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Bracket Operations in the Homotopy
Theory of a 2-category

K.A. HArDIE, H.J. MARCUM AND N. Opa )

SUMMARY. - We study properties of a class of secondary operations,
similar to the classical Toda bracket, that are defined in the con-
text of a 2-category with zeros. Specialised to the 2-category of
based spaces, maps and tracks, the applications include new for-
mulae for matriz Toda brackets and for a new operation that we
call the box bracket. Sample computations for the brackets are
given in the homotopy groups of spheres.

As a category, the homotopy category of pointed topological
spaces has a very striking feature: it permits definition of secondary
operations. Indeed the secondary composition operations discovered
by H. Toda, the Toda brackets, have played a fundamental role in
the ongoing computation of the homotopy groups of spheres and are
largely responsible for the flavour of the subject. Values of secondary
operations generally present themselves as cosets of a subgroup (or
subgroups) of a track group of form w(XX,Y") or, equivalently up to
adjoint isomorphism, 7(X,QY). As pointed out by Barratt [1] and
Rutter [16], a track is, properly considered, a relative homotopy class
of homotopies.

By using nullity sets of 2-morphisms it was shown in [6] that a
generalised notion of track is available in an arbitrary 2-category with
zeros. If f: A — B and f =~ o (o denotes the zero morphism) then
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the track group from f to f may be identified with the group Ao :
A — B) of all invertible self 2-morphisms of the zero 1-morphism
from A to B. (See also §1.) In [6], this notion was used to define
abstract analogues of the classical Toda bracket and also matrix Toda
brackets, establishing the relevant indeterminacies. In the present
paper we study systematically a somewhat more general secondary
operation which we call the box bracket. Namely, we consider a
homotopy commutative diagram

o

=
<=

in which the composites g o w and a o u are assumed to be null
homotopic. Then the box bracket

N S

is defined (see Definition 2.1 below). Of course in this situation the
composite ao fow must be null homotopic; however the Toda bracket
{a, f,w} is not necessarily defined, because it need not be true that
the composites f ow and a o f are null homotopic (cf Remark 3.5
below).

One very basic situation where box brackets naturally arise is the
following. Suppose given 1-morphisms

WL 4

S

= X =Y

satisfying ao f ~ o and soa ~ o. Then the Toda bracket {s,a, f} is
defined and we may consider {s, a, f} ow (equivalently {s,a, f} o Bw
in the topological case). If in fact f o w ~ o then we have

{Saaaf}ow:_so{a’faw}

by a widely used lemma of Toda [17, Proposition 1.4]. Otherwise the
formula fails and one of our main themes here is to investigate how



BRACKET OPERATIONS etc. 21

the failure may be measured in terms of matrix Toda brackets and
box brackets. Corollary 4.5 is a good example of what we have in
mind. This suggests a potential computational role for box brackets.

An outline of the paper is as follows. In §1 as preliminary we
consider in the category of homotopy pair maps of a 2-category with
zeros an operation called the basic box operation. Its indeterminacy
is identified as a double coset. The basic box operation includes as a
special case the homotopy pair bracket set studied in [4]. Somewhat
in passing and as in [4] we observe that an exact sequence of Mayer-
Vietoris type continues to hold. Then the box bracket operation is
defined in §2 and we compute its indeterminacy in Proposition 2.4.
Proposition 2.5 characterizes the image of the box bracket under one
of the maps in the above mentioned exact sequence. We devote §3
to various specific situations where box brackets are expressible in
terms of (classical) Toda brackets and matrix Toda brackets. Under
appropriate restrictions we exhibit the relationship of the box bracket
to a toral construction of Rutter [16].

In §4 and §5 we explore analogues for box brackets of several
properties of Toda brackets. Generalizations of both horizontal and
vertical type are treated. One of the principal results is Theorem 4.4.
We draw attention especially to Corollary 4.6. This result is an equal-
ity for matrix Toda brackets which evidently has escaped previous
notice. Some computations based on this corollary are given in [11].
Another key result is Theorem 5.5 where a 3 x 3 equality for box
brackets is obtained.

In the remainder of the paper we specialize to the 2-category
Tops of based topological spaces, maps and track classes of homo-
topies. In this topological setting further properties of the classi-
cal Toda bracket can be generalized to the box bracket. In par-
ticular an “extension-coextension” definition is available. In §7 we
present some examples where the box bracket is relevant. It is well
to observe that results in the abstract theory do not always transfer
neatly to the topological case and so comparison with the topological
case is not redundant. For, while there is a natural identification of
Ao : W — X) with n(¥W, X) (see Proposition 6.1), certain sub-
groups of A(o: W — X) are not easily described in m(XW, X). For
instance this is the situation even with regard to the indeterminacy
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of the box bracket (see Theorem 6.4).

This article is devoted to presenting the elementary theory (ba-
sic definitions and fundamental properties) of box brackets in a very
general categorical setting. Our primary focus has not been to make
specific computations. Box brackets (in the topological case) can
be detected by Hopf invariants and (for elements of the homotopy
groups of spheres) evaluated by methods similar to those used for
Toda brackets. Further detailed computations are postponed to
subsequent papers. Also it seems likely that in an appropriately
restricted setting there is some connection between our work and
that of Baues [2] on universal Toda brackets. However we have not
undertaken such a comparison here.

1. Certain 2-categories; null homotopic 1-morphisms

In this section we present the setting in which we will work and for-
mulate the basic box operation. We freely use notations and concepts
introduced in [6].

If C is a 2-category then the lax morphism category of C, denoted
mC, can be formed. Its objects are the 1-morphisms of C. For given
l-morphisms h: W — U and f : C — A in C a 1-morphism in mC is
defined by a square

w

w = C

W = s (1)

A

U = A

u

with specified 2-morphism F' : uoh = fow. The 2-morphisms in mC
are modifications (in the categorical sense; cf [8], [9] or [10, p. 554])
of these squares; the exact definition is not specifically recalled but
may be inferred from the definition of null homotopic 1-morphism
given below. In [9] the op-lax dual of mC is denoted HPM(C) and
the associated homotopy category HPC(C). However here we work
directly with mC and let HmC denote the associated homotopy cate-
gory. Also we use 7 (h, f) to denote the morphism set in HmC whose
elements by definition are “homotopy” classes of 1-morphisms in mC;
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these are denoted

for want of a better notation.

For C = Topx, the 2-category of based topological spaces (cf
Section 6 below), m7T opx and Hm7 opsx correspond to the category
of homotopy pair maps and the category of homotopy pair classes
as introduced by the first author [3] and much utilized thereafter.
For (1) in Tops (thus here F' is a track class of homotopies) the
homotopy class has been referred to as the coherence class of the
square.

If the 2-category C has zeros then also mC is a 2-category with
zeros. Note that the unique zero map in homyc(h, f) corresponds

to the square
o

w = C
1o

hl — |f
U—Fg=A

To say that (1) is a null homotopic 1-morphism in mC means
that there exist invertible 2-morphisms H : 0o = v and K : 0 = w
such that

w
w =

F
h| =

b <

U = A U
i
o
inC. Thatis, F+Hh = fK+1, or equivalently — fK+F+ Hh = 1,.
Recalling the relation (conj) of conjugation of 2-morphisms [6, Def-
inition 1.2], we see that if (1) is null homotopic then F'(conj)l,. In
particular this implies (see [6, Propositions 2.2, 2.4 and 2.5]) that
F' itself must be invertible with w ~ 0 and u ~ 0. Moreover the
nullity set N(F) of F' (see [6, Definition 2.1]) must coincide with the
group A(o : W — A) of all invertible self 2-morphisms of the zero

1-morphism o : W — A.
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In the next definition we consider a notion weaker than requiring
(1) to be null homotopic in mC; namely we drop the requirement that
the composite 2-morphism —f K + F' + Hh be equal to 1,. However
we do maintain that /', H and K be invertible; this is done in order
to obtain a subset of A(o : W — A) rather than just a subset of
N(F).

