
Appendix A

Periodic functions and their spectra

A.1 Introduction

According to the Fourier theory, any periodic function (which satisfies certain

conditions; see Sec. C.12 in Appendix C) can be represented by means of a Fourier series,

and moreover, its Fourier series expansion is unique. In this appendix we briefly review

periodic functions in one or two variables, along with their Fourier series expansions and

their spectral representations. The main purpose of this appendix is to put together, using

our own nomenclature, the main results that we need about periodic functions and their

spectra, results which are normally scattered in literature among several different domains.

Some of these results can be found in standard mathematic textbooks, while others are

treated in textbooks on optics or crystallography (see the cited references). Some aspects

of our approach are, however, original (notably Sec. A.6).

It should be emphasized here that the Fourier series expansion of a periodic function

p(x) is just an alternative representation of that function in the image domain. The

importance of this representation is in that it explicitly gives the spectral decomposition of

p(x), i.e., the frequencies and the amplitudes of the impulses which make up the spectrum

of p(x). The Fourier series expansion of a periodic function will serve us therefore as a

link between the original function p(x) in the image domain and its spectrum P(u) in the

frequency domain.

A.2 Periodic functions, their Fourier series and their spectra in the 1D case

A function p(x) is called periodic if there exists a number T ≠ 0 such that for all x ∈ :

p(x  + T) = p(x)

The number T is called a period of the function p(x); note however that T is not unique,

since if T is a period of p(x), so is nT for any integer n. The smallest period T > 0 is called

the fundamental period of p(x), and its reciprocal value, f = 1/T, is called the fundamental

frequency of p(x).1 Note that the set of all periods of p(x), i.e., the set of all integer

multiples of the fundamental period of p(x), forms a lattice in : LT = {nT | n ∈ }, whose

basis is the fundamental period of p(x).2 Similarly, the set of all integer multiples of the

fundamental frequency, i.e., all the harmonics of f, forms a lattice in the spectral domain:

1 When no risk of confusion arises it is customary to omit the word “fundamental”, and to use the terms
period and frequency of p(x) as abbreviations for the fundamental period and the fundamental
frequency of p(x).

2 For the definition of a lattice, see Sec. 5.2.
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Lf = {nf | n ∈ } = {n/T | n ∈ }, whose basis is the fundamental frequency of p(x). As

we will see later in this section, Lf is the support of the spectrum of p(x) in the frequency

domain. We will also see below (in Sec. A.4) that the lattices LT in the image domain and

Lf in the frequency domain are said to be reciprocal; note, however, that the only member

of LT whose reciprocal value is found in Lf is the fundamental period itself. (For instance,

although 2T is a period of p(x), there is no corresponding reciprocal frequency
1

2T
 = f

2
  in Lf).

Suppose that p(x) is a periodic function of period T which satisfies the required

convergence conditions (see Sec. C.12 in Appendix C). Then p(x) can be expanded (or

developed, or decomposed) into the form of a Fourier series, i.e., an infinite series of

weighted cosine and sine functions at the fundamental frequency f = 1/T and its harmonics

nf = n/T [Bracewell86 p. 205]:3

p(x) = a0 + 2∑
n=1

∞

an cos(2π nx/T) + 2∑
n=1

∞

bn sin(2π nx/T)     (A.1)

where the weighting coefficients an and bn, which are called the Fourier series coefficients

of p(x), are real numbers given by:4

an = 1
T∫

T

p(x) cos(2π nx/T) dx      bn = 1
T∫

T

p(x) sin(2π nx/T) dx     (A.2)

∫T
 means here that the integration may be done over any full period of p(x), i.e., from x0 to

x0 + T where x0 is arbitrary; depending on the case it may be more convenient to integrate

between 0...T, between –T/2...T/2, etc.

We notice from (A.2) that for negative n we have:

a–n = an, b–n = –bn (n = 1,2,... )

and b0 = 0. Therefore the Fourier series of p(x) can be rewritten as a two-sided series, in a

symmetric way, as follows (putting also f = 1/T):

p(x) = ∑
n=–∞

∞

an cos(2π nfx) + ∑
n=–∞

∞

bn sin(2π nfx)     (A.3)

with: an = 1
T∫

T

p(x) cos(2π nfx) dx      bn = 1
T∫

T

p(x) sin(2π nfx) dx     (A.4)

Note that if p(x) is symmetric about the origin there are no sine components, and bn = 0

for all n.

However, although in Chapter 2 we adopt, for didactic reasons, this trigonometric form

of the Fourier series, in more advanced chapters we will usually prefer the exponential (or

3 Note that depending on p(x) some or even most of the weighting coefficients an and bn may be zero, so
that the Fourier series expansion may include only a finite number of non-zero terms; a trivial example
of this type is the function p(x) = cos(2π x/T).

4 Note that in most textbooks the factors 2 appear within the Fourier coefficients an and bn. We prefer,
however, to put them before the summations in (A.1), in order to emphasize the correspondence between
the Fourier series coefficients and the impulse amplitudes of the two-sided comb which extends to both
directions in the spectrum.
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complex) notation [Champeney73, p. 2], which is more compact and lends itself more

easily to mathematical manipulations. This form is obtained from (A.3) and (A.4) by

expressing the cosines and sines using the Euler identities:  2cosϑ = eiϑ + e–iϑ  and

2sinϑ = –i(eiϑ – e–iϑ), grouping the terms ei2π
 
nfx and e–i2π

 
nfx separately, and combining

them into a single series. In the exponential notation the Fourier series expansion of p(x)

becomes:

p(x) = ∑
n=–∞

∞

cn ei2π
 
nfx       (A.5)

where the n-th Fourier series coefficient cn is given (as a single complex number instead

of a pair of real numbers an, bn as in (A.4)) by:

cn = 1
T∫

T

p(x) e–i2π
 
nfx dx     (A.6)

Note that the trigonometric and the exponential forms of the Fourier series are

equivalent; by comparing expressions (A.5), (A.6) with expressions (A.3), (A.4) the

following relations between their coefficients are obtained:

  c0 = a0

  cn = an – ibn,  c–n = an + ibn (n ≥ 1)     (A.7)

2an = (cn + c–n), 2bn = i(cn – c–n) (n ≥ 1)

(see, for example, [Champeney73 p. 3], with the required adaptations to our notation

conventions).

As already mentioned in Sec. A.1, the representation of a periodic function p(x) in the

form of its Fourier series expansion will serve us as a link between the original function

p(x) and its spectrum, P(u). This is based on the fact that the Fourier transform (the

spectrum) of  g(x) = ei2π
 
fx  is  G(u) = δ(u  – f),  namely: an impulse at the frequency f

[Bracewell86 p. 101]. Consequently, the spectrum of each term in the Fourier series (A.5)

consists of a single impulse at the frequency of nf, whose amplitude (real or complex) is

given by the corresponding Fourier coefficient. It follows therefore (under the appropriate

convergence conditions) that the spectrum P(u) of the periodic function p(x) is an

impulse-comb of step f, whose n-th impulse is located at the frequency u = nf and has the

amplitude cn. The general form of the spectrum of a periodic function p(x) with period

T = 1/f is, therefore [Papoulis68 p. 107]:

P(u) = ∑
n=–∞

∞

cn δ(u – n/T) = ∑
n=–∞

∞

cn δ(u – nf)     (A.8)

where δ(u) is the impulse symbol (see Chapter 5 in [Bracewell86]). As we can see, the

support of this spectrum is the lattice Lf, which contains all the integer multiples of the

fundamental frequency f. Moreover, the converse is also true: given a spectrum P(u)

whose support is a lattice Lf, it follows that the original function p(x) in the image domain,

which can be represented by (A.5), is periodic with period T = 1/f (of course, this is only

meaningful if the convergence conditions on the Fourier series (A.5) are satisfied). We

have, therefore, the following result, under the appropriate convergence conditions:
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Proposition A.1: A function p(x) in the image domain is periodic iff its spectrum support

in the frequency domain is a lattice.    p

Finally, note that since we restrict ourselves to real functions p(x) in the image domain, it

follows from Eq. (A.7) that c–n is the complex conjugate of cn, namely: Re(c–n) = Re(cn)

and Im(c–n) = –Im(cn). This means that our impulse-comb in the spectrum is always

Hermitian: its real part is symmetric while its imaginary part is antisymmetric. This is also

in agreement with the properties of Fourier transforms of real functions; see [Bracewell86

pp. 14–15]. Note also that depending on p(x) some or even most of the comb impulses

may have amplitudes cn = 0, as in the case of p(x) = cos(2π  fx), where only the

fundamental impulse pair, with indices n = ±1, has a non-zero amplitude.

A.3 Periodic functions, their Fourier series and their spectra in the 2D case

The case of periodic functions with two variables is more diversified than the 1D case,

and it can be divided into 4 subcases. A periodic function p(x,y) may be either 1-fold

periodic5 (like a grating or a cosine over the plane) or 2-fold periodic (such as a

dot-screen); and in each of these cases it may be periodic either in the direction of the

main axes, or in any other direction. In the following subsections we briefly review

each of these 4 subcases. The most general case of 2D periodicity is reviewed last, in

Sec. A.3.4.

A.3.1  1-fold periodic functions in the x or y direction

The simplest case of 2D periodic functions is that of a 1-fold periodic function p(x,y)

whose fundamental period (smallest period>0) is in the direction of one of the axes, say, in

the x direction. In this case p(x,y) can be considered as a 1D periodic function p(x), since it

is constant in the y direction, and its Fourier series expansion is identical to (A.5). The 2D

spectrum of p(x,y) consists in this case of a 1D impulse-comb, identical to the spectrum

(A.8) of the 1D function p(x), which is located in the u,v plane on top of the u axis.

A.3.2  2-fold periodic functions in the x and y directions

Let us proceed now to the case of a 2-fold periodic function p(x,y) which is periodic in

the x and in the y directions with periods Tx  and Ty , namely: p(x + Tx , y) = p(x,y) and

p(x, y + Ty) = p(x,y) for all (x,y) ∈ 2. If p(x,y) satisfies certain convergence conditions (see

Sec. C.12 in Appendix C), then it can be expanded into a 2D Fourier series as follows:

p(x,y) = ∑
m=–∞

∞

∑
n=–∞

∞

am,n cos2π(mx/Tx  + ny/Ty) + ∑
m=–∞

∞

∑
n=–∞

∞

bm,n sin2π(mx/Tx  + ny/Ty)    (A.9)

5 By the term 1-fold periodic we understand that the function p(x,y) is constant in the direction
perpendicular to the direction of periodicity. Otherwise the Fourier development of p(x,y) is no longer a
pure 1D Fourier series, and it may even be a hybrid case having Fourier series in one direction and
Fourier transform in the other [Korn68 p. 143].
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where: am,n = 1
TxTy∫∫TxTy

p(x,y) cos2π(mx/Tx  + ny/Ty) dxdy

bm,n = 1
TxTy∫∫TxTy

p(x,y) sin2π(mx/Tx  + ny/Ty) dxdy   

(A.10)

∫∫TxTy

 means an integration over any full period of p(x,y), i.e., over a rectangle of sides Tx

and Ty  defined by the points (x0,y0), (x0 + Tx , y0), (x0, y0 + Ty) and (x0 + Tx , y0 + Ty) where x0

and y0 are arbitrary. Clearly, this is a 2D extension of the 1D trigonometric expressions

(A.3) and (A.4). Note that here, too, if p(x,y) is symmetric about the origin then there are

no sine components, and bm,n = 0 for all m,n.

However, for the sake of convenience and conciseness we will adopt here, too, as in the

1D case, the exponential form of the Fourier series, which is obtained from the

trigonometric form by the Euler identities. In the exponential notation the 2D Fourier

series expansions of p(x,y) becomes (using also u0 = 1/Tx  and v0 = 1/Ty):

p(x,y) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π(mu0x + nv0y)     (A.11)

where the Fourier coefficients cm,n are given by:

cm,n = 1
TxTy∫∫TxTy

p(x,y) e–i2π(mu0x + nv0y) dxdy     (A.12)

Expressions (A.11) and (A.12) are clearly 2D extensions of (A.5) and (A.6). These 2D

expressions can be rendered more compact by using the vector notation:

 p(x) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π fm,n·x     (A.13)

with the Fourier series coefficients:

cm,n = 1
TxTy∫∫TxTy

p(x) e–i2π fm,n·x dx   (A.14)

where x = (x,y), fm,n = (mu0,nv0) is the (m,n)-th frequency harmonic, and fm,n·x denotes the

scalar product of the vectors fm,n and x. Note that an even more compact notation can be

obtained by substituting n for (m,n) in the indices:

 p(x) =∑
n

cn ei2π fn·x     (A.15)

However, for the sake of clarity we will usually prefer the more explicit form of (A.13).

Like in the 1D case, the spectrum of the 2-fold periodic function p(x,y) is readily

obtained from the Fourier series representation of p(x,y), (A.11): it is an impulse-nailbed,

whose (m,n)-th impulse is located in the u,v plane at the point fm,n = (mu0,nv0) and has the

amplitude cm,n (see Fig. 2.12(f)). Using the 2D impulse symbol δ(u,v) the spectrum of

p(x,y) is, therefore [Papoulis68 p. 114]:

P(u,v) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(u – mu0, v – nv0)   (A.16)
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Figure A.1: A schematic plot of the 1-fold periodic function p1(x,y) in the image
domain (a), and its impulse-comb in the spectral domain (b).

or in a vector form, where f = (u,v) and fm,n = (mu0, nv0):

P(f) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(f – fm,n)   (A.17)

This means that the support of the spectrum of p(x,y) is the 2D lattice, oriented in the

axes directions, which is spanned by the fundamental frequencies f1,0 = (u0,0) and

f0,1 = (0,v0). Moreover, like in the 1D case we have the following result (under the

appropriate convergence conditions):

Proposition A.2: A function p(x,y) in the image domain is periodic in the x and y

directions iff its spectrum support in the frequency domain is a 2D lattice in the axes

directions.    p

A.3.3  1-fold periodic functions in an arbitrary direction

Unlike in the 1D case, in functions of two variables periodicity is not necessarily limited

to the direction of the main axes. Let us consider first the case of a 1-fold periodic

function, p1(x,y), whose fundamental period (i.e., smallest period > 0) is T1 = 1/f1 in the

direction θ1 (for example: a rotated grating). This is, in fact, a function of the single

variable x' in the rotated coordinate system x',y', and along the y' direction it is constant

(see Fig. A.1). Therefore its Fourier series expansion is given in the rotated coordinate

system x',y' by expressions (A.5) and (A.6) of the 1D case:

p1(x',y') = ∑
n=–∞

∞

cn ei2π
 
nf1x' where:      cn = 1

T1∫T1

p1(x',y') e–i2π
 
nf1x' dx'   (A.18)

Changing back to the x,y coordinate system by putting:  x' = xcosθ1 + ysinθ1  [Spiegel68

p. 36] and hence:  f1x' = u1x + v1y  (see Fig. A.1(b)) we obtain:

v  = f sinθ1

u  = f cosθ1

y

x

T1 x'

y'

θ1

1 1

1 1

v

f1

f1–

u
•

•

•

•
•

f12

f1–2
 f  =1 1/T1

θ1

v1

u1

(a) (b)
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p1(x,y) = ∑
n=–∞

∞

cn ei2π
 
n(u1x 

+
 
v1y)   (A.19)

Note that (u1,v1) are the Cartesian coordinates, in the u,v plane, of the frequency vector f1

in the spectrum of p1(x,y), whose polar coordinates are (f1,θ1). Therefore the expression

(u1x + v1y) in the exponential part of (A.19) can be rewritten in a more compact vector

form as the scalar product f1·x of the two vectors f1 = (u1,v1) and x = (x,y), and the Fourier

series becomes:

p1(x) = ∑
n=–∞

∞

cn ei2π
 
nf1·x   (A.20)

The 2D spectrum of p1(x,y) consists of a 1D impulse-comb, identical to the comb (A.8)

of the 1D case, which is rotated in the u,v plane by the angle of θ1. Using the 2D impulse

symbol δ(u,v) the spectrum of p1(x,y) is given by (see Fig. A.1(b)):

P1(u,v) = ∑
n=–∞

∞

cn δ(u – nu1, v – nv1)   (A.21)

or in a vector form, where f = (u,v) and f1 = (u1,v1):

P1(f) = ∑
n=–∞

∞

cn δ(f – nf1)   (A.22)

The support of the spectrum P1(u,v) is a 1D lattice in the θ1 direction, which contains all

the integer multiples of the fundamental frequency f1. And moreover, under the

appropriate convergence conditions we obtain, here too:

Proposition A.3: A function p1(x,y) is 1-fold periodic in the θ1 direction iff its spectrum

support in the frequency domain is a 1D lattice in the θ1 direction.    p

A.3.4  2-fold periodic functions in arbitrary directions (skew-periodic functions)

Let us proceed now to the most general 2D case: that of a 2-fold periodic function

having two arbitrary periods, which are not necessarily oriented in the x,y directions, not

necessarily orthogonal to each other, and do not necessarily have the same period length in

both directions. Such functions are called 2-fold periodic or skew-periodic functions

[Papoulis68 p. 116]. An example of such a function is shown in Fig. A.2(a).

Formally, a function p(x,y) is called skew-periodic if there exist two non-zero and non-

collinear vectors P1 = (x1,y1) and P2 = (x2,y2) so that for all (x,y) ∈ 2:

p(x + x1,y + y1) = p(x,y)    and    p(x + x2,y + y2) = p(x,y).6

The vectors P1 and P2 are called periods or period-vectors of p(x,y);7 note however that

they are not unique, since for any integers m,n the vector mP1+ nP2 is also a period of

p(x,y) (in vector notation: p(x + mP1+ nP2) = p(x) for all x ∈ 2; see Fig. A.2(a)). Note that

p(x,y)   is  completely  determined  from  its  values  in  the  period-parallelogram  A  defined  by

6 An alternative definition, based on the period-parallelogram of p(x,y) rather than on its period-vectors,
is given in the Glossary (see under the term “period”).

7 Like in the case of frequency-vectors, we always consider period-vectors as radius-vectors emanating
from the origin (and hence, the period-parallelograms which they define are attached to the origin).
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Figure A.2: A schematic plot of the 2-fold periodic (skew-periodic) function p(x,y)
in the image domain (a), and its skewed impulse-nailbed in the spectral
domain (b). The gray parallelogram A in the image domain represents a
one-period element (tile) of p(x,y). P1 and P2 are segments of this
parallelogram which coincide with the period-vectors P1 and P2.

P1 and P2, which repeats itself throughout the x,y plane. Clearly, each pair of non-zero and

non-collinear period-vectors of p(x,y) defines a different period-parallelogram A. A period

parallelogram is called a fundamental period-parallelogram of p(x,y) if it has the smallest

area   >   0 (the area of the smallest period). However, unlike in the 1D case in which there

existed a single shortest period T > 0 attached to the origin, in the 2D case there exist

infinitely many different period-parallelograms attached to the origin which all have the

smallest period area (see, for example, parallelograms A in Fig. A.2 and A' in Fig. A.4).

Each of these parallelograms is a fundamental period-parallelogram of p(x,y), and each

pair of period-vectors P1 and P2 of p(x,y) which defines such a fundamental period-

parallelogram is called a pair of fundamental period-vectors of p(x,y). Their reciprocal

vector pair (in a sense to be defined below in Sec. A.4) in the spectral domain, f1 and f2, is

called a pair of fundamental frequency-vectors of p(x,y) (see Fig. A.2(b)). For now, we

just mention that f1 and f2 are oriented perpendicularly to the corresponding period-vectors

P2 and P1, respectively: f1 ⊥ P2 and f2 ⊥ P1. Since each of the different fundamental period-

parallelograms fully defines p(x,y), we may freely choose one of them as a representative

fundamental period-parallelogram, and consider its associated period-vectors P1, P2 and

frequency vectors f1, f2 as the representative period and frequency vectors of p(x,y).

Note that the set of all the periods of p(x,y), i.e., the set of all integer linear combinations

of the fundamental period-vectors P1 and P2, forms a skewed (= oblique) 2D lattice in the

x,y plane: LP = {mP1 +  nP2 | m,n ∈ }. And similarly, the set of all integer linear combi-

nations   of   the  fundamental   frequency-vectors  f1 and  f2  forms  a  skewed  2D lattice  in  the

y
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Figure A.3: A magnified view of a single period-parallelogram from Fig.
A.2(a), showing the relations between Pi and Ti.

spectral u,v plane: Lf = {mf1+ nf2 | m,n ∈ }. Both of these lattices are spanned by any of

the possible fundamental vector pairs P1, P2 (or f1, f2) of p(x,y). We will see later in this

section that like in the 1D case the lattice Lf is the support of the spectrum of p(x,y) in the

frequency domain. The lattice LP in the image domain and the lattice Lf in the frequency

domain are said to be reciprocal (in a sense to be defined below, in Sec. A.4).

It would be instructive at this point to illustrate the case of a skew-periodic function

p(x,y) by an example:

Example A.1: Let p1(x,y) be a 1-fold periodic function in the θ1 direction as in Sec. A.3.3

above (see Fig. A.1, or the solid grating in Fig. A.2(a)), and let p2(x,y) be a similar 1-fold

periodic function with the period T2 = 1/f2 in the θ2 direction (see the dotted grating in Fig.

A.2(a)). Then, the superposed function p(x,y) = p1(x,y) p2(x,y) is skew-periodic. However,

as it can be seen in Fig. A.2, the periodicity of p(x,y) is not given by the periods T1 and T2

of the original functions p1(x,y) and p2(x,y), but rather by the periods P1 and P2, where

P1 ⊥ T2, P2 ⊥ T1. This fact, although surprising at first sight, is explained as follows:

Consider the original function p1(x,y) (Fig. A.1). Clearly, this function is periodic in the

direction of x' with the period T1; but at the same time it is also periodic in the direction of

x (with the period T1/cosθ1), in the direction of y (with the period T1/sinθ1), or in any other

direction in the plane — with only one exception: the direction perpendicular to x', i.e., the

direction of y', in which the function p1(x,y) is constant.

Similarly, p2(x,y) is periodic in all directions in the plane, except for the direction of y'',

in which it is constant. Now, when p1(x,y) and p2(x,y) are superposed, their periodicities are

destroyed in all directions — except in the directions in which p1(x,y) or p2(x,y) are

constant and do not intervene, namely: except in the directions of y' and y''. And indeed, in

x

T1

T2

θ1
θ2

P1

P2α

α

 P =1 T /sinα1

T /sinα2

 α = θ  – θ2 1

 P =2
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the direction of y' (in which p1(x,y) is constant) p(x,y) behaves like p2(x,y) and has the

period P2, and in the direction of y'' (in which p2(x,y) is constant) p(x,y) behaves like

p1(x,y) and has the period P1. These two exceptional directions define therefore the

periodicity of the composite function p(x,y). If we denote the angle difference θ2 – θ1

between the two gratings by α (see Fig. A.3), we find that P1 = T1/sinα  and P2 = T2/sinα.

In the frequency domain, however, there are no such “surprises”, and the spectrum of

p(x,y) is indeed the convolution of the 1D comb of p1(x,y) in the θ1 direction and the 1D

comb of p2(x,y) in the θ2 direction (see Fig. A.2(b)). The result of this convolution is a

skewed nailbed whose support is spanned by f1 and f2, the fundamental frequencies of the

two original combs. Note that only when the directions θ1 and θ2 are perpendicular to each

other (α = ±90°) do P1 and P2 coincide with T1 and T2, respectively, and f1 ⊥ P2 and f2 ⊥ P1

mean, then, as we would expect:  f1||P1 and f2||P2.

Note that Example A.1 illustrates also another typical phenomenon which is related to

non-orthogonal lattices: Let Lf be the 2D frequency lattice of p(x,y); this lattice is obtained

in the spectrum by the convolution of the two 1D lattices (combs) of the superposed

1-fold periodic functions p1(x,y) and p2(x,y). Clearly, Lf is spanned by the vectors f1 and f2,

the fundamental frequency vectors of p1(x,y) and p2(x,y); but unless these two functions

are superposed perpendicularly, f1 and f2 are not necessarily the shortest frequency

vectors which span Lf. In the case of Fig. A.2(b), for example, the shortest fundamental

frequency vectors which span Lf are f'1 = f1 and f'2 = f2 – f1, and not f1 and f2. This is clearly

shown in Fig. A.4(b). Similarly, in the image domain (Fig. A.2(a)) the period-vectors P1

and P2 (the reciprocal vector pair of f1, f2) are not the shortest fundamental period-vectors

of the 2-fold periodic function p(x,y): the shortest period-vectors are P'1 = P1 + P2 and

P'2 = P2, the reciprocal vector pair of f'1 and f'2 (see Fig. A.4(a)).

It is interesting to note that the question of finding the shortest basis vectors of a given

lattice of dimension n > 1 is not trivial, and it is one of the subjects which are dealt in

geometry of numbers [Kannan87 pp. 4 ff, Gruber93 pp. 742, 751 ff]. However, in our

study of the moiré effect we will always choose the fundamental frequency vectors fi of

the superposition to be the fundamental frequency vectors of the superposed layers, like in

Fig. A.2, even when they are not the shortest possible frequency vectors in the

superposition.    p

Suppose now that p(x,y) is a skew-periodic function which satisfies the required

convergence conditions, and suppose that P1, P2 and f1, f2 are representative fundamental

period and frequency vectors of p(x,y) (see Fig. A.2). Then its Fourier series expansion in

terms of the x' and x'' coordinates is given by:

p(x', x'') = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π[mf1x' + nf2x'']

Changing back to the x,y coordinate system by putting:  x' = xcosθ1 + ysinθ1,

x'' = xcosθ2 + ysinθ2  [Spiegel68 p. 36] and hence:  f1x' = u1x + v1y,  f2x' = u2x + v2y

(see Fig. A.2(b)) we obtain:
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Figure A.4: A different set of fundamental period-vectors P'1, P'2 and fundamental
frequency vectors f'1, f '2 which span the same period-lattice LP and
frequency-lattice Lf as in Fig. A.2. Note that P'1, P'2 and f'1, f'2 are the
shortest vector pairs which span the lattices L P  and L f; the
parallelograms A' and B' they define have the same respective areas as
the parallelograms A and B in Fig. A.2, but they are almost square.

p(x,y) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π[m(u1x + v1y) + n(u2x + v2y)]

(compare with the 1D case of Eq. (A.19)), or in other words [Papoulis68 p. 117]:

p(x,y) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π[(mu1 + nu2)x + (mv1 + nv2)y]    (A.23)

where u1, u2, v1, v2 are defined in Fig. A.2, and the Fourier coefficients cm,n are:

cm,n = 1
 A∫∫

A

p(x,y) e–i2π[(mu1 + nu2)x + (mv1 + nv2)y] dxdy   (A.24)

∫∫A
 means here an integration over the parallelogram A defined by P1 and P2 (see Fig.

A.2(a)), whose area A is given by the cross product:

A = P1×P2 = x1y2 – y1x2     (A.25)

This can be expressed more compactly in the vector notation:

 p(x) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π(mf1+nf2)·x     (A.26)

with the Fourier series coefficients:

cm,n = 1
 A∫∫A

p(x) e–i2π(mf1+nf2)·x dx   (A.27)
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where f1 = (u1,v1) and f2 = (u2,v2) are the corresponding fundamental frequency vectors,

and x = (x,y).

Note that Eqs. (A.26) and (A.27) can be further simplified into the vector form of Eqs.

(A.13) and (A.14) (with the integration being done over a parallelogram A rather than over

a rectangle TxTy) if we take:

fm,n = mf1+ nf2 = (mu1+ nu2, mv1+ nv2)   (A.28)

as the (m,n)-th frequency harmonic. In this notation each frequency vector takes the

indices of its impulse in the spectrum convolution; for example, the fundamental

frequency vectors f1 and f2 are denoted by f1,0 and f0,1, respectively.

The spectrum of the skew-periodic function p(x,y) is a skewed impulse-nailbed (see Fig.

A.2(b)), whose (m,n)-th impulse is located in the u,v plane at the point given by Eq. (A.28),

and has the amplitude cm,n. Using the 2D impulse symbol δ(u,v) the spectrum of p(x,y) is

given by [Papoulis68 p. 117]:

P(u,v) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(u – mu1– nu2, v – mv1– nv2)   (A.29)

or in a vector form, with f = (u,v):

P(f) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(f – (mf1+ nf2))   (A.30)

Note that using the notation of (A.28), the spectrum (A.30), too, can be further simplified,

and it coincides with the vector form of (A.17).

As we can see, the support of the spectrum P(u,v) is the skewed 2D lattice Lf, which

contains all the integer linear combinations of the fundamental frequency vectors f1 and

f2.8 Furthermore, under the appropriate convergence conditions we have the following

result:

Proposition A.4: A function p(x,y) in the image domain is 2-fold periodic (skew-

periodic) iff its spectrum support in the frequency domain is a 2D lattice.    p

The relationship between the periodicity of p(x,y) in the image domain and its spectrum

support in the frequency domain is the subject of the following section.

A.4 The period-lattice and the frequency-lattice (=  spectrum support)

In this section we summarize the reciprocity relationship between the fundamental

period(s) of a periodic function in the image domain and the corresponding fundamental

frequency(ies) in the spectral domain. We have seen above, both in the 1D and in the 2D

8 Note that the lattice Lf is independent of the choice of the fundamental frequency vectors, as illustrated
in Figs. A.2(b) and A.4(b).
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cases, that the set of all the periods of a periodic function (i.e., the set of all integer linear

combinations of its fundamental period(s)) is a lattice LP in the image domain, while the

set of all the integer linear combinations of the fundamental frequency(ies) of the periodic

function forms a lattice Lf in the spectral domain. This last lattice, Lf, is in fact the support

of the spectrum of the periodic function, i.e., the set of the geometric locations of all the

impulses of the comb or the nailbed in the spectrum of the periodic function (including

those impulses whose amplitudes happen to be zero).

For example, in the 1-fold periodic case of Fig. A.1 the 1D period-lattice LP in the image

domain (left) is represented by all integer multiples of the fundamental period along the x'

axis; and the 1D frequency-lattice Lf in the frequency domain (right) is the set of all the

integer multiples of the fundamental frequency f1. Both lattices are oriented in the same

direction, θ1, but their steps are reciprocal: the step of the period-lattice is T1, while the step

of the frequency-lattice is f1 = 1/T1.  In the 2-fold periodic case shown in Fig. A.2 the 2D

period-lattice LP in the image domain (left) is represented by all the integer linear

combinations of the fundamental periods P1 and P2; and the 2D frequency-lattice Lf in the

spectral domain (right) is represented by all the linear combinations of the fundamental

frequencies f1 and f2 (marked by dots in the figure). However, while the reciprocity

between the lattices LP and Lf is straightforward in the 1D case, in the 2D case some

further explanation is required.

Let us see what is the relationship in the 2D case between the fundamental periods P1

and P2 (which are a basis of the period-lattice LP in the image domain) and the

corresponding fundamental frequencies f1 and f2 (which are a basis of the frequency-

lattice Lf in the spectrum). According to Fig. A.2 we have:

in the image domain: P1 = (x1,y1)

P2 = (x2,y2)   
(A.31)

and in the spectrum: f1 = (u1,v1)

f2 = (u2,v2)   
(A.32)

In order to find how f1 and f2 are related to P1 and P2 we would like to express the

coordinates ui and vi in terms of xi and yi. And indeed, we have (see Fig. A.1(b)):

u1 = f1 cosθ1

    = 1
T1

 cosθ1

    = 
y2

T1P2
(since  cosθ1 = 

y2

P2
;  see Fig. A.2(a))

    =  
y2

A

where A is the area of the parallelogram A, as given by Eq. (A.25):  A = P1×P2 = x1y2 – y1x2.

