ASEF with k=0.43 to all signals s(t) without any contamination, belonging to EEG1 set and real EEG data. In order to avoid 261 
division by zero in RAE calculation since x(t)=s(t), the denominator of the (13) was calculated using x(t)=𝑠(𝑡)�����  where 𝑠(𝑡)�����  is the 262 
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mean value of s(t). Observing the values of Table 2 (𝐶 >0.95, RAE<0.25 and  ρ > 0.98), it can be deduced that the ASEF with 263 
k=0.43 does not modify uncontaminated signals inappropriately. 264 
 265 

Table 2. Evaluation Performance: 𝐶, RAE and Pearson Correlation Coefficient (ρ) for ASEF with k=0.43 applied to signals s(t) 266 
Index EEG1 (m±σ) real EEG (m±σ) 
C 0.9561±0.0081 0.9721±0.0145 
RAE 0.0659±0.0107 0.0568±0.0236 
ρ 0.9883±0.0025 0.9889±0.0056 

m, mean; σ, standard deviation 267 
 268 
 269 

4. Conclusions and Discussions 270 
 271 
An algorithm for removing peak and spike noise from EEG is presented in this paper. This is based on filtering and 272 

thresholding the analytic signal envelope. This filter preserves all information contained in the original signal phase, changing 273 
only the bandwidth of the envelope. It was tested on a set of simulated and real EEG signals corrupted with peak and spike noise 274 
n(t) and its performance was compared with adaptive filters calculating correlation coefficient (ρ), mean of coherence function 275 
(𝐶) and rate of absolute error (RAE).  276 

Firstly, the optimum bandwidth BAM = 1 Hz of the envelope of a signal without peaks was calculated. Then applying 𝐶 and 277 
RAE indexes, the optimum value of the parameter k of the threshold Th(t) was calculated on a subset of simulated EEG signals, 278 
obtaining k=0.43. Finally, using these values of k and BAM, the ASEF was applied on a dataset of simulated and real EEG signals 279 
both corrupted with noise n(t).  280 

It can be noted from table 1 and Fig. 4 that ASEF with k= 0.43 has the highest ρ and 𝐶 for both EEG1 and EEG2 sets; this 281 
demonstrates the capability of the filter to retain the shape of the signal and also to preserve its frequency content.  These values 282 
are even higher than the ρ and 𝐶 of the best adaptive filter which was LMS filter. Furthermore, ASEF with k= 0.43 has the 283 
lowest value of RAE. This means that ASEF with k= 0.43 has the best performance in reducing the noise without changing the 284 
original signal for all the time of recording. The optimization of BAM and k values will permit to preserve the episodes of 285 
consecutive spikes with physiological information. 286 

The results of the simulated signals were validated applying the ASEF algorithm to real EEG data corrupted by noise n(t), 287 
obtaining analogous performance results that simulated data. It has been demonstrated that this filter presents better performance 288 
than adaptive filters applied to signals corrupted by non-periodic peak and spike noise. A remarkable feature of this filter is that 289 
once the value of the parameters BAM and k are obtained, for one kind of signal, it is not necessary to recalculate these parameters 290 
for future filtering of the same physiological signal. The parameters BAM and k calculated in this study have represented efficient 291 
values for EEG signal, however different values of BAM and k will permit to adapt the filter to the features of the different 292 
physiological signals and noise situations.  293 

The main aspect of the ASEF is that the amplitude of the signal x(t) is modified without changing the phase 𝜙(t) using only 294 
the filtered envelope mfilt(t). The filtered signal xfilt(t) presents a reduction of the peak and spike amplitude compared with the 295 
original signal s(t) (RAE<0.5), but without affecting the frequency components (𝐶 >0.8). It should be noted that all this can be 296 
calculated in the time domain without needing any reference signal or any multichannel recording. This is advantageous when it 297 
is necessary to minimize the number of channels in a recording.  298 