DEFINITION 1.1. Let C be a 2-category with zeros and (1) a square of
1-morphisms with a fized invertible 2-morphism F :uoh = fow:
W — A. Assume that w ~ o and u ~ o. Then the basic box
operation

B(F)C Alo: W — A)

is defined. It corresponds to the set of all 2-morphisms of the form
—fK+F+Hh:0=0:W = A

for all possible homotopies H : 0 = u and K : 0 = w. Recall that
a homotopy is an invertible 2-morphism and notice that there is a
“direction” associated to B(F'). Actually our choice of the notation
B(F') is somewhat deficient in that it does not reflect that we are
regarding (1) as a 1-morphism in mC. Moreover it is well to em-
phasize that the basic box operation is defined for an individual F.
In fact the subset obtained by considering simultaneously all possible
F'’s, that is,

{—-fK+F+ Hh ‘ for all possible homotopies H : 0 = wu,
K:o=w,F:uoh= fouw},

is readily seen to equal the whole of A(o: W — A) itself and so is
not of interest.

DEFINITION 1.2. We say that B(F') is trivial if the identity 2-mor-
phism 1, belongs to B(F). We note that (1) is null homotopic as a
1-morphism of mC if and only if B(F') is trivial.

If C has zeros and h : W — U and f : C — A are arbitrary
1-morphisms then there is defined a function

Vinf) Ao W — A) — 7(h, f)
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given by
o w 2 C
N 13
W e A = Rl = |f
o U =~ A

o

where “[ ]” here denotes the “homotopy” class of a 1-morphism in
mC. There is also a function &, 5y : 7(h, f) — 7(U, A) x n(W,C)
given by

w

w

F
hl =

1] = ().
!

U

u

The subscript notation (h, f) is used for these functions in order to
show dependence on h and f. (The notation of [4] for d;, ) in the
topological case was (c,d).) Then the sequence

A(O:U—)A)@A(O:W—)C)@)A(OZW—)A)
V0D h £) " (U, A) x 7(W,C) (2)

is an exact sequence as pointed sets. We omit the proof as it just
follows the lines of [4, §2]. Moreover by the exactness we may state
the equality

(V) (B(F)) | all such F in (1)} = 5,4, (0, 0).

PROPOSITION 1.3. In Definition 1.1 denote by 0 = —fK + F + Hh
a fized but arbitrary element of B(F'). Then

B(F)=foAlo: W —=C)+0+A(0:U — A)oh

as subsets of A(o: W — A). That is, B(F) is a double coset of the
subgroups foA(o: W — C) and A(o : U — A)oh. And consequently,
whenever A(o: W — A) is abelian, B(F') is a coset of the subgroup

foAlo: W = C)+ A(o:U — A)oh.



26 K.A. HARDIE, H.J. MARCUM and N. ODA

Proof. Let the double coset
foAlo: W = C)+60+Alo:U — A)oh

be denoted by . An arbitrary element of B(F) is of the form — f K'+
F + H'h for some homotopies H' : 0 = u and K' : 0 = w. Now we
may write
—fK'+F+Hh=—fK'+ fK — fK+F+Hh— Hh+ H'h
=f(—K'+K)+0+ (—H + H')h.
Noting that —K'+ K € A(o: W — C)and —H+H' € A(o: U — A)

we conclude that this last expression is an element of S. This proves
that B(F) C S.

To establish the reverse inclusion let { be an element of S. It is
of the form { = fL+6+4 Ph for some homotopies L: 0= 0: W — C
and P:o=0:U — A. Then
¢(=fL+60+ Ph

=fL—fK+ F+ Hh+ Ph

=—f(K—L)+F+ (H+ P)h.
This last expression represents an element of B(F'). Hence ¢ € B(F)
as claimed. O
ExamprLE 1.4. Consider a diagram

9
w\»c

w = B

F | a
h=>f=>b

u/A a

A

= X

U

with fized homotopies F and G. Also suppose that a ou ~ o and
gow ~o. Then we set {G,F} = B(Gw + aF'). By Proposition 1.3
{G.F} is a double coset of the subgroups bo Ao : W — B) and
A(o: U — X) o h. If the diagram given is regarded as the composite
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of two 1-morphism in mC then this composite is null homotopic in mC
if and only if {G, F} is trivial (cf Definition 1.2). In the topological
case {G, F'} is the operation considered by Hardie-Kamps [4, (1.5)],
where it is called the homotopy pair bracket set. In this latter
case the operation is to be regarded as a subset of 7(XW, X) and is
a double coset of the subgroups bo w(XW, B) and w(XU, X) o Lh.

ExAMPLE 1.5. Consider the diagram (regarded as a square)

w =~ C A
w 1aofow a
C—p=Aa—7G=X

in which it is assumed that fow ~ 0 and ao f ~ 0, and where Lo fow
denotes the identity 2-morphism on a o f ow. Then the basic box
operation is defined and clearly we have B(140fow) = {a, f,w} where
the notation {a, f,w} denotes the classical Toda bracket as used in
[6, Definition 8.1]. We caution that this usage corresponds to what
would be denoted —{a, f,w} in [}, (1.8)]. (Also see Proposition 3.1
below.)

2. The box bracket

In this section C is a 2-category with zeros and for reference we fix
the following diagram in C.

(3)

o

DEFINITION 2.1. In diagram (3) assume that uoh ~ fow, aof =~ bog,
gow ~o0 and aou ~ o. Then the box bracket
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18 defined. It corresponds to the set of all composite 2-morphisms of
the form
—bK+Gw+aF+Hh:0=0: W — X

for all possible homotopies H : 0 = aou, F : uoh = fouw,
G:a0f=bog and K : 0 = gow as indicated in the following
diagram.

B (4)

In relation to the operation in Example 1.4 it is clear that the
equality

w c——8 ) ‘
U{{G, F} | all possible homotopies
LL | & f b |=
/ / G:aof=bog,F:uoh= fow}
U—r=A—X
is valid.

In the next proposition we compute the indeterminacy of the box
bracket operation.

PROPOSITION 2.2. In Definition 2.1 let 0 = —bK + Gw + aF' + Hh
denote a fized but arbitrary element of the box bracket. Then

=~ B
b | = boA(o: W — B)+[A(bog) ow]™™
A X ) 40+ lao Awo )
+A(0:U — X)oh
as subsets of A(o: W — X). Alternatively the equalities
[A(bo g) o w]™™ = [A(ao f) ow] W HH
[a o A(uo h)]" = [a o A(f o w)]*F T
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may be used. Furthermore, if the composites aouoh and bogow are
assumed to be admissible (in the sense of [6, Definition 6.3]) then
the subsets

boA(o: W — B) + [A(bo g) o w]’™
[ao A(wo b)) + A(0: U = X)oh

are subgroups of A(o: W — X) and consequently the box bracket is
a double coset of these subgroups.