We can also express in a similar way v1, u2 and v2; and by substituting them into (A.32)

we obtain, therefore, the required expressions for f1, f2 in terms of xi and yi:
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f1 = 1

A
 (y2, –x2)

f2 = 1

A
 (–y1, x1)   

(A.33)

From Eqs. (A.31) and (A.33) we immediately obtain the following properties:

(1) As we have already seen above:  f1 ⊥ P2 and f2 ⊥ P1.

(2) Concerning the vector lengths we obtain:

from Eq. (A.31): |P1| = x1
2 + y1

2

|P2| = x2
2 + y2

2

and from Eq. (A.33): |f1| = 1

A
x2

2 + y2
2  = 1

A
|P2|

|f2| = 1

A
x1

2 + y1
2  = 1

A
|P1|

In other words, the length ratio between the two pairs of fundamental vectors is

preserved reciprocally:
f1

f2

 = 
P2

P1

(For example, if the length of P1 is twice the length of P2 in the image domain, then in

the spectrum the length of f1 is half the length of f2).

(3) Another interesting result concerns the areas of the fundamental period-parallelogram

A in the image domain and the fundamental frequency-parallelogram B in the spectrum:

A = P1×P2 = x1y2 – y1x2

B =  f1× f2  = u1v2 – v1u2 = 1

 A
2 (x1y2 – y1x2) = 1

A

This means that the areas of the parallelograms A and B are, indeed, reciprocal.

Due to these reciprocity relations which prevail between the period-lattice LP and the

frequency lattice Lf these two lattices are said to be reciprocal. Similarly, the vector pair f1,

f2 which spans the lattice Lf is said to be reciprocal to the vector pair P1, P2 which spans

the lattice LP.

Finally, it is interesting to mention the following relations regarding the mixed scalar

products of the basis vectors of the 2D reciprocal lattices LP and Lf, which are also

obtained from Eqs. (A.31) and (A.33):

P1· f1 = x1 

y2

A
 – y1 

x2

A
 = 1

A
 A = 1 P1· f2 = –x1 

y1

A
 + y1 

x1

A
 = 0

P2· f1 = x2 

y2

A
 – y2 

x2

A
 = 0 P2· f2 = –x2 

y1

A
 + y2 

x1

A
 = 1

A
 A = 1

This property of the two reciprocal lattices is most useful, since it can be readily

generalized to lattices in 3D (such as in the case of crystallography) or any other

dimension n ≥ 1. In fact, this property is often used to define reciprocal lattices (see, for

example, [Rosenfeld82 p. 75] or [Jarić89 p. 15]):
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Definition A.1: Let L be an n-dimensional lattice and let the vectors P1,...,Pn ∈ n be a

basis of L. Then its reciprocal lattice L* is a lattice of the same dimension, whose basis

vectors f1,...,fn ∈ n are defined by:

   1   if  i = j
 Pi · fj  =     (A.34)

   0   if  i ≠ j      p

The geometric interpretation of this definition is as follows:

(a) The second condition in (A.34) means that the vector fj is perpendicular to all the

vectors Pi with i ≠ j; this determines the direction of the line through the origin of n

on which fj is situated. (For example, in the 3D case f1 is situated on the line

emanating from the origin of 3 perpendicularly to the plane spanned by P2 and P3).

(b) The first condition in (A.34) determines the precise length and direction of the vector fj

on the line defined in (a). Pj·fj = 1  means that the length of fj on this line is reciprocal

to the length of the projection of Pj on the same line: Since by [Vygodski73 p. 142]

P· f = | f | |proj(P)f |  (where  proj(P)f  denotes the projection of P on f), and since we

have here P· f = 1, it follows that  | f | = 1/|proj(P)f |. And furthermore, since we have
Pj · fj = 1 > 0 the direction of the vector fj on the same line is determined such that the

angle between fj and Pj is sharp [ibid.].

Hence, the two conditions of (A.34) fully determine each of the n vectors fj.

Although for our present work we will only need the 2D or 1D cases, it is interesting to

mention that this definition permits us to generalize Propositions A.1–A.4 above to the

n-dimensional case (again, under the appropriate convergence conditions), as follows:

Proposition A.5: A function p(x) in the n-dimensional image domain is periodic with

period-lattice L iff its n-dimensional spectrum P(u) has as its support in the frequency

domain the reciprocal lattice L*.    p

A.5 The matrix notation, its appeal, and its limitations for our needs

It is interesting to note that based on Eq. (A.34) the reciprocity between the vectors Pi

(which are a basis of the period-lattice L) and the vectors fi (which are a basis of the

frequency-lattice L*, i.e., of the spectrum support) can be also expressed in matrix

notation. Since from (A.34) we have:9

P1

Pn

 (f1,...,fn)  =  
P1·f1 P1·fn

Pn·f1 Pn·fn

  =  
1  0
  

0  1

9 Note that each vector in the following expressions represents an n-tuple of coordinates, and therefore
each entity in parentheses is, in fact, a matrix.
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it follows that if the matrix (f1,...,fn) is invertible, i.e., non-singular (which is true iff the

vectors f1,...,fn are linearly independent over   [Birkhoff77 pp. 237–238]), then:

P1

Pn

  =  (f1,...,fn)
–1

and by writing both sides as columns we obtain:

  
P1

Pn

  =  
f1

fn

 –T

  (A.35)

(where “–T” means the transpose of the inverse matrix). We will henceforth denote these

two matrices in short by P and F, and hence Eq. (A.35) becomes:   P = F–T.

For example, in the 2D case we have, indeed, by Eqs. (A.33) and (A.31):

    F  =  
f1

f2

  =  
u1 v1

u2 v2
  =  1

x1y2 – y1x2
 

y2 -x2

-y1 x1
  =  

x1 y1

x2 y2

 
–T

 =  
P1

P2

 
–T

 =  P–T   (A.36)

We note that  A = x1y2  –  y1x2  is, in fact, the determinant of the matrix  P = 
P1

P2

 = 
x1 y1

x2 y2
.

This matrix representation of (A.34) leads us also to a matrix notation for the periodic

function p(x,y) and for its spectrum (= Fourier transform) P(u,v):

We start first with the spectrum P(u,v). As we have seen earlier, P(u,v) is given in vector

notation by Eq. (A.30), as follows:

P(f) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(f – (mf1+ nf2))

We note that:    mf1+ nf2 = m(u1,v1) + n(u2,v2)

     = (mu1+ nu2, mv1+ nv2)

     = (m,n) 
u1 v1

u2 v2

     = nF

where   F = 
f1

f2

 = 
u1 v1

u2 v2
   and   n = (m,n).

Hence we obtain the following matrix notation for the spectrum P(u,v):

P(f) = ∑
n

cn δ(f – nF)   (A.37)

We proceed now to the periodic function p(x,y) itself, in the image domain: Let  P1, P2

be the fundamental period-vectors of p(x,y) and let d(x,y) be its restriction to the

fundamental period-parallelogram defined by P1, P2, i.e., a single period-element of p(x,y).

Therefore, we can rewrite p(x,y) in vector notation as follows:
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p(x) = ∑
m=–∞

∞

∑
n=–∞

∞

d(x – (mP1+ nP2))   (A.38)

Again, we note that:  mP1+ nP2 = m(x1,y1) + n(x2,y2)

     = (mx1+ nx2, my1+ ny2)

     = (m,n) 
x1 y1

x2 y2

     = nP

where   P = 
P1

P2

 = 
x1 y1

x2 y2
   and   n = (m,n).

Hence we obtain the following matrix notation for the periodic function p(x,y):

p(x) = ∑
n

d(x – nP)   (A.39)

where, as we have already seen in Eqs. (A.35) and (A.36):   P = F–T. 
10

The matrix notation of Eqs. (A.37) and (A.39) is frequently used in literature, due to its

concise and appealing form;11 see, for example, [Ulichney88 pp. 17–19, 44–47] and

[Cartwright90 pp. 123–126]. However, although useful for expressing 2D or multi-

dimensional periodic functions and their spectra (= Fourier transforms), we will not make

use of this notation in our study on the superposition of periodic functions, and this for

two main reasons:

First, in spite of its concise, appealing form, the matrix notation tends to obscure the

detailed structure of the spectrum support — while the explicit vector notations that we

introduced earlier, like in Eqs. (A.26) or (A.30), clearly reflect this structure, and are

therefore particularly well adapted for our needs (see also Sec. 6.7 in Chapter 6).

But even more importantly, it must be noted that Eq. (A.39) in the image domain, which

is based on the matrix  P = F–T,  is valid only for non-singular cases, where the matrix F is

invertible (i.e., where the frequency-vectors f1,...,fn are linearly independent; see earlier in

this section). However, in our present study not only do such singular cases occur, but

they even constitute some of the most interesting cases of our research. In fact, there exist

two possible types of failure due to the singularity of the matrix F:

(a) If the vectors f1,...,fn have  rank  Md(f1,...,fm) = dim Sp(f1,...,fm) = k  where k < n,

meaning that the spectrum support is still a lattice (see Proposition 5.1) — but of a

lower dimension k < n, then the failure is curable and Eq. (A.39) can still be used, after

a manual adaptation to the new, lower dimension k (based on a new basis of k rather

than n vectors fi, and on new k×k matrices F and P).  For instance, in the case of  n = 2

10 Note that the multiplication of the integer index-vector n ∈ 2
 by the matrix F in Eq. (A.37) (or by the

matrix P, in Eq. (A.39)) can be interpreted as an application of a linear mapping on the integer lattice
2
 which transforms it into the skewed frequency-lattice Lf, like in Fig. A.2(b) (or, respectively, into

the reciprocal skewed period-lattice LP in the image domain).
11 Note, for instance, the similarity between Eq. (A.37) and its 1D counterpart, Eq. (A.8).
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Figure A.5: A magnified view of the main period-parallelogram of
Fig. A.2(a), showing the period-vectors Pi and the
step-vectors Ti.

this occurs when f1 and f2 are collinear and commensurable, i.e., linearly dependent

over  and over  (see Example 2 in Sec. 5.2).

(b) If, however, the vectors f1,...,fn have rank  Md(f1,...,fm) > dim Sp(f1,...,fm), meaning that

the spectrum support is not a lattice but rather a module (so that our superposition in

the image domain is an almost-periodic case; see Proposition 6.1), then there is no

basis to the spectrum support (see Sec. 5.2) and therefore the singularity of matrix F

cannot be remedied. In this case notation (A.39) fails altogether and cannot be used.

These reasons make the matrix notation unsuitable for our study of superposed layers

and their spectra, and they favour, instead, our vector notation, based on the layer

frequencies f1,...,fn.

A.6 The period-vectors Pi vs. the step-vectors Ti

One further remark is due at this point. The failure of matrix P whenever matrix F is

singular is, in fact, just an indication to a more fundamental failure: Since the period-

vectors Pi in the image domain only exist when the frequency-vectors f1,...,fn (the

individual layer frequencies) in the spectrum are linearly independent over  (see Sec.

A.5), the vectors Pi are inappropriate for our study of layer superpositions, because

superpositions may well occur even when f1,...,fn are linearly dependent. (And in fact, in

the case of our 2D spectrum this necessarily occurs whenever n > 2). Therefore, instead of

the vectors Pi we will only consider in the image domain the periods Ti of the n individual

gratings (see Figs. A.2, A.3). And if a 2-fold periodic layer p(x,y) appears in the

superposition (say, a dot-screen), it will contribute two values Ti, which are the periods of

the two virtual gratings defined by the borders of the fundamental period-parallelogram

of that layer (see the solid and the dotted gratings in Fig. A.2(a) and the magnified view in

x

T1

T2

P1

P2

T1

T2

y
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Fig. A.3).12 And indeed, even the classical moiré formulas, such as Eqs. (2.9) – (2.11), are

only based on the grating periods Ti. If we consider these grating periods as vectors Ti

emanating from the origin of the image domain at the grating directions θi (see Fig. A.5),

and call them step-vectors, we find that the relationship between each step-vector Ti and its

counterpart fi in the spectral domain is straightforward:

(1) The vectors Ti and fi (for every i) are collinear, i.e., they have the same angle θi;

(2) Their lengths are reciprocal, namely: for every i,  |Ti| = 1/|fi|.

This means that for  every i we have  Ti = 
Ti 

fi 
 fi = 1 

fi 
2  fi.  In other words, we obtain:

T1 = 1 
f1

2  f1

        (A.40)

Tn = 1 
fn

2  fn

As we can see, this relationship holds between any pair Ti, fi, individually; and moreover,

it exists in all cases and for any number n of superposed layers — even if f1,...,fn are

linearly dependent.

In order to formulate better the relationship between the vector pair Ti, fi we introduce

here the following definition:

Definition A.2:  For any vector v ≠ 0, the reciprocal vector of v (with respect to scalar

product) is defined as:

v–1 = 1 
v 

2  v     p   (A.41)

This definition requires a short explanation. Although it is clear that the vector v–1 is

reciprocal to v with respect to scalar product:

v–1·v = v·v–1 = 1 
v 

2  v·v = 1   (A.42)

v–1 is not the unique vector with this property. In fact, the locus of all the vectors x which

satisfy x·v = 1 contains (in the case of 3) the entire plane perpendicular to the vector v,

whose distance from the origin (along the line spanned by v) is  1 
v 

. Therefore, the

uniqueness of v–1 in this definition is obtained only through the requirement, implicit in

Eq. (A.41), that the reciprocal vector v–1 is collinear with the vector v.

Using this definition and in view of (1), (2) and Eq. (A.40) above, we can now

reformulate the relationship between the vector pair Ti and fi as follows:

12 Each of the different possible choices of fundamental frequency-vectors f1,f2 for p(x,y) automatically
determines a corresponding pair of fundamental period-vectors P1,P2 (by Eq. (A.34)), and hence it
determines also the fundamental period-parallelogram they define, and the corresponding virtual-grating
periods T1,T2. Note that all the different possible choices represent the same 2D lattices Lf and LP of
p(x,y).
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(3) For every i, the vector Ti in the image domain is the reciprocal vector (with respect to

scalar product) of the frequency-vector fi in the spectral domain:

Ti = 1 
fi 

2  fi = fi
 – 1   (A.43)

This is, in fact, the 2D vectorial generalization of the relation T = 1/f  between period and

frequency in the 1D case. This vector notation proves to be particularly useful in

Chapter 7.

Returning now to our vector comparison, the main difference between the step-vectors

Ti and the period-vectors Pi (all of which subsist in the image domain) is that each vector

Ti depends only on a single frequency-vector fi, while as we have seen in Eqs. (A.34) and

(A.35), each of the vectors Pi depends on all of the n frequency-vectors f1,...,fn. In the first

case we speak about reciprocity (with respect to scalar product) between the individual

vectors Ti and fi, but in the second case we speak about reciprocity between vector

n-tuples, P1,...,Pn and f1,...,fn, or between the lattices LP and Lf spanned by them. And while

the vectors Pi exist only when the vectors f1,...,fn are linearly independent, the vectors Ti,

on the contrary, exist for any vectors f1,...,fn with no restrictions, since every vector Ti is

only dependent on its own counterpart fi, and no matrix inversion is involved.13

Finally, it should be emphasized that in spite of the apparent symmetry between the

frequency-lattice Lf and the period-lattice LP (or between the frequency-vectors f1,...,fn and

the period-vectors P1,...,Pn) due to Eqs. (A.34) and (A.35), there exists a substantial

difference between them: While the spectrum support Lf is a fundamental property of any

superposition of n periodic functions, the period-lattice LP (and the period-vectors

P1,...,Pn) are only derived properties, and they exist only conditionally: iff the vectors

f1,...,fn are linearly independent (i.e., iff the superposition in the image domain is periodic

in n dimensions).

13 Note that when the vector frequencies f1,...,fn are all orthogonal to each other (in the n-dimensional
spectrum), the vectors Ti and Pi (i = 1,...,n) coincide in the image domain. The vectors T and P also
coincide in any 1-fold periodic function.



Appendix B

Almost-periodic functions and their spectra

B.1 Introduction

Almost-periodic functions constitute an important generalization of the class of periodic

functions. The theory of almost-periodic functions was founded in 1923 by the Danish

mathematician Harald Bohr [Bohr23] and was further developed by A. S. Besicovitch and

by others. The main importance of this theory is in the discovery of the tight relationship

(or duality) between extensions of the structural concept of periodicity of functions on the

one hand and generalizations of the analytic concept of the Fourier series representation of

these functions on the other hand. This, in turn, further extends the scope of the

reciprocity between functions in the image domain and their spectra in the frequency

domain to a larger range of functions. In fact, this generalization introduces a new class of

functions situated between periodic functions and aperiodic functions, whose spectral

representation, too, is intermediate between the two: its spectrum is no longer composed of

a comb or a nailbed of impulses, as in the periodic case, but it is not yet a continuous

Fourier transform as in the aperiodic case, either. It is also distinct from the diffuse

spectrum of random or pseudo-random functions. Rather, it is still composed of a

denumerable set of impulses, but these impulses are freely located in the spectrum, and

may be even everywhere dense.1

In this appendix we shortly review the concept of almost-periodic functions in one or

two variables, along with their main properties. We mainly concentrate here on results

which are needed for our purposes; additional details as well as a rigorous mathematic

development of the subject can be found in the references cited throughout.

B.2 A simple illustrative example

Let p1(x) and p2(x) be periodic functions with periods T1, T2. What can be said about the

functions  f(x) = p1(x) + p2(x),  g(x) = p1(x) p2(x) ? We must distinguish here between two

cases:

1 It is interesting to note that in 1984 almost-periodicity was brought to the center of scientific interest
by a very remarkable discovery, made by Dan Shechtman et al. [Shechtman84]. They discovered solid
materials with a new kind of microstructure, which is intermediate between the periodic structure of
crystalline materials and the structure of amorphous solids. Further research of these materials, which
were named quasi-crystals, has shown through spectral and other evidences that this new kind of
physical structure corresponds to the mathematical properties of almost-periodicity [Nelson86],
[Katz86]. This recent discovery, which has shaken the very foundations of the science of
crystallography, shows that almost-periodic structures do not only belong to the wild imagination of
mathematicians, but well to the contrary, they do correspond to the physical reality of our world.
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(1) If the periods T1 and T2 are commensurable, i.e., if T2/T1 is rational, then there exist

non-zero integers m, n such that mT1 = nT2. Since mT1 is a period of p1(x) and nT2 is

a period of p2(x) it follows that T = mT1 = nT2 is a common period of both, and

therefore also of their sum f(x) and of their product g(x). This means that the functions

f(x) and g(x) are periodic with period T (obviously, T ≥ T1,T2).

(2) If the periods T1 and T2 are incommensurable, i.e., if T2/T1 is irrational, then except at

the origin the periods of the functions p1(x) and p2(x) never meet again after any

integer numbers m, n of full periods T1 and T2. This means that there exists no

common period to p1(x) and p2(x), and therefore f(x) and g(x) never exactly repeat

themselves, and they are not periodic. As we will see below, f(x) and g(x) belong to a

wider class of functions called: almost-periodic functions. This situation is illustrated

in the following example.

Example B.1: Consider the functions p1(x) = cos(2π  x/20) and p2(x) = 1
4cos(2π x/ 2),

whose periods are respectively T1 = 20 and T2 = 2. Since T1 and T2 are incommensurable,

it is clear that except at the origin the periods of these two functions will never meet again

after any integer numbers m, n of full periods T1 and T2. This means that the function

f(x) = cos(2π x/20) + 1
4cos(2π x/ 2)  is not periodic since no value of T, no matter how

large it is, gives exact repetitions of f(x) (see Fig. B.1). For instance, f(x) gets its maximum

value f(x) = 11
4 only at x = 0, and for no other value of x. However, as it can be seen in the

figure, f(x) looks “almost” as a periodic function. And indeed, if we admit a certain

small error ε, say ε = 0.3, then τε = 20 can be considered as an ε-almost-period of f(x),

which gives a repetition of f(x) up to an error of ε. If we require a smaller error, such as

ε = 0.01, then there can be found a larger number, such as τε = 140, which may be taken

as an ε-almost-period. In fact, for any ε > 0 we can find an arbitrarily large ε-almost-

period τε for f(x) such that for any –∞ < x < ∞,  |f(x +τε) – f(x)| < ε  (this is demonstrated,

for a similar function, in [Besicovitch32 p. ix]). A slightly stronger version of this

property will serve as a basis for the definition of an almost-periodic function (see

Sec. B.3).    p

As we will see below, any periodic function is almost-periodic, but clearly not every

almost-periodic function is periodic. It should also be emphasized that not every non-

periodic function is almost-periodic; an obvious counter-example would be f(x) = x. This

means that almost-periodic functions form an intermediate class of functions between

periodic functions and aperiodic functions (see Fig. B.3 in Sec. B.5 below).

B.3 Definitions and main properties

The definition of almost-periodic functions relies on the definition of the concept of

ε-almost-period as a generalization of the concept of a period. Let us start by rephrasing

the definitions of a period and of a periodic function which are given in Sec. A.2.
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Definition B.1:  A number T is called a period of f(x) if for all x ∈ :

 |f(x + T) – f(x)| = 0

If there exists such a number T ≠ 0, then f(x) is called periodic. As was noted in Sec.

A.2 T is not unique, since if T is a period of f(x), so is nT for any integer n. In fact, the set

of all periods of f(x) is denumerably infinite, and it forms a lattice in : LT ={nT | n ∈ }.

Normally one considers the fundamental period of f(x), i.e., the minimal positive number

in LT.    p

Using this definition for inspiration, we give now the following definitions [Bohr51

p. 32]:

Definition B.2: An infinite set S of real numbers τ is called relatively dense if there exists

some number l > 0 (called inclusion length) such that every interval of length l, (x, x + l) ⊂

, contains at least one number τ of the set S. (This means that there are no arbitrarily

large gaps between the numbers τ . As an example, the set LT  defined above is relatively

dense since every interval (x, x  +2T) contains at least one number of LT; but the set

{n2 | n ∈ } is not relatively dense.)    p

Definition B.3: Given ε > 0, a number τε is called an ε-almost-period 2 of f(x) if for all

x ∈ :

|f(x +τε) – f(x)| < ε     (B.1)

A continuous function f(x) is called Bohr-almost-periodic3 (or uniformly-almost-

periodic) if for any ε > 0, no matter how small, there exists a relatively dense set of

ε-almost-periods.4    p

In other words, f(x) is Bohr-almost-periodic if the equation f(x +τε) = f(x) is satisfied

with an arbitrary degree of accuracy ε > 0 by infinitely many values of τε, these values

being spread over the whole range from –∞ to +∞ in such a way as not to leave empty

intervals of arbitrarily great length [Besicovitch32 p. x].

It should be noted that every periodic function is almost-periodic (since for any ε we

may take the periods nT for all n ∈  as a relatively dense set of ε-almost-periods). But as

we have seen in Example B.1 above there exist almost-periodic functions which are not

periodic.

2 This term is current in modern literature; the term originally used by Bohr (and still being used by
others) is: “a translation number of f(x) corresponding to ε” [Bohr51 p. 31].

3 As we will see in Sec. B.5, this definition, initially given by Bohr, has been extended later in various
different ways (for example, in order to lift the restriction of the continuity of f(x)). Each of these
extensions defines a different class of almost-periodic functions, which is a superset of the class of
Bohr-almost-periodic functions. We will use the general term “almost-periodic function” in the widest
sense, and whenever a particular class of almost-periodic functions is intended we will refer to it
specifically, such as: “Bohr-almost-periodic function” etc.

4 As already pointed out in Example B.1 above, the property required by this definition is stronger than
just having for any ε > 0 an arbitrarily large ε-almost-period τε. The reasons for this choice are explained
in [Bohr51 p. 32].
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Almost-periodicity is not always as easy to identify visually as in Fig. B.1, and the

graphic behaviour of an almost-periodic function may be quite complex. However,

almost-periodic functions have the following structural properties:

(1) A (Bohr) almost-periodic function is bounded and uniformly continuous throughout

–∞ < x < ∞ [Bohr51 pp. 33–35].

(2) A non-constant almost-periodic function does not tend to any limit when x → ±∞; in

fact, throughout –∞ < x < ∞ it oscillates irregularly between two finite extreme values

without damping [Bass71 p. 345, 367].

Other important properties of almost-periodic functions include the following:

(3) If f(x) is almost-periodic, so are |f(x)|, cf(x) and f(x + b) for any a,b,c ∈ , with the same

almost-periods [Bass71 p. 344]. More generally, cf(ax +  b) is also almost-periodic

[Corduneanu68 p. 11].

(4) If f(x) and g(x) are almost-periodic, so are  f(x) ± g(x) and  f(x)g(x) [Bohr51 pp. 36–38].

If in addition inf
–∞<x<∞

|g(x)| = m > 0  then 1/g(x) and  f(x)/g(x) are also almost-periodic

[Bohr51 pp. 34–35].

(5) Every almost-periodic function is representable as a generalized Fourier series and

consequently has an impulsive spectrum.

This last property, which is probably the most remarkable of all, will be discussed in the

following section.

B.4 The spectrum of almost-periodic functions

As we have seen in Appendix A, according to the Fourier theory if p(x) is a periodic

function of period T, then it can be uniquely developed into the form of a Fourier series:

p(x) ~ ∑
n=–∞

∞

cn ei2π
 
nfx       (B.2)

where the Fourier  coefficients cn are given by:

cn = 1
T∫

T

p(x) e–i2π
 
nfx dx     (B.3)

(In all the above expressions f = 1/T is the fundamental frequency of p(x), and nf are its

harmonics). Furthermore, if p(x) satisfies certain convergence conditions (see Sec. C.12 in

Appendix C), then the Fourier series indeed converges, and the ‘~’ sign can be replaced

by an equality: ‘=’.

This implies that the spectrum of p(x), P(u), consists of impulses which are all included

in a common impulse comb of step f, whose n-th impulse is located at the frequency u = nf
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and its amplitude is cn. Note that some, or even most, of the values cn may be zero, as in

the case of p(x) = cos(2π  fx), where only the fundamental impulse pair, with indices

n = ±1, has a non-zero amplitude.

One of the outstanding consequences of the theory of almost-periodic functions is that

this result, namely, the correspondence between a periodic function and its Fourier series

(and hence also with its spectrum), can be extended also to the case of almost-periodic

functions [Bohr51 p. 50, 60]:

If f(x) is an almost-periodic function then it can be uniquely5 developed into the form of

a generalized Fourier series:

f(x) ~ ∑
n

cn ei2π
 
fnx       (B.4)

where fn are arbitrary real numbers, called the Fourier exponents of f(x), and the complex

numbers cn, called the Fourier coefficients of f(x), are given by:

cn = lim
T→ ∞

1
T∫

T

f(x) e–i2π
 
fnx dx     (B.5)

∫T
 means here an integration over any interval of length T, i.e., from x0 to x0 +T where x0 is

arbitrary.6

Note that the infinite sum in (B.4) is a generalized Fourier series, in the sense that the

frequencies fn are no longer integer multiples (harmonics) of a fundamental frequency f, as

was the case in the Fourier series (B.3) of a periodic function p(x). In fact, the frequencies

fn may be here any denumerable set of arbitrary real numbers, which may have finite

accumulation points or even be everywhere dense [EncMath88 Vol. 1 p. 155].

This means that the spectrum of an almost-periodic function consists of a denumerable

set of impulses, which are located at the frequencies fn and whose amplitudes are cn:

P(u) = ∑
n=–∞

∞

cn δ(u – fn)     (B.6)

where δ(u) is the impulse symbol. In fact, almost-periodic functions are characterized by

having impulsive spectra (also called line-spectra). This is a generalization of the

spectrum of a periodic function: although it still consists of a denumerable set of

impulses, it is no longer limited to a comb of impulses with a fixed step, as in Eq. (A.8),

and it may consist of any set of impulses with arbitrary frequencies fn, which may even be

everywhere dense.

5 Uniqueness is guaranteed for the Bohr-almost-periodic functions by the uniqueness theorem [Bohr51
p. 60]. In the case of generalized almost-periodic functions (see Sec. B.5 below) uniqueness is true up
to a null function [Bohr51 p. 98].

6 This integral is guaranteed to exist for every Bohr-almost-periodic function f(x) by the mean value
theorem [Bohr51 p. 39, 44]. However, it is interesting to note that the series (B.4) does not always
converge to f(x) in the sense of uniform convergence (not even in the case of Bohr-almost-periodic
functions), but it does converge to f(x) in the sense of convergence in the square mean (see, for
example, [Bass71 p. 366]). In this sense, the symbol ‘~’ can be replaced by an equality: ‘=’.
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The following converse statement is also true: if {fn} is a denumerable set of arbitrary

real numbers and {cn} are complex numbers for which ∑|cn| < ∞, then there exist a Bohr-

almost-periodic function f(x) which has (B.4) as its generalized Fourier series [Bohr51

p. 52].7 Note that in contrast to the frequencies {fn}, the amplitudes {cn} can not be

completely arbitrary, and they must satisfy some conditions in order that the Fourier series

(B.4) converge.

Example B.2: Consider the almost-periodic function f(x) defined in Example B.1.

Clearly, the spectrum of f(x) is the sum of the spectra of its two terms, namely: it consists

of a pair of impulses with amplitude 1/2 at the frequency of ±f1 = 1/20, and a pair of

impulses with amplitude 1/8 at the frequency of ±f2 = 1/ 2. And indeed, since f1 and f2 are

incommensurable, these four impulses on the x axis are not located on any common comb.

This is an almost-periodic case in which the number of impulses in the spectrum is finite.

As we will see in Sec. B.5 below, this function belongs in fact to the subclass of quasi-

periodic functions.    p

We conclude this section with one further remark concerning the connection between

the almost-periods of an almost-periodic function and its Fourier exponents. In the

periodic case, the fundamental period of a function p(x) uniquely defines the set of its

Fourier exponents: if T > 0 is the fundamental period of p(x), then all its Fourier

exponents are integer multiples of f = 1/T.  It is interesting to note that there exists also a

similar connection between the almost-periods of an almost-periodic function and its

Fourier exponents, though it is not as simple as in the periodic case. More details on this

subject can be found, for example, in [Levitan82 pp. 40–41].

B.5 The different classes of almost-periodic functions and their spectra

As we have seen in Sec. B.3, the definition of almost-periodic functions given by Bohr

is only valid for continuous functions. This is however a severe restriction in our case,

since it excludes all discontinuous functions such as square waves, gratings and their

superpositions. Moreover, mathematically speaking, this class is, in a way, not fully

complete, since it is only closed8 under the strongest limiting process (uniform

convergence for all –∞ < x < ∞), but not under other limiting processes. These

considerations gave rise to many efforts to extend the definition of almost-periodic

functions in various different ways (see: “Almost-periodic function”, “Generalized

almost-periodic functions” in [EncMath88]). A beautiful account on these different

extensions and on the reciprocity between their definitions in terms of almost-periods and

in terms of their Fourier series is given in [Bohr51 pp. 91–99]. Without going here into

detail we will only mention that the widest (and most complete) class of almost-periodic

7 For the wider class of Besicovitch-almost-periodic functions (see Sec. B.5 below) the weaker condition
of ∑|cn|2 < ∞ is enough [Besicovitch32 p. xii].

8 A set S is closed under a certain limiting process if it includes all the possible elements which can be
obtained by applying this limiting process on sequences of members of S.