The concept and the methodology of this filter is similar to our previous designed filter published in [22], but in this current 299 
paper the algorithm for the calculation of the bandwidth of the envelope at low frequencies of the generic signal was improved 300 
and a threshold based on the filtered envelope was introduced. These modifications  have permitted to improve the performance 301 
in terms of 𝐶, RAE and Pearson Correlation Coefficient (ρ). This new designed filter minimizes the inappropriate modification of 302 
the original signal s(t).The results have shown the capability of ASEF in reducing the noise, minimizing the absolute error rate 303 
between filtered and pure signal in both simulated and real EEG data. 304 
 305 

Appendix 306 
The standard deviation 𝜎𝑓, commonly known as bandwidth B, is defined as 307 
 308 

𝐵2 = 𝜎𝑓2  = ��𝑓 −  𝑓��2|𝑌(𝑓)|2 𝑑𝑓 = 𝑓2��� −  𝑓�2
 (14) 

where the spectral density |𝑌(𝑓)|2  is the Fourier transform of the autocorrelation function of the signal 𝑦(𝑡). 309 
The time expression for the mean frequency can be calculated as 310 

𝑓̅ = �𝑓 |𝑌(𝑓)|2 𝑑𝑓 =
1
𝑗2𝜋

� 𝑗2𝜋𝑓 𝑌(𝑓)𝑌∗(𝑓)𝑑𝑓 =
1

2𝜋
 �𝑦∗�𝑡 �

1
𝑗

 
𝑑𝑦(𝑡)
𝑑𝑡

𝑑𝑡  
 
(15) 

 311 
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More specifically, if 𝑦(𝑡) = 𝑚(𝑡) 𝑒𝑗𝜙(𝑡) then 312 
 313 

𝑓̅ =
1

2𝜋
 �𝑦∗(𝑡)

1
𝑗

 
𝑑𝑦(𝑡)
𝑑𝑡

𝑑𝑡 =
1

2𝜋
 �

𝑑𝜙(𝑡)
𝑑𝑡

𝑚(𝑡)2 𝑑𝑡 
 
(16) 

 314 
In similar way, the time expression of the mean square frequency is deduced as 315 

𝑓2��� = �𝑓2 |𝑌(𝑓)|2 𝑑𝑓 =
1

(𝑗2𝜋)2  �𝑗2𝜋𝑓  𝑌(𝑓)  𝑗2𝜋𝑓  𝑌∗(𝑓)𝑑𝑓 =  
1

4𝜋2
 � �

𝑑𝑦(𝑡)
𝑑𝑡

�
2

𝑑𝑡    
 
 (17) 

 316 
Then, the mean square frequency value for 𝑦(𝑡) = 𝑚(𝑡) 𝑒𝑗𝜙(𝑡) is 317 
 318 

𝑓2��� =
1

4𝜋2
 ��

𝑑𝑦(𝑡)
𝑑𝑡

�
2

𝑑𝑡 =
1

4𝜋2
��

𝑑𝑚(𝑡)
𝑑𝑡

�
2

𝑑𝑡 +
1

4𝜋2
��

𝑑𝜙(𝑡)
𝑑𝑡

�
2

𝑚(𝑡)2𝑑𝑡 
 
(18) 

 319 
Finally, from the square of the signal bandwidth (14) in Hz and from the instantaneous frequency definition 𝑓𝑖 = 1

2𝜋
𝑑𝜙(𝑡)
𝑑𝑡

, the 320 
following expression is obtained 321 

 322 

𝐵2 =  
1

4𝜋2
��

𝑚(𝑡)′

𝑚(𝑡)
�
2

𝑚(𝑡)2𝑑𝑡 + ��𝑓𝑖(𝑡) −  𝑓�̅2𝑚(𝑡)2𝑑𝑡 
 
(19) 

 323 
Consequently, the square bandwidth is made by a term that depends on the mean of the amplitude and another term that 324 

depends on the mean of the frequency 𝐵2 = 𝐵𝐴𝑀2 + 𝐵𝐹𝑀2 . 325 
 326 
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