Proof. First we note that the equalities
[bo A(gow)+ A(bo g) o w]’  =bo Ao : W— B) + [A(b o g) o w]*X
[a0 A(uoh)+ A(aou) o h)"=lao A(uwo b))+ A(o: U= X) o h

are valid (cf [6, §6]). Now if bo g o w is admissible then b o A(g o
w) + A(bo g) ow is a subgroup and hence so is bo A(o : W —
B) + [A(bo g) o w]*™. For a similar reason [a o A(u o h)]"" + Ao :
U — X)oh is a subgroup if aouoh is admissible. These observations
establish the last part of the proposition.

Next, to verify the description of the box bracket which is claimed
in the proposition, set

R=CO| &

o

and
T=boA(o: W — B)+[A(bo g) o w]’™ 4+ 6
+[ao A(woh)|"™ + A(o: U = X) o h.

By the above equations it will be sufficient to show that R = T.
Now an arbitrary element of R is of the form

—bK'+G'w+aF + H'h

for some homotopies H' : 0 = au, F' : uh = fw, G’ : af = bg, and
K': 0= gw. We write
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—bK'+G'w+aF' + Hh
= —bK'+bK —bK + G'w— Gw+ bK — bK + Gw
+aF + Hh— Hh —aF +aF'+ Hh — Hh+ H'h
= b(-K'+K)—bK+ (G'—G)w+bK +6 — Hh
+a(—F + F')+ Hh + (—H + H')h.

By observing that (-K'+ K) € A(o: W — B), (G' —G) € A(bog),
(—F+F') € A(uoh) and (—H+H') € A(o: U — X), it is seen that
this last expression is an element of 7. This proves that R C T.

To establish the reverse inclusion let ¢ be an element of 7. It is
of the form ¢ = bN + (Pw)*® + 6 + (aL)™" + Mh for homotopies
N:0=0:W - B, P:bog=5bog, L:uoh= uoh and
M:0=0:U — X. Then

¢ =bN + (Pw)*  + 60 + (aL)™" + Mh
=bN — bK + Pw +bK +60 — Hh +aL + Hh + Mh
=-bK-N)+(P+Gw+a(F+L)+ (H+M)h

where K — N :0= gow, P+G:ao0f =bog, F+L:uoh= fow
and H+ M : 0= aowu. Hence ( € R as claimed. O

With reference to the exact sequence (2) we have the following
proposition. The proof is straightforward and thus omitted. (Com-
pare [4, Proposition 2.4].)

PROPOSITION 2.3. Suppose C is a 2-category with zeros. Let the
diagram

9
wa

w

~ B

f b

>

A

= X

b~

U

u a
be homotopy commutative with g ow ~ o and aou ~ o. Then

w 9

=~ B

o || =000 el Taodty (), )
¢
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in w(h,b) where the “o” on the right hand side denotes composition
in HmC.

The definition of the box bracket admits a relative form which
we now describe. Consider a diagram
D—~C——¢
of 2-categories and 2-functors. Fix homotopy commutative squares

w—2= o —2

fl f//
u | |
U——=A A

- B

h

b

a

in D and & respectively and suppose that

(tor = (0 —L a) = (som 2Ly sam)

as l-morphisms in C. Also assume that sg o tw ~ o and sa o tu ~ o.
Then by the box bracket

w e 2
Djt,s th| K b | C Ao : tW — sX)  (5)
tU ™ = A e sX

we shall mean the set of all composite 2-morphisms in C of the form
—(sb)K + (sG)(tw) + (sa)(tF) + H(th) : 0 = 0 : tW — sX

for all possible homotopies F : uoh = f'ow inD, G :ao f”" = bog
in€and H:0= saotu, K:0= sgotwinC.

We leave it to the reader to establish the following relative version
of Proposition 2.2.

PROPOSITION 2.4. Let 6 = —(sb)K + (sG)(tw) + (sa)(tF) + H(th)
denote a fized but arbitrary element of the box bracket (5). Then
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tW ye; ~ sB
(s | th f sb | = sbo A(o:tW — sB)
W ——= A —5= sX +[sA(bog)o tw](sb)K

+6 + [sa o tA(u o h)|HM
+A(0: tU — sX) o th

as subsets of Ao : tW — sX).

3. Some special box brackets

In this section we consider some specific situations where box brack-
ets reduce to, or are expressible in terms of, classical and matrix Toda
brackets. In particular it is proven that if one of the diagonal com-
posites in the box bracket is null homotopic then the box bracket
is the sum of a classical Toda bracket and a matrix Toda bracket
(Proposition 3.3, (1) and (2)) and that if both diagonal composites
are null homotopic then there is a decomposition in terms of three
classical Toda brackets (Proposition 3.3(3)).

PROPOSITION 3.1. For given 1-morphisms W — C L A5 X
in C suppose that fow ~ o0 and ao f ~ o. Then the relations

_{aafaw}:m

are valid.
Proof. Recall [6, Definition 8.1], that we take

{a, f,w} ={—aK+ Lw ‘ all homotopies K : 0 = fow,L:0=aof}
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as the definition of the classical Toda bracket {a, f, w}, while for the
specific case at hand the definition of the box bracket simplifies to

w

w = C
f

/ L _ {Gw +aF ‘ all homotopies

- F:0=fow,G:ao0f= o}

*

a:‘X

But —(—aK + Lw) = —Lw+aK and Gw+aF = —(—aF + (—G)w).
It follows that the equality claimed in the proposition holds. Also
note that we may write

Guw+aF = —(—aF — Gw) = —(—aF + (Lgof)w + a(ltoy) + (—G)w).

Hence the inclusion of box brackets claimed in the proposition holds
as well. O

PROPOSITION 3.2. As subsets of A(o: W — X), the following equal-

ities hold.
w—-c—2-p ;
w
(1) Ifb_othenED h/ \/f \/b - {a7 u’ h}
U—r=A—=X
(2) If g ~ o then
w-—2-c—2-p
f w
| & ! b | = boA(o: W — B) + 1 a, W h
U—=A——X
w—2-c—2-p
b g
(3) If h~ o0 then (IO | n f b | = a’f’w
U—p=A—7—X
(4) If u ~ o then
w—-c—2-p
L] & f b :{ ,?,w}+A(o:U—>X)oh
U A X
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Proof. We restrict ourselves to proving part (2) only; the other three
parts have proofs which are quite similar and so are omitted.

Let L : g = o be a homotopy. If the homotopies H, F, G and K
are as in Definition 2.1 then we may write:

—-bK+Gw+aF +Hh = —-bK —bLw-+bLw+Gw+aF + Hh
= b(-K—-Lw)+ (—(—G —bL)w+ aF + Hh)

Now the first term here is an arbitrary element of

S

o

while the last term represents an element of

boA(o: W — B) + {a, {L, Q;; }

Conversely given £ : 0 = 0o : W — B and a diagram

representing an element of {a, (see [6, Definition 5.1]) we

may write

bé + (—Jw +aF + Hh) = b§ + bLw — bLw — Jw + aF + Hh
=—b(—Lw —¢&)+ (—bL — J)w+aF + Hh
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since the relations oow =0 : W — B, boo =0: C — X and
—L+L=1,:0= 0:C — B are valid. Then the last expression

w 9
w ~C ~ B
given is recognizable as an element of [T1 | 4 I b
U—g=A—=X
Consequently the equality stated in part (2) is valid. O

PROPOSITION 3.3. In the homotopy commutative diagram of 1-mor-
phisms in C

sy

suppose that gow ~ o and a o u =~ o.