402                                                   Appendix B: Almost-periodic functions and their spectra

functions, known as the class of Besicovitch almost-periodic functions, contains all the

Bohr almost-periodic functions plus other functions, including all “reasonably”

discontinuous functions (and in particular all the discontinuous functions which may

occur in our case, such as square waves, gratings, etc., and their superpositions; see Fig.

B.2). In fact, in this class the requirement of continuity of f(x) is replaced by the

requirement of integrability in the Lebesgue sense [Bohr51 pp. 92–94].

It is interesting to note that the class of Bohr-almost-periodic functions (which is itself a

subset of the Besicovitch class) contains, in turn, several subclasses of interest. These

include:

(1) The subclass of quasi-periodic functions (also called Bohl-almost-periodic functions).

This subclass contains all continuous functions which can be represented as:

∑
n1=–∞

∞

... ∑
nm=–∞

∞

cn1,...,nm
  ei2π(n1f1+...+nmfm)x     (B.7)

or in other words, all continuous almost-periodic functions whose Fourier exponents

fn in (B.4) are not completely arbitrary, but rather can be generated as a linear

combination with integer coefficients of a finite number m of arbitrary (possibly

incommensurable) frequencies f1,...,fm. Using our terminology, the Fourier exponents

fn in this case are simply the members of the module {n1f1 + ... + nmfm | ni ∈ }. It is

said therefore that the support of the spectrum of f(x) is finitely generated. Any sum or

product of m continuous periodic functions belongs to this class [EncMath88 Vol. 1

p. 414]. And indeed, expression (B.7) has exactly the same form as Eqs. (6.3) and

(6.5) that we obtained in Chapter 6 for the product of m  periodic functions

p1(x)·...·pm(x) with periods f1,...,fm. The only detail which disqualifies the class of

quasi-periodic functions for our needs in the treatment of layer superpositions is the

fact that this class is restricted only to the case where p1(x),...,pm(x) are continuous

(which obviously excludes square waves, binary gratings etc.).

(2) The subclass of limit-periodic functions [Besicovitch32 pp. 32–34]. A function is

called limit-periodic if it is the limit of a uniformly convergent sequence {fn(x)},

n = 1,2,... of continuous periodic functions. It can be shown [ibid.] that this subclass

contains all the Bohr-almost-periodic functions whose Fourier exponents are rational

multiples of one arbitrary number f ∈ , i.e., all functions which can be represented in

the form: 

f(x) ~ ∑
n

cn ei2π
 
rnfx where rn ∈ .        (B.8)

(3) The subclass of periodic functions (which is a subclass of both the quasi-periodic and

the limit-periodic classes).

Fig. B.3 gives a schematic description of the hierarchy of the different classes and

subclasses of almost-periodic functions that are mentioned in this section.
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B.6 Characterization of functions according to their spectrum support

It will be interesting to conclude this discussion by a short review of the different classes

of functions through the perspective of their spectral characteristics. Let us denote the

support of the spectrum of the function f(x) by F. Then:

(1) If f(x) is a “pure vibration” [Bohr51 p. 2], namely: cos2π  fx, sin2π  fx, or more

generally  a cos(2π fx + b),  then its spectrum simply consists of one pair of impulses:

F = {±f}

(2) If f(x) is periodic with period T = 1/f, then its spectrum consists of a denumerable

(finite or infinite) set of impulses, which are located on a common lattice (i.e., included

in a common comb) with a fixed step of f:

F = {nf | n ∈ }

(Note that some or even most of the impulses on the lattice may have a zero amplitude,

as is case (1) above. But if f(x) is discontinuous, like a square wave, then the number

of non-zero impulses on the lattice is denumerably infinite.)

(3) If f(x) is quasi-periodic, then its spectrum consists of a denumerable set of impulses

which are located on a common module spanned by a finite number m of arbitrary

(possibly incommensurable) frequencies f1,...,fm:

F = {n1f1 + ... + nmfm | ni ∈ }

(Here, too, some or even most of the impulses may have a zero amplitude, as in the

case of Example B.1, where F = {±f1, ±f2}. However, if the number of non-zero

impulses in F is infinite, then F may be everywhere dense.)

(4) If f(x) is limit-periodic, then its spectrum consists of a finite or denumerable set of

impulses which are located on rational multiples of one arbitrary frequency f:

F = {rn f | rn ∈ }

Here, too, if the number of non-zero impulses is infinite, then F is everywhere dense.

(5) If f(x) is almost-periodic (in the sense of Bohr, Besicovitch, etc.), then its spectrum

consists of a denumerable set of impulses with any arbitrary frequencies:

F = {fn ∈  | n  ∈ }

This is the most general case of impulsive spectrum, in which no restrictions exist on

the values of the frequencies fn, and they may have finite accumulation points, or even

be everywhere dense.9

9 Note that the inverse question of determining to which set of impulses in the spectrum there actually
corresponds an almost-periodic function is more delicate, since it requires also conditions on the
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Figure B.3:  A schematic diagram showing the classification of functions according
to their periodicity properties, and the inclusion relationships between
these different function-classes. The outside rectangle represents the
universe of all functions; thin lines represent the borders of classes
which are contained in each other, while thick borders separate between
mutually exclusive classes.

It is interesting to note, just in order to complete the picture, that if we go one (big) step

further and admit a non-denumerable set of frequencies f in the spectrum [Bohr51 pp.

2–3], then the summation in (B.4) is no longer denumerable and should be understood in

the sense of integration. We arrive then to the realm of the functions f(x) which are

representable by:10

f(x) ~ ∫
–∞

 ∞

F(u) ei2π
 
ux du     (B.9)

rather than by (B.4): f(x) ~ ∑
n

cn ei2π
 
fnx

F(u) plays in (B.9) the same role as the Fourier coefficients cn in (B.4), namely:

assigning the proper amplitudes (weights) to the various frequencies. It can be said,

therefore, that in this case the spectrum of the function f(x) is a function of the continuous

frequency u, which is given by:

F(u) ~ ∫
–∞

 ∞

f(x) e–i2π
 
ux dx   (B.10)

Visibly, this is the continuous counterpart of the impulsive spectrum of almost-periodic

functions: as we have seen, in the almost-periodic case the spectrum is only defined on a

denumerable set of frequencies {fn}, and its impulse amplitudes at these frequencies are

given by Eq. (B.5):

impulse amplitudes in order to guarantee that their Fourier series indeed converges and “makes sense”
[Besicovitch32 p. xii–xiii]. The same is true also for the previous function classes having infinitely
many impulses in their spectra, such as periodic functions, etc.

10 By convention we use here the letter ‘u’ rather than ‘f  ’ to denote the frequency values.
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cn = lim
T→ ∞

1
T∫

T

f(x) e–i2π
 
fnx dx

Note, however, that these amplitudes can be also regarded as a function of the

continuous frequency u  (–∞ < u < ∞):

c(u) = lim
T→ ∞

1
T∫

T

f(x) e–2π
 
ux dx   (B.11)

And indeed, a fundamental theorem in the theory of almost-periodic functions states that

for any almost-periodic function f(x), the function (B.11) is zero for all values of u with

the exception of an at most denumerable set of numbers u = fn [Bohr51 p. 48–50; the

equivalent theorem for the periodic case is given on pp. 50–51]. These numbers {fn} are

the Fourier exponents of f(x), i.e., the frequencies which appear in the Fourier series (B.4),

and the values of c(u) at these points, cn = c(fn), are the Fourier coefficients of f(x).

We recognize, of course, that (B.10) and (B.9) above are simply the formulas of the

(continuous) Fourier transform and inverse Fourier transform of the (aperiodic) function

f(x); F(u) is the continuous-frequency spectrum of f(x).

It can be said, therefore, roughly speaking, that making the step from denumerable to

non-denumerable spectra is the spectral-domain equivalent of proceeding from almost-

periodic to aperiodic functions in the image domain. More on the subject of impulsive and

continuous spectra can be found in Chapter 11 of [Champeney87], especially on pp.

109–114.11

B.7 Almost-periodic functions in two variables

The theory of almost-periodic functions can be also extended to functions of two or

more variables (see, for instance, [Besicovitch32 pp. 59–66]); for our needs, however, we

are only concerned with the 2D case, i.e., the case of two variables.

The 2D generalized Fourier series representation of an almost-periodic function f(x,y),

namely, the 2D extension of (B.4), is given by:

f(x,y) ~ ∑
m

∑
n

cm,n ei2π(um,nx + vm,ny)     (B.12)

or in the more compact vector notation:

 f(x) ~ ∑
m

∑
n

cm,n ei2π fm,n·x     (B.13)

11 It should be noted, however, that many authors present the transition between impulsive and
continuous spectra as a limiting process directly between the periodic and aperiodic cases, ignoring the
intermediate case of almost-periodic functions. Such a transition from Fourier series to the Fourier
transform as a limit case is given, for example, in [Cartwright90 pp. 101–103], [Bracewell86 pp. 208–
209] and [Gaskill78 pp. 111–112]. For the inverse direction, i.e., obtaining the Fourier series as a limit
case of the Fourier transform, see [Cartwright90 pp. 99–101]; [Bracewell86 pp. 205–208].
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where fm,n = (um,n,vm,n), the (m,n)-th Fourier exponents, are arbitrary points in 2 (i.e., in

the (u,v) frequency plane of the spectrum), and x = (x,y). Note that an even more compact

notation can be obtained by substituting n for (m,n) in the indices:

 f(x) ~ ∑
n

cn ei2π fn·x     (B.14)

However, for the sake of clarity we will usually prefer the form of (B.13). The Fourier

coefficients cm,n of f(x,y), i.e., the 2D extension of (B.5), are given by:

cm,n = lim
T→ ∞

1
T 2∫∫

TT

f(x) e–i2π fm,n·x dx   (B.15)

where ∫∫TT
 means an integration over any square interval of side T, i.e., over the area

defined by the points (x0,y0), (x0 +T, y0), (x0, y0 +T) and (x0 +T, y0 +T) where x0 and y0 are

arbitrary.

The spectrum of the 2D almost-periodic function (B.12) is given by:

P(u,v) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(u – um,n, v – vm,n)   (B.16)

which is the 2D extension of Eq. (B.6).

Examples of 2D almost-periodic functions appear throughout this book; let us mention

here, for instance, the superposition of three identical dot-screens with angle differences of

30° that is traditionally used in colour printing (see Example 5.13 in Sec. 5.7).

For the sake of comparison, we recall from Sec. A.3 in Appendix A that the Fourier

series representation of the 2-fold periodic function p(x,y) whose periods are Tx  = 1/u0 and

Ty  = 1/v0 is given by (A.11):

p(x,y) ~ ∑
m=–∞

∞

∑
n=–∞

∞

cm,n ei2π(mu0x + nv0y)

Note that the vector notation of this expression is identical to (B.13), with only

fm,n = (mu0,nv0)  replacing the more general fm,n = (um,n,vm,n). The Fourier coefficients cm,n

in the 2-fold periodic case are given by Eq. (A.14):

cm,n = 1
TxTy∫∫TxTy

p(x) e–i2π fm,n·x dx

instead of Eq. (B.15) of the almost-periodic case; and the spectrum of the 2-fold periodic

function p(x,y) is given by Eq. (A.16):

P(u,v) = ∑
m=–∞

∞

∑
n=–∞

∞

cm,n δ(u – mu0, v – nv0)

instead of the more general expression (B.16) in the almost-periodic case.

Note that there exist also “hybrid” functions which are periodic in one direction and

almost-periodic in the other direction (see Sec. 6.2). These hybrid cases are still

considered as almost-periodic functions.



Appendix C

Miscellaneous issues and derivations

C.1 Derivation of the classical moiré formula (2.9) of Sec. 2.4

We show here that the classical formula (2.9) is simply a special case of Eqs. (2.28) and

(2.8), that is obtained when the number of superposed gratings is m = 2, and the moiré in

question is the (1,-1)-moiré, namely: k1 =1, k2 = –1. In this particular case (2.28) reduces to:

u = f1 cosθ1 – f2 cosθ2

v = f1 sinθ1  – f2 sinθ2

Therefore we have by Eq. (2.8):

f 2 = u2 + v2

    = f1
2 cos2θ1 – 2f1 f2 cosθ1 cosθ2 + f2

2 cos2θ2

+ f1
2 sin2θ1 – 2f1 f2 sinθ1 sinθ2 + f2

2 sin2θ2

    = f1
2 (cos2θ1 + sin2θ1) – 2f1 f2 (cosθ1 cosθ2 + sinθ1 sinθ2) + f2

2 (cos2θ2 + sin2θ2)

    = f1
2 – 2f1 f2 cos(θ2 – θ1) + f2

2

In terms of periods rather than frequencies we have, therefore (where α = θ2 – θ1):

1
TM

2
 = 1

T1
2
 – 2 1

T1

 
1
T2

 cosα + 1
T2

2

       = 
T2

2 – 2T1T2 cosα + T1
2

(T1T2)
2

which finally gives, indeed, the period TM of the moiré, as predicted by formula (2.9):

TM = T1T2

T1
2 + T2

2 – 2T1T2 cosα

As for the angle ϕM of the moiré, we obtain from Eqs. (2.8) and (2.28):

ϕM =  arctan(v/u)  =  arctan 
f1

 sinθ1 – f2
 sinθ2

f1
 cosθ1 – f2

 cosθ2

     =  arctan 

 
sinθ1

T1

 –  
sinθ2

T2

 
cosθ1

T1

 –  
cosθ2

T2

  =  arctan 
T2

 sinθ1 – T1
 sinθ2

T2
 cosθ1 – T1

 cosθ2

     p



410 Appendix C: Miscellaneous issues and derivations

C.2 Derivation of the first part of Proposition 2.1 of Sec. 2.5

We show in this section that if the values of the periodic function p(x) are bounded

between 0 and 1 then its Fourier series coefficients (impulse amplitudes) given by (A.2)

satisfy:  0 ≤ a0 ≤ 1, and for any n ≠ 0:  |an|  ≤ 1/π ,  |bn|  ≤ 1/π.

Proof:  According to (A.4) we have:

a0 = 1
T∫

T

p(x) dx

a0 is, therefore, the average value of p(x) on a single period; and since 0 ≤ p(x) ≤ 1 it is

obvious that  0 ≤ a0 ≤ 1.

Now, according to (A.4) we have for any n ≠ 0:

an = 1
T∫

T

p(x) cos(2π  nx/T) dx      (C.1)

The function cos(2π  nx/T) is periodic with the period T/n, and therefore it makes exactly

n full cosinusoidal cycles (periods) within the interval T, oscillating between 1 and –1. Its

total area within the interval T is therefore 0 (see Fig. C.1).

Figure C.1:  The function  cos(2π  nx/T)  for n = 2.

Now, since the value of the function p(x) is bounded between 0 and 1, it is clear that the

most it can do to increase the area defined by the integral (C.1) is to become 0 at all the

negative areas of cos(2π  nx/T) in order to mask them out. But even then, the maximum

possible area left within the interval T is the positive area of cos(2πnx/T), which equals 2n

times the area of half a lobe, namely:

2n∫
0

T
4n

 cos(2π  nx/T) dx = 2n 
sin(2πnx/T)

2πn/T  0

 
T

4n
 = 

sin(π/2)

π/T
 = 

 T
π

which means by (C.1) that  an ≤ 1/π.  In a similar way, by masking out the positive areas

we obtain  an ≥ –1/π,  and hence, by combining both results we get, indeed,  |an| ≤ 1/π.

|bn| ≤ 1/π  is obtained in a similar way.    p

1

–1

0
TT

2
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C.3 Invariance of the impulse amplitudes under rotations and x,y scalings

We used in Secs. 4.2 and 4.3 the fact that stretching and rotating a periodic (or doubly

periodic) image does not affect the impulse amplitudes of its comb (or nailbed), but only

their impulse locations in the spectrum. In this section we show how these properties can

be derived, based on well-known results in the Fourier theory. We will use here the letters

p and P to denote a periodic function and its spectrum, and the letters f and F to denote an

arbitrary function (not necessarily periodic) and its spectrum.

C.3.1 Invariance of the 2D Fourier transform under rotations

The rotation-invariance property of the 2D Fourier transform means that a rotation of

f(x,y) in the image domain by angle θ has no effect on its spectrum F(u,v) other than a

rotation by the same angle θ. This property of the 2D Fourier transform, which is valid for

any function, is guaranteed by the rotation theorem [Bracewell95 p. 157]. This invariance

of the 2D Fourier transform under rotation is a special case of its more complex behaviour

under a general linear transformation, which is given for instance in [Bracewell95 p. 160].

C.3.2 Invariance of the impulse amplitudes under x, y scalings

According to the similarity theorem [Bracewell86 p. 244], for any function f(x,y) with

Fourier transform F(u,v) we have:

f(ax,by)  ↔  1
ab

F(u/a,v/b)     (C.2)

However, a special case of interest occurs with periodic functions, where the spectrum is

impulsive. In this case, thanks to the particular scaling property of δ(u,v) [Bracewell86

p. 85]:  δ(u/a,v/b) = |ab| δ(u,v), the factor 1/|ab|  in Eq. (C.2) is cancelled out, and we

obtain [Bracewell86 p. 103]:

p(ax,by)  ↔  P(u/a,v/b)

This is usually formulated in the following way (see, for example, the 1D equivalent in

[Cartwright90 pp. 59–61]):

Let the function p(x,y) be periodic with periods Tx, Ty and generate the Fourier series:

    p(x,y)  ~ ∑
m=–∞

∞

∑
n=–∞

∞

am,n cos2π ( 
mx

 Tx
 + 

 ny

Ty
)  + ∑

m=–∞

∞

∑
n=–∞

∞

bm,n sin2π ( 
mx

 Tx
 + 

 ny

Ty
)

Then p(ax,by) is periodic with periods Tx/a, Ty/b, and the Fourier series it generates

preserves the original coefficients (impulse amplitudes) am,n and bm,n:

    p(ax,by)  ~ ∑
m=–∞

∞

∑
n=–∞

∞

am,n cos2π (  mx

 Tx /a
 + 

 ny

Ty /b
)  + ∑

m=–∞

∞

∑
n=–∞

∞

bm,n sin2π (  mx

 Tx /a
 + 

 ny

Ty /b
)
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C.4 Shift and phase

This section, which complements the introduction to Chapter 7, provides a more detailed

explanation on the connection between the phase in the context of complex number theory

and the phase in periodic functions.

C.4.1  The shift theorem

Let f(x) be a 1D function (periodic or not) in the image domain, and let F(u) be its

spectrum. As already mentioned in Sec. 2.2, if f(x) is symmetric about the origin then its

spectrum F(u) is purely real; and if f(x) is non-symmetric or non-centered about the origin

then F(u) is complex-valued (its imaginary part is non-zero).

Assume now that we shift f(x) in the image domain by a. The shift theorem

[Bracewell86 p. 104] states that if the spectrum of f(x) is F(u), then the spectrum of the

shifted function f(x – a) is Fa(u) = e–i2π
 
ua·F(u). This means that a shift of a in the image

domain multiplies the spectrum at each frequency u by the complex factor e–i2π
 
ua.

Therefore, even if the spectrum F(u) of the unshifted function f(x) is purely real, the

spectrum Fa(u) of the shifted function f(x – a) is a complex-valued function of the real

variable u, namely: Fa :  → . 

The situation in the 2D case is similar: Assume that f(x,y) is a 2D function (periodic or

not) in the image domain and that F(u,v) is its spectrum. Then, according to the 2D shift

theorem [Bracewell95 p. 156], the spectrum of the shifted function  f(x  –  a, y  –  b)  is

Fa,b(u,v) = e–i2π(ua+vb)·F(u,v). In other words, a shift of a = (a,b) in the image domain

multiplies the spectrum at each frequency f = (u,v) by the complex factor e–i2π
 
f·a. We see,

therefore, that as in the 1D case, even if the spectrum F(u,v) of the unshifted function f(x,y)

is purely real, the spectrum Fa,b(u,v) of the shifted function f(x – a, y – b) is a complex-

valued function of the real variables u,v, namely: Fa,b : 2
 → .

It may be in order, therefore, to review here some of the properties of complex-valued

functions. We will do it here for complex-valued functions of two real variables, but the

situation in the case of a single real variable is completely analogous.

A complex-valued function F(u,v) can be represented either by its real and its imaginary

parts:

F(u,v) = Re[F(u,v)] + i Im[F(u,v)]

or, using the polar notation, by its magnitude (also called absolute value or modulus) and

its phase (also called argument):

F(u,v) = Abs[F(u,v)] · ei Arg[F(u,v)]

where: Abs[F(u,v)] = Re[F(u,v)]2 + Im[F(u,v)]2 

Arg[F(u,v)] = arctan 
Im[F(u,v)]

Re[F(u,v)]
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Note that Re[F(u,v)], Im[F(u,v)], Abs[F(u,v)] and Arg[F(u,v)] are all real-valued functions

of the real variables u,v. The functions Abs[F(u,v)] and Arg[F(u,v)] represent the local

magnitude and the local phase of the complex-valued function F(u,v) at the point (u,v).

Therefore, by analogy with the polar notation of a complex number, the complex-valued

function F(u,v) can be interpreted as a phasor (a varying radius-vector) rotating in the

complex plane, whose length and angle at any point (u,v) are given, respectively, by

Abs[F(u,v)] and Arg[F(u,v)].1 As Abs[F(u,v)] varies with u and v, the length of the vector

varies, and as Arg[F(u,v)] varies with u and v, the direction of the vector varies. (A good,

concise introduction on phasors can be found, for example, in [Gaskill78 pp. 18–29].)

Therefore, in the context of complex number theory the term “the phase of the function

F(u,v)” refers to the argument Arg[F(u,v)], which represents the angle of the phasor of

F(u,v) in the complex plane at each point (u,v) of the u,v plane.

Now, if F(u,v) is the spectrum of f(x,y), then according to the 2D shift theorem the

spectrum of the shifted function  f(x – a, y – b)  is  Fa,b(u,v) = e–i2π(ua+vb)·F(u,v),  or, using the

polar notation: Fa,b(u,v) = Abs[F(u,v)] · ei[Arg[F(u,v)] – 2π(ua+vb)]. We obtain, therefore, that:

Abs[Fa,b(u,v)] = Abs[F(u,v)]

Arg[Fa,b(u,v)] = Arg[F(u,v)] – 2π(ua + vb)

This means that a shift of (a,b) in f(x,y) in the image domain does not influence the

magnitude of the spectrum, but it does decrement its phase at any point (u,v) by

2π(ua + vb). We obtain, therefore, the following corollary:

Corollary of the 2D shift theorem: When a function f(x,y) in the image domain is

shifted by (a,b), its magnitude-spectrum (i.e., the magnitude of its complex spectrum)

remains unchanged, but its phase-spectrum (i.e., the phase, or the argument, of its

complex spectrum) is linearly decremented at any point (u,v) of the u,v plane by the linear

function 2π(ua + vb).    p

We see, therefore, that the increment generated in the phase spectrum due to a shift of a

in the image domain is a linear function of the frequency, i.e., it is a continuous linear

plane through the origin, whose slopes are determined by a = (a,b).2 Denoting this phase

increment by ϕ  we have, therefore:

 ϕ(f) = –2π f·a

namely:  ϕ(u,v) = –2π(ua + vb)     
(C.3)

Similarly, we can obtain from the 1D shift theorem the 1D counterpart of the above

corollary:

1 Note that the complex plane should not be confused here with the u,v plane: the complex-valued
function F(u,v) is defined on the u,v plane, but its image is located in the complex plane .

2 Note that the converse is also true: it follows from the shift theorem that a linear increment occurs in
the phase-spectrum iff the original function has undergone a shift in the image domain.
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Corollary of the 1D shift theorem: When a function f(x) in the image domain is shifted

by a, its magnitude-spectrum remains unchanged, but its phase-spectrum is linearly

decremented at any frequency u by 2π ua.    p

As we can see, the 1D case is indeed a straightforward simplification of the 2D case:

The increment generated in the phase spectrum due to a shift of a in the image domain is a

linear function of the frequency u, i.e., it is a straight line through the origin, whose slope

is determined by a. Denoting this phase increment by ϕ, the 1D equivalent of Eq. (C.3) is

given therefore by:

 ϕ(u) = –2π ua     (C.4)

C.4.2  The particular case of periodic functions

Let us return now from the general shift theorem to the particular case of periodic

functions. Let p(x,y) (or in short, p(x)) be a 2-fold periodic function with fundamental

frequency vectors f1 = (u1,v1), f2 = (u2,v2) (see Sec. A.3.4 in Appendix A). As we have seen

above, Eq. (C.3) says that for any given f(x,y) the increment generated in the phase-

spectrum due to a shift of a in the image domain is a linear function of the frequency, i.e.,

a continuous plane whose slopes are determined by a = (a,b). In our case, however, the

spectrum of p(x) is an impulse nailbed, whose (m,n)-th impulse has the frequency f =

mf1+ nf2, or in other words: (u,v) = m(u1,v1) + n(u2,v2) = (mu1+ nu2 , mv1+ nv2). This

spectrum is given in vector form by Eq. (A.30) in Appendix A. The phase increment

generated at the (m,n)-th impulse in the spectrum as a result of the shift of a in the image

domain is, therefore:

 ϕ(mf1+ nf2) = –2π(mf1+ nf2)·a

namely:  ϕ(mu1+ nu2 , mv1+ nv2) = –2π[(mu1+ nu2)a + (mv1+ nv2)b]     
(C.5)

which is simply the restriction of the linear plane (C.3) to the points of our nailbed. In

other words, Eq. (C.5) samples the continuous plane (C.3) of the phase-spectrum

increment, which is owed to the shift theorem, at all the impulse locations mf1+ nf2. This is

clearly seen in the spectrum of the shifted function p(x – a) (see Eq. (7.4)).

Similarly, in the case of a 1-fold periodic function p(x), the spectrum is an impulse comb

whose n-th impulse has the frequency u = nf (this spectrum is given by Eq. (A.8) in

Appendix A). The phase increment generated at the n-th impulse in the spectrum as a

result of the shift of a in the image domain is, therefore:

 ϕ(nf) = –2π nfa     (C.6)

which is simply the restriction of the straight line (C.4) to the points of our comb. In other

words, Eq. (C.6) samples the continuous line (C.4) of the phase-spectrum increment,

which is due to the shift theorem, at all the impulse locations nf.
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C.4.3  The phase of a periodic function: the ϕ and the φ notations

We have seen until now how shifts of a function in the image domain are related to

phase changes in the spectrum, where the term “phase” is understood as the argument of

the complex spectrum.

However, in the particular case of periodic functions the term “phase” can be also used

in a different sense, which is related, this time, to the image domain. Consider, as a simple

example, the 1D periodic function p(x) = cos(2π  fx), whose period is T   = 1/f. Its

counterpart that is shifted in the image domain by a is given by:  p(x – a) = cos(2π f(x – a)).

As explained in detail in Sec. 7.3, an alternative way to specify the amount of shift in a

periodic function is to state it as a fraction of the  period  T:  φ   =   

a
T

 = fa. This value is often

called in literature the phase of the shifted function p(x – a); for example, when φ = n,

n ∈ , it is said that p(x) and p(x – a) are “in phase”, and when φ = n + 
1
2 it is said that they

are “in counter-phase”. In order to avoid confusion between the two meanings of the

term “phase” we prefer to call φ the period-shift of the periodic function; this name will

clearly distinguish it from the phase Arg[Pa(u)] and the phase increment ϕ which were

defined in the context of complex number theory. Obviously, the period-shift φ is only

meaningful in periodic functions, while the phase increment ϕ in the sense of complex

numbers is meaningful in the spectrum of any function. Therefore, in the case of a

periodic function both φ and ϕ can be used as a measure of its shifts in the image domain.

Let us first illustrate this for the case of a 1D periodic function p(x) and its shifted copy

p(x – a). As we have seen above, the shift of a in the image domain is expressed, in terms

of the phase increment of the complex spectrum, by the linear function (C.4):

ϕ(u) = –2π ua

But in our particular case in which the shifted function is periodic this continuous line is

sampled (and is only meaningful) at the frequencies u = nf (n ∈ ), since the impulsive

spectrum is only defined at these points. The phase increment of the n-th impulse in the

spectrum of p(x – a) owed to the shift a is given, therefore, by:

ϕ(nf) = –2π nfa

or: ϕ(nf) = –2π nφ

where the period-shift φ = fa = a
T

 expresses the shift of the periodic function p(x – a) in the

image domain in terms of its period. This equation gives, indeed, the connection between ϕ
and φ, which are both measures of the shift a in the periodic function p(x): While φ
describes the shift in terms of the period of p(x), ϕ describes the shift as an angle

difference in the complex plane (where for the n-th impulse, ϕ = –2π n is equivalent to a

shift of one full period, φ = 1).

This connection between ϕ and φ  can be also generalized to the case of a 2-fold periodic

function p(x). As explained in detail in Sec. 7.5.2, an alternative way to specify the amount
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Figure C.2: The function Rc(u) = 1
2 fa

 (cos( π
2fa

u2) + sin( π
2fa

u2)) with f = 1 and three

different values of a:  a = 1 (top), a = 0.5 (center) and a = 0.2 (bottom).

of shift in a 2-fold periodic function is to state it using the period-shifts φ1 and φ2, i.e., as

fractions of the two periods T1 and T2. And indeed, as we can see in Eq. (7.12) at the end

of Sec. 7.5.2, the phase increment of the (m,n)-th impulse in the spectrum of p(x  – a)

owing to the shift a can be expressed by:

ϕ(mf1+ nf2) = –2π(mφ1+ nφ2)     (C.7)
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This equation is, indeed, the connection between ϕ and φ in the 2D case.

It should be noted, however, that in Chapters 7 and 8 we usually use the period-shifts φ,

while the phase increment ϕ  is only occasionally mentioned.

C.5 The function Rc(u) converges to δ(u) as a→ 0

We derive here the rather surprising fact (see Sec. 10.4.1) that in spite of its undamped

oscillatory nature, the function Rc(u) = 1
2 fa

 (cos( π
2fa

u2) + sin( π
2fa

u2)) tends when a →0 to

the impulse δ(u) (see Fig. C.2). Following [Gelfand64 pp. 36–38], we have to show for

this end that: (a) the total area under Rc(u) is 1 independently of a; and (b) the area under

Rc(u) in the ranges (u1,u2) and (–u2,–u1) for any u2 > u1 > 0 tends to zero when a → 0.

We start by showing part (a). Since we have [Spiegel68 p. 97]:

∫
0

 ∞

sin cx2 dx = ∫
0

 ∞

cos cx2 dx = 12
π
2c

it follows that:

∫
0

 ∞

Rc(u) du = 1
2 fa∫

0

 ∞

(cos( π
2fa

u2) + sin( π
2fa

u2)) du

        = 1
2 fa

 (1
2 fa  + 1

2 fa) = 1
2

and since Rc(u) is symmetric we obtain, as required:

∫
–∞

 ∞

Rc(u) du = 2∫
0

 ∞

Rc(u) du = 1.

Proceeding now to part (b), we wish to show that for any u2 > u1 > 0 we have:

lim
a →  ∞ ∫

u1

 u2

Rc(u) du = 0.

And indeed, using the formulas [Gradshteyn94 pp. 178–179]:

∫sin cx2 dx = π
2c

 S( c x)

∫cos cx2 dx = π
2c

 C( c x)

where S(x) and C(x) are the Fresnel sine and cosine integrals, defined as:

S(x) = 2
π ∫

0

 x

sin t2 dt

C(x) = 2
π ∫

0

 x

cos t2 dt

we obtain:
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    ∫
u1

 u2

Rc(u) du = 1
2 fa∫

u1

 u2

(cos( π
2fa

u2) + sin( π
2fa

u2)) du

= 1
2 fa

 ( fa C( π
2fa

x)
 u1

 u2  + fa S( π
2fa

x)
 u1

 u2)

= 1
2 ([C( π

2fa
u2) – C( π

2fa
u1)] + [S( π

2fa
u2) – S( π

2fa
u1)])

and hence, when a → 0 we get:

lim
a →  ∞ ∫

u1

 u2

Rc(u) du = 12([C(∞) – C(∞)] + [S(∞) – S(∞)])

but since  S(∞) = C(∞) = 1
2  [Spiegel68 p. 184] we obtain, as required:

lim
a →  ∞ ∫

u1

 u2

Rc(u) du = 0.

The proof of (b) for the range (–u2,–u1) is similar.    p

C.6 The 2D spectrum of a cosinusoidal zone grating

As shown in Example 10.7 of Sec. 10.3, a cosinusoidal zone grating is defined by:

  r+(x,y) = p(x2
 + y2) = cos(2π f (x2

 + y2))

and its hyperbolic counterpart is given by:

  r–(x,y) = p(x2
 – y2) = cos(2π f (x2

 – y2))

We find now the spectra R+(u,v) and R–(u,v) of these two functions. According to the

trigonometric identity  cos(α  ± β) = cosα cosβ ∓ sinα sinβ  we have:

r±(x,y) = cos(2π fax2) cos(2π fby2) ∓ sin(2π fax2) sin(2π fby2)

Thanks to the separable-product theorem [Bracewell95 p. 166] we obtain:

cos(2π fax2) cos(2π fby2) ↔ 1
2 f

 (cos( π
2f

u2) + sin( π
2f

u2)) 

1
2 f

 (cos( π
2f

v2) + sin( π
2f

v2))

 = 1
4f

 [cos( π
2f

u2) cos( π
2f

v2) + sin( π
2f

u2) cos( π
2f

v2)

+ cos( π
2f

u2) sin( π
2f

v2) + sin( π
2f

u2) sin( π
2f

v2)]

Now, using the trigonometric identities

cosα cosβ = 1
2[cos(α –β) + cos(α +β)]

sinα sinβ = 1
2[cos(α –β) – cos(α +β)]

sinα cosβ = 1
2[sin(α –β) + sin(α +β)]
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we obtain:

= 1
8f

 [cos π
2f

(u2
 – v2) + cos π

2f
(u2

 + v2) + sin π
2f

(u2
 – v2) + sin π

2f
(u2

 + v2)

       + sin π
2f

(v2
 – u2) + sin π

2f
(u2

 + v2) + cos π
2f

(u2
 – v2) – cos π

2f
(u2

 + v2)]

= 1
4f

 [cos π
2f

(u2
 – v2) + sin π

2f
(u2

 + v2)]

Similarly, thanks to the separable-product theorem we obtain:

sin(2π fax2) sin(2π fby2) ↔ 1
2 f

 (cos( π
2f

u2) – sin( π
2f

u2)) 

1
2 f

 (cos( π
2f

v2) – sin( π
2f

v2))

= 1
4f

 [cos( π
2f

u2) cos( π
2f

v2) – sin( π
2f

u2) cos( π
2f

v2)

– cos( π
2f

u2) sin( π
2f

v2) + sin( π
2f

u2) sin( π
2f

v2)]

= 1
4f

 [cos π
2f

(u2
 – v2) – sin π

2f
(u2

 + v2)]

We have, therefore:

R±(u,v) =  1
4f

 [cos π
2f

(u2
 – v2) + sin π

2f
(u2

 + v2) ∓ cos π
2f

(u2
 – v2) ± sin π

2f
(u2

 + v2)]

and hence:

R+(u,v) = 1
2f

 sin( π
2f

(u2
 + v2))

R–(u,v) = 1
2f

 cos( π
2f

(u2
 – v2)).    p

C.7 The convolution of two orthogonal line-impulses

Suppose that we are given a horizontal line-impulse f(x)δ(y), whose amplitude is defined

by f(x), and a vertical 1D line-impulse g(y)δ(x), whose amplitude is defined by g(y). We

assume that both line-impulses are centered on the origin. We want to show (see Sec.

10.7.3) that their 2D convolution is given by the 2D function f(x)g(y), namely:

f(x)δ(y) ** g(y)δ(x) = f(x)g(y)

And indeed, according to the definition of 2D convolution [Bracewell86 p. 243] we have:

   f(x)δ(y) ** g(y)δ(x) = ∫
–∞

 ∞

 ∫
–∞

 ∞

f(x')δ(y') g(y – y')δ(x – x') dx' dy'

= ∫
–∞

 ∞

f(x')δ(x – x') dx'  ∫
–∞

 ∞

δ(y')g(y – y') dy'

but since each of these two integrals is simply a 1D convolution of two 1D functions:

= [f(x)*δ(x)][g(y)*δ(y)]

= f(x)g(y)
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This is a 2D surface which is centered about the origin. Similarly, if the centers of the

original line-impulses are shifted from the origin to the points (x1,y1) and (x2,y2),

respectively, so that the line-impulses are given by f(x – x1)δ(y – y1) and g(y – y2)δ(x – x2),

their 2D convolution gives:

f(x – x1) δ(y – y1) ** g(y – y2) δ(x – x2) = f(x – x1 – x2)g(y – y1 – y2)

This is the same 2D surface as before, but as expected its center is shifted to the point

(x1+ x2, y1+ y2).    p

C.8 The compound line-impulse of the singular (k1,k2)-line-impulse cluster

We have seen in Sec. 10.7.3 that a (k1,k2)-moiré in the superposition of a parabolic

grating and a periodic straight grating becomes singular when the line-impulses of the

(k1,k2)-cluster in the spectrum convolution fall on a single line through the spectrum

origin. This gives us in the spectrum a compound line-impulse, whose amplitude is the

sum of all the individual line-impulses of the (k1,k2)-cluster. Note that the collapsed line-

impulses do not necessarily fall center-on-center: in the general case the distance between

the centers of consecutive line-impulses of the collapsed (k1,k2)-cluster is not zero but

some other constant, so that the individual line-impulses are summed up along the

compound line-impulse with a constant shift between each other. We call this shift (the

distance between the DC and the center of the first line-impulse of the collapsed cluster)

the internal discrepancy of the compound line-impulse and we denote it by f0; the distance

between the DC and the n-th impulse center is therefore nf0. The role of the internal

discrepancy f0 will become clear below; we will see that when f0 = 0 (so that all the

collapsed line-impulses are centered on the DC) the compound line-impulse corresponds

in the image domain to a singular moiré which is centered on the origin, but when f0 ≠ 0

the center of the singular moiré is shifted away from the center of the image domain.

Let us now concentrate on the n-th line-impulse pair of the (k1,k2)-cluster. For the sake

of simplicity we assume, like in Example 10.13, that the parabolic grating r1(x,y) is

oriented horizontally, so that all the line-impulses in the spectrum are vertical and the

(k1,k2)-cluster may only collapse on the vertical v axis. Since the shift f0 in this case takes

place vertically along the v axis, we prefer to denote it henceforth by v0 (see Fig. C.3).

As a generalization of Eq. (10.23), the n-th line-impulse pair of the (k1,k2)-cluster,

namely: the (nk1,nk2)- and (-nk1,-nk2)-line-impulses, are given (for n ≠ 0) by:

ank1,nk2
(u,v) = 12[Rc(v – nv0) + iRs(v – nv0)] δ(u) a(1)

nk1
 a(2)

nk2
 

a–nk1,–nk2
(u,v) = 12[Rc(v + nv0) – iRs(v + nv0)] δ(u) a(1)

–nk1
 a(2)

–nk2
 

with: Rc(v) = 1

2 nk1f1a
 (cos( π

2nk1f1a
v2) + sin( π

2nk1f1a
v2))

Rs(v) = 1

2 nk1f1a
 (cos( π

2nk1f1a
v2) – sin( π

2nk1f1a
v2))
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Figure C.3: The spectrum convolution showing the compound line-impulse of
the singular (1,-1)-moiré, which is collapsed on the v axis, and its
internal discrepancy v0. Note that it is assumed here that f2 ≥ f1.
When f2 < f1 the line-impulses of the (1,-1)-cluster cannot fall on
the v axis, and hence no rotation angle θ  of f2 (i.e., of the straight
grating r2(x,y)) can bring the (1,-1)-moiré to a singular state.

(the terms δ(u) indicate that both line-impulses are located now on the vertical v axis).

We prefer to use here the exponential notation, which is more compact and easier to

handle. We have, therefore:

  Rc(v) + iRs(v) = 1

2 nk1f1a
 [cos( π

2nk1f1a
v2) + sin( π

2nk1f1a
v2) + icos( π

2nk1f1a
v2) – isin( π

2nk1f1a
v2)]

 =  c
2π  [e–icv2

 + ie–icv2
]

where c = π
2nk1f1a

; and similarly:

  Rc(v) – iRs(v) = 1

2 nk1f1a
 [cos( π

2nk1f1a
v2) + sin( π

2nk1f1a
v2) – icos( π

2nk1f1a
v2) + isin( π

2nk1f1a
v2)]

 =  c
2π  [eicv2

 – ieicv2
]

Therefore we can rewrite the line-impulses ank1,nk2
(u,v) and a–nk1,–nk2

(u,v) using the

exponential notation as follows:

ank1,nk2
(u,v) = 12 

 c
2π  [e–ic(v–nv0)

2
 + ie–ic(v–nv0)

2
] δ(u) a(1)

nk1
 a(2)

nk2

a–nk1,–nk2
(u,v) = 12 

 c
2π  [eic(v+nv0)

2
 – ieic(v+nv0)

2
] δ(u) a(1)

–nk1
 a(2)

–nk2

Now, since at the singular state the amplitudes of these two line-impulses are summed

together on the v axis we have (note that for the sake of simplicity we assume that the

grating profiles are symmetric, so that a(1)
–nk1

 = a(1)
nk1

 and a(2)
–nk2

 = a(2)
nk2

):

ank1,nk2
(u,v) + a–nk1,–nk2

(u,v) =

v0 = f1 f2–

= –f
2
2 f

1

2   
u

v

•
f1

f2–

The (1,0)-line-impulse

The collapsed line-impulses
      of the (1,-1)-cluster

f1 f2–

°°
°
°
°

°
°
°
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 = 1
2 

 c
2π  [e–ic(v–nv0)

2
 + ie–ic(v–nv0)

2
 + eic(v+nv0)

2
 – ieic(v+nv0)

2
] δ(u) a(1)

nk1
 a(2)

nk2

 = 1
2 

 c
2π  [e–ic(v2–2nv0v+n2v0

2) + ie–ic(v2–2nv0v+n2v0
2)

+ eic(v2+2nv0v+n2v0
2) – ieic(v2+2nv0v+n2v0

2)] δ(u) a(1)
nk1

 a(2)
nk2

 = 1
2 

 c
2π  ei2cnv0v [e–ic(v2+n2v0

2) + ie–ic(v2+n2v0
2)

+ eic(v2+n2v0
2) – ieic(v2+n2v0

2)] δ(u) a(1)
nk1

 a(2)
nk2

 =  c
2π  ei2cnv0v [cos(c(v2 + n2v0

2)) + sin(c(v2 + n2v0
2))] δ(u) a(1)

nk1
 a(2)

nk2

and using the trigonometric identity  cosα + sinα = 2cos(α –  
π
4

):

 =  c
π  ei2cnv0v [cos(cv2 + cn2v0

2 – π
4
)] δ(u) a(1)

nk1
 a(2)

nk2
     (C.8)

Now, using the 1D Fourier transform pair (see Sec. C.9 below):

 cos(ax2 – b)  ↔  π
a  cos(π2

a u2 + b – π
4
)

or rather its vertical 2D counterpart:

 cos(ay2 – b)  ↔  π
a  cos(π2

a v2 + b – π
4
) δ(u)

we find that:

    cos(π2

c y2 – cn2v0
2)  ↔   c

π  cos(cv2 + cn2v0
2 – π

4
) δ(u)

Denoting this 2D Fourier pair by hn(x,y) ↔ Hn(u,v), we see that expression (C.8) is

simply ei2cnv0vHn(u,v) (multiplied by the constants a(1)
nk1

 and a(2)
nk2

). Therefore, according

to the 2D shift theorem [Bracewell86 p. 244], expression (C.8) is the Fourier transform of

a vertically shifted version of hn(x,y), where hn(x,y) is a centered, horizontal linear zone

grating.3 Denoting this vertical shift by y0, we have by the shift theorem:

y0 = v0

2k1f1a

We see, therefore, that the internal discrepancy v0 of the collapsed (k1,k2)-cluster in the

spectrum convolution causes a vertical shift of  y0 = v0

2k1f1a
  in the horizontal linear zone

grating of the singular (k1,k2)-moiré in the image domain. And indeed, if v0 = 0 (so that all

the collapsed line-impulses of the (k1,k2)-cluster are centered on the DC) then y0 = 0 and

the singular moiré linear zone grating is centered on the x axis, i.e., unshifted; this occurs

in the (1,-1)-moiré when f1 = f2 and θ = 0 (see Fig. C.3).4

3 Note that although the 2D functions  cos(ay2 – b)  and  cosay2  differ in their vertical relative phase at
any value of y, both of them are horizontal, cosinusoidal linear zone gratings which are centered along
the x axis.

4 Note that when the shifted singular (k1,k2)-moiré slightly moves away from its singular state, for
example when the grating r2(x,y) is slightly rotated on top of the parabolic grating r1(x,y), then the
shifted horizontal linear zone grating of the singular moiré turns into a parabolic moiré grating with the
same shift y0. Only when the moiré is getting farther away from its singular state, the shift of the
parabolic moiré grating visibly diverges from y0. As we have seen in Sec. 10.7.3, the shift of the
parabolic moiré grating in the superposition can be explained by the shear theorem.
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As we can see, the amount of the shift y0 in the image domain is independent of n and

hence it is identical for all harmonics of the (k1,k2)-moiré. This means that all harmonics

build up together a moiré grating (in the form of a horizontal linear zone grating) which is

vertically shifted by y0 from the x axis.

Finally, it is important to emphasize that in contrast to the moiré shifts in the periodic

case, which were discussed in Chapter 7, we are dealing here with moiré shifts of a

different type, namely: shifts of the singular locus of the moiré. Moreover, the moiré

shifts in the present case are not generated by shifting the original layers in the

superposition, and they are even invariant under such shifts. In fact, shifts of the original

layers in the present case will only cause relative phase shifts in the moiré bands which

surround the singular locus of the moiré, but they will not influence the location of the

singular locus of the moiré in the superposition.

C.9 The 1D Fourier transform of the chirp  cos(ax2 + b)

Knowing that for a > 0 we have (see Example 10.5 in Sec. 10.3):

    cosax2  ↔  π
a  cos(π2

a u2 – π
4
) = π

2a
 (cosπ2

a u2 + sinπ2

a v2)

     sinax2  ↔  π
a  sin(π2

a u2 + π
4

) = π
2a

 (cosπ2

a u2 – sinπ2

a v2)

we show here that:

      cos(ax2 + b)  ↔  π
a  cos(π2

a u2 – b – π
4
)

(Note that although  cos(ax2 + b)  and  cosax2  differ in their relative phase at any value of

x, both of them, as well as their spectra, are centered on the origin.)

Using the trigonometric identity  cos(α +β) = cosα cosβ – sinα sinβ  we have:

cos(ax2 + b) = cosax2 cosb – sinax2 sinb

and therefore:

cos(ax2 + b)  ↔  cosb π
2a

 (cosπ2

a u2 + sinπ2

a v2) – sinb π
2a

 (cosπ2

a u2 – sinπ2

a v2)

        = π
2a

 [(cosb – sinb) cosπ2

a u2 + (cosb + sinb) sinπ2

a u2]

and using the known trigonometric identity for  c1sinα + c2cosα  [Bronstein p. 273]:

        = 
π

2a  (cosb + sinb)2 + (cosb – sinb)2  cos(π2

a u2 – ϕ)

where: ϕ = arctg cosb + sinb

cosb – sinb
 = arctg 2

2

 sin(b+π/4)

 cos(b+π/4)
 = b + π

4

and: (cosb + sinb)2 + (cosb – sinb)2  = 2
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so that we obtain, as required:

       = π
a  cos(π2

a u2 – b – π
4

)    p

C.10 The 2D Fourier transform of the 2D chirp  cos(ax2 + by2 + c)

Knowing that for a,b > 0 we have (see Example 10.7 in Sec. 10.3):

  cos(ax2 + by2)  ↔  π
ab

 sin(π2

a u2 + π
2

b
v2)

and hence also (by reading the same Fourier pair the other way around):

  sin(ax2 + by2)  ↔  π
ab

 cos(π2

a u2 + π
2

b
v2)

we show here that:

      cos(ax2 + by2 + c)  ↔  π
ab

 sin(π2

a u2 + π
2

b
v2 – c – π

2
)

and also that:        sin(ax2 + by2 + c)  ↔  π
ab

 cos(π2

a u2 + π
2

b
v2 – c – π

2
)

(Note that although  cos(ax2 + by2 + c)  and  cos(ax2 + by2)  differ in their relative phase

at any point (x,y), both of them, as well as their spectra, are centered on the origin. The

same goes also for their sine counterparts.)

Using the trigonometric identity  cos(α +β) = cosα cosβ – sinα sinβ  we have:

cos(ax2 + by2 + c) = cos(ax2 + by2) cosc – sin(ax2 + by2) sinc

and therefore:

cos(ax2 + by2 + c)  ↔  cosc π
ab

 sin(π2

a u2 + π
2

b
v2) – sinc π

ab
 cos(π2

a u2 + π
2

b
v2)

Using the known trigonometric identity for  c1sinα + c2cosα  [Bronstein p. 273]:

     = π
ab

cos2c + sin2c  sin(π2

a u2 + π
2

b
v2 – ϕ)

where: ϕ = π
2

 – arctg 
–sinc

 cosc
 = π

2
 + c

and: cos2c + sin2c  = 1

so that we obtain, as required:

     = π
ab

 sin(π2

a u2 + π
2

b
v2 – c – π

2
)

Furthermore, if we denote a' = π
2

a , b' = π
2

b
 and c' = –c – π

2
 we obtain, by reading the same

Fourier pair the other way around:

    sin(a'u2 + b'v2 + c')  ↔  π
a 'b '

 cos(π2

a '
x2 + π

2

b '
y2 – c' – π

2
)
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and by renaming the variables we obtain:

      sin(ax2 + by2 + c)  ↔  π
ab

 cos(π2

a u2 + π
2

b
v2 – c – π

2
)    p

C.11 The spectrum of screen gradations

A screen gradation is a profile-transformed dot-screen (see Sec. 10.2) in which the

“period” remains constant throughout the image, but the dot size and/or the dot shape

within each such “period” (or cell) vary smoothly according to a certain given rule.

Halftoned images (printed with a clustered dot halftoning method) are in fact screen

gradations in which the dot size varies according to the tone values in the original,

continuous-tone image to be reproduced (see Sec. 3.2). A halftoned image can be seen

therefore as a surface-area modulation of an underlying dot-screen (the “carrier”) by

the tone values of the original image (the “modulator”). This is in fact a 2D extension of

the modulation method known in communication theory as pulse-width modulation, in

which a train of square pulses with period T is modulated by varying the duration τ of

each of its pulses within the limits permitted by the period T [Black53 pp. 32,  263–281].

The influence of surface-area modulation on the nailbed spectrum of the underlying

periodic dot-screen (the carrier) is quite complex. It is therefore instructive to start by

studying the simplest case, in which the modulating function is a raised cosine function so

that its spectrum contains only the DC and the fundamental impulse pair at the cosine

frequency. Since in this case both of the functions involved (the carrier and the modulator)

are periodic, the modulated function is either periodic or almost-periodic (see Appendix

B), depending on whether their periods are commensurable or not. This means that the

spectrum of the modulated screen is impulsive; in fact, its impulses are located:

(1) At the fundamental frequency fc of the underlying dot-screen and all its harmonics

(i.e., at the impulse locations of the nailbed spectrum of the unmodulated screen);

(2) At the frequency fm of the modulating cosine and all its harmonics; and

(3) In all their sums and differences (the intermodulation frequencies).

More formally speaking, the impulse locations in the resulting spectrum form the

module {mfc + nfm | m,n ∈ }. In the 1D case this spectrum looks as if a decaying comb

of period fm has been placed on top of each of the impulses of the comb of the underlying

square wave, all the combs being intermingled together (see Fig. C.4). In the 2D case all

the above mentioned frequencies become frequency-vectors (which represent the impulse

locations in the 2D spectrum), and the combs are replaced by nailbeds. The explicit

expression for the impulse amplitudes is quite complicated; an example for the 1D case is

given in [Black53 p. 275].5  In general, the strongest impulses in the spectrum are those of

5 The formula given there is in fact the Fourier series development of the modulated function, from which
the impulse frequencies and amplitudes can be readily found. This formula was developed there for the
case of a modulating function with a triangular profile.
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Figure C.4: A simple case of 1D pulse-width modulation. The modulating
function (a) is a raised cosine 0.2cos(2π fmx) + 0.25 with fre-
quency fm = 3; its spectrum is shown in (b). The carrier (c) is a
pulse-train of frequency fc = 16; its spectrum is shown in (d).
The result of the pulse-width modulation is shown in (e), and its
spectrum is shown in (f). Note that all the spectra have been
obtained by FFT, which explains the slightly visible noise.
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Figure C.5: A 1D pulse-width modulation simulating a halftoned image and its spectral
interpretation. The original continuous-tone image (a), i.e., the modulating
function, is 0.8sinc(5x) + 0.2; its spectrum (b) is a square pulse of width 5
(plus a DC impulse). The carrier (c) is a pulse-train of frequency fc = 16; its
spectrum is shown in (d). The result of the pulse-width modulation is
shown in (e), and its spectrum in (f). It is clearly seen that the spectrum (f)
contains around its DC a faithful replica of the spectrum (b) of the original
image; farther away it contains also the impulses of the carrier at the
halftoning frequency fc and its harmonics nfc, as well as the distorted
replicas of (b) around each of them (the intermodulation distortions).
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the DC, the underlying dot lattice frequency fc and its first few higher harmonics, and the

modulation frequency fm; the impulses at higher harmonics and at intermodulation

frequencies die out quite rapidly. Note that fc is in fact the frequency of the halftone cells

which constitute the halftone image; it is therefore often called the halftone frequency.

Now, if the modulating function is not a pure cosine but rather consists of several

frequencies, then all of these frequencies are present in the spectrum, and they participate

in the generation of the new intermodulation impulses. The same principle is also true for

the general case where the modulating function is a real-world image, whose original

spectrum may consist of infinitely many frequencies fm of various amplitudes (obviously,

fm < fc). It has been shown in [Kermisch75 p. 723] that even in this case the spectrum of

the modulated function (the halftoned image) can be written in the form of a series, where

the first term represents the spectrum of the original continuous tone image, and the other

terms represent the distortions introduced by the halftoning process. Similar results have

been obtained in [Allebach79] for the case of discrete images. In general, the spectrum of

a halftoned image contains a replica of the spectrum of the original continuous tone image

(the modulating function), which is centered on the DC, as well as distorted replicas which

are centered on each of the carrier’s harmonic frequencies nfc. This is illustrated in Fig.

C.5, where the modulating function is sinc(5x), a function whose own spectrum (a square

pulse of width 5) is easily recognizable. As we can see in the figure, the spectrum of the

modulated function (the halftoned image) shows a clear replica of this square pulse

around the DC, as well as distorted replicas of this pulse which surround the halftone

frequency fc and its harmonics nfc.6

However, in our case here we are not interested in general halftoned images, but rather in

the particular case of uniform screen gradations (“wedges”) which are modulated by a

uniform slope. We use such gradations for demonstrating within a single image the

moirés which are generated at various possible tone levels of each of the superposed

screens (see, for example, Figs. 4.1, 4.4, etc.). In the 1D case the modulating function of

the gradation is f(x) = ax + b, whose Fourier transform is F(u) = (ai/2π)δ'(u) + bδ(u)

[Champeney87 p. 138], where δ'(u) is the first derivative of the impulse δ(u) (see

[Bracewell86 p. 80–82]). Therefore the spectrum of the modulating function f(x) consists

of a single impulsive entity at the spectrum origin; this guarantees that no new frequencies

appear in the spectrum of a dot-screen when it is modulated by this function. A similar

result is obtained in the 2D case, where the modulating function is  f(x,y) = ax + by + c.

This confirms that the profile-transformation which transforms the original dot-screen into

such a screen gradation only affects the amplitudes and the nature of the impulses in the

spectrum of the original dot-screen, but it does not modify the impulse locations nor does

it introduce any new impulses. In other words: The spectrum support of such a screen

6 Note that when looking at the halftoned image from a normal viewing distance the halftone frequency fc
and its harmonics nfc are already beyond the border of the visibility circle, and only the frequencies of
the main replica of the spectrum of the original image around the DC are still located within the
visibility circle. This explains why when looking at a halftoned image the eye normally perceives an
almost identical version of the original, continuous-tone image.
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gradation remains the same lattice as in the spectrum of the underlying dot-screen and it

corresponds to the cell periodicity of the gradation.

As a consequence, the moiré effects in the superposition of such screen gradations vary

locally in their profiles according to the profile variations in the superposed layers; but

their angles and “periods” remain unchanged throughout the superposition (see Figs.

4.1, 4.4, etc.).

C.12 Convergence issues related to Fourier series

In this section we briefly review questions concerning the convergence of Fourier series

(proper and generalized), and the order of summation in multiple Fourier series.

Additional details as well as more rigorous mathematical development of the subjects may

be found in the cited references.

C.12.1 On the convergence of Fourier series

Suppose that p(x) is a periodic function of period T; p(x) is therefore fully defined by

any 1-period interval of length T, such as 0...T.7 If p(x) is integrable on a 1-period interval,

then a set of complex numbers cn for n = 0, ±1, ±2,...  may be defined by:

cn = 1
T∫

T

p(x) e–i2π
 
nfx dx     (C.9)

where f = 1/T,  and ∫T means integration over any full period of p(x), i.e., from x0 to x0 +T

where x0 is arbitrary. The complex numbers cn are called the Fourier series coefficients of

p(x), and their values are independent of the choice of x0.

The following series, involving the Fourier series coefficients cn of the function p(x), is

called the (formal) Fourier series belonging to p(x):

p(x) ~ ∑
n=–∞

∞

cn ei2π
 
nfx     (C.10)

(where the symbol ‘~’ is used to denote the relation “belongs to”). Note that at any value

of x the formal Fourier series in (C.10) may or may not converge, depending on the choice

of p(x) and of x. Many periodic functions p(x) possess a Fourier series that converges to

the function p(x) itself at all x; in such cases the symbol ‘~’ in (C.10) can be replaced by

an equality ‘=’,  and the term “formal Fourier series belonging to p(x)” can be replaced

by the term “Fourier series expansion of p(x)”. But in other cases the formal Fourier

series may fail to converge at some or even all values of x (see for example [Zygmund68

pp. 298–315]). One of the main aims of the theory of Fourier series has been to determine

7 If f(x) is not periodic (e.g., f(x) = x2) but its behaviour is of interest only within a given interval of x,
it can still be artificially made periodic by simply defining p(x) = f(x) within this interval, and
redefining p(x) outside this interval to be a periodic repetition of its values within the interval.
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in what sense (what type of convergence) and under what conditions the formal Fourier

series tends to p(x); see, for instance, [Zygmund68; Katzenelson68].

Several convergence criteria for Fourier series can be stated, depending on the class of

functions considered and on the way “convergence” is understood (see, for example,

[Champeney87 pp. 156–164], [Gaskill78 pp. 107–108]). Some convergence criteria are

also known for the case of almost-periodic functions, i.e., for generalized Fourier series

(see [EncMath88 Vol. 1 pp. 154–156: “Almost-periodic functions”; Vol. 4 p. 79:

“Fourier series of an almost-periodic function”]). However, this problem is more difficult

than its periodic counterpart and is still far from a complete solution [Corduneanu68 pp.

31–38].

It is beyond the scope of this work to define rigorously the precise class of periodic or

almost-periodic functions which satisfy the required convergence conditions for our

needs. Instead, we simply restrict ourselves to those functions which do satisfy these

conditions. It should be noted that practically all functions which represent real physical

quantities satisfy the convergence conditions [Gaskill78 p. 108]. Therefore we may adopt

for our purposes the pragmatic approach which says, roughly speaking: if a function

describes a physically realizable phenomenon (e.g., if a theoretic reflectance function can

be realized and demonstrated, for instance reproduced on film8), then the required

convergence conditions are mathematically met. In particular, common functions such as

square waves, gratings, etc. present no convergence problems, and their Fourier series

developments can be found tabulated in literature.

C.12.2 Multiplication of infinite series

As we have seen in Sec. 2.2, the superposition of periodic layers in the image domain

means, mathematically, their multiplication. Therefore, the Fourier series of the

superposition is the product of the Fourier series of each of the individual layers.

Intuitively, as an extension of the finite case, the product of infinite series ∑an and ∑bk

should be given by the infinite series ∑∑anbk. However, handling infinite series must be

done with care, since even simple operations which are obvious in the finite case, such as

reordering the terms within the series, may affect its convergence.

If we are lucky to have original functions (individual layers in the superposition) whose

Fourier series are absolutely convergent,9 then we are in a happy situation, thanks to the

following theorem:

Theorem 1: If the infinite series  ∑an = A  and  ∑bk = B  are absolutely convergent, then

the double series ∑∑anbk is absolutely convergent, and has the sum AB however the

terms are arranged [Hardy73 pp. 227–228].     p

8 Unlike various “pathological” functions such as sin(1/x), the Cantor function, etc.
9 An infinite series ∑an is absolutely convergent if ∑|an| is convergent (this implies that ∑an is also

convergent).
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This means that the double series is indeed the product of the two given series, and

furthermore, any order of summation in this double series is permitted.

The most familiar multiplication rule (order of terms) is Cauchy’s, in which the double

series is summed “diagonally”, by associating together the terms in which n + k has a

fixed value. We then define the product series  C = AB  as:

C = ∑
m=0

∞

∑
n+k=m

anbk = ∑
m=0

∞

∑
n=0

 m 
anbm–n = ∑

m=0

∞

∑
k=0

 m 
am–kbk   (C.11)

However, this diagonal summation is by no means the only possible summation order

for the double series. In fact, by the above theorem, if the series being multiplied are

absolutely convergent, any arrangement of the terms is permitted (provided that it is

exhaustive, and that no term is taken more than once). This can be generalized to the

multiplication of any number of absolutely convergent series, i.e., to the ordering of the

terms in any such multiple series.

The above theorem for absolutely convergent series stands unchanged, for any rule of

multiplication, also for two-sided series (i.e., series infinite in both directions); for

example, if  ∑
n=–∞

∞

an = A  and  ∑
k=–∞

∞

bk = B,  then Cauchy’s diagonal summation:

C = ∑
m=–∞

∞

∑
n+k=m

anbk = ∑
m=–∞

∞

∑
n=–∞

∞

anbm–n = ∑
m=–∞

∞

∑
k=–∞

∞

am–kbk 

satisfies C = AB  [Hardy73 pp. 239–241].