(1) If bo g ~ o then

=~ B

/b = {b’g’w} + {a7 {L ? ,l;: }

~ X

LI &

~

as subsets of Alo: W — X).
(2) If uoh ~ o then

| »

~

as subsets of A(o: W — X).
(3) Ifbog ~ o0 and uoh =~ o then
w_ 9
/f

w -~ B
b = {b;g;w}_{aafaw}+{a7u7h}

-~ X

= A

u a
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as subsets of A(o : W — X). Moreover, if Alo: W — X) is
abelian then this subset is a coset of the subgroup

boA(o: W — B)+ A(o: C — X)ow+
aoA(lo: W — A)+ A(o: U — X)oh.

Proof. We give the proof of part (1). The similar proofs of parts (2)
and (3) are left to the reader.

Let L : 0= bog be an assumed homotopy. Then with reference
to Definition 2.1 we may write

—bK+Gw+aF + Hh = —bK + Lw — Lw+ Gw +aF + Hh
= (-bK + Lw) + (=L + G)w + aF + Hh)

so that the inclusion

b C{bagaw} + {aa

2
> g
——

follows at once.

/ , v } on the other hand
u’ h

has the form (—bK + Lw) + (Jw + aF + Hh) for homotopies K :
o=>gow, L:0=bog,J:aof =0, F:uoh= fowand
H : 0 = aou. This composite 2-morphism may be re-expressed in the
form —bK+(L+J)w+aF+Hh which shows that it also represents an

An arbitrary element of {b, g, w} + {a,

w

oY p
!

= A
u

w

element of [T | 4 b |. Hence the reverse inclusion

U an

holds and therefore the equation in part (1) is established. O
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PROPOSITION 3.4. Let
w B
X /
h C b
U : X

be a homotopy commutative diagram in which gow = 0 and aow = 0.
Then

b | = {bgow,h}

as subsets of A(o: W — X).

Proof. Since the central vertical arrow in the box bracket is the iden-
tity, the Toda bracket {b,g o, h} may be formulated. Moreover it
follows directly from the definitions that the box bracket is a sub-
set of {b,g ow,h}. To show the reverse inclusion, fix homotopies
F :Wwoh = wand G:a = bog. Now an arbitrary element of
{b,gow, h} is of the form —bK + Lh for homotopies L : 0 = bogou
and K : 0 = gouo h. Note that we may write

—bK + Lh

—bK — (bog)F + (bog)F +G(uoh)—G(uoh)+ Lh
= —b(gF + K)+ Gw+aF + (—Gu+ L)h

with homotopies gF + K : 0 = gow and —Gu+ L :0=aowu. In
this latter form we see that —bK -+ Lh is also an element of the box
bracket. Thus the reverse inclusion also holds. O

REMARK 3.5. Let notation be as in Proposition 8.4. It may be re-
marked that whenever {b,g ou,h} is nontrivial then the box bracket
considered in Proposition 3.4 is nontrivial and has the property that
the Toda bracket {a,1c,w} which is constructed from the central
composition of 1-morphisms in the box bracket is undefined. For an
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explicit occurrence of this let C = Topx (see §6 below) and observe
that in the homotopy groups of spheres we have

Sll LS/ SS 4—L8>. SS
11 ”8” /L8 ”V5 = {V5,8L8,V8} = o # 0
58 —— g8 = 55
218 UE

in iy =7)2={c"} by Lemma 5.13 of [17]. Further note that this
18 an example with zero indeterminacy.

We conclude this section by exploring the relationship of the box
bracket to a toral construction considered by Rutter[16]. But first a
general remark. Let C be an arbitrary 2-category. Associated to any
homotopy commutative diagram

w 9

w = C

el

h

U

u - a -

in C is a subset of hom¢(aowuoh,bo gow) given by the union
U{ Gw + aF ‘ all possible homotopies

G:aof=bog,F:uoh= fouw}.

If 8 = Gw + aF is a fixed element then this union is readily identifi-
able as
A(bog)ow+60+ao Aluoh).

Obviously this latter usually has no meaning as a double coset.
Following Rutter [16, §1], we may consider a toral construction
<k;g,h; f >C A(kego f)

for 1-morphisms
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defined whenever go f ~ ho f and ko g ~ ko h. This is just the
above mentioned union construction for

X
f

el

Q

A

B

but here fortuitously in the corresponding description
A(kog)o f+60+koAlgo f)

the terms A(kog)o f and ko A(go f) are both subgroups of A(kogo f)
so that a double coset is obtained.

Now further let C have zeros and assume that g o f ~ o0 and
k o g >~ 0. Then the box bracket

L r

will also be defined. By Proposition 3.3(3) this box bracket equals

{kagaf}_{kahaf}+{kagaf}'

Recall [6, Proposition 6.4] that if L : 0 = ko go f is a homotopy
then there is an isomorphism

() A(kogof) = Al0: X = D), ¢"=-L+&+1L,
which is independent of L if A(k o go f) is abelian.
The following proposition is readily established.

PROPOSITION 3.6. Assume that A(k o go f) is abelian. If L : 0 =
kogo f is any homotopy then

= (<kig,hs f >)+{k,g, [}

M
! = {k,g9, [} + (< kg, h; f >)F

>

as subsets of A(o: X — D).
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4. Horizontal lemmas; invariance under homotopy

In this section we establish several “horizontal” properties of the
box bracket. Most of these are analogues of known properties of the
classical topological Toda bracket as developed in [17, Chapter 1].
We also show that a box bracket depends only on the homotopy
classes of the 1-morphisms used to define it (Theorem 4.2). In the
first result we examine what happens when an arbitrary square is
added either to the right or to the left of a box bracket.

PROPOSITION 4.1. Let

=

be a fized homotopy commutative diagram of 1-morphisms in C.

(1) Ifrog~o0 and soa ~ o then

with equality if both w and u are homotopy equivalences in C.

(2) If gow ~ 0 and aou ~ o then

w g w rog
w ~C ~ B w ~C ~ D
so ] & f b c M| » f d
U—p=A—=X U—p=X =Y

with equality if both v and s are homotopy equivalences in C.

Proof. The proofs of inclusion are readily given and similar to [4,
Proposition 3.1, (ii) and (iii)]. We omit them and will only prove the
last assertion of part (2).
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Hence assume that both r and s are homotopy equivalences in C.
In this case we claim that the reverse inclusion holds. Let L : sob =
dor be a homotopy. Now we may regard the square

r
B

=D

o| =

d

XY

as a 1-morphism in the 2-category mC. By general results on homo-
topy equivalences (see [9]) this square must be a homotopy equiv-
alence in mC, because by hypothesis r and s are homotopy equiva-
lences in C and the 2-morphism L is invertible. Let

D ~ B
M

dl = |b

Yy ——= X

S

be a homotopy inverse. It follows that there exist homotopies N,
P, @) and R so that the following equalities of 2-morphisms in C are

1p 1p
TR NP
r 7 1B 7 o 1p
B =D ~ B B B D ~ B =D D D
L M 1y M L 14
b :>d = b = b| = |b d :>b = |d = d| — |d
X—2 ey —~x X—4—X Y e X ——Y Y
S X Y
e 7 Sy
1x ly
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S

define an arbitrary element 0 of (|

U—p— 4

soa
using the above homotopy equivalences we may also write 6 as the
following composite 2-morphism.