If, however, the Fourier series of our superposed functions are not absolutely

convergent, the following theorem (Abel’s product theorem) may come to the rescue:

Theorem 2: If the series ∑an = A, ∑bk = B and (C.11) are all convergent, then AB = C

[Hardy73 p. 228].     p

In other words, if we know in advance that the original series  ∑an = A,  ∑bk = B  and

also their Cauchy series (C.11) are all convergent, then the Cauchy series (C.11) is indeed

the product of the original series.10 It can be shown that other linear variants of the

Cauchy diagonal ordering are also permitted, such as:  ∑
m=0

∞

∑
qn+pk=m

anbk = C,  where p and

q are constant integers (see, for example, Fig. 5.1(a)).

Clearly, this is not as general as in the case of Theorem 1, where virtually any order of

summation is permitted. But for our needs, when our original superposed functions do not

have absolutely convergent Fourier series as required by Theorem 1, Theorem 2 will also

do: since we do know — due to the physical realizability of the superposition — that its

Fourier series is indeed convergent.

10 Note that Abel’s theorem is not always true for two-sided series [Hardy73 p. 244]; however, since in
our case the Fourier series is symmetric (or Hermitian, in the complex case), we have no problem to
represent the two-sided Fourier series as a one-sided infinite series, i.e., in the form (A.1) rather than
(A.3).
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C.13 Moiré effects in image reproduction

Undesired moiré patterns may appear in the printing process for several possible

reasons, which can be classified into the following main categories:

(a) Screening moirés. These are moiré patterns which occur as an interaction between

repetitive patterns in the original image (such as striped clothes, fences, etc.) and the

halftone screen which is used to print the image. An example containing such moirés

is shown in [Bann90 p. 65]. Screening moirés are also called subject or content

moirés, since they depend on the details of the original image [Blatner98 p. 282].

(b) Auto moirés. These are moiré patterns which occur owing to an interaction between the

halftone screen and the pixel grid of the output device [Jones94 pp. 267–268]. These

moirés are also called internal moiré artifacts [Levien93] because they are generated

internally to the screening process, and do not depend on an “external” source.

(c) Superposition moirés. These are moiré patterns which occur in the superposition of

two or more repetitive structures, such as the halftone screens of the different process

colours which are used in colour printing [Blatner98 p. 279]. See Chapter 3.

(d) Sampling moirés. These are moiré patterns which occur in the analog to digital

conversion of an image between the sampling grid (the device resolution) and

repetitive patterns in the original image. Sampling moirés most frequently occur when

attempting to scan an already halftoned image (such as a photo from a book or a

newspaper), or an image which includes repetitive patterns (see also Sec. 2.13, and

several of the problems at the end of Chapter 3).

All of these types of moiré are generated as interactions between repetitive structures

(which may be, depending on the case, the halftone screen, the pixel grid of the input or

output device, or repetitive details within the original image). These different types of

moirés are all included within the framework of our superposition moiré theory if we

consider sampling grids, pixel grids, etc., as particular cases of dot-screens.

Figure C.6: (a) An auto moiré may occur when printing a single line-grating (or dot-
screen) on a PostScript printer, owing to periodic pixel rounding errors. Is
this really a single layer moiré? (b) This printer artifact may disappear by
slightly changing the angle or the frequency of the grating (or dot-screen).
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C.14 Hybrid (1,-1)-moiré effects whose moiré bands have 2D intensity profiles

In this section we describe an interesting moiré effect which may carry 2D information

although it is based on the 1D case of the (1,-1)-moiré between two line gratings. This 1D

moiré effect could be also considered, therefore, as a “11
2 D case”. This phenomenon was

known to Joe Huck who used it in his artistic work [Huck03], but it was first investigated

in depth and fully explored in [Hersch04] and in [Chosson06]. Interesting applications of

this phenomenon to the field of document protection have been described in detail in

[Hersch04a], [Hersch06], [Hersch06a] and [Schilling06].

It should be noted that the terminology, the notations and the conventions used in the

above mentioned references differ from the ones that we use throughout this book. But for

the sake of consistensy and uniformity within this volume we will use here the same

conventions and notation standards as in the rest of the book. Note also that although the

original publications were only based on geometric considerations and on the indicial

equations approach, we will base our discussion here on the Fourier-based approach,

which provides a much deeper insight into this phenomenon. In particular, the Fourier-

based approach can also explain the intensity profiles of the phenomena in question, and it

is not only limited to their planar geometric properties as the other approaches.

C.14.1 Preliminary considerations

Suppose that we are given a (1,-1)-moiré between two periodic line gratings, as shown in

Figs. 1.1 or 2.5. The period and the angle of the moiré bands are given, as we have seen in

Chapter 2, by Eq. (2.9) or by its particular cases, Eqs. (2.10) or (2.11).

Assume, now, that we replace the simple black lines of the first grating by lines that

incorporate along their main direction some predefined information (such as tiny letters,

digits or symbols), while the other grating is replaced by a series of linear slits (narrow

white or rather transparent lines) on a black background (see Fig. C.7). The resulting

effect may remind us of the 2D case that we have already studied in Sec. 4.3 (see, for

example, Figs. 4.4 or C.23). In that 2D case, when the first layer is a periodic dot screen

whose individual dots have some predefined dot shapes and the second layer is a periodic

pinhole screen having similar periods, we obtain in the superposition a moiré effect whose

intensity profile is a largely magnified (and possibly rotated) version of the information

that is incorporated in the dot shapes of the first screen. And indeed, as we can see in Fig.

C.7, a similar phenomenon occurs also in our 1D case: The superposition of our two line

gratings gives moiré bands whose intensity profile is a largely magnified (and possibly

slanted) version of the information that is incorporated along the lines of the first grating.

However, the periodicity and the magnification of this moiré effect only occur along one

direction, and not along two directions as in the 2D case (compare Figs. C.7 and C.23).

The same goes also for the dynamic behaviour of the moiré effect under layer shifts.

Obviously, because the baseline direction of the incorporated text coincides with the line

direction of our grating, the period and the orientation of the baselines  of  our  moiré  bands
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Figure C.7: (a) A periodic line grating whose individual lines contain a flattened
version of the letters “EPFL”. (b)–(d) The superposition of this line
grating with a second periodic line grating having a slightly larger
period T2 > T1, which consists of narrow slits on a black background.
The angle difference between the two superposed gratings is 5° in (b),
0° in (c) and –5° in (d). Each of these superpositions gives a periodic
(1,-1)-moiré effect whose individual bands contain a largely stretched-
out (and possibly sheared) version of the 2D information that is
embedded in the individual lines of the first grating. Note that we have
intentionally left the upper and the lower parts of the grating (a) non-
modulated; this allows us to compare in each of the superpositions
our modulated moiré bands with the simple moiré bands that are
obtained in the classical, non-modulated case.
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Figure C.7: (continued.) (e) Same as in (b), but with periods T2 = T1; this case is
explained in greater detail in Fig. C.8. (f)–(h) Same as in (b)–(d), but
this time with periods T2 < T1; in this case the letters “EPFL” appear
in the moiré bands mirror-imaged, and under layer shifts they move in
the opposite direction than in (b)–(d), respectively.

are still given by the same equations as in the case consisting of simple, black lines (Eqs.

(2.9)–(2.11)). However, as we can see in Fig. C.7(b), this periodicity does not correspond

to the periodicity of the moiré text that is incorporated within the moiré bands. The reason

is that unlike in the simple case of black lines, in our present case two of the three

structures involved — the first grating and the resulting moiré bands — also have a
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secondary orientation, i.e. the height direction of the letters.11 And indeed, it turns out that

the secondary direction of the moiré letters is not necessarily orthogonal to their baseline

direction. For instance, in the case shown in Fig. C.7 the height direction of the moiré

letters remains horizontal, like in the original text of the first grating, so that the resulting

moiré text can be significantly slanted, depending on the direction of the moiré bands.

This interesting phenomenon can be explained using geometric considerations, as done,

indeed, in the original publications mentioned above. However, by also considering the

intensity information, i.e. the intensity profiles of the two given gratings and the intensity

profile of the resulting moiré effect, in addition to their planar geometric layouts, we can

obtain a much deeper understanding of this phenomenon. This deeper insight is provided

by the Fourier-based approach, as we will see below.

In fact, the (1,-1)-moiré that we discuss here differs from the classical case that is shown

in Fig. 2.5 in that it is based on lines having 2D profile variations rather than on lines

having only 1D profile variations across the line width, as in the classical case. This type

of moiré will be called here a hybrid (1,-1)-moiré, due to the fact that it still carries 2D

information although it is based on line gratings and not on dot screens. As shown in the

references mentioned above, the hybrid (1,-1)-moiré has some nice properties which make

it very useful in applications. These include, notably, the larger amount of light that passes

through a grating made of line slits (as compared to a 2D pinhole screen), which makes

the resulting moiré more easily visible than its 2D counterpart even in difficult light

conditions; and the fact that it can carry along its moiré bands information of practically

any desired length. But on the other hand, the hybrid (1,-1)-moiré only provides 1D rather

than 2D magnification (compare Figs. C.7(a),(c) with Fig. C.24(a)). Moreover, the hybrid

(1,-1)-moiré is more sensitive to layer rotations than its 2D counterpart, since such

rotations do not cause a rotation of the resulting moiré as in the 2D case (as shown, for

example, in Fig. C.23(a)) but rather a strong shearing effect (as shown in Figs. C.7(b) or

C.8), which may distort the carried information and make it harder to recognize.

C.14.2 The Fourier-based approach

Let us start with the familiar superposition of two simple straight periodic gratings

having similar periods and angles, as already described in Chapters 2 and 4 (see Fig. 2.5).

This time, however, we allow each individual line of our first grating r1(x,y) to carry some

given information, not necessarily periodic, along its main direction. In other words, the

intensity of each of the lines of our grating r1(x,y) may be modulated by any given

information, such as letters, digits or symbols, provided that these objects are sufficiently

narrow or flattened to fit within each individual line. For example, in the case shown in

Fig. C.9(a) each of the grating lines contains a very flattened version of the letters

“EPFL”. Because the line grating r1(x,y) is periodic along its main direction (in

our   figure,   along   the   x   axis),12   it  is  clear  that  its  Fourier  spectrum   R1(u,v)   is  impulsive.

11 The height direction of the letters is understood here as the direction defined by letters such as “I”.
12 Note that the main direction of a line grating is perpendicular to its individual lines.
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Figure C.8: A more detailed explanation of the case shown in Fig. C.7(e), in which
both of the superposed gratings have identical periods, T2 = T1. (a) A
periodic line grating whose individual lines contain a flattened version
of the letters “EPFL”. Note that the black, unmodulated part of the
individual lines at the top of this grating is intentionally left longer than
in Fig. C.7(a), in order to leave more room for the black, unmodulated
moiré bands at the top of the resulting superpositions. (b)–(d) The
superposition of this line grating with a second periodic line grating
which consists of narrow slits on a black background. The periods of
the two superposed gratings are identical, and the angle difference
between them is 30° in (b), 20° in (c) and 10° in (d). As we can clearly
see, the letters “EPFL” are still present within each of the moiré bands
even though T2 = T1. But in this case, when the angle difference
between the gratings is lower than about 20°, the letter shapes become
so elongated and slanted that they are no longer recognizable.
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Figure C.9: Periodic grating (a) whose individual lines are modulated by the
flattened letters “EPFL”, periodic line grating (b), and their
superposition (c) in the image domain. Their respective spectra are the
infinite line-impulse comb (d), the infinite impulse comb (e) and their
convolution (f). Black dots in the spectra represent impulses, while
open dots indicate the skeleton locations of the line-impulses. Notice
the hybrid (1,-1)-moiré which appears in the superposition. Compare
with the classical (1,-1)-moiré shown in Fig. 2.5. (Note that for the
sake of clarity the periods in the upper row of the present figure have
been magnified with respect to those shown in Fig. 2.5.)

However, unlike the simple non-modulated line gratings that we considered so far, the

intensity along each line within our grating r1(x,y) is not constant, and it needs not even be

periodic. Therefore the Fourier spectrum of such a grating is no longer an impulse comb

like in Fig. 2.5(d), but rather a line-impulse comb, i.e. a sequence of equispaced parallel

line impulses that are orthogonal to the grating’s main direction (see Fig. C.9(d) and the

illustrative explanation that is provided in Fig. C.11). These continuous line impulses

are centered   about   their  skeleton  locations,   which  are  the  locations  of  the   corresponding
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Figure C.10: Extraction of the (1,-1)-moiré of Fig. C.9: (b) shows the isolated
line-impulse comb of the (1,-1)-moiré after its extraction from
the full spectrum of Fig. C.9(f). (a) shows the image domain
function which corresponds to the spectrum (b). This is the
intensity profile of the modulated (1,-1)-moiré shown in Fig.
C.9(c); note that it only contains the extracted moiré (i.e., its
isolated contribution to the superposition), but not the
microstructure details of the original gratings and of the
superposition. The orientation of the skeleton of the line-impulse
comb corresponds to the direction of the 1-fold periodicity of the
non-modulated moiré bands, while the shearing of this line-
impulse comb with respect to the original line-impulse comb of
the first grating (Fig. C.9(d)) determines the slanting angle of the
letters within each moiré band (see Fig. C.12 below). Compare
with the classical (1,-1)-moiré shown in Fig. 4.2.

impulses   in   the   spectrum  of  the  equivalent  non-modulated  line  grating  (see  Fig.  2.5(d)),

i.e. the points nf1, n∈ , where f1 is the frequency vector of our grating. The information

that is modulated along each of the grating lines is encoded in the spectrum by the

°
°
°
°
°
°
°

(b)

v

• u•

(a)

(1,-1)
f1 f2–

(-1,1)
f2 f1–

°
°
°
°
°
°
°

x

y

EEPEPF
EPFL
PFLFLL



440 Appendix C: Miscellaneous issues and derivations

        r(x,y)      Re[R(u,v)]       Im[R(u,v)]

(a)

(b)

(c)

(d)
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         r(x,y)     Re[R(u,v)]      Im[R(u,v)]

Figure C.11: Explanation of the spectrum of a line grating whose individual lines are
modulated by 2D information; two simple examples are shown in (d) and (f).
For each image r(x,y) in this figure, Re[R(u,v)] and Im[R(u,v)] show the real
and the imaginary parts of the spectrum R(u,v) as obtained on computer by
2D DFT. We start with the simple modulated line grating shown in (d):
(a) Since the Fourier spectrum of a centered white square of width τ on black
background, d(x,y) = rect(x/τ, y/τ), is given by D(u,v) = τ 2 sinc(τu) sinc(τv)
[Bracewell95 p. 150], it follows that the Fourier spectrum of a centered black
square of width τ on white background, 1 – d(x,y), is given by F [1 – d(x,y)] =
F [1] – F [d(x,y)] = δ(u,v) – D(u,v), where δ(u,v) is an impulse at the origin
(note that this impulse is clearly visible in the center of the spectrum).
(b) Compressing the black square (a) horizontally results in a horizontal
expansion of its spectrum (due to the similarity theorem [Bracewell86 p.
244]). (c) A horizontal impulse comb of constant amplitude; its spectrum is a
comb of constant vertical line impulses [Bracewell86 p. 246]). (d) Periodic
repetition of the line segment (b) (i.e. its convolution with the constant
horizontal impulse comb (c)) gives in the spectral domain, according to the
convolution theorem, the product of the spectrum of (b) with the spectrum of
(c), namely, a line-impulse comb which is a sequence of vertical slices
through the spectrum of (b). The spectrum of the modulated line grating (f)
is obtained in the same way: (e) A single modulated line and its spectrum.
(f) A periodic repetition of the modulated line (e) gives in the spectral domain
a line-impulse comb which is a sequence of vertical slices through the
spectrum of (e). Note that the spectra in (e) and (f) are complex-valued.

(e)

(f)
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amplitude variations along the line impulses.13 It is interesting to note, however, that if the

grating lines are only modulated across the line width and their profile remains constant

along the line, then the spectrum of the grating reduces into a simple impulse comb in the

grating’s main direction, as described in Sec. 4.2 and in Fig. 2.5. Another interesting

special case occurs when the information that is modulated within each of the lines is

periodic along the line’s direction. In this case each of the parallel continuous line

impulses in the spectrum reduces into an impulse comb (which is a discrete subset of the

continuous line impulse), and the entire spectrum turns into a 2D nailbed, reflecting the

fact that our grating is now a 2-fold periodic structure. Note, however, that in the

discussions which follow we do not require periodicity along the grating’s individual

lines.

Let us now consider the second line grating, r2(x,y), that is superposed on top of our

modulated grating. In the most general case this grating may be modulated by some given

information, just as the first grating. However, in our case of interest (see Fig. C.7) the

lines of the second grating are only modulated in one direction, across the line widths;

typically, our second grating consists of black lines on a white background, or of white

lines (or transparent slits) on a black background. The spectrum R2(u,v) of this grating

(see Fig. C.9(e)) is, therefore, a classical impulse comb whose impulses are located in the

u,v plane at integer multiples of the grating frequency f2, exactly as in Fig. 2.5(e).

What happens, now, when we superpose both of our gratings on top of each other with a

small angle difference? As we already know, the superposition of the two layers r1(x,y)

and r2(x,y) is given in the image domain by the product of the two individual layers,

r1(x,y)r2(x,y); therefore, according to the convolution theorem, the spectrum of the layer

superposition is given by the convolution of the two individual spectra, R1(u,v)**R2(u,v).

In the simple case where none of the grating lines contains information, which is shown in

Fig. 2.5, this convolution gives an oblique impulse nailbed (see Fig. 2.5(f)). However, in

our present case the spectrum R1(u,v) of the first grating is no longer an impulse comb but

rather a line-impulse comb. And indeed, as already shown in Sec. 10.7.3 for a similar case

(see Figs. 10.9(d)–(f)), the convolution of such a line-impulse comb with the impulse

comb R2(u,v) of the second spectrum consists of an infinite number of replicas of the

spectrum R1(u,v), each of which being centered on top of an impulse of the comb

R2(u,v).14 The resulting spectrum convolution R1(u,v)**R2(u,v) is shown in Fig. C.9(f).

At this point it may be helpful to recall the intuitive reasoning that we have presented in

Sec. 10.7.3, and to momentarily think of R1(u,v) as a comb of impulses that “leaked out”

perpendicularly to the comb direction to form our parallel continuous line-impulses.

Before the impulses “leak out”, i.e., when our first grating is still a non-modulated

periodic grating p1(x,y), its spectrum P1(u,v) is an impulse comb, just like R2(u,v), and

13 Obviously, if our grating is not symmetric about the origin, then each of the line impulses in the
spectrum may have a complex-valued amplitude. But even in this case the spectrum still remains
Hermitian (because our grating is always real valued; see [Bracewell86 pp. 14–15]).

14 Remember that the convolution of any object with a comb of impulses places a centered replica of that
object on top of each impulse of the comb (after properly scaling its amplitude).
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therefore the convolution P1(u,v)**R2(u,v) is an oblique lattice of impulses like in

Fig. 2.5(f). We call this oblique lattice the skeleton of our line-impulse spectrum

R1(u,v)**R2(u,v). As the first grating starts being modulated, all the impulses of this

skeleton lattice (except for the impulses of the comb R2(u,v)) start “leaking out” to both

directions, forming the line-impulse spectrum of Fig. C.9(d). This point of view allows us

to identify each line-impulse in the spectrum of the superposition with the corresponding

impulse in the skeleton lattice. Each line-impulse may thus “inherit” the properties of its

original skeleton-impulse; the skeleton location (or the center) of a line-impulse in the

spectrum will be defined as the location of its skeleton-impulse, and the index of a line-

impulse will be defined as the index of its skeleton impulse. This allows us to carry over

the important notions of impulse location and impulse index to the case of continuous

line-impulses, too. Hence, a (k1,k2)-moiré in the superposition is the moiré which is caused

by the (k1,k2)-line-impulse in the spectrum convolution (or, in fact, by the (k1,k2)-comb of

line-impulses). This moiré becomes visible if the center of the (k1,k2)-line-impulse is

located inside the visibility circle, close to the spectrum origin.

Using this terminology we can say, therefore, that the visible moiré effect in our case is

represented in the spectrum convolution (Fig. C.9(f)) by the (1,-1)-line-impulse (whose

center is located inside the visibility circle), or, rather, by the entire (1,-1)-comb of line-

impulses that it spans.

Thus, by extracting from the spectrum convolution only this line-impulse comb (see Fig.

C.10(b)) and taking its inverse Fourier transform, we obtain, back in the image domain, the

isolated contribution of the (1,-1)-moiré in question to the image superposition. And

indeed, as shown in Fig. C.10(a), this gives us precisely the macroscopic intensity profile

of the moiré bands.  Note that although this moiré is visible both in the layer superposition

(Fig. C.9(c)) and in the extracted moiré intensity profile (Fig. C.10(a)), the latter does not

contain the fine structure of the original layers r1(x,y) and r2(x,y) but only the pure

contribution of the extracted moiré itself.

Now, following the same reasoning as in Sec. 4.2, we may ask ourselves how the

intensity profile of the resulting (1,-1)-moiré (Fig. C.10(a)) is related to the gratings r1(x,y)

and r2(x,y) themselves, in terms of image domain considerations only. To see this, let us

first briefly review the simpler case that we have already studied in Chapter 4, in which

none of the superposed line gratings contains modulated information.

In the case of Chapter 4 no line combs are involved in the spectral domain, and the

spectra of the two given gratings as well as the spectrum of the extracted (1,-1)-moiré are

all simple impulse combs. As we have seen in Sec. 4.2, the n-th impulse of the resulting

moiré-comb is located in the spectrum at the point:

fn,–n = nf1 – nf2    (C.12)

and its amplitude is given by:

dn = a(1)
n a

(2)
–n   (C.13)
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where a(1)
i  and a(2)

i are the amplitudes of the i-th impulses in the combs of the first and of

the second line gratings, respectively. This means, as we have seen in Proposition 4.1, that

the impulse amplitudes of the comb of the (1,-1)-moiré in the spectrum convolution are

obtained by a term-by-term multiplication of the combs of the original superposed

gratings, one of which is being inverted (rotated by 180°) before the multiplication.

Proceeding with this simple non-modulated case we see, therefore, that the moiré comb

(Fig. 4.2(b)) can be considered in the spectral domain as a product of the two original

combs (Figs. 2.5(d) and 2.5(e)), after they have been normalized (rotated and stretched) to

fit the impulse locations of the resulting moiré comb. However, thanks to the 1D

T-convolution theorem (see Sec. 4.2), this term-by-term multiplication of the original

combs, as defined by Eq. (C.13), can be also represented as a 1D convolution in the image

domain. Thus, the (normalized) 1D intensity profile of the extracted (1,-1)-moiré bands is

simply the 1D T-convolution of the (normalized) 1D intensity profiles of the two original

gratings (see Proposition 4.2 for a more detailed formulation). For example, if one of the

superposed gratings (say, the second one) consists of narrow slits on a black background,

the 1D intensity profile p2(x) of its period may be approximated by the 1D impulse δ(x),

and therefore, the normalized 1D intensity profile of the resulting (1,-1)-moiré bands is

almost identical to the normalized 1D intensity profile of the first grating.15 In other

words, the 1D intensity profile of the resulting (1,-1)-moiré is simply a magnified and

rotated version of the 1D intensity profile of the first grating, where the magnification rate

is controlled by the periods of the individual gratings and their angle difference, according

to Eqs. (2.9). As we have seen in Sec. 4.3, this reasoning extends easily to the 2D case,

too, where both of the superposed layers are dot screens.

Let us now return to our present case, the superposition of a modulated line grating with

a simple line grating. In this case the situation is slightly different, since the spectra of the

first grating and of the resulting (1,-1)-moiré consist of line-impulses, and are no longer

simple impulse combs. And indeed, in this case the line-impulse comb in the spectrum

convolution that corresponds to our modulated (1,-1)-moiré bands is not a term-by-term

product of the (normalized) line-impulse comb of R1(u,v) with the (normalized) impulse

comb of R2(u,v), since such a term-by-term product would yield a simple impulse comb

rather than the expected line-impulse comb. So how is the line-impulse spectrum of our

(1,-1)-moiré effect related to the spectra of the two original gratings? Since the spectrum

of Fig. C.9(f) is obtained as a convolution of the line-impulse comb R1(u,v) with a simple

impulse comb, R2(u,v), it follows from the properties of a convolution with an impulse

comb that the line-impulse comb of the (1,-1)-moiré that is generated in the spectrum

convolution of Fig. C.9(f) still consists of the same line impulses as the spectrum R1(u,v)

of the modulated grating, where the amplitude of each of these continuous line impulses

has only been scaled (during the convolution process) by the amplitude of the correspon-

ding impulse of the simple impulse comb R2(u,v). Thus, the line-impulse comb of our

modulated    (1,-1)-moiré    is   not    a    normalized    term-by-term    product    of    the   line-impulse

15 Remember that the convolution of any object with an impulse δ(x) simply gives the original object.
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Figure C.12: (a) The original impulse comb R2(u,v) of Fig. C.9(e). (b) The line-impulse
comb V2(u,v) which is the constant perpendicular extension of R2(u,v).

comb R1(u,v) with the impulse comb R2(u,v), but rather a normalized term-by-term product

of the line-impulse comb R1(u,v) with the new line-impulse comb V2(u,v) that results from

the constant perpendicular extension of the simple impulse comb R2(u,v) (see Fig. C.12),

after having inversed its elements order, as required by Eq. (C.13). The normalization step,

which consists of rotation, scaling and shearing, guarantees that both of the line-impulse

combs being multiplied have the same line-impulse locations and orientations.

Now, returning to the image domain, what is the inverse Fourier transform of the new

line-impulse comb V2(u,v)? It turns out that this inverse Fourier transform is simply the

1D section through our second grating along its main direction.16 Therefore, we may

distinguish here between 3 possible cases, just as we did in Sec. 4.4.1 for the classical 2D

(1,0,-1,0)-moiré (for the effects of shearing in the normalization see Remark C.1 below):

Case 1: If our second grating consists of narrow slits on a black background, as in Fig.

C.9(b), its spectrum R2(u,v) consists of a 1D impulse comb along the grating direction. In

this case the inverse Fourier transform of the corresponding extended line-impulse comb

16 Because the horizontal line impulse δ(y) over the x,y plane and the vertical line impulse δ(u) over the
u,v plane are a 2D Fourier pair (see [Bracewell86p. 247] or [Bracewell95 pp. 152–153]), it follows
from the 2D convolution theorem that if f(x,y) and F(u,v) are a 2D Fourier pair, then the horizontal slice
f(x,y)δ(y) and the vertical extension F(u,v)**δ(u) are also a 2D Fourier pair [Gaskill78 pp. 307–308].
Note that this result is not limited to horizontal and vertical line impulses, and it can be generalized
using the rotation theorem [Bracewell95 p. 157] to perpendicular pairs of line impulses at any other
directions. Some graphical examples that may illustrate this rule are shown in [Bracewell86 pp. 246–
247]. For example, because the 2D spectrum of a vertical cosinusoidal grating p(x,y) = cos(2π   fx)
consists of two impulses that are located along the u axis at u = f and u = –f, it follows that the 2D
spectrum of the horizontal section through this cosinusoidal grating, p(x,y)δ(y), consists of two vertical
line impulses having a constant amplitude, that cross the u axis at the points u = f and u = –f. These
line impulses are the constant perpendicular extension of the original impulse pair. Note that δ(x) and
δ(y) are considered here as 2D functions of the two variables x,y, just like the function p(x,y) =
cos(2π  fx), and they denote here, therefore, the vertical and horizontal line impulses over the x,y plane
through its origin [Gaskill78 pp. 85–86]; they should not be confused with the simple impulse δ(x) in
the 1D case.

•••••

(a) (b)

••
••

•
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V2(u,v) gives back in the image domain a 1D section through our grating’s slits, i.e. a train

of 1D narrow pulses which can be closely approximated as a simple impulse comb.

Therefore, the profile of the resulting (1,-1)-moiré bands in the image domain is simply a

2D T-convolution of one period of the modulated grating r1(x,y) (i.e. an entire 2D

modulated line of the grating r1(x,y)) with a simple impulse. This means that the 2D

intensity profile of the resulting modulated (1,-1)-moiré band is basically a magnified and

rotated (or rather sheared, as explained in Remark C.1 below) version of the modulated

lines of our first grating r1(x,y).17 But because our slits and their 1D section are not really

perfect impulses the moiré shapes obtained in the convolution are slightly blurred and

rounded, just like in Fig. 4.5(a).

Case 2: Similarly, if our second grating consists of narrow black lines on a white (or

rather transparent) background, the profile of the resulting (1,-1)-moiré bands is simply a

2D T-convolution of a modulated line of the grating r1(x,y) with an “inverse” 1D pulse of

0-amplitude on a constant background of amplitude 1. This gives, just as in Case 2 of Sec.

4.4.1, an inverse-video version of the moiré bands that are obtained in Case 1. However,

for reasons similar to those given in Case 2 of Sec. 4.4.1, the perceived contrast of the

moiré in Case 2 appears to the eye much weaker than in Case 1.

Case 3: If our second grating consists of lines having any other profile, the profile form

of the resulting (1,-1)-moiré is still a magnified version of the T-convolution between a

modulated line of the grating r1(x,y) and a period of the 1D section through the grating

r2(x,y). This T-convolution gives, again, some kind of blending between the two original

profile shapes, but this time the resulting shape has a rather blurred or smoothed-out

appearance and the moiré looks less attractive to the eye. This explains, in particular, the

triangular or trapezoidal profile shape of the (1,-1)-moiré bands in the superposition of

two simple line gratings as shown, for example, in Fig. 2.5(c) or in Fig. 2.9.

Note that in all of these cases the direction and the frequency of the line-comb of our

modulated (1,-1)-moiré, i.e., the direction and the frequency of its (1,-1)-skeleton comb,

are given by the direction ϕM and the frequency fM of the vector f1 –   f2; see Eqs. (2.9)–

(2.11).

Remark C.1: As we can see in Figs. C.9(f) and C.10(b), the line-impulse comb of our

modulated (1,-1)-moiré differs from the spectrum of a modulated grating (Fig. C.9(d)) in

that its parallel line-impulses are not orthogonal to the comb direction. Let us try to

understand the meaning of this fact.

17 Remember that the inverse Fourier transform of the impulse comb R2(u,v) gives the entire 2D grating
r2(x,y), while the inverse Fourier transform of V2(u,v), the constant perpendicular extension of the
impulse comb R2(u,v), gives the 1D section through the 2D grating r2(x,y) along its main direction.
Therefore, if we “forget” to take the constant perpendicular extension of the impulse comb R2(u,v), the
2D T-convolution in the image domain would be performed with the 2D profile of an entire slit of the
grating r2(x,y), i.e. with a line impulse rather than with a simple impulse. This, however, does not give
the expected result, since the convolution of any given object with a line impulse gives a blurred,
continuous replication (or averaging) of the given object along the entire line impulse (see [Gaskill78
p. 308]).
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        r(x,y)      Re[R(u,v)]       Im[R(u,v)]

Figure C.13: A vertical shear transformation in the spectrum causes a horizontal
shear transformation in the image domain, and vice versa. This is
explained by the shear theorem [Bracewell95 p. 158].

As shown in Fig. C.13 (and as we have already seen in Sec. 10.7.3), the non-orthogonal

line-impulse comb of Fig. C.10(b) can be obtained from an orthogonal line-impulse comb

whose skeleton is located on the u axis by applying a vertical shear transformation,

namely, by replacing the vertical coordinate v with v + bu (where the coefficient b, in our

case negative, is given by b = tanϕM, ϕM being the direction of the skeleton comb). Now,

according to the well-known shear theorem (see, for example, [Bracewell95 p. 158]), a

vertical shear in the spectral domain corresponds to a horizontal shear in the image

domain, namely: if f(x,y) ↔ F(u,v) then f(x + by, y) ↔ F(u, v – bu). This means that our

vertically sheared (1,-1)-line-impulse comb corresponds in the image domain to a

horizontally sheared modulated moiré-grating. And indeed, as it can be seen in Figs.

C.9(c) and C.10(a), the (1,-1)-moiré that we obtain in the present example forms a

horizontally sheared periodic grating pattern.

(a)

(b)
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We see, therefore, that while in the simple superposition of non-modulated line gratings

(Fig. 2.5) the resulting moiré effect is a magnified and rotated version of the lines of the

original grating, in our present case the resulting moiré effect is a magnified and sheared

version of the modulated lines of the original grating. The reason is, in fact, that the

rotation is applied here only to one dimension of the moiré bands (the baseline direction

of the modulated text), while the other direction of the modulated text, the letter’s height,

remains unchanged. This results in a shearing effect on the modulated moiré text rather

than a rotation effect (that would have influenced both directions of the text). But when

the moiré bands are not modulated and they contain no text (see, for example, the upper or

the lower parts of Fig. C.7) this shearing effect can be also considered as a rotation of the

moiré bands (with an appropriate scaling of their periods), and both interpretations are in

fact equivalent and give the same results.    p

Remark C.2: If the letters that are embedded (or modulated) within the individual lines of

the grating r1(x,y) are not upright but rather slanted (i.e. sheared), while they still keep their

original baseline direction, the resulting text within the moiré bands will also be sheared,

without affecting its baseline direction. The resulting shear transformation of the moiré

text (and hence, its slanting angle, too) can be determined by using the shear theorem. We

will return to this point in Remark C.4 at the end of Sec. C.14.4.    p

Remark C.3: It is interesting to note that just like in the similar case discussed in Sec.

10.7.3, when f2 > f1 (i.e. when the period of the slit grating is smaller than the period of the

modulated grating), there exists a critical superposition angle at which all the vertical line

impulses of the line-impulse comb of the hybrid (1,-1)-moiré collapse into a single vertical

line impulse that coincides with the y axis. This is a particularly interesting situation,

because in this case the hybrid (1,-1)-moiré is singular, while its simple (1,-1)-moiré

counterpart between non-modulated gratings is not. This singularity of the hybrid moiré

can be easily understood in the image domain, too: at this particular superposition angle

the resulting moiré bands are perfectly horizontal, which means that the letters embedded

in them become infinitely elongated and slanted and hence they are no longer visible. An

analogous spectral situation is depicted, for the case described in Sec. 10.7.3, in Fig.

10.12. Note that just like in that analogous case, such a singular state can only occur when

f2 ≥ f1, i.e. when T2 ≤ T1; the equality here corresponds to the trivial singular case in which

the two superposed layers have identical periods and angles.    p

Finally, it should be noted that just as in Sec. 4.2, our reasoning here can be also

generalized to any (k1,k2)-moiré. However, the reason we have limited ourselves here to the

simplest substractive case, the (1,-1)-moiré, is that this is the only case in which the

resulting moiré effect can clearly preserve the letter shapes that are embedded in the

individual lines of our first grating. As we have already seen in Chapter 4 (both in the 1D

case of line gratings and in the 2D case of dot screens), when higher order moirés are

considered the T-convolution theorem is no longer applicable in the image domain, and the

relationship between the intensity profile of the resulting moiré and the intensity profiles

of the two original layers becomes much more complex.
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C.14.3 Generalization to curvilinear gratings

As we have seen in Chapter 10, the results obtained by the Fourier-based approach can

be also generalized to cases in which the original periodic layers undergo geometric

transformations, either linear or non-linear. The fundamental moiré theorem for the

superposition of two curved gratings (see Sec. 10.9.1) determines the effects of such layer

transformations on the resulting profile and geometric layout of the (k1,k2)-moiré between

two gratings. Similarly, the fundamental moiré theorem for the superposition of two

curved screens (see Sec. 10.9.2) determines the effects of such layer transformations on

the resulting profile and geometric layout of the (k1,k2,k3,k4)-moiré between two screens. It

may be asked, therefore, if a similar rule can be also formulated for our hybrid case,

allowing us to see how the application of linear or non-linear transformations to the

original gratings will affect the resulting modulated moiré bands.

Because we are only interested here in the simplest, subtractive first-order moiré, let us

first reformulate the two fundamental moiré theorems of Chapter 10 specifically for such

first-order moirés (see Propositions 10.2 and 10.5):

The fundamental (1,-1)-moiré theorem for line gratings: Let r1(x,y) and r2(x,y) be

two curvilinear line gratings that are obtained by applying the bending functions (linear or

not) g1(x,y) and g2(x,y), respectively, to two periodic line gratings having the intensity

profiles p1(x') and p2(x'):

      r1(x,y) = p1(g1(x,y)), r2(x,y) = p2(g2(x,y))

Then, the (1,-1)-moiré m(x,y) in the superposition of r1(x,y) and r2(x,y) is given by:

m(x,y) = p(g(x,y))

where:

(1) p(x'), the normalized intensity profile of the (1,-1)-moiré, is the 1D T-convolution of

the normalized intensity profiles of the original gratings:

p(x') = p1(x') * p2(–x')   (C.13)

(2) g(x,y), the bending function which brings p(x') back into the actual moiré pattern

m(x,y) as it appears in the superposition of the two transformed layers, is given by:

g(x,y) = g1(x,y) – g2(x,y)    p   (C.14)

The fundamental (1,0,-1,0)-moiré theorem for dot screens: Let r1(x) and r2(x) be

two curvilinear screens that are obtained by applying the mappings (linear or not) g1(x)

and g2(x), respectively, to two periodic screens having the intensity profiles p1(x') and

p2(x'):

r1(x) = p1(g1(x)), r2(x) = p2(g2(x))

Then, the (1,0,-1,0)-moiré m(x) in the superposition of r1(x) and r2(x) is given by:

m(x) = p(g(x))
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where:

(1) p(x'), the normalized intensity profile of the (1,0,-1,0)-moiré, is the 2D T-convolution

of the normalized intensity profiles of the original, untransformed screens:

p(x') = p1(x') ** p2(–x')   (C.15)

(2) g(x), the transformation which brings p(x') back into the actual moiré pattern m(x) as

it appears in the superposition of the two transformed layers, is given by:

g(x) = g1(x) – g2(x)    p   (C.16)

We now return to the new moiré theorem that we wish to establish for our hybrid case.

We have already seen in Sec. C.14.2 above how to formulate its first part, which concerns

the intensity profiles: The intensity profile of our hybrid (1,-1)-moiré is the 2D

T-convolution of the profile of the first, modulated grating with a section through the

second, unmodulated grating along its main direction. How can we now formulate the

second part of the theorem, which concerns the geometric transformations?

To see this, consider the full componentwise notation of the two layer transformations

g1(x) and g2(x) and of the moiré transformation g(x):

g1(x) = 
g1,1(x,y)
g1,2(x,y)

, g2(x) = 
g2,1(x,y)
g2,2(x,y)

, g(x) = 
g1(x,y)
g2(x,y)

According to Eq. (C.16) of the fundamental (1,0,-1,0)-moiré theorem, the transfor-

mation g(x) undergone by the moiré is given by g(x) = g1(x) – g2(x). And indeed, in the

2D case, where both of the original, untransformed layers are dot screens, this simply

means:

        
g1(x,y)
g2(x,y)

 = 
g1,1(x,y)
g1,2(x,y)

 – 
g2,1(x,y)
g2,2(x,y)

  (C.17)

Now, what happens in the 1D case, i.e. when both of the original, untransformed layers

consist of vertical lines with a purely 1D profile? In this case the second component in

each of the above transformations becomes irrelevant, and we obtain:

g1(x) = 
g1,1(x,y)

0
, g2(x) = 

g2,1(x,y)
0

, g(x) = 
g1(x,y)

0

or, more simply, by dropping the unused components and indices:

g1(x) = g1(x,y), g2(x) = g2(x,y), g(x) = g(x,y)

Therefore in this case Eq. (C.16) reduces into its single-component counterpart:

               g(x,y) = g1(x,y) – g2(x,y)   (C.18)

which is, indeed, Eq. (C.14) of the fundamental moiré theorem for line gratings.

We now return to our present hybrid case. In this case, only one of the two original,

untransformed gratings (the second one) has a purely 1D profile, and therefore we have:



C.14 Hybrid (1,-1)-moiré effects whose moiré bands have 2D intensity profiles 451

g1(x) = 
g1,1(x,y)
g1,2(x,y)

, g2(x) = 
g2,1(x,y)

0
, g(x) = 

g1(x,y)
g2(x,y)

Hence, Eq. (C.16) of the fundamental moiré theorem simply becomes here:18

        
g1(x,y)
g2(x,y)

 = 
g1,1(x,y)
g1,2(x,y)

 – 
g2,1(x,y)

0
  (C.19)

which is, indeed, intermediate between the 2D case of Eq. (C.17) and the 1D case of Eq.

(C.18). This suggests, once again, that our hybrid superposition could be considered in

fact as a “11
2 D case”. Our new fundamental moiré theorem for the (1,-1)-hybrid case can

be therefore formulated as follows:19

The fundamental moiré theorem for the hybrid (1,-1)-moiré: Let r1(x) and r2(x) be

two curvilinear gratings that are obtained by applying the mappings (linear or not) g1(x)

and g2(x), respectively, to a first, modulated periodic grating having the 2D intensity

profile p1(x'), and to a second, unmodulated periodic grating having the intensity profile

p2(x'):

r1
x

y
 = p1 

g1,1(x,y)
g1,2(x,y)

, r2
x

y
 = p2 

g2,1(x,y)
g2,2(x,y)

Then, the hybrid (1,-1)-moiré m(x) in the superposition of r1(x) and r2(x) is given by:

m  

x

y
 = p 

g1(x,y)
g2(x,y)

where:

(1) p(x'), the normalized intensity profile of our hybrid (1,-1)-moiré, is the 2D T-convolu-

tion of the normalized intensity profile of the first, original modulated (but

untransformed) grating, with a 1D section through the normalized intensity profile of

the second, unmodulated grating along its main direction:

p 

x'
y'

 = p1 

x'
y'

 ** p2 

–x'
0

  (C.20)

(2) g(x), the transformation which brings p(x') back into the actual moiré pattern m(x) as

it appears in the superposition of the two transformed layers, is given by:

      
g1(x,y)
g2(x,y)

 = 
g1,1(x,y)
g1,2(x,y)

 – 
g2,1(x,y)

0
     p   (C.21)

18 The fact that we have chosen here the second component of g2(x) to be zero is just a matter of
convention. We could equally well start our discussion on the hybrid (1,-1)-moiré with gratings made
of horizontal rather than vertical lines, in which case the first component of g2(x) would have been zero.
We have chosen to present the hybrid (1,-1)-moiré using vertical gratings in order to remain consistent
with our discussions in Chapter 2 (see, for example, Fig. 2.5).

19 Note that the mathematical development that leads to this result is basically the same as in Sec. 10.9.2,
except that g4(x,y) = 0. The slight difference between the indexing conventions that are used here and in
Sec. 10.9.2 for the components of the transformations is just a matter of convenience in the notations.
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Example C.1: As a simple illustration to this theorem consider, once again, the hybrid

(1,-1)-moiré shown in Fig. C.7(c). In this case, the normalized intensity profile of the

moiré effect is, indeed, equal to the normalized intensity profile of the first layer, as

predicted by the first part of the theorem (see Case 1 in Sec. C.14.2). In order to see how

the second part of the theorem works, we start with three normalized vertical gratings

having identical periods, which represent the initial, untransformed version of the two

original gratings and of the resulting moiré bands. The transformations g1, g2 and g are

given, with respect to these initial gratings, as follows: The first grating (the modulated

one) does not undergo any layer transformations, so that g1(x,y) = (x,y). The second, 1D

grating undergoes the 1D transformation g2(x,y) = (0.9x, 0), meaning that its horizontal

period is slightly stretched out by 1/0.9 = 1.111. Consequently, according to the second

part of our theorem, the moiré bands are determined by the transformation:

      g 

x

y
 = 

x

y
 – 0.9 x

0
 = 

0.1 x

y
  (C.22)

meaning that the modulated moiré bands are horizontally stretched by the factor

1/0.1 = 10, while in the vertical direction they remain unchanged.20 Note that both the first

layer and the moiré effect are 2D entities (because they carry 2D information), while the

second layer is only of 1D nature, so that the second component of the transformation

g2(x,y) = (g1(x,y),g2(x,y))  is  g2(x,y) = 0.

As a second simple example, consider the hybrid (1,-1)-moiré shown in Fig. C.7(b). In

this case the first part of the theorem remains exactly as in the previous case, but in the

second part of the theorem we have:

g 

x

y
 = 

x

y
 – 

x cosθ + y sinθ
0

 = 
(1 – cosθ) x – sinθ y

y
  (C.23)

This means that the moiré bands have been horizontally stretched out by the factor

1/(1 – cosθ) and horizontally sheared by sinθ y.21     p

Finally, it should be always remembered that the transformations g1, g2 and g are applied

to the initially normalized and untransformed layers as domain (and hence, inverse)

transformations. For example, g(x,y) = (0.1x, y) corresponds to a 10-fold magnification in

the x direction, and g(x,y) = (x – ay, y) represents a horizontal shearing effect to the right.

20 In fact, if the three original normalized gratings have the period 1, then after the application of the
transformations g1, g2 and g the horizontal periods of the two superposed gratings and of the resulting
moiré bands are given, respectively, by 1,  1/0.9 = 1.111  and  1/0.1 = 10.

21 It is interesting to note that g2(x,y) only consists here of the first component of the rotation
transformation f(x,y) = (xcosθ + ysinθ, –xsinθ + ycosθ), since its second component has no influence on
our vertical slit grating and is set to zero (see also Fig. 10.1(b) in Chapter 10). But if the rotation
transformation were applied to the first layer (the 2D modulated line grating), then g1(x,y) would
consist of both components of f(x,y), and the second component of the resulting moiré transformation
g(x,y) would no longer be simply y. And indeed, in this case the resulting moiré text would not only be
horizontally scaled and sheared, as in Fig. C.7(b), but also rotated (by the same angle θ as the first,
modulated grating).
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C.14.4 Synthesis of hybrid (1,-1)-moiré effects

The fundamental moiré theorem for the hybrid (1,-1) case tells us also how we can

design layers that will give in their superposition a hybrid (1,-1)-moiré effect having any

desired geometric layout, and any predefined information running along each of its moiré

bands. In order to obtain hybrid moiré bands whose intensity profiles are modulated by

some predefined information, we simply need to embed a flattened version of the

information in question inside each of the lines of the first grating, while the second

grating should consist of linear slits on a black background. Then, in order to impose on

the resulting moiré bands a certain desired geometric layout, we simply have to apply to

our original straight gratings transformations g1(x) and g2(x) whose difference gives the

desired moiré-band transformation g(x), in accordance with Eq. (C.21). Note that g1(x),

g2(x) and g(x) are understood here as domain transformations that are applied to three

untransformed, normalized periodic structures, all of which have the same initial periods

and orientations; after the application of these domain transformations the first two

structures give the geometric layouts of the two transformed layers, and the third one gives

the geometric layout of the resulting moiré pattern.

To illustrate the synthesis of such a hybrid (1,-1)-moiré, let us consider the following

interesting example which involves non-linear transformations.

Example C.2: Suppose we wish to generate two layers that give in their superposition a

circular moiré effect whose intensity profile consists of repeated occurrences of the digit

“1”. For didactic reasons we will do this exercise twice, once using the approach based

on the fundamental (1,0,-1,0)-moiré theorem for dot screens (as described in Sec. 10.9.2),

and then using our new approach based on the fundamental moiré theorem for the hybrid

(1,-1) case. Note that in the latter case we could have incorporated into the moiré bands

any aperiodic text, but we have chosen to use here the same repetitive pattern of “1”s in

order to be able to compare the two approaches using the very same underlying data.

In order to obtain our desired moiré effect using the first approach, as described in Sec.

10.9.2, we start with two original periodic dot screens having identical frequencies and

orientations, one of which consists of dots having the shape of tiny “1”s, while the other

consists of tiny pinholes on a black background. In order to obtain the desired moiré

geometric layout, we may define the moiré transformation g(x) as follows:

g 

x

y
 = 

ε log( x2+y 2 )

ε arctan(y/x)
  (C.24)

where ε is a small positive constant. Note that by using here the logarithm of the radius

rather than the radius itself we obtain gradually increasing elements along the radial

direction, which is more visually pleasing than keeping fixed sized elements along the

radial direction.
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Figure C.14: Synthesis of a circular moiré effect whose intensity profile consists of
repeated “1”s using the fundamental (1,0,-1,0)-moiré theorem (see
Example C.2). (a) A periodic dot screen whose individual dots have
the shape of “1”. (b) The same dot screen after having undergone the
transformation g1(x,y) of Eq. (C.25). (c) A periodic pinhole screen
having the same periodicity as the screen (a). (d) The superposition of
the screens (b) and (c) gives the desired moiré effect. Note that
shifting the second layer horizontally causes the moiré effect to move
in the radial direction, while shifting it vertically causes the moiré
effect to rotate clockwise or counterclockwise. The dynamics of the
moiré effect can be best appreciated by using transparencies of the
layers (b) and (c) and sliding them on top of each other.

(a) (b)

(c) (d)
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Figure C.15: Synthesis of the same macroscopic moiré effect as in Fig. C.14 using,
this time, the fundamental moiré theorem for the hybrid (1,-1)-moiré
(see Example C.2). (a) The same periodic dot screen as in Fig.
C.14(a). (b) The same dot screen after having undergone the transfor-
mation g1(x,y) of Eq. (C.26). (c) A periodic grating consisting of
vertical slits having the same horizontal periodicity as the screen (a).
(d) The superposition of the screens (b) and (c) gives the desired
moiré effect. Note that shifting the second layer horizontally causes
the moiré effect to move in the radial direction, but unlike in Fig. C.14,
shifting it vertically has no effect on the resulting moiré. The dynamics
of the moiré effect can be best appreciated by using transparencies of
the layers (b) and (c) and sliding them on top of each other.

(a) (b)

(c) (d)
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Now, according to Eq. (C.16), all that we have to do is to apply to our original periodic

layers two layer transformations g1(x) and g2(x) such that g(x) = g1(x) – g2(x). Obviously,

there exist infinitely many ways to define transformations g1(x) and g2(x) that satisfy this

condition, but if we wish to transform only one of the two original layers, say, the first one,

we may choose the transformations:

g1
x

y
 = 

x

y
 + 

ε log( x2+y 2 )

ε arctan(y/x)
,         g2 

x

y
 = 

x

y
  (C.25)

And indeed, as shown in Fig. C.14, this choice of layers and geometric transformations

gives us in the superposition the desired moiré effect, using the first approach.

Now, if we wish to obtain a similar result using the second approach, i.e. using the

hybrid (1,-1)-moiré effect, we have to start with two original periodic line gratings having

identical frequencies and orientations: One of the gratings incorporates along each of its

lines a sequence of tiny “1”s (which, in principle, could be replaced, if we so desired, by

any aperiodic text running along the line), while the other grating consists of straight

narrow slits on a black background.22 Assuming that we want to obtain precisely the same

moiré transformation, as given by Eq. (C.24), all that we have to do now is to apply to our

two original periodic gratings two layer transformations g1(x) and g2(x) that satisfy Eq.

(C.21) (rather than Eq. (C.16) in the first approach). If, once again, we wish to transform

only one of the two original layers, we may choose this time the following layer

transformations:23

g1
x

y
 = x

0
 + 

ε log( x2+y 2 )

ε arctan(y/x)
,         g2 

x

y
 = x

0
  (C.26)

Note that the only difference between the geometric transformations (C.25) and (C.26)

that we apply to the layers in our two approaches is that in the latter approach the second

component of g2 remains zero, so that we must replace the term (x,y) in both g1(x) and

g2(x) by (x,0). And indeed, as shown in Fig. C.15, this choice of layers and geometric

transformations gives us in the superposition a moiré effect having the same intensity

profile as in Fig. C.14, but, this time using the hybrid (1,-1)-moiré effect. Note, however,

that only the macroscopic properties of the moiré (its intensity profile, its geometric layout,

etc.) are common to both cases; the microstructure details, on their part, are obviously

different.

Finally, it is interesting to note that the two similar moiré effects shown in Figs. C.14

and C.15 also have a similar dynamic behaviour: In Fig. C.14, when the second layer is

slowly    shifted    on   top   of    the   first   layer    horizontally,  the    resulting   moiré   effect    moves

22 Note that in practice we can use here the same first layer as in the first approach, since a dot screen
consisting of periodic “1”s can be also viewed as a grating composed of lines that consist of a periodic
sequence of “1”s.

23 Note that in this case the second component of our desired transformation (C.24) must be entirely
taken care of by g1(x), since the second component of g2(x) has no influence and is set to zero.
However, the first component of our desired transformation (C.24) can be distributed between the two
layer transformations g1(x) and g2(x) as we may wish.
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Figure C.16: (a),(b) A hybrid (1,-1)-moiré giving vertical moiré bands like in Fig.
C.7(c). (c),(d) If the first, modulated grating undergoes a horizontal
transformation g1(x,y) = (g1,1(x,y), y), it is still possible to apply to the
second, slit grating a compensating transformation g2(x,y) such that the
resulting moiré remains unchanged (see Example C.3). Note that the
information embedded along each of the vertical lines of the first
grating needs not necessarily be periodic like in (a) and (c), and it may
include any aperiodic text.

rapidly in the radial direction outward or inward, depending on the direction of the

horizontal shift; and when applying a vertical shift, the resulting moiré effect rotates

clockwise or counterclockwise, depending on the direction of the vertical shift. The hybrid

(a) (b)

(c) (d)
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case of Fig. C.15, however, only inherits the dynamic behaviour of Fig. C.14 in the

horizontal direction, giving a radial motion of the moiré, while vertical shifts have no effect

on the resulting moiré. Can you think of a similar hybrid (1,-1)-moiré that only inherits

the dynamic behaviour of Fig. C.14 in the vertical direction, giving a circular motion of the

moiré, while horizontal shifts have no effect on the resulting moiré? (Hint: in Eqs. (C.25),

zero the x components rather than the y components as we did in Eqs. (C.26).) Note that

the dynamic effects of the moiré can be best observed by printing the two layers in

question on transparencies and shifting them on top of each other.     p

Example C.3: Suppose that we are given a vertical hybrid (1,-1)-moiré like in Fig. C.7(c)

(see Figs. C.16(a),(b)), and that we apply to its first, modulated grating (Fig. C.16(a)) a

geometric transformation g1(x,y). For example, we may bend the straight vertical lines of

this grating into cosinusoidal lines, as shown in Fig. C.16(c), by using the transformation:

g1
x

y
 = 

x – ε cos(2π fy)
y

  (C.27)

where ε is a small positive constant. What geometric transformation g2(x,y) should be

applied to the second layer, the slit grating, in order to keep the moiré bands straight as

before?

Following the same reasoning as in Sec. 10.9 (see, for instance, Eqs. (10.35) and

(10.44) and Examples 10.20–10.23), it is easy to see that vertical, periodic moiré bands

occur in our superposition iff the moiré transformation has the form:

g
 

x

y
 = x/Tx + c

y

where Tx is the desired horizontal magnification of the vertical moiré bands,24 and c is

their horizontal displacement (that we assume here to be zero).

Now, since the transformations g1(x,y) and g(x,y) are already known, it follows from Eq.

(C.21) that the transformation g2(x,y) is given by their difference:

g2 

x

y
 = g1

x

y
 – g

 

x

y
 = (1 – 1/Tx)x – ε cos(2π fy)

0

And indeed, as illustrated in Fig. C.16(d), the application of this transformation to our

slit grating gives in the superposition exactly the same straight moiré bands as in Fig.

C.16(b).

Now, is it also possible to expand the resulting moiré text vertically, say, by a factor of

two? In order to obtain this result, the moiré transformation should obviously be:

g 

x

y
 = x/Tx

y/2

24 In fact, if the original gratings are normalized and have the period 1, then Tx simply indicates the
horizontal period of the moiré bands.
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Figure C.17: Rectification of the slanted text within the moiré bands can be obtained
in two different ways (compare with Fig. C.7(a),(b)): By applying to
the original modulated grating a shearing transformation, as shown in
(a) and (b); or by staggering, i.e. by gradually shifting (advancing or
retracting) the text periods within the original modulated grating
without slanting the letters themselves, as shown in (c) and (d). In the
latter case the resulting moiré periods are both slanted and shifted with
respect to each other (staggered). The slit grating used in (b) and (d) is
identical to the one used in Fig. C.7(b). Note that in both (b) and (d)
the non-modulated parts of the moiré bands remain identical to those of
Fig. C.7(b), and only the text within the bands is affected. (The quality
of the resulting moiré letters can be significantly improved by
increasing the resolution and the frequency of the original layers or by
modifying their rotation angles.)
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        r(x,y)      Re[R(u,v)]       Im[R(u,v)]

(a)

(b)

(c)

(d)
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         r(x,y)     Re[R(u,v)]      Im[R(u,v)]

Figure C.18: Explanation of the spectrum of a staggered line grating whose individual
modulated lines are gradually shifted along the line direction; two simple
examples are shown in (d) and (f). The explanation here is the same as in
Fig. C.11, except that this time the single modulated lines, (b) or (e), are
convolved with a slanted impulse comb (c). In the resulting line gratings,
shown respectively in (d) and (f), the modulated periods are gradually shifted
along the lines of the grating. The spectrum of such staggered gratings
consists of slanted (rather than vertical) blades that sample the same
spectrum as in Fig. C.11, i.e. the spectrum of the corresponding single line,
(b) or (e). Note that according to the shearing theorem the spectrum of a
vertically sheared version of the gratings of Figs. C.11(d) and C.11(f) would
consist of similar slanted blades, but these blades would sample the
horizontally sheared spectra that correspond to the vertically sheared version
of the single lines (b) and (e). In other words, in both cases the sampling
blades are the same, and the difference is only in the envelope of the sampled
spectra, i.e. in the amplitude of the resulting line impulses.

If we were using here the (1,0,-1,0)-moiré between two dot screens we could have

distributed this transformation between the two layer transformations g1(x,y) and g2(x,y) at

will, provided that their difference gives g(x,y) (see Eq. (C.16)). However, because we are

using here the hybrid (1,-1)-moiré we are slightly more limited, since the second

component of g2(x,y) has no influence and is set to zero (see Eq. (C.21)). This means that

(e)

(f)
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the second component of g(x,y) must be entirely taken care of by g1(x,y), although the first

component of g(x,y) can be distributed between g1(x,y) and g2(x,y) at will. In other words,

using the hybrid (1,-1)-moiré the only way to expand our resulting moiré text vertically is

by applying this vertical expansion to the first layer (the modulated grating). For example,

we may choose the layer transformations:

g1
x

y
 = 

x – ε cos(2π fy)
y/2

, g2 

x

y
 = (1 – 1/Tx)x – ε cos(2π fy)

0

But if we insist on using the same modulated grating as before (namely, Eq. (C.27); see

Fig. C.16(c)), then no transformation g2(x,y) to be applied to the slit grating will be able to

provide a vertical magnification of the resulting moiré bands.     p

Remark C.4: Due to the shearing effect that is inherent to the hybrid (1,-1)-moiré the

resulting text in the moiré bands may sometimes appear too slanted and therefore hardly

recognizable (see, for example, Fig. C.8). In such cases it may be advantageous, in order

to straighten up the text which appears within the resulting moiré bands, to design the

original, modulated grating with already back-slanted (or over-slanted) text. This initial

slanting of the text can be seen mathematically as a vertical shearing transformation that

has been applied beforehand to the first, modulated grating (see Fig. C.17(a)):

v 

x

y
 = 

x

y + ax
  (C.28)

To see the effect of this layer transformation on the resulting moiré bands compare Figs.

C.17(a),(b) with Figs. C.7(a),(b); note that in both cases the same slit grating is being

used. As we can see in Fig. C.17(b), this straightening method only affects the text

slanting within the moiré bands, but the moiré bands themselves remain unchanged, as in

Fig. C.7(b). This shearing effect can be easily explained by applying the shear theorem to

Figs. C.9(a),(d) and observing its effects on Figs. C.9(c),(f) and C.10.

If, in addition to the shearing v(x,y), we wish to distort our modulated grating by a

geometric transformation:

f  

x

y
 =  

f1(x,y)
f2(x,y)

  (C.29)

then we have to apply this transformation to the already sheared (back-slanted or over-

slanted) layer, meaning that the global transformation undergone by the original,

modulated layer is given by g1(x,y) = f(v(x,y)), namely:

g1
x

y
 = f  

x

y + ax
 =  

f1(x, y + ax)
f2(x, y + ax)

The resulting transformation of the moiré bands can be obtained, as usual, using Eq.

(C.21).
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Figure C.19: The effect of combined shearing and staggering in the first, modulated
grating on the resulting moiré bands. (a),(b) Vertical shearing like in
Fig. C.17(a) which is compensated by staggering in the opposite
direction. (c),(d) Vertical shearing in the opposite direction followed
by staggering; compare with Figs. C.17(c),(d). The slit grating used in
(b) and (d) is identical to the one used in Fig. C.7(b) and in Figs.
C.17(b),(d).

Another straightening effect can be also obtained by gradually shifting (advancing or

retracting) the text positioning along consecutive lines of the first grating, without slanting

the letters themselves (see Fig. C.17(c)). In this case the period of the first, modulated

grating is no longer a scalar T1, as in Fig. C.7(a), but rather a vector T1 = (Tx,Ty), where
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Tx = T1 and Ty is the new vertical shift increment between two consecutive periods of the

first, modulated grating (Fig. C.17(c)). To see how this staggering effect affects the

resulting moiré bands, compare Figs. C.17(c),(d) with Figs. C.7(a),(b); note that in both

cases the same slit grating is being used. As we can see in Fig. C.17(d), this staggering in

the first, modulated grating results in a shearing of the moiré text of Fig. C.7(b), which is

also accompanied by staggering. But here, too, the non-modulated parts of the moiré

bands remain unchanged, as they were in Fig. C.7(b). This effect can be explained once

we understand the spectrum of the staggered grating, which is explained in detail in Fig.

C.18. As we can see, the spectrum of a staggered grating is similar to the spectrum of a

vertically sheared grating that is obtained by the application of the shear theorem, and both

consist of slanted line impulses that sample the spectrum of a single modulated line. The

difference between these spectra is only in their envelopes (i.e. in the amplitudes of the

continuous spectra that are being sampled by the line impulses): In the case of a sheared

grating the spectrum of the single modulated line that is being sampled is sheared, too,

while in the case of a staggered grating the spectrum of the single modulated line is not

sheared. Now, if the staggering effect and its spectral counterpart are applied to Figs.

C.9(a),(d), they also influence accordingly Figs. C.9(c),(f) and the extracted moiré in Fig.