0 1p
m P
w rog T r
w = C =~ D ~ B = D
F G M L
h ey — f— — d
! I d by v
U U = X SO(I:‘ Y 3 - X S - Y
fTH N
0 1y

This in turn may be simplified to the composite 2-morphism

T—K
rog 7
w—-c D——nB
F G M
2 dy ’
U = X Py Y - X 3 Y
NH

since the equalities

dPo=1,=Lro:o0=0: W =Y No=1,:0=0:U—=>Y

are valid. And finally this latter may be rewritten as the following
composite 2-morphism (by using the equalities Q@ — @ = 15,5 and
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—R + R = 1?01-).

N
R{
/Q\
o

This last representation evidently displays the original element 0 in

w

9
w = B

= C

f

>~ A
u

the form of an element of so[(IT1 | »

» | and verifies

U

=~ X
a

our claim. O

THEOREM 4.2. (“Invariance under homotopy”) A box bracket de-
pends only on the homotopy classes of the 1-morphisms in the dia-
gram which defines it. More precisely, suppose that the box bracket
of diagram (3) is defined and that w ~ W, h ~ h, f ~ f, u ~ 7,
g~G,a~aand b~b. Then

S

-
!

Proof. Let R denote the box bracket on the left above. First we
show the dependence of R only on the homotopy class of w. Set



44 K.A. HARDIE, H.J. MARCUM and N. ODA

b |. Let —bK 4+ Gw + aF + Hh be an

a\X

= A
u
arbitrary element of R and let J : w = w be an assumed homotopy.
Since —J + J = 1,, we have:

—bK +Gw+aF + Hh = —bK +bog(—J +J)+ Gw+aF + Hh
— b(gJ + K)+ Gw+a(fJ + F) + Hh

This implies that R C R. In a similar way we can show that R C R.
Thus R depends only on the homotopy class of w.

That R depends only on the homotopy classes of g, f, u, and
a can be demonstrated in much the same way. However the depen-
dence of R on the homotopy classes of h and b requires a different
approach—mnamely, application of Proposition 4.1.

If h ~ h then we may form a homotopy commutative diagram

S
S
Q
w

>

in which 1y and 1y are manifestly homotopy equivalences. There-
fore by Proposition 4.1(1)

wolyy q
w/ g:B w -~ C =

S
o
=
Il
H
>

~

Hence R depends only on the homotopy class of h. In a similar way
‘R depends only on the homotopy class of b. O
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PROPOSITION 4.3.

(1) In the homotopy commutative diagram

g 9
w v - C ~ B ~ B

h

i

U u/U’ — A a = X

suppose that ¢’ ow ~ 0 and a ou’ ~ o. Then the inclusion

w g w 909’

w - C =~ B’ w = C B
[ uoh f bog c h f b

!

U= A X U——A—X

1s valid.

(2) In the homotopy commutative diagram

S

suppose that gow' ow ~ 0 and aoa’ ou ~ 0. Then the inclusion

! g ow’
w2 o —~B w2y I
] h f b c h a'ofow’ |b
U A - X — A :
u aoa’ v a’ou A X
15 valid.
Proof. The proof, being straightforward, is omitted. O

THEOREM 4.4. In the homotopy commutative diagram

suppose that all horizontal pair composites are null homotopic. Then:
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(1) The relation

w 9
w - C - B
s o [II| & ! b C
U ” A p X
c—2-p_"_p
do{r,g,w} + | r b Jd ow — {s,a,u}oh
A an s/‘Y

is valid, with equality whenever the equalities A(soa)ouoh =
{Lsoa0ucn} and do A(r o g) ow = {14orogow } are valid.

(2) The relation

c2-p- T p
ol s b d|low C
A X —=Y
a S
w—"-c-2-p
—do{r,g,w} + s o | n f b | + {s,a,u}o h
U——A——X

is valid, with equality whenever the equalities dor o A(gow) =
{Ldorogow} and s o A(aou)oh = {lsgoucn} are valid.

Proof. We establish the first part only; the similar proof of the second

w—t-c—2-p
part is omitted. Set L =soll]| & f b | and
U= A—=X
c—2-p-"-p
R:do{lragaw} + [ f b d ocw — {S,a,u}oh.
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We start with the following diagram of composite 2-morphisms

which represents an arbitrary element of £. By hypothesis there
exist homotopies J : sob=dor, M:0= soaand N :0=rogq.
Then we may rewrite this diagram as

w— D
=N _
=
B T
F € J
h| = f| = |b = |d
y S
a =X S
M
U—2L= 4 ° —y
fH n—M
a “ S

using the relations N — N = 1,59, —J +J = lyop and M — M =
1soa- The composite 2-morphism in this last diagram represents the
element —Jo + d(—rK + Nw) + (—=dN + Jg + sG + M f)w + oF —
(—sH 4+ Mwu)h which reduces to d(—rK + Nw) + (—dN + Jg + sG +
Mf)w — (—sH + Mu)h since —Jo =1, : 0 = o : W — Y and
Fo=1,:0= 0: W — Y. Note that this latter expression is in

a form that allows it to be recognized as an element of R. Thus
L CTR.
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Next assume additionally that the equalities A(soa)ouoh =
{Ls0q0uch } and do A(r o g) ow = {lgorogow } hold. Select a homotopy
F:uoh = fow. Then we may use the fact that oF = 1, : 0 =
o: W — Y to represent an arbitrary element of R as a composite
2-morphism of the following form.

W — D
N—K
B T
F G J
Kl = f| = |b = |d
a X S
Iy
U—2L - 4 ° N
1H N—M
a ~ X S

Observe that (H — M)(u o h) = 1s0g0u0n Since A(soa)ouoh =
{1s0qouon } and that we may write

—(dor)K +d(N — K)w+ J(gow)
= —(dor)K+d(N —EK)w+ (dor)K + Jo— (sob)K
= —(dor)K 4 lgorogow + (dor)K +1, — (s 0 b)K
= —(sob)K
using d o A(r o g) ow = {ldorogow}. It follows that the composite

2-morphism above takes the form of an element of £. Thus R C L
in this case and the proof of part (1) is complete. O

Theorem 4.4 has some useful corollaries which we now state. The
first corollary shows that a box bracket frequently decomposes under
pre-composition or post-composition with a selected 1-morphism.
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COROLLARY 4.5.

(1)

In the homotopy commutative diagram

S
IS]
»

suppose that gow ~ 0, aou ~ 0 and soa ~ o. Then the inclusion

w 9

w
sol| »

U

~ B
b
b C{s, 0 ? }ow—{s,a,u}oh

~ X

f
~ A

u [

is valid and moreover if A(soa)ouoh = {lsoqouon} then equality

holds.

In the homotopy commutative diagram

b g
@ Jow C —dO{r,g,w}—I-so{ 0’ f ,w}
~y

is valid and moreover if doro A(gow) = {lgoregow } then equality
holds.

COROLLARY 4.6. In the homotopy commutative diagram
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suppose that gow ~ o, fow ~o0, soa~o0 and sob~o. Then the

equation
a a’ f

COROLLARY 4.7. (cf. [17, Proposition 1.4]) For given 1-morphisms

18 valid.

w f [ S

W04 x -y

assume that fow ~ o0, ao f ~ o0 and soa ~ o. Then the equality
—so{a, f,w} ={s,a, f}ow is valid.

Proof. We consider the homotopy commutative diagram

g

w c = % *
(R
* = A X Y
a S
w LA C *
and note the identifications [T] L f = —{a, f,w}
A X
a
C =k —————= %
and [TJ | /) | | = {s,a, f}. The result follows. [
A—=X—>Y

COROLLARY 4.8.

(1) (cf. [13, Lemma 3]) In the homotopy commutative diagram

suppose that gow ~ o and r o g ~ o. Then the inclusion

{ fj ) Z ag} ow C —do{r,g,w}—i-so{b,g,w}

is walid, with equality if dor o A(gow) = {ldorogow }-
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(2) In the homotopy commutative diagram

w—2-¢ S

*
f ‘/
v u:A a/X s

=~y

suppose that aou ~ o0 and soa >~ o. Then the inclusion

SO{(I, f ’ /l;: }C{Saaaf}ow_{‘s?aau}oh

u

is valid, with equality if A(soa)ouoh = {1lsgouch}-

5. Vertical lemmas; Condition (M)

The lemma below states a basic property valid in any 2-category
with zeros; its validity follows from the Interchange Axiom. We will
make fundamental use of it in this section.

LEMMA 5.1. In a 2-category C with zeros suppose given 2-morphisms

o o
TN TN
° ﬁFo ﬂGo
f g9

with zero 1-morphisms as indicated. Then gF =GF=Gf:gof = o.

PROPOSITION 5.2. Suppose all vertical and horizontal pair compos-
ites are null homotopic in the following homotopy commutative dia-
gram of 1-morphisms in C.

W ——
R r
Wt _c 9 g
h f b
U A X
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Then the relations
no h

w' ~— W ~U
aol]]| w w u | C
c’ 7 C =~ A
w9 p
| s f b | o' +{b,go fl,uw'}
U—=A——X
and
w9 p
I & f b | oh C
U—=A——X

!

h
W ———W ——=U
{bygo f',w'} —aol| w

Cl

=~ C = A

f/
are valid as subsets of A(o: W' — X).

Proof. We prove only the first inclusion; the second inclusion admits
a similar proof. An arbitrary element of

WI h’ ~ W h

aol]]| w

Cl

-~ U

= A

~C
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is represented by a composite 2-morphism of the following form.

M
wo M

w - W ~U
J _F

’U}l — - U

| , w

c' / LN P

By selecting homotopies K : 0 = gow and G : ao f = bo g we may
rewrite this diagram in the form indicated below.

h/

h
w’ =W 7 = U
:J> w w =
w'’ u
/ 1! -K K f | —-H
C/ - C e — C =~ A > o
0
N _
! B X

The fact that the composite 2-morphism in this diagram is equal to
that in the previous diagram follows since (a o u)M = H(h o h') by
Lemma 5.1 and because —Gw + bK — bK + Gw = 1400y But the
latter diagram represents

—(—bK + Gw + aF + Hh)W + [-b(—gJ + KKh') + (Gf + aN)u']
which is readily recognizable as an element of

9
w\c

~ B
b | o B+ {bgo flu').

= X

f

u a

Thus the claimed inclusion is verified. O
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DEFINITION 5.3. Let the diagram

NN
WA N A

be homotopy commutative. Such “abutting squares” are said to sat-
isfy Condition (M) if the following conditions hold. For any choice
of homotopies F :uoh = fow, { € A(dou) and G:xoa = yod,
it must be possible to rewrite the composite 2-morphism

ot a4 )

e N
w Fy v/ ped/  pG Y
N A
U u\A a\X

in the form
C f>A d‘D
e N
w Mo\ \¢ nG Y
N A
U u\A =~ X

for some homotopies F, n and G as indicated; and vice-versa.

EXAMPLE 5.4. (a) For the squares of Definition 5.3, if it happens
that yOA(dOU) oh = {lyodouoh} and ZEO.A(aOf) ow = {lmoaofo'w}
then Condition (M) is valid (by the Interchange Law for 2-mor-
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phisms in any 2-category). For example the squares

NN
NoA N A

satisfy Condition (M) for this reason.

(b) It is straightforward to check that the squares

NN
N4 NA

satisfy Condition (M).

THEOREM 5.5. (“The 3 x 3 Equality”) In the following homotopy
commutative diagram of 1-morphisms in C suppose that all vertical
and horizontal pair composites are null homotopic.

7 !

w Yoot p
f/

Also assume that Condition (M) is satisfied for the upper left and
lower right squares. Then the equality

!
WI ’lU’ = Cl 9 = Bl W w ~ 9 =~

bolIll| p 1 b + O s

W—pg—C——8 U——4

Q
el

oh

=l

i
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! h h
P N S W —W U
=—[11]¢ g a| ow —aol1]]w w u
B - B ~ X c’ C A
4 b f f

is valid as subsets of A(o: W' — X).

Proof. An element of the left side of the above stated equality may
be represented by the following diagram of composite 2-morphisms.

o

=K

12 !

LA

WI = Bl

!

I
W :

= <,
W/ \B (%)
N
é ; :G>
A x

u a
St

o

U

Note that H'— K € A(gow). Hence by application of Condition (M)
there exist n € A(f o f') and homotopies G : a o f = bog and
F':woh' = f'ow' so that the equation

(bog)F' +b(H — K)h' + Gwo k') = G(f' ow') + anw' + (ao f)F'

holds. Now let L : f o f' = o be a homotopy and set P =7 — L :
o= fof'. Then anw' = aPw' + aLw'. Alsolet N : 0 = hohl/
and @ : 0 = bob' be homotopies. Then H(hoh') = (aou)N and
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Qg ow') = (bo b')K' by Lemma 5.1. From these observations it
follows that diagram (*) may be rewritten as follows.

!

! g

WI w = CI = BI
F' G
= [ =
h' v
N, / - L P -
0 - W w cC = o = 9 ~ B g 0
F G
\x W ///f \
U ” > A p =~ X "

This latter diagram represents an element which can be recognized
as belonging to the right side of the above stated equality. A similar
argument shows that the reverse inclusion also holds and thus the
claimed equality is established. U

REMARK 5.6. We observe that Corollaries 4.6 and 4.7 may also be
obtained from Theorem 5.5. For example the homotopy commutative
3 x 3 diagram

w =k —————= %
: |
e b
f b

A . X—5—Y

satisfies Condition (M) (by Example 5.4 (a)) and yields Corollary 4.6.
Theorem 5.5 also yields similar but slightly different versions of other
corollaries to Theorem 4.4, as stated in the next result.

COROLLARY 5.7. Let the following 3 X 3 diagrams be homotopy com-
mutative with all vertical and horizontal composites null homotopic.

W——= % —==x w9 5
v , | h f b
¢ =B ——D U—te 4o x
/| L | s
A = X =Y %
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1) In the diagram on the left if do A(r o g) o w = {1g4orogow } then
9

c—4 - p

b ‘/d owz—sc{a,f,w}.
! | b’ g
Y

A — X —
a S

do{r,g,w}+C1 | s

i

And if furthermore A = % then
d r
do{r,g,w}Jr{ < b ,g}O'wZSO{b,g,w}-

(2) In the diagram on the right if so A(aou)oh = {1ls0q0uon} then

S
t

so[I1| &

_ b g
b | +{s,a,uloh = {s, o f }ow.

And if furthermore B = % then

sefo I s faaton = fsa yow.

u

PROPOSITION 5.8. In the homotopy commutative diagram
C D
NN
w A ‘ Y
U X

suppose that each of the composites ao f, dou, aou and do f is null
homotopic. If this diagram satisfies Condition (M) then the equation

foow y d _
yO{d, u’ h + z7a " oh=
y d f w
(50 o o eefu )

holds.
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Proof. For, under our hypotheses, we may apply Theorem 5.5 to the
following 3 x 3 diagram.