C.10. Note, in particular, that the resulting moiré periods are not only staggered, but also

sheared. The shearing effect in the resulting moiré is due to the slanting of the line

impulses in the spectrum of the staggered grating (see Figs. C.18(d) and (f)), which also

affects the slanting of the line impulses in the spectrum convolution (Fig. C.9(f)) and in

the spectrum of the resulting moiré (Fig. C.10(b)). The staggering effect in the resulting

moiré is due to the difference, in the spectrum of the resulting moiré, between the shearing

that applies to the sampling blades and the shearing that applies to the underlying

continuous spectrum of a single moiré period. This can be best understood by considering

a version of Fig. C.18 in which the single period element, (b) or (e), is in itself vertically

sheared, independently of the staggering effect.

Obviously, the two straightening effects mentioned above (shearing and staggering) can

be also used together in various different combinations, as shown, for example, in Figs.

19(a),(b) and in Figs. 19(c),(d).

A detailed formulation of the effects of shearing, staggering and geometric

transformations on the resulting moiré periods (using a different approach that is based on

geometric considerations and indicial equations) can be found in [Hersch04] and in

[Chosson06].     p

C.15 Moiré effects between general 2-fold periodic layers

Moiré effects that are generated between 2-fold periodic layers such as line grids or dot

screens have a particular importance in the moiré theory and in many applications. Such

moiré effects have been discussed in the second part of Chapter 4 (in Secs. 4.3–4.5),

following the discussion on the moiré effect between 1-fold periodic line gratings in Sec.
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4.2. But although the results obtained in Chapter 4 are fully general, we have only

illustrated them there for the particular case in which each of the given 2-fold periodic

layers (line grid or dot screen) is regular, i.e. periodic in two orthogonal directions with an

identical period length to both directions. This simple 2-fold periodic case is, indeed, a

rather straightforward generalization of the 1-fold periodic case, because each regular grid

(or screen) can be considered as a composition of two orthogonal gratings (or virtual

gratings), who generate in the superposition the two orthogonal directions of the resulting

2-fold periodic moiré (see Secs. 2.11, 2.12 and Fig. 2.10).

However, while the simple case consisting of regular layers is certainly the most basic

2-fold periodic case, both for didactic reasons and for many practical purposes, it is not

yet sufficiently general. For example, it does not include the moiré effects that are

generated between oblique screens or between hexagonal screens (see Fig. 2.13(b)), cases

which may turn to be quite advantageous in certain applications.25 Although such cases

are covered by our results in Chapter 4, their particular behaviour is not explicitly obvious

from these general results.

In the present section we provide an alternative, yet completely equivalent approach that

more explicitly illustrates all of the 2-fold periodic cases, either regular or not. This

approach is based on results that we obtained in Chapter 10 for the superposition of

curved screens (see Sec. 10.9.2); but instead of considering general non-linear layer

transformations g1(x) and g2(x), that yield curved layers, we will limit ourselves here to the

case where the layer transformations g1(x) and g2(x) are linear (scalings, rotations,

shearings, combinations thereof, or any other non-degenerate linear transformations26).

C.15.1 Examples of general 2-fold periodic layers

As we have seen in Chapter 10, any curved dot screen or line grid r(x,y) can be obtained

by applying a certain transformation (x',y') = g(x,y) to p(x',y'), the original uncurved

regular counterpart of r(x,y) having a unit period to both directions:

r(x,y) = p(g(x,y)) = p(g1(x,y),g2(x,y))   (C.30)

The general 2-fold periodic layer (dot screen or line grid) can be seen as a particular

case of Eq. (C.30) in which g(x,y) is a linear transformation:

(x',y') = g(x,y) = 
g1(x,y)
g2(x,y)

 = 
u1x + v1y

u2x + v2y
 = 

u1 v1

u2 v2
 

x

y
 = 

f1

f2

 
x

y
  (C.31)

namely:

r(x,y) = p(g(x,y)) = p(u1x + v1y, u2x + v2y) = p(f1· x, f2· x)   (C.32)

25 For instance, hexagonal microlens arrays have the advantage of better filling the plane than their
orthogonal counterparts, and consequently they may let more light pass through. Indeed, a hexagonal
pattern is known to be the most effective way to pack the largest number of similar objects (circles, etc.)
in a minimum area [Weisstein99 pp. 254–255].

26 Degenerate linear transformations, such as the null transformation g(x) = 0 or transformations that
project the entire 2D plane onto a 1D line, will obviously not interest us here.
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Figure C.20: (a) A regular dot screen p(x',y') having a unit period to both directions.
(b) Its horizontally stretched version r(x,y) = p(x/2, y) is a non-regular
2-fold periodic dot screen. See Example C.4.

where x = (x,y). Note that f1 = (u1,v1) and f2 = (u2,v2) are the frequency vectors of the

2-fold periodic layer r(x,y); in the general case these two vectors are not necessarily

orthogonal, and their lengths may be different. As we have seen in Secs. A.4 and A.5 of

Appendix A, the frequency vectors f1 and f2 are related to the period vectors P1 = (x1,y1)

and P2 = (x2,y2) of the same layer by Eq. (A.33), meaning that these two vector pairs are

reciprocal to each other. According to Eq. (A.36) this also means that the two matrices

F = 
f1

f2

 = 
u1 v1

u2 v2
     and    P = 

P1

P2

 = 
x1 y1

x2 y2

are the transpose inverse of each other: F = P–T.

Remark C.5: As shown above, the linear transformation g(x,y) is always expressed in

terms of the frequencies of the 2-fold periodic layer r(x,y) in the spectral domain, and not

in terms of its periodicities in the image domain.27 This fact will accompany us

throughout our discussion below.      p

Let us now see a few concrete examples of 2-fold periodic layers that are not regular:

Example C.4: Consider the horizontally stretched dot screen r(x,y) shown in Fig.

C.20(b). The period vectors of this screen are P1 = (2,0) and P2 = (0,1), and its frequency

vectors are therefore, according to Eq. (A.33), f1 = (1
2,0) and f2 = (0,1). This horizontally

stretched dot screen is obtained from its normalized, regular counterpart p(x',y') (see Fig.

C.20(a)) by applying to p(x',y') the linear domain transformation:

(x',y') = g(x,y) = 
f1

f2

 
x

y
 = 

 1
2

 0
0 1

 
x

y
 = 

1
2

 x

y

27 This follows from the fact that the transformation (x',y') = g(x,y) is applied to p(x',y') as a domain
transformation, and thus its effect on p(x',y') is indeed that of the inverse transformation. For example,
applying the transformation (x',y') = (x/2,y/2) gives p(x/2,y/2), a two-fold magnification of p(x',y'), and
applying the transformation (x',y') = (xcosθ + ysinθ, –xsinθ + ycosθ) gives a counterclockwise rotation
of p(x',y') by the angle θ. This is explained in more detail in Sec. D.6 of Vol. II.

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

(a) (b)
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Figure C.21: (a) A regular dot screen p(x',y') having a unit period to both directions.
(b) Its horizontally slanted version r(x,y) = p(x – ay, y) is a non-regular
2-fold periodic dot screen. See Example C.5.

And indeed, it is easy to see that the resulting transformed screen:

r(x,y) = p(g(x,y)) = p(x/2, y)

is a horizontally stretched version of the original screen p(x',y'). Note that, in accordance

with Remark C.5, g(x,y) expresses the frequencies of r(x,y) in the spectral domain, and not

its periodicities in the image domain.      p

Example C.5: An oblique (also called slanted or skew-periodic) dot screen is obtained

from a regular dot screen by a shearing transformation. Consider, for example, the

horizontally sheared dot screen r(x,y) shown in Fig. C.21(b). The period vectors of this

screen are P1 = (1,0) and P2 = (a,1), and its frequency vectors are therefore, according to

Eq. (A.33), f1 = (1,–a) and f2 = (0,1). This horizontally slanted dot screen is obtained from

its normalized, regular counterpart p(x',y') (see Fig. C.21(a)) by applying to p(x',y') the

linear domain transformation:

(x',y') = g(x,y) = 
f1

f2

 
x

y
 = 

1 –a

0 1
 

x

y
 = 

x – ay

y

And indeed, it is easy to see that the resulting transformed screen:

r(x,y) = p(g(x,y)) = p(x – ay, y)

is a horizontally slanted version of the original screen p(x',y').      p

Example C.6: A hexagonal dot screen. Consider the hexagonal screen shown in Fig.

C.22(b). The period vectors of this screen are P1 = (1,0) and P2 = (1
2, sin60°) = (1

2, 
3√

2
), and

its frequency vectors are therefore, according to Eq. (A.33), f1 = (1,– 
3√

1 ) and f2 = (0, 
3√

2 ).

This hexagonal dot screen is obtained from its normalized, regular counterpart p(x',y') (see

Fig. C.22(a)) by applying to p(x',y') the linear domain transformation:

(x',y') = g(x,y) = 
f1

f2

 
x

y
 = 

1 – 1
3

0 2
3

3√
1

3√
2  

x

y
 = 

x – 1
3
y

2
3
y

3√
1

3√
2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

(a) (b)

a
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Figure C.22: (a) A regular dot screen p(x',y') having a unit period to both directions.
(b) Its hexagonal version r(x,y) = p(x – 

3√
1 y, 

3√
2 y) is a non-regular 2-fold

periodic dot screen. Note that in this case the transformation g(x,y) only
modifies the angle between the two period vectors, but not their lengths;
consequently, unlike in Fig. C.21, the cell height in (b) is smaller than
in (a). See Example C.6.

We will henceforth call this transformation the hexagonality transformation and its matrix

the hexagonality matrix. And indeed, it is easy to see that the resulting transformed screen:

r(x,y) = p(g(x,y)) = p(x – 
3√

1 y, 
3√

2 y)

is the hexagonal version of the original screen p(x',y').

Note that the hexagonal screen can be also seen as a slanted screen with a = 1
2 and a

further vertical scaling of sin60° = 3√
2 . Its two vector periods P1 and P2 have the same

length, and they form an angle of 60°.      p

Remark C.6: A more general form of the hexagonal screen is obtained by applying to the

above hexagonal screen a similarity transformation, i.e. a linear transformation that

consists of rotation and uniform scaling (scaling with identical scaling factors to both

directions). This more general form of the hexagonal screen is obtained by applying to

p(x',y') the linear domain transformation:

(x',y') = g(x,y) = s 0
0 s

 
cosθ sinθ
–sinθ cosθ

 
1 – 1

3

0 2
3

3√
1

3√
2  

x

y
  (C.33)

where the two first matrices represent a similarity transformation: a uniform scaling

(magnification by the factor 1/s) and a counterclockwise rotation by angle θ ; see the

footnote in Remark C.5 above.      p

Remark C.7: Note that the contents of the period cell in a hexagonal screen is not

necessarily slanted as in Fig. C.22(b). If the desired hexagonal cell contains, for example,

an upright “2”, it simply means that in the original regular screen, before the application

of the transformation g, we had a back-slanted version of “2”, so that after the application

of the transformation we obtain, indeed, an upright “2” in each of the period cells.      p

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

(a) (b)

a

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2
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C.15.2 Adaptation of results from Chapter 10 to our particular case

Let us now return to Sec. 10.9.2 and reformulate some of its main results for the

particular case in which the layer transformations g1(x,y) and g2(x,y) are linear.

We start by reformulating Proposition 10.5 for the linear case:

Proposition C.1: The (1,0,-1,0)-moiré m1,0,-1,0(x) in the superposition of the two 2-fold

periodic layers r1(x) = p1(g1(x)) and r2(x) = p2(g2(x)), where g1(x) and g2(x) are linear

transformations, is given by m1,0,-1,0(x) = p1,0,-1,0(g1,0,-1,0(x)),  where:

(1) p1,0,-1,0(x'), the normalized periodic-profile of the (1,0,-1,0)-moiré, is the T-convolution

of the normalized periodic-profiles of the original layers:

    p1,0,-1,0(x') = p1(x') ** p2(–x')

(2) g1,0,-1,0(x), the linear transformation of the (1,0,-1,0)-moiré, is given by:

      g1,0,-1,0(x) = g1(x) – g2(x).      p

Using a less formal language we can now state the counterpart of Proposition 4.5 for the

superposition of two 2-fold periodic layers as follows:

Proposition C.2: Let r1(x,y) and r2(x,y) be two 2-fold periodic layers, which are obtained

from two normalized regular 2-fold periodic layers p1(x',y') and p2(x',y') by the linear

coordinate transformations g1(x,y) and g2(x,y), namely:

        
x'
y'

 = 
g1(x,y)
g2(x,y)

and      
x'
y'

 = 
g3(x,y)
g4(x,y)

respectively. The (1,0,-1,0)-moiré m1,0,-1,0(x,y) generated in the superposition of these

2-fold periodic layers can be seen from the image-domain point of view as the result of a

3-stage process:

(1) Normalization of the original 2-fold periodic layers by, in each of them, replacing

(gi(x,y) , gi+1(x,y)) with (x',y') (i.e., by undoing in each of them the coordinate

transformation), in order to straighten them into the normalized regular 2-fold periodic

layers p1(x',y') and p2(x',y') having unit periods Tx' = Ty' = 1 (see Sec. C.16 below).

(2) T-convolution of these normalized layers. This gives the normalized periodic-profile of

the (1,0,-1,0)-moiré, with the same unit periods Tx' = Ty' = 1.

(3) Bending the normalized periodic-profile of the moiré into the actual geometric layout

of the moiré, by replacing (x',y') with g1(x,y) – g2(x,y), i.e., by applying the linear

coordinate transformation
 
 

x'
y'

 = 
g1(x,y) – g3(x,y)
g2(x,y) – g4(x,y)

.      p

It follows, therefore, that in order to synthesize between two 2-fold periodic layers a

(1,0,-1,0)-moiré whose geometric layout is given by the two independent linear functions

g(1)(x,y) and g(2)(x,y), all that we have to do is to choose two original 2-fold periodic layers

whose linear transformations g1(x,y) = (g1(x,y), g2(x,y)) and g2(x,y) = (g3(x,y), g4(x,y))

satisfy the condition:
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g1(x,y) – g3(x,y) = g(1)
 (x,y)

g2(x,y) – g4(x,y) = g(2)
 (x,y)

The periodic-profile of the synthesized moiré will be determined by the periodic-profiles

of the superposed layers, in accordance with the first part of Proposition C.1.

Similar results for the general (k1,k2,k3,k4)-moiré between any two 2-fold periodic layers

can be obtained from the fundamental moiré theorem and Proposition 10.7 by restricting

them to the particular case in which the layer transformations g1(x,y) and g2(x,y) are linear.

C.15.3 The (1,0,-1,0)-moiré between two regular screens or grids

In Chapter 4 we have seen that the (1,0,-1,0)-moiré between any two regular screens or

grids is itself regular (i.e. orthogonal with identical periods to both directions), and we

determined the angle and the period of the resulting (1,0,-1,0)-moiré using the formulas

that we have obtained previously for the (1,-1)-moiré between two line gratings (see Sec.

4.4.2).

Let us now show, based on Proposition C.1, how this result can be obtained directly,

using a simple 2D matrix formulation, without having to resort to the (1,-1)-moiré between

line gratings. The most general case with non-regular layers will be treated in Sec. C.15.5

below.

Because in our present case both of the layers r1(x,y) and r2(x,y) are regular, it follows

that the linear transformations g1(x,y) and g2(x,y) that generate these layers from their

normalized counterparts p1(x',y') and p2(x',y') having a unit period to both directions are

similarity transformations, i.e. they only consist of rotations and uniform scalings:

g1(x,y) = 
f1 0
0  f1 

 
cosθ 1 sinθ 1

–sinθ 1 cosθ 1

 
x

y
  (C.34)

g2(x,y) = 
f2 0
0  f2 

 
cosθ 2 sinθ 2

–sinθ 2 cosθ 2

 
x

y
  (C.35)

where θi is the rotation angle of the regular layer ri(x,y) and fi is its frequency (i.e. the

scaling ratio between the frequency of ri(x,y) and the unit-frequency of its counterpart

pi(x',y')). Note that the first matrix in gi(x,y) corresponds to a magnification of pi(x',y') by

the factor Ti = 1/ fi and the second matrix corresponds to a rotation by θi counterclockwise

(see Remark C.5 above and the footnote therein).

Now, according to Proposition C.1, the linear transformation of the (1,0.-1,0)-moiré

between two regular layers r1(x,y) and r2(x,y) is given by:

      g1,0,-1,0(x) = g1(x) – g2(x)

          = 
f1 0
0  f1 

 
cosθ 1 sinθ 1

–sinθ 1 cosθ 1

 
x

y
  –  

f2 0
0  f2 

 
cosθ 2 sinθ 2

–sinθ 2 cosθ 2

 
x

y
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          = [ f1 0
0  f1 

 
cosθ 1 sinθ 1

–sinθ 1 cosθ 1

  –  
f2 0
0  f2 

 
cosθ 2 sinθ 2

–sinθ 2 cosθ 2
]  

x

y

          = 
f1 cosθ 1 – f2 cosθ 2 f1 sinθ 1 – f2 sinθ 2

–(f1 sinθ 1 – f2 sinθ 2) f1 cosθ 1 – f2 cosθ 2

 
x

y
  (C.36)

Let us recall at this point the following result from linear algebra (see, for example,

[Lay03 p. 339]):

Proposition C.3: Any matrix of the form 
a –b

b a  represents a similarity transformation, i.e.

a linear transformation consisting of rotation by angle θ and uniform scaling by a scaling

factor f. Furthermore, the angle and the scaling factor of this similarity transformation are

given by:

θ = arctan(b/a)

f = a2  +  b 2        p

Returning now to Eq. (C.36), we see that the matrix it contains (i.e. the matrix which

represents the moiré transformation g1,0,-1,0(x)) has indeed the form 
a –b

b a , meaning that it

represents a similarity transformation. This means in turn that the (1,0,-1,0)-moiré

m1,0,-1,0(x) = p1,0,-1,0(g1,0,-1,0(x)) is itself regular, since it is obtained by the application of a

similarity transformation (rotation and uniform scaling) to its normalized counterpart

p1,0,-1,0(x') which is obviously regular.

Furthermore, the angle ϕM of this (1,0,-1,0)-moiré and its scaling factor fM are given

according to Proposition C.3 by:28

     ϕM = arctan(b/a) = arctan 
f1

 sinθ1 – f2
 sinθ2

f1
 cosθ1 – f2

 cosθ2

  (C.37)

    f M 
2 = a2 + b2 = (f1cosθ1 – f2cosθ2)

2 + (f1sinθ1 – f2sinθ2)
2

 = f1
2 (cos2θ1 + sin2θ1) – 2f1 f2 (cosθ1 cosθ2 + sinθ1 sinθ2) + f2

2 (cos2θ2 + sin2θ2)

 = f1
2 – 2f1 f2 cos(θ2 – θ1) + f2

2   (C.38)

As we can see, this is precisely the result that we have obtained in Sec. C.1 for the case

of the (1,-1)-moiré between two line gratings. Note that in accordance with Remark C.5, all

our results are formulated here in terms of the spectral domain, i.e. in terms of frequencies

rather than in terms of periods (see Eqs. (C.34)–(C.38)). We can, however, express Eq.

(C.38) in terms of periods by rewriting it as follows (denoting the angle difference

between the two layers by α = θ2 – θ1):

28 Note that Proposition C.3 assumes that the transformation belonging to the matrix 
a –b

b a  is applied as a
direct transformation. When it is applied as a domain (and hence inverse) transformation, like in our
case (see Remark C.5 and the footnote therein), the rotation is applied to the inverse direction. But
since in our case the matrix has the form a b

–b a
, i.e. b is negative, the sign inversion in the rotation angle

is finally cancelled out.
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1
TM

2
 = 1

T1
2
 – 2 1

T1

 
1
T2

 cosα + 1
T2

2

       = 
T2

2 – 2T1T2 cosα + T1
2

(T1T2)
2

This finally gives, indeed, the period TM of the moiré (to both directions) as predicted by

Eq. (2.9):

TM = T1T2

T1
2 + T2

2 – 2T1T2 cosα
  (C.39)

Similarly, we can also express the angle ϕM of the moiré in terms of periods, by rewriting

Eq. (C.37) as follows:

ϕM =  arctan 

 
sinθ1

T1

 –  
sinθ2

T2

 
cosθ1

T1

 –  
cosθ2

T2

  =  arctan 
T2

 sinθ1 – T1
 sinθ2

T2
 cosθ1 – T1

 cosθ2

  (C.40)

As we can see, the period and the angle of the (1,0,-1,0)-moiré between two regular

screens or grids are, indeed, identical to those of the (1,-1)-moiré between two line gratings

(see Eq. (2.9) and Sec. C.1).

Example C.7: Suppose that we are given two regular dot screens r1(x,y) and r2(x,y), the

first consisting of tiny “2”-shaped periods and the second consisting of tiny pinholes

(see Fig. C.23(a)). Suppose that the period lengths and the orientations of our two regular

screens are, respectively, T1 = 5, θ1 = 0° and T2 = 5.2, θ2 = 5°. What are the period and the

orientation of the (1,0,-1,0)-moiré in the superposition of these two screens?

According to Proposition C.1 (see also Sec. 4.4), the resulting (1,0,-1,0)-moiré consists

of a periodic pattern of magnified “2”-shaped elements. The periodicity of this moiré (in

both directions) is given according to Eq. (C.39) by:

TM = 
5 · 5.2

52 + 5.22 – 2 · 5 · 5.2 cos5°
 = 53.28

meaning that its magnification factor is 53.28 / 5 = 10.66. The direction of this moiré is

given according to Eq. (C.40) by:

ϕM =  arctan 
5.2 sin0° – 5 sin5°
5.2 cos0° – 5 cos5°

 = arctan(–1.991) = –63.33°

meaning that the “2”-shaped moiré is rotated by 66.77° clockwise with respect to the x

axis. Note that the moiré angle ϕM is independent of the length units in which the periods

T1 and T2 are expressed, since if we express T1 and T2 in terms of another length unit we

simply multiply their values by a constant factor which is then cancelled out in Eq. (C.40).

The moiré period TM, on its part, is expressed in terms of the same length units as the

periods T1 and T2.      p
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Figure C.23: (a) The moiré effect between the two regular dot screens of Example C.7.
(b) The moiré effect between the two hexagonal dot screens of Example
C.8. Each of the two layers in (b) is obtained by applying the hexagonality
transformation to the corresponding layer in (a); the resulting moiré in (b)
is the hexagonal counterpart of the regular moiré in (a), which is obtained
by applying the hexagonality transformation to the regular moiré. Note,
however, that for the sake of clarity the symbol “2” within the oblique
periods in (b) has been kept upright, as explained in Remark C.7. The two
white arrows in (a) and (b) show the period-vectors a and b of the
respective moiré effects.29 Note that the angle ϕM of the moiré, i.e. the
baseline direction of the “2”-shaped moiré,30 as well as the length TM of
the two moiré period-vectors, are exactly the same in (a) and (b), and only
the internal angle between the two period vectors is different (90° in (a)
and 60° in (b)). Although hexagonal screens are usually clipped to have
square or rectangular external borders, just like their regular counterparts,
we have chosen for didactic reasons not to clip them in the present figure,
in order to clearly show their oblique nature.

Obviously, these results apply only to the particular case in which both layers are regular

grids or screens (note that we have assumed that our original normalized layers p1(x',y')

and p2(x',y') are regular, and that the linear transformations g1(x,y) and g2(x,y) that are

applied to them consist of rotations and uniform scalings alone, i.e. they are similarity

transformations). In the general case g1(x,y) and g2(x,y) may be any linear transformations,

that may include shearing, scalings with different factors to both directions, etc., so that the

transformed layers (as well as the resulting moiré) are no longer regular (orthogonal with

identical periods to both directions). This general case is treated in Sec. C.15.5 below.

29 The moiré period-vectors a and b can be found by applying the moiré transformation g1,0,-1,0(x,y) to
the normalized layer period-vectors (1,0) and (0,1), respectively, using Eq. (C.36) in the regular case
and Eq. (C.43) in the hexagonal case. Note that the hexagonality matrix in Eq. (C.43) does not modify
the vector (1,0), meaning that the vector a is precisely the same in (a) and (b).

30 The baseline direction of the moiré is indicated by the vector a.
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And yet, interestingly, we can still use the above considerations as a useful basis for

some other particular cases, for example, the case in which both layers are hexagonal

screens, as shown below.

C.15.4 The (1,0,-1,0)-moiré between two hexagonal screens or grids

In this subsection we discuss the particular case of hexagonal layers, which is probably

the most widely used 2-fold periodic case after regular layers. We will show that a

(1,0,-1,0)-moiré between two hexagonal layers is always hexagonal, and we will determine

the periodicities and the orientation of this moiré.

Because in this case both of the layers r1(x,y) and r2(x,y) are hexagonal, it follows from

Remark C.6 that the linear transformations g1(x,y) and g2(x,y) that generate these layers

from their normalized counterparts p1(x',y') and p2(x',y') having a unit period in both

directions are given by:

g1(x,y) = 
f1 0
0  f1 

 
cosθ 1 sinθ 1

–sinθ 1 cosθ 1

 
1 – 1

3

0 2
3

3√
1

3√
2  

x

y
  (C.41)

g2(x,y) = 
f2 0
0  f2 

 
cosθ 2 sinθ 2

–sinθ 2 cosθ 2

 
1 – 1

3

0 2
3

3√
1

3√
2  

x

y
  (C.42)

Note that Eqs. (C.41) and (C.42) only differ from their counterparts (C.34) and (C.35) of

the regular case by the presence of a new, third matrix. This additional matrix is, indeed,

the hexagonality matrix (see Example C.6), and its corresponding linear transformation is

the hexagonality transformation.

Now, according to Proposition C.1, the linear transformation of the (1,0.-1,0)-moiré

between the two hexagonal layers r1(x,y) and r2(x,y) is given by:

g1,0,-1,0(x) = g1(x) – g2(x)

     = 
f1 0
0  f1 

 
cosθ 1 sinθ 1

–sinθ 1 cosθ 1

 
1 – 1

3

0 2
3

3√
1

3√
2  

x

y

–  
f2 0
0  f2 

 
cosθ 2 sinθ 2

–sinθ 2 cosθ 2

 
1 – 1

3

0 2
3

3√
1

3√
2  

x

y

     = [ f1 0
0  f1 

 
cosθ 1 sinθ 1

–sinθ 1 cosθ 1

  –  
f2 0
0  f2 

 
cosθ 2 sinθ 2

–sinθ 2 cosθ 2
]  

1 – 1
3

0 2
3

3√
1

3√
2  

x

y

     = 
f1 cosθ 1 – f2 cosθ 2 f1 sinθ 1 – f2 sinθ 2

–(f1 sinθ 1 – f2 sinθ 2) f1 cosθ 1 – f2 cosθ 2

 
1 – 1

3

0 2
3

3√
1

3√
2  

x

y
  (C.43)

A comparison between Eqs. (C.43) and (C.36) shows that the only difference between

the transformations g1,0,-1,0(x) in the hexagonal case and in the regular case is the presence

of the hexagonality matrix in the hexagonal case. And indeed, because the first matrix in
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Eq. (C.43) is a similarity matrix, it follows from Remark C.6 that the (1,0,-1,0)-moiré

m1,0,-1,0(x) = p1,0,-1,0(g1,0,-1,0(x)) in the hexagonal case is hexagonal in itself, since it is

obtained by the application of the hexagonality transformation (plus a certain rotation and

uniform scaling due to the similarity transformation) to its regular, normalized counterpart

p1,0,-1,0(x').

Furthermore, the additional hexagonality transformation in Eq. (C.43) only modifies the

internal angle between the two period vectors of the 2-fold periodic moiré but not the

length of these period vectors or the baseline direction of the moiré (see Figs. C.22, C.23).

Therefore the periodicity and the rotation angle (i.e. the baseline direction) of the

hexagonal moiré are still determined by the same similarity transformation as in the

regular case, and hence they are given by the same formulas as in the regular case, i.e. by

Eqs. (C.39) and (C.40). And if both layers have the same periods these formulas reduce

again into Eqs. (2.10).

Example C.8: Suppose that we are given two hexagonal dot screens r1(x,y) and r2(x,y),

the first consisting of tiny “2”-shaped periods and the second consisting of tiny pinholes

(see Fig. C.23(b)). Suppose that the period lengths and the orientations of our two

hexagonal screens are, respectively, T1 = 5, θ1 = 0° and T2 = 5.2, θ2 = 5°, like in Example

C.7 with the regular screens. What are the period and the orientation of the (1,0,-1,0)-

moiré in the superposition of these two screens?

We note that the period lengths and the rotation angles of the two hexagonal screens in

this case are identical to those of the two regular screens in Example C.7, the only

difference between the two cases being in the internal angle that is formed between the two

period vectors of each layer (90° in a regular screen, and 60° in a hexagonal screen).

Therefore, as we have seen above, the period length TM and the rotation angle ϕM of the

moiré in the hexagonal case are identical to those of the regular moiré of Example C.7, the

only difference between them being, once again, in the internal angle between the two

period vectors of the moiré (see Fig. C.23).

Note, however, that because the two individual layers (as well as the moiré effect) in this

hexagonal case have been obtained by applying the hexagonality transformation to their

respective counterparts of Example C.7, it follows that the “2”-shaped elements in the

hexagonal case (both in the original layer r1(x,y) and in the moiré effect) are slightly

smaller than in the regular case (compare Figs. C.23(a) and C.23(b)), although the period

vectors in both cases have the same length. The reason is that the height of the oblique

period cell in the hexagonal case is only T sin60° = 0.866 T rather than T, the height of

the square period cell in the corresponding regular case. In principle, the “2”-shaped

elements in the hexagonal case should be slanted versions of their counterparts in the

regular case; but according to Remark C.7 it is always possible to “rectify” them, if so

desired (as we have done, indeed, in Fig. C.23(b)).      p

Similar considerations can be also devised for other layer types, e.g. the hexagonal

screen variant obtained by vertical rather than horizontal shearing, etc.
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C.15.5 The (1,0,-1,0)-moiré between two general 2-fold periodic screens or grids

We now proceed to the case involving general 2-fold periodic layers.

Proposition C.4: Suppose we are given two 2-fold periodic layers r1(x) = p1(g1(x)) and

r2(x) = p2(g2(x)) that are obtained from their original, unit-period normalized counterparts

p1(x) and p2(x) by the linear transformations:

g1(x) = 
u1x + v1y

u2x + v2y
 = F1·x      with      F1 = 

u1 v1

u2 v2
 = 

f1

f2

,     x = (x,y)

g2(x) = 
u3x + v3y

u4x + v4y
 = F2·x      with      F2 = 

u3 v3

u4 v4
 = 

f3

f4

,     x = (x,y)

It therefore follows from Proposition C.1 that the transformation g1,0,-1,0(x) of the

(1,0,-1,0)-moiré between the two layers, i.e. the transformation which brings the unit-

period normalized moiré profile p1,0,-1,0(x) into the final (1,0,-1,0)-moiré p1,0,-1,0(g1,0,-1,0(x))

between the two layers r1(x) and r2(x), is given by:

g1,0,-1,0(x) = g1(x) – g2(x)

    = 
(u1–u3)x + (v1–v3)y
(u2–u4)x + (v2–v4)y

 = FM·x      with      FM = 
u1–u3 v1–v3

u2–u4 v2–v4
 = 

a

b

where      FM = F1 – F2,    namely:     
a

b
 = 

f1 – f3

f2 – f4
.     p

This gives us the connection between the frequency vectors of the two individual layers

(f1, f2 and f3, f4) and the frequency vectors a and b of the resulting (1,0,-1,0)-moiré. This

result is, indeed, identical to the result that we have already obtained in Chapter 4 (see Eq.