We note the following identifications

w w}C = %
| » f J :{d’f’w}
i ) | u’ h
U ui‘A d“D
o4 _p
] a Jy :{y,d,u}
| ) T’ a
* X —=Y
P A I .
_ T a _ Juy
L \d Lx _{y’d’f}_ {m’a’f}
#——=D——=Y
h
w U *
_ u h _ f w
anl IR o bt =-{a 0]
C ffA 7

and thus the equality given by Theorem 5.5 for the above 3 x 3
diagram just reduces to the equality claimed in the present proposi-
tion. ]

6. The topological case

We now consider the box bracket for the case when C is the cat-
egory of based topological spaces Topx. We recall that Topx is a
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2-category with zeros. Its objects are based topological spaces, the
1-morphisms are based maps and the 2-morphisms are track classes
of based homotopies. (The book [7] is a good general reference for
the track viewpoint.) With regard to the 2-morphisms we follow
the custom of working with representative homotopies even though
this causes a slight conflict with the notation used in the previous
sections. Thus in Topx we let F': f = g: X — Y denote a homo-
topy; its track class (the actual 2-morphism it represents) is denoted
{F}:f=9:X =Y. Weuse F ~ F' to indicate that two ho-
motopies F,F' : f = g : X — Y are track equivalent. Vertical
composition of track classes of homotopies F': f = ¢g: X — Y and
G:9g=h:X —Y isgiven by {G} + {F} :={G + F} where

F(z,2t), ifo<t<i

G+ F)(z,t) =
( )(@:1) {G(m,%—l), if1<t<1

forz € X. Ifalso H : u = v :Y — Z is a homotopy then horizontal
composition is determined by {H}{F} := {HF} where

H(g(z),2t —1), if

(HF)(z.1) = {uF(:v, 2t), if(i
2

for z € X. Of course the zero object of T op« is the one point space,
denoted *, and the zero map o : X — Y is specified by requiring
that its image equal the base point of the space Y. There is a unique
factorization o : X — x = Y.

Assume given a homotopy commutative square of maps in T opx

g ~

Q

ol

L

with homotopy F : ao f = o g as indicated. We define the map
pr 2 M(f,9) = X by pplz,t] = F(z,t) for x € C and 0 <t < 1,
with pp(a) = ala) for a € A and pp(b) = B(b) for b € B. Here M
denotes the reduced double mapping cylinder functor. As is well-
known the homotopy class of ur depends only on the track class of
F.
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In particular, given a square of the form

1%% =
L

* —= X

there is an induced map pr, : XW — X. The following proposition
holds.

PROPOSITION 6.1. The function d : A(o: W — X) — n(EW, X)
given by

o
TN

wlinrx w—  |ur] :EW - X
S T
o
is an isomorphism of groups. (The notation | | denotes homotopy

class.) Furthermore if maps h' : W' — W and f : X =Y are given
then each of the squares

AW —x) — r(zw.x) Al W—X) —4— r=w.x)
(Joh [ewy# o)) i
Alo:W'—X) —— (=W, x) AW oY) —L rzwy)

is commutative. That is, the relations py o Xh' ~ ppp and f o

BL = HfL
are valid for all {L} € A(o: W — X).

REMARK 6.2. Let f : W — X be null homotopic. For each homotopy
F 0= f the composite

by A(f) L{F}> Alo: W = X) —L s 7(=w, X)

consists of isomorphisms of groups. Here the first isomorphism is
given by
¢ = {F}+ €+ {F)

for all £ € A(f) and moreover is independent of {F'} if the group
A(o: W — X) is abelian (see [6, Proposition 6.4]).
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We turn now to a description of a box bracket when viewed under
the isomorphism of Proposition 6.1. So let

w g9

w = C

B=[|

- B

b

o=

be a box bracket in Topx and let

be a diagram of representative homotopies for a fixed but arbitrary
element

0=-b{K}+{Glw+a{F}+{H}h

of B. In view of Proposition 2.2 we have
d(B) = d(bo A(o: W — B)) + d([A(a o f) o w]{=F+ ) 4 q(6)
+d(Ja o A(f o w)]“FHIMY) 4 d(A(0: U — X) o h)

since d is an isomorphism. We proceed to identify each of the sum-
mands in this expression. By the last part of Proposition 6.1 we
know that the equalities

dboA(o: W = B)) = bon(SW,B)
d(A(o:U = X)oh) = 7n(2U,X)oXh

are valid. And using the notation introduced in Remark 6.2 we
observe that the equalities

d([A(ao f) o w] T HEY = g Gk (Alao f) o w)
d(lao A(f o w)) MY = ropy mny (a0 A(f o w))
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hold. However without additional assumptions it seems difficult to
characterize further these subgroups of 7(XW, X).

It remains to describe d(6). We will give an extension-coextension
representation, in analogy with the classical Toda bracket (cf [17,
Proposition 1.7]). We construct the following diagram, in which Y
denotes the double mapping cylinder M(i1 o f, g). The various maps
19 and %7 are inclusions at parameter ¢t = 0 and ¢ = 1 respectively.

First the map pp satisfies pp o041 = a and is induced by the homo-
topy D defining the mapping cone C,. Consequently the map ¢ is
induced by the homotopy G : pgoiiof =ao f = bog. Also let
p: YW — Y denote the map induced functorially from the double
mapping cylinder of the first vertical column to that of the second
vertical column. The map ¢ is an “extension” and the map p is a
“coextension” as indicated in the diagram below.

W
p
/ Sw
i:’iovil v J
Ca ~y £ - se ~ ¥(CyVB)

1y b

RS

X

In this diagram the horizontal sequence is a cofibration sequence
where explicitly 6 = X(i¢, o410 f) —X(ig o g). It is immediate from
these constructions that we have:

PROPOSITION 6.3. d(0) = [ sx+Gutar+mn) = [€ 0 p-
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We summarize the above discussion in the next result.

THEOREM 6.4. Let notation be as above. When a box bracket in
Topx is regarded as a subset of w(XW, X) then the equality

b | = bon(XW,B)

Uy A—7 X + ¢{—Gw+bK}(~A(a o f) o UJ)
+[§0p] + dparyuny(ac A(f ow))
+ (XU, X) o 3h

is valid. Moreover if the composites bo gow and a owu o h are ad-
missible (in the sense of [6, Definition 6.3]) then bo n(XW,B) +

b1 Guwrbky(Alao f)ow) and ¢iapimny(ac A(fow))+m(XU, X)oXh
are subgroups of m(XW, X) and consequently the box bracket is a dou-
ble coset of these subgroups. Furthermore if m(XW, X) is abelian then
the box bracket is a coset of the subgroup

bom(EW, B) + ¢(—cu+bi}(Alao f)ow)+
brar+mny(ao A(f ow)) +7(XU, X) o Xh.

ExXAMPLE 6.5. We examine the classical Toda bracket itself arising
from a composite W — C L> A% X of maps in Topx satisfying
fow~oand ao f ~ o. By Proposition 5.1 we know that

w
W = C = %
f L = —{a, f,w}.
, ¢

f A

a

Hence applying Theorem 6.4 it follows that

—{a, fyw} = d—qu(Alao f) ow) + [0 p] + ¢rary(ac A(f o w))

as a subset of m(XW,X) where G :aof = o0 and F:0= f o w
are homotopies. These homotopies are also used in constructing the
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maps € and p by means of the following extension-coextension dia-
gram.

=W
Yw
i . Vooxy
c-Lloa mados) Lo —Losa

For this special case we observe that the horizontal cofibration se-
quence can begin one term to the left, as indicated, but of course this
is not possible for the general case. Furthermore

dary(ac A(fow)) = d((ao A(f ow))t*)

= d(a o A(f o w){F})
= d(aoAlo: W — A))
= aon(EW,A)

and similarly ¢;_cuy(Alao f)ow) = n(XC, X)oXw. Thus we obtain

—{a, f,w} =7(3C,X) o Xw+ [0 p]|+aon(XW, A)
or equivalently
{a, f,w} =aon(EW,A) +[—(£op)]+ 7(EC, X) o Zw.

This last equality just corresponds to the classical computation
of the indeterminacy of the topological Toda bracket as a double
coset, together with an extension-coextension description of each of
its elements. Of course the indeterminacy of {a, f,w} in the setting
of a general 2-category with zeros was available previously either
by application of Proposition 1.3 to Example 1.5, or in [6, Proposi-
tion 8.2(a)], where a direct argument was given.

7. Some examples

In this final section we present some examples illustrative of the tech-
niques we have developed. We follow [17] for notation in regard to
the homotopy groups of spheres. The first result determines com-
pletely a Toda bracket which was only partially computed in [17].
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PROPOSITION 7.1. {n4,2t5,0™} = ps + {ns 0 e5} in mi5.

Proof. Using (5.9), (5.4) and Proposition 1.2 of [17] we have

niovsoes = Ev ongoeg € {ma,2t5,m5} 0n7 oeg C {na,2t5,m2 0 €7}

The indeterminacy of this last Toda bracket is
5 4 2 _
740 T + TG O N © €8 = {N1 © (5,74 0 V5 0 €8}

for 79 = Z/8® (Z/2)* = {(5} ®{vs0Us} @ {v50es} and 74 = Z /2 =
{n2}, with ny ov5 0Ug = Ev' onz og = Ev' o3 = () by the relations
nsove = vi [17, (7.3)] and v/ ovg = 0 [17, Proposition 5.11], and with
N} oeg = My 04vs o eg = 0 by the relation 1 = 4vs [17, (5.5)]. We
remark that 74 0 (5 = Ev' o uy mod Ev' o7 o eg by Proposition 2.2(5)
of [15]. It follows that

{4, 2u5.m3 o er} = {nao(s,muovsoes} C Emls.

Now by Lemma 6.5 of [17] there exists an integer z such that
TV} + pg belongs to {n4, 2t5,0™}. Composing with the element 113,
we have

TVj+psoviz € {na, 2u5,0" Yoz C{na, 2us, 0" ovia} = {4, 205, nioe7}

by Proposition 1.2 of [17] and the relation " o v19 = 12 0 g7 of [11,
Proposition 9(1)]. We conclude that zv{ + 4 o v13 is a suspension
element. Applying the homomorphism H : 7y — wl¢ thus yields
the equation

0= H(zvj +paoviz) = xH(vy) o2 = 212

since H(v4) = 17 by Lemma 5.4 of [17]. Because the element v3
generates a Z/2-summand of 7], we deduce z = Omod2 and thus
pa € {n4,2t5,0™}. The indeterminacy of {n4,2t5,0"} is

nyomiy +mg 0 Bo” = {nyoes, njoEd"} ={noes}

by [17, Theorem 7.1}, [17, Proposition 5.3], and [17, (7.4)]. This
completes the proof. O
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Eviomr g

PROPOSITION 7.2. { ,
N4 V5 018

_ 7.3 Ly
, 1/9} = {vy,nsoe5} in mi5.

Proof. By [5, Proposition 3.4(iii)] or Proposition 4.3(2) and Propo-
sition 3.2(3), we have

/ /
{ Bv ° ) 118 7V9}D{ Ev e 3 ‘8 anBOVQ}
N4 U5 0138 N4 Vs

with the latter containing 0 since ng o vg = 0. Thus

{ EVomn g }
’ , V9
T4 Vs 018

coincides with its indeterminacy which by [5, Corollary 5.8], is

Ev' on7 011388 + 1105t o vig + 4 0 1350
= Ev o7 o m38® + 7y o vig + 1m0 m13S°
3
- {V47774 o 55}

since m39% = 0, iy = Z/8 = {v?} and m35° = Z/2 = {e5}. Thus
the proposition is established. O

PROPOSITION 7.3. The equality

512 Yo ~ Sg "8 . Sg

| o vsons | Ev'omr | = pg +{vf,ma0 €5}
5 ~ g5 ~ g4
S %0 S " S

holds in w135 = (Z/2)3 = {pus} @ (v} ® {nsoes}. In particular this
box bracket does not contain zero.

Proof. Note that v5 ong ovg = 0 = (2u5) o 0™ so that by Propo-
sition 3.3(2) the box bracket decomposes into the sum of a matrix
Toda bracket and an ordinary Toda bracket. Hence and by Propo-
sitions 7.1 and 7.2 we have

g12 Yo 59 8 =~ g8
|:|:| o' V5078 EV’O?]7
S5 = g5 =~ g4

2u5 N4
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Ev' onq 78
{ na Usong
{vi,maoes} + pa + {moes}
= pa+{vi,moes}).

9 I/g} + {7745 2L5701’I

By the structure of 713.5%, 14 ¢ {13, n40€5} and hence the proposition
is obtained. O

PROPOSITION 7.4. In 7Sy = 7./32®7/8 = {56} @®{ s} the box bracket

g 14
524 ;7/ 517 9 = SQ
CLT | 723 n16 Ve
v | v
23 > 16 =~ g6
S 016 S Vg00g S

is nontrivial. Note that this box bracket has the property that both
central pair composites 1nig 0 o17 and Vg 0 og 0 N1g are essential; hence
Proposition 3.3 may not be used to decompose it (into Toda brackets
and matriz Toda brackets).

Proof. The diagram

14 ag 14
527 24/ 524 17> 517 9 = SQ
n23 716 Vg
| |
* = 23 > 16 = 6
S J16 S Vo009 S

is homotopy commutative since 75 o vg = 0 [17, (5.9)], 719 0 011 =
o190z [17, Lemma 6.4], vg oDy = vgoeg [17, (7.17)], and v50e5 =
vsoogomns [17, p. 152]. Also 12 019 =0 [17, p. 72], Dgo 014 = 0
[17, Lemma 10.7], and vg o 02 = 0 [11, Proposition 7(3)]. Hence all
horizontal composites are nullhomotopic.

Since mif = Z/8 = {¢17} by [17, Theorem 7.4], 7§ = Z/8 =
{vg} by [17, Proposition 5.6] and 7 o (14 = +87¢ by [15, Propo-
sition 2.20(6)], it follows that v o Uy o mif = 0. Therefore Corol-
lary 4.5(2) may be applied to obtain the following equality.

017 Uy

524 > 517 SQ
11 7]23J 716 Ve O 95
523 = 516 - SG

016 V6009
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— e 017
= —VGO{V9,017,V24}+V60090{ 16 o3 , V24

Now {Tg, 017,104} = T9 (cf [14, Proposition 3.4(3), p. 59]) with
vg 0 a9 # 0 by [12, Theorem B]. Also { ne , o117 , 1/24} C w%g =0

016 723
by [17, Theorem 7.6]. It follows that

o17 Vg

524 = 517 SQ
LT | 723 16 ve | ovgs = —vgoag #£0
23 - gl6 — - @6
S J16 s Vgoog s
524 0—17\» 517 Ug = SQ
and consequently 0 ¢ (1] 7723J 16 ve |. O
23 = 16 — =~ 6
S J16 S Veoag s
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