(4.17)).

Note that the explicit results that we have obtained in the previous subsections for the

cases of regular or hexagonal screens are simply particular cases of this general result,

although their particularities are not explicitly obvious from the general result.

C.15.6 Allowing for layer shifts

So far we have considered here the (1,0,-1,0)-moiré effects between 2-fold periodic

layers r1(x) and r2(x) that were obtained from their original, unit-period normalized

counterparts p1(x) and p2(x) by purely linear transformations such as rotations, scalings,

shearings, or any combinations thereof. Note, however, that all linear transformations leave

the layer’s origin at the point (0,0). Therefore, if we want to take into consideration layer

shifts as well, we must consider rather than purely linear transformations the slightly

larger family of affine transformations. The general 1D affine transformation has the

form:

x' = ax + x0

and the general 2D affine transformation has the form:
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x' = a1x + b1y + x0

y' = a2x + b2y + y0

or in vector notation, denoting x = (x,y), x' = (x',y'), x0 = (x0,y0) and A = 
a1 b1

a2 b2
:

x' = A·x + x0

where x0, y0 and x0 = (x0,y0) are arbitrary constants that represent a given displacement.

Note that linear transformations are a particular case of affine transformations in which

x0 = 0 and y0 = 0.

Now, in order to be able to consider layer shifts, as we already did in Chapter 7, we must

use here a slightly wider variant of Proposition C.1 in which the transformations g1(x),

g2(x) and hence g1,0,-1,0(x) = g1(x) – g2(x) are affine rather than linear. We thus obtain the

following generalization of Proposition C.4:

Proposition C.5: Suppose we are given two 2-fold periodic layers r1(x) = p1(g1(x)) and

r2(x) = p2(g2(x)) that are obtained from their original, unit-period normalized counterparts

p1(x) and p2(x) by the affine transformations g1(x) and g2(x):

g1(x) = 
u1x + v1y + x1

u2x + v2y + y1
 = F1·x + x1   with    F1 = 

u1 v1

u2 v2
 = 

f1

f2

,  x = (x,y),  x1 = (x1,y1)

g2(x) = 
u3x + v3y + x2

u4x + v4y + y2
 = F2·x + x2   with    F2 = 

u3 v3

u4 v4
 = 

f3

f4

,  x = (x,y),  x2 = (x2,y2)

It follows, therefore, from the affine variant of Proposition C.1, that the transformation

g1,0,-1,0(x) which brings the unit-period normalized moiré profile p1,0,-1,0(x) into the final

(1,0,-1,0)-moiré p1,0,-1,0(g1,0,-1,0(x)) between the two layers r1(x) and r2(x) is given by:

g1,0,-1,0(x) = g1(x) – g2(x)

= 
(u1–u3)x + (v1–v3)y + (x1–x2)
(u2–u4)x + (v2–v4)y + (y1–y2)

 = FM·x + (x1 – x2)    with    FM = 
u1–u3 v1–v3

u2–u4 v2–v4
 = 

a

b

where      FM = F1 – F2,    namely:     
a

b
 = 

f1 – f3

f2 – f4
.     p

This slight generalization of Proposition C.4 allows us now to consider the most general

case of the (1,0,-1,0)-moiré between periodic layers, in which the individual layers are also

shifted by x1 = (x1,y1) and x2 = (x2,y2), respectively.

Remark C.8: Obviously, the behaviour of the 2-fold periodic (1,0,-1,0)-moiré effect

under layer shifts, as predicted by Proposition C.5, must be consistent with the results that

we have already obtained in Chapter 7. Therefore, the following interesting question may

be asked at this point: We already know from Chapter 7 that when the original periodic

layers undergo slight layer shifts, the resulting periodic moiré usually undergoes a much

larger shift (see, for example, Fig. 7.6). How is this fact reflected in Proposition C.5, given

that  the  resulting  shift    x1 – x2    in    g1,0,-1,0(x)   is  not  necessarily  greater  than  the  individual
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layer shifts x1 and x2?

To answer this question we must remember, once again, that the layer transformations

(x',y') = g1(x,y), (x',y') = g2(x,y) as well as the resulting moiré transformation (x',y') =

g1,0,-1,0(x,y) are applied to the respective unit-period normalized layers p1(x',y'), p2(x',y') and

p1,0,-1,0(x',y') as domain transformations, and thus their effects are indeed those of the

inverse transformations (see Remark C.5 above and the footnote therein). To better

illustrate this point, consider the simple 1-fold periodic (1,-1)-moiré that is obtained in the

superposition of two parallel periodic line gratings, one of which has been slightly shifted

to the right while the other has been slightly scaled up (see Fig. 7.9 and Problem 7-18 in

Chapter 7). In this case the layer transformations with respect to the original unit-period

normalized layers are given by:

g1(x) = x – x0

g2(x) = 0.9x

and therefore the moiré transformation with respect to the unit-period normalized layer is:

g1,-1(x) = g1(x) – g2(x) = 0.1x – x0   (C.44)

At first sight this seems to indicate that the moiré effect is shifted by the same amount x0

as the first layer. But if we remember that the actual effect of the domain transformation

x' = g1,-1(x) is expressed by the inverse transformation, x = g–1
1,-1(x'):31

x = 10x' + 10x0   (C.45)

we see immediately that Eq. (C.44) represents, in fact, a 10-fold magnification and a shift

that is 10 times bigger than the shift x0 in g1(x) (in the same direction).     p

Example C.9: As a further example, let us consider here the case illustrated in Fig. 7.6 of

Chapter 7. This figure shows the superposition of two regular line grids, one of which is

simply shifted by (x1,y1):

g1(x,y) = 1 0
0 1

 
x

y
 – 

x1

y1

while the second is rotated by angle α counterclockwise:

g2(x,y) = 
cosα sinα
–sinα cosα

 
x

y

It follows, therefore, that the transformation undergone by the moiré effect is given by:

g1,0,-1,0(x,y) = g1(x,y) – g2(x,y)

      = 1 0
0 1

 
x

y
 – 

x1

y1
 – 

cosα sinα
–sinα cosα

 
x

y

31 Note that being the inverse of g1,-1(x), Eq. (C.45) expresses the transformation undergone by the moiré
effect in terms of a direct transformation. Similarly, the transformations undergone by the two original
layers can be expressed as direct transformations by x = x' + x0 and x = 1 0

9  x', respectively. But the
relationship g1,-1(x) = g1(x) – g2(x) is only valid for the domain (and hence, inverse) transformations.
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      = 
1 – cosα –sinα

sinα 1 – cosα
 

x

y
 – 

x1

y1

Note, again, that the layer transdormations (x',y') = g1(x,y), (x',y') = g2(x,y) as well as the

resulting moiré transformation (x',y') = g1,0,-1,0(x,y) are applied to the respective unit-period

normalized layers p1(x',y'), p2(x',y') and p1,0,-1,0(x',y') as domain transformations, and hence

their effects are indeed those of the inverse transformations. Thus, the effect of g1(x,y) is a

shift of the first layer by (x1,y1) to the right, and the effect of g2(x,y) is a rotation of the

second layer by angle α counterclockwise. In order to see the actual effect of the

transformation (x',y') = g1,0,-1,0(x,y), namely, how it transforms the unit-period normalized

moiré profile p1,0,-1,0(x',y') into the final (1,0,-1,0)-moiré p1,0,-1,0(g1,0,-1,0(x,y)) between the

two given layers r1(x',y') and r2(x',y'), let us find the inverse transformation (x,y) =

g–1
1,0,-1,0(x',y'):

x

y
 = 

1 – cosα –sinα
sinα 1 – cosα

–1

 [ x'
y'

  +  
x1

y1
]

        = 1

(1 – cosα)2 + (sinα)2
 

1 – cosα sinα
–sinα 1 – cosα

 [ x'
y'

  +  
x1

y1
]

        = 1
2
 

1 sinα
1 – cosα

– sinα
1 – cosα

1

 
x'
y'

   +   1
2
 

1 sinα
1 – cosα

– sinα
1 – cosα

1

 
x1

y1

        = 1
2
 1 cot(α/2)

–cot(α/2) 1
 

x'
y'

   +   1
2
 1 cot(α/2)

–cot(α/2) 1
 

x1

y1
  (C.46)

We note that the matrix in this transformation has the form 1
2

1 –b

b 1  with b = –cot(α/2).

This matrix is therefore a particular case of the similarity matrix 
a –b

b a . As we know from

Proposition C.3 this matrix corresponds to a linear transformation that is composed of:

• a rotation by angle θ, where: θ = arctan(b/a)

• and a scaling by: s = a2  +  b 2 

By inserting here  a = 1
2  and  b = – 

1
2 cot(α/2)  (taking into account the factor 1

2 before the

matrix) and using the identities arctan x = π
2
 – arccot x [Bronstein90 p. 280] and

1/ 1 + cot2x  = sin x [Spiegel68 p. 15] we see from Eq. (C.46) that the moiré shift is

obtained from the layer shift (x1,y1) by:

• a rotation by angle θ : θ = arctan(–cotα
2

) = –arctan(cotα
2

) = arccot(cotα
2

) – π
2

   namely: θ = α
2

 – π
2

  (C.47)

• and a scaling by: s = 1
2 1 + cot2(α/2)  = 1

2sin(α /2)
  (C.48)

And indeed, as expected, this result fully agrees with the moiré shift as explained in

Chapter 7, which is obtained as follows:
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(a) As predicted by proposition 7.2, the moiré effect is shifted in its own direction, which

is, as shown in Fig. 4.8, exactly α
2

 – π
2

.

(b) Furthermore, the extent of the shift of the moiré effect is given, in terms of periods, by

Eqs. (7.26) and (2.10), namely:

bM = TM(φ1 – φ2) = T
2sin(α /2)

 (φ1 – φ2)   (C.49)

where bM is the resulting shift of the moiré, TM is the period length of the moiré, T is the

period length of the two individual layers, and φ1 and φ2 are the shifts of the individual

layers in terms of the period T. Noting that in our case φ2 = 0 (the second layer is not

shifted), we see that for a shift of d in the first layer (i.e., φ1 = d/T periods), the extent

of the resulting shift of the moiré is:

bM = 1
2sin(α /2)

 d   (C.50)

Hence, the shift of the periodic moiré is obtained by scaling up the shift d of the first

layer by the factor s = 1
2sin(α /2)

, exactly as predicted by Eq. (C.48) above.

This shows us, indeed, that the moiré shifts obtained by Proposition C.5 are in full

agreement with our previous results from Chapter 7.      p

Example C.10: Finally, returning to the general case of Proposition C.5, what is the

actual shift undergone by the moiré effect in the superposition?

According to Proposition C.5, the moiré transformation g1,0,-1,0(x) is expressed by:

x' = FM·x + (x1 – x2)

where FM = F1 – F2. Remembering that the actual effect of the domain transformation

x' = g1,0,-1,0(x)  is expressed by its inverse,  x = g–1
1,0,-1,0(x'):

x = FM

–1
·(x' – (x1 – x2)) = FM

–1
·x'  –  FM

–1
·(x1 – x2)

we see that the actual shift of the moiré effect in the superposition is given here by the

second term, –FM

–1
·(x1 – x2). Denoting this vector by xM = (xM,yM), it follows that the

direction and the extent of the moiré shift are given by arctan(yM/xM) and xM
2 + yM

2 ,

respectively.      p

C.15.7 The order of the superposed layers

At this point, the following interesting question may be asked: Suppose that we change

the numbering of the superposed layers, so that the layer transformations g1 and g2 are

interchanged. Physically, this may correspond to changing the order of the superposed

layers, such that the top layer in the original superposition becomes now the bottom layer

and vice versa. Clearly, this has no influence whatsoever on the resulting moiré effect. And

yet, because g1 and g2 have been interchanged, it turns out that the sign of the resulting

moiré transformation g1,0,-1,0 has been inverted (since g1,0,-1,0 is the difference between the

two individual layer transformations).   This should mean that the resulting moiré effect has
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Figure C.24: (a) The superposition of two regular dot screens r1(x,y) and r2(x,y), the first
consisting of tiny “2”-shaped periods and the second consisting of tiny
pinholes, where the first layer has been slightly scaled down: g1(x) = 1.1x,
g2(x) = x. (b) The superposition of the same dot screens, but this time it is
the second layer (the pinhole screen) that has been slightly scaled down:
g1(x) = x, g2(x) = 1.1x. Note that the multiplication of a layer transfor-
mation by 1.1 corresponds, indeed, to a scale down effect in that layer (see
Remark C.5 and the footnote therein).

been rotated by 180° — but as mentioned above, we know that the moiré effect does not

depend on the order in which the two layers are superposed (or on the way we choose to

number the layers). How can we explain this contradiction? The same question applies

also to the sign of the frequency or the period of the moiré effect in Eqs. (2.11), (4.17),

etc. The answer is, of course, that the orientation of the moiré is not only determined by

the moiré transformation g1,0,-1,0, but also by its intensity profile p1,0,-1,0, as clearly indicated

by the two parts of Proposition C.1 (see also Propositions 10.2 and 10.5). Indeed,

Propositions C.4 and C.5 only concentrate on the second part of Proposition C.1, the

geometric transformations, but we should never forget that the first part of Proposition C.1

is also involved in the determination of the orientation of the moiré. To illustrate this more

clearly, consider the following example.

Example C.11: Fig. C.24(a) shows a superposition of two regular dot screens, the first

consisting of tiny “2”-shaped periods and the second consisting of tiny pinholes, where

the first layer has been slightly scaled down: g1(x) = 1.1x, g2(x) = x, so that the layer fre-

quencies (to both directions) are  f1 = 1.1,  f2 = 1 units. In this case we have, therefore:

g1,0,-1,0(x) = 1.1x – x = 0.1x (or:  fM = f1 – f2 = 0.1)

p1,0,-1,0(x') = p1(x') ** p2(–x') = “2” ** “pinhole” = “2”
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Note that in this case the sign inversion in the second term of the convolution has no

effect, since a pinhole is invariant under a 180° rotation.

What happens, now, if we change the order of the layers? In this case we obtain:

g1,0,-1,0(x) = x – 1.1x = –0.1x (or:  fM = 1 – 1.1 = –0.1)

which may lead us to the conclusion that the moiré effect has been inverted (rotated by

180°). But if we also consider the intensity profiles, we see that in this case the moiré

profile p1,0,-1,0(x') itself has been inverted, due to the sign inversion in the second term of

the convolution:

p1,0,-1,0(x') = “pinhole” ** “inverted 2” = “inverted 2”

This means that the inversion in the moiré transformation rectifies the inversion in the

moiré intensity profile, so that both inversions are cancelled out.

Consider now Fig. C.24(b). In this case, it is the second layer (the pinhole screen) that

has been slightly scaled down: g1(x) = x, g2(x) = 1.1x, so that the layer frequencies are

f1 = 1,  f2 = 1.1 frequency units. As we can see in the figure, in this case the moiré effect is

indeed rotated by 180°. To understand this, we note that in the present case we have:

g1,0,-1,0(x) = x – 1.1x = –0.1x (or:  fM = 1 – 1.1 = –0.1)

p1,0,-1,0(x') = p1(x') ** p2(–x') = “2” ** “pinhole” = “2”

This means that unlike in the previous case, the moiré profile itself has not been rotated

by 180°, so that the sign inversion in the moiré transformation is not cancelled out, and it

does, indeed, cause an inversion in the resulting moiré effect.

Now, if we change the order of the layers we obtain:

g1,0,-1,0(x) = 1.1x – x = 0.1x (or:  fM = 1.1 – 1 = 0.1)

p1,0,-1,0(x') = “pinhole” ** “inverted 2” = “inverted 2”

meaning that the moiré profile has been rotated by 180°, but the moiré transformation is

not sign-inverted, and hence it does not rectify this inversion. The resulting moiré remains,

therefore, rotated by 180°, as expected.      p

Remark C.9: The 1D counterpart of the explanation above gives a more precise formula-

tion for the orientation of the 1D moiré in Eq. (2.11), which is no longer dependent on the

order of the layers or on their numbering. This formulation could not be given in Chapter

2 since it depends on notions from Chapter 10. Indeed, the orientation of the moiré — just

like its intensity profile — cannot be deduced from geometric considerations only.      p

C.16 Layer normalization issues

As we have seen in Chapter 4, the T-convolution of the two given periodic layers (or,

equivalently, the multiplication of their impulse combs or nailbeds in the spectral domain)
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requires that the two layers be first normalized (see the explanation preceding Proposition

4.2 in Sec. 4.2, as well as Propositions 4.2, 4.3 and 4.5). This normalization is required in

order that the periods of the two layers to be convolved coincide (or, equivalently, in terms

of the spectral domain, in order that the two combs or nailbeds to be multiplied have a

common support). This normalization allows us, therefore, to apply the T-convolution

theorem even though the two original layers do not necessarily have the same period sizes

and orientations.

A similar consideration is also used in Chapter 10, which deals with the more general

case in which the superposed layers are repetitive (i.e. non-linear transformations of

periodic layers); see, for example, the explanation that precedes Proposition 10.2, as well

as Propositions 10.3, 10.4, 10.5 and 10.7 in Sec. 10.9.

However, as the reader may have noticed, the normalizations being used in Chapter 4

and in Chapter 10 are not the same: In Chapter 4 the original layers are normalized to the

period size and orientation of the final moiré; but in Chapter 10 the original curvilinear

layers are normalized to their straight (uncurved) periodic counterparts having a unit

period and angle 0° (i.e. the unit grid), and after the T-convolution the resulting normalized

moiré is then transformed back into its actual geometric layout.

The reason for this difference is as follows. In fact, in order to perform the T-convo-

lution of the two given layers (or, equivalently, the multiplication of their respective spectra

in the Fourier domain), it is enough to normalize both of the layers into any common

periodicity and orientation, be it the periodicity of the final moiré, a unit-grid periodicity, or

any other arbitrary periodicity. In the case of Chapter 4, the moiré layout considerations

are only qualitative,32 and therefore it is more natural there to normalize the two original

layers directly into the geometric layout of the final moiré, rather than to make first a

normalization of the original layers into a unit-period structure and then transform the

resulting unit-period moiré back into its actual geometric layout. But in Chapter 10,

where we provide the full quantitative moiré layout considerarions (such as g1,-1(x,y) =

g1(x,y) – g2(x,y), etc.), it is most natural to use a unit-period normalization, since here

g1(x,y), g2(x,y) and g1,-1(x,y) express, indeed, the transformations undergone by the two

original layers and by the resulting moiré, respectively, with respect to this underlying

unit-period grid or coordinate system. Any other choice would imply a more complex

interpretation of the transformations g1(x,y), g2(x,y) and g1,-1(x,y), which would be less

intuitive and less useful. For example, if we choose to normalize our layers with respect to

a two-units grid, or with respect to the final moiré layout (as we did in Chapter 4), the

intuitive meaning of g1(x,y), g2(x,y) and g1,-1(x,y) would be lost.

Remark C.10: Note that in terms of the moiré layout relationships (g1,-1(x,y) =

g1(x,y) – g2(x,y), g1,0,-1,0(x,y) = g1(x,y) – g2(x,y), etc.) choosing a different normalization

simply means a coordinate change in the already unit-period normalized layers. For

example, if we choose to normalize our layers with respect to the coordinate grid having a

32 In the sense that they do not yet explicitly provide the quantitative moiré layout relationships
g1,-1(x,y) = g1(x,y) – g2(x,y),  g1,0,-1,0(x,y) = g1(x,y) – g2(x,y),  etc. that are given later in Chapter 10.
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two units periodicity, it simply means that we now use the new s,t coordinate system with

s = 2x, t = 2y, i.e. x = s/2, y = t/2, and our layout relationship then becomes g1,-1(s/2,t/2) =

g1(s/2,t/2) – g2(s/2,t/2). In the general case, if (s,t) = h(x,y), and the inverse coordinate

transformation is given by (x,y) = h -1(s,t), then our layout relationship becomes

g1,-1(h-1(s,t)) = g1(h-1(s,t)) – g2(h-1(s,t)). Similar considerations can be devised for all the

other moiré layout relationships, such as the (1,0,-1,0)-moiré between two dot screens

g1,0,-1,0(x,y) = g1(x,y) – g2(x,y), or any higher order moirés. This simply reflects the fact that

the function identities expressing the moiré layout relationships are invariant under

coordinate changes in the plane.      p

Example C.12: Let us see what happens to the layout relationship of the (1,0,-1,0)-moiré

between two periodic dot screens, g1,0,-1,0(x,y) = g1(x,y) – g2(x,y), if we choose to normalize

our layers with respect to the final moiré layout, as we did in Chapter 4. As shown in

Remark C.10, this normalization is obtained, in fact, by applying the coordinate change

(x,y) = g–1
1,0,-1,0(s,t) to the layers that are already normalized with respect to the unit grid.

Suppose that we are given two periodic dot screens r1(x,y) and r2(x,y) that have been

obtained from their respective unit-period normalized counterparts p1(x',y') and p2(x',y') by

the linear transformations (x',y') = g1(x,y) and (x',y') = g2(x,y), respectively. The periodic

(1,0,-1,0)-moiré between these layers has, therefore, the geometric layout g1,0,-1,0(x,y) =

g1(x,y) – g2(x,y), where g1, g2 and g1,0,-1,0 are expressed with respect to the unit grid. Now,

if we apply to the unit-period normalized layers the coordinate change (x,y) = g–1
1,0,-1,0(s,t),

the layout relationship of the moiré becomes, in terms of this new coordinate system:

     g1,0,-1,0(g–1
1,0,-1,0(s,t)) = g1(g–1

1,0,-1,0(s,t)) – g2(g–1
1,0,-1,0(s,t))

namely:       (s,t) = g1(g–1
1,0,-1,0(s,t)) – g2(g–1

1,0,-1,0(s,t))

As we can see, under this normalization (coordinate change) the moiré layout is simply

(x',y') = (s,t) (i.e. it coincides with the new coordinate lines), and the layouts of the two dot

screens become, respectively, (x',y') = g1(g–1
1,0,-1,0(s,t)) and (x',y') = g2(g–1

1,0,-1,0(s,t)). But

this result is obviously less useful for quantitative calculations than its counterpart that is

normalized with respect to the unit grid, g1,0,-1,0(x,y) = g1(x,y) – g2(x,y).       p

Example C.13: Suppose that we are given two periodic gratings r1(x,y) and r2(x,y) that

have been obtained from their respective unit-period normalized counterparts p1(x') and

p2(x') by the linear bending transformations x' = g1(x,y) and x' = g2(x,y), respectively. The

periodic (1,-1)-moiré between these layers has, therefore, the geometric layout g1,-1(x,y) =

g1(x,y) – g2(x,y). Now, if we apply to the two given non-normalized gratings new layer

transformations (x,y) = h1(s,t) and (x,y) = h2(s,t), respectively, the geometric layout of the

(1,-1)-moiré becomes g1(h1(s,t)) – g2(h2(s,t)), because now the transformations of the

individual gratings with respect to their unit-period normalized counterparts are g1(h1(s,t))

and g2(h2(s,t)), respectively. Note that this moiré layout is not obtained by applying the

transformation (x,y) = h1,-1(s,t) = h1(s,t) – h2(s,t) to the original moiré layout g1,-1(x,y) =

g1(x,y) – g2(x,y). The counterpart of this example for the case of the (1,0,-1,0)-moiré

between two dot screens can be obtained in a similar way; its generalization to the

(k1,k2,k3,k4)-moiré is given in Chapter 10 in Proposition 10.8.       p



 Appendix D

Glossary of the main terms

D.1 About the glossary

Several thousands of publications on the moiré phenomenon have appeared during the

last decades, in many different fields and applications. However, the terminology used in

this vast literature is very far from being consistent and uniform. Different authors use

different terms for the same entities, and what is even worse, the same terms are often used

in different meanings by different authors. As a few examples among many others, let us

cite here some of the many terms used in literature for what we call here gratings:

line gratings, rulings [Nishijima64], sets of parallel lines [Fink92 p. 44], grids [Jarić89

pp. 29–31], parallel-line grids [Stecher64], grilles [Post67], and even line-screens

[Tollenaar64]. For what we call here screens one can find the terms: lattices, grids

(again!), meshes, masks, etc. Even the moiré patterns are often called fringes, beats,

interferences, aliasing effects, and so forth.

Obviously, in such an interdisciplinary domain as the moiré theory it would be quite

impossible to adopt a universally acceptable standardization of the terms, because of the

different needs and traditions in the various fields involved (optics, mechanics,

mathematics, printing, etc.).1 Nevertheless, even without having any far-reaching

pretensions, we were obliged to make our own terminological choices in a systematic and

coherent way, in order to prevent confusion and ambiguity in our own work. We tried to

be consistent in our terminology throughout this work, even if it forced us to assign to

some terms a somewhat different meaning than one would expect (depending on his own

background, of course).

In the present glossary we included all the terms for which we felt a clear definition was

desirable to avoid any risk of ambiguity. Note, however, that this glossary is not ordered

alphabetically; rather, we preferred to group the various terms according to subjects. We

hope this should help the reader not only to clearly see the meaning of each individual

term by itself, but also to put it in relation with other closely related terms (which would be

completely dispersed throughout the glossary if an alphabetical order were preferred).

Note that terms in the glossary can be found alphabetically through the general index at

the end of the book.

1 For example, the term density has very different meanings in almost any imaginable field of science or
technology. A non-exhaustive list, just for the sake of illustration, may include: density of matter (in
physics), density of population (in statistics), probability density (in probability), spectral density (in
spectral analysis), density of a set (in mathematic topology), ink or colour density (in printing and
colorimetry), etc. Another similar example is the term phase. It should be also noted that terminology
sometimes tends to change over the years or according to fashions. As an example, the term function
convolution in modern literature appears in older publications as function composition [Zygmund68
p. 36], the resultant of two functions, or even using the German term Faltung [Hardy68 p. 10].
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D.2 Terms in the image domain

grating (or line-grating) —

A pattern consisting of parallel lines. Unless otherwise mentioned it will be

assumed that a grating is periodic and consists of equally wide parallel, straight

lines that are separated by equal spaces. For example, a binary grating is a grating

with a square-wave intensity profile consisting of white lines (with a constant value

of 1) on a black background (whose value is 0).

curvilinear grating —

A repetitive pattern consisting of parallel curvilinear lines. A curvilinear grating can

be seen as a non-linear transformation of an initial uncurved periodic grating of

straight lines (see Sec. 10.2). Examples of curvilinear gratings with a cosinusoidal

periodic profile are shown in Fig. 10.1; examples with a square-wave periodic

profile are shown in the left side of Fig. 10.8.

cosinusoidal grating (not to be confused with cosine-shaped grating) —

A grating with a cosinusoidal periodic-profile; for example, a cosinusoidal circular

grating is a circular grating with a cosinusoidal periodic-profile. Note, however,

that since reflectance and transmittance functions always take values ranging

between 0 and 1, the cosinusoidal grating is normally “raised” and rescaled into

this range of values. For example, a reflectance function in the form of a vertical

straight cosinusoidal grating is expressed by:  r(x,y) = 1
2 cos(2π  fx) + 1

2.

cosine-shaped grating (not to be confused with cosinusoidal grating) —

A grating (with any periodic-profile form) whose corrugations in the x,y plane are

bent into a cosinusoidal shape, like in Fig. 10.1(l).

grid (or line-grid; also called in literature cross-line grating) —

A pattern consisting of two superposed line-gratings, crossing each other at a non-

zero angle. Unless otherwise mentioned it will be assumed that a grid is 2-fold

periodic, and consists of two binary straight line gratings. Note that every grid can

be also seen as a screen (whose dot-elements are the spaces left between the lines

of the grid).

regular grid (or square grid) —

A 2-fold periodic grid composed of two superposed straight line-gratings that are

identical but perpendicular to each other.

curved grid —

A repetitive pattern obtained by applying a non-linear transformation on a periodic

grid (see Sec. 10.2). An example of a curved grid is shown in Fig. 10.2(b).

screen (or dot-screen; not to be confused with lattice or dot-lattice) —

A pattern consisting of dots. In most cases it will be assumed that a screen is

2-fold periodic, with a parallel, equally spaced arrangement of identical dots.
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regular screen —

A 2-fold periodic screen whose dot arrangement is orthogonal and whose periods

(or frequencies) to both orthogonal directions are equal.

curved screen —

A repetitive pattern obtained by applying a non-linear transformation on a periodic

screen (see Sec. 10.2). An example of a curved screen is shown in Fig. 10.2(b).

halftone screen —

A more relaxed case of a binary screen in which the size (and the shape) of the

screen dots may vary (typically, according to the gray level of a given original

continuous-tone image), while its frequency and direction remain fixed throughout.

Halftone screens are used in the printing world for the reproduction of continuous-

tone images on bilevel printing devices.

screen gradation (or wedge) —

A halftone screen whose screen dots vary gradually (in their size and possibly also

in their shape) across the image, generating a halftoned image with a smooth and

uniform tone gradation.

image (has nothing to do with the image of a transformation) —

The most general term we use to cover “anything” in the image domain. It may be

periodic or not, binary or continuous, etc. In principle, a monochrome (black-and-

white) image has reflectance (or transmittance) values that vary between 0 (black)

and 1 (white); similarly, a colour image has reflectance (or transmittance) values

varying between 0 and 1 for each wavelength λ of its colour spectrum.

opening (of a periodic binary grating or square wave) —

The length of the white span within the period of a periodic binary grating or

square wave (see Fig. 2.4).

opening ratio (of a periodic binary grating or square wave) —

The ratio τ/T between the opening τ and the period T of a periodic binary grating

or square wave (see Fig. 2.9(a)–(c)). Note that the opening ratio remains fixed

even when the periodic binary grating undergoes a non-linear coordinate

transformation.

spot function —

A function which defines the way the size and the shape of the dots in a given

halftone screen change as they grow from 0 to 100 percent coverage.

period (or repetition-period of a function p) —

A number T ≠ 0 such that for any x ∈ ,  p(x +T) = p(x). Note that the set of all the

periods of p(x) forms a lattice in . In the case of a 2-fold periodic function p(x,y),

a double period (or period parallelogram) of p(x,y) is any parallelogram A which
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tiles the x,y plane so that p(x,y) repeats itself identically on any of these tiles (see

also Sec. A.3.4 in Appendix A).

period-vector (of a periodic function p(x,y)) —

A non-zero vector P = (x0,y0) such that for any (x,y)∈ 2,  p(x + x0, y + y0) = p(x,y).

The set LP of all the period-vectors of p(x,y) forms a lattice in the x,y plane, which is

2D if p(x,y) is 2-fold periodic, 1D if p(x,y) is 1-fold periodic, and 0D, i.e.,

LP  = {(0,0)}, if p(x,y) is not periodic. If P1, P2 are two non-collinear period-vectors

of a 2-fold periodic function p(x,y), then for any point x ∈ 2 the points x, x + P1,

x + P2, x + P1+ P2 define a period parallelogram of p(x,y).

period-lattice (of a periodic function) —

The lattice formed by the set of all periods (or period-vectors) of the periodic

function (see Secs. A.2, A.3.4 in Appendix A).

step-vector (of a periodic function p(x,y)) —

See Sec. A.6 in Appendix A, and the use of step-vectors in Sec. 7.5.2.

periodic function —

A function having a period. Note that a 2D function p(x,y) can be 2-fold periodic

(such as p(x,y) = cosx + cosy) or only 1-fold periodic (such as p(x,y) = cosx).

almost-periodic function —

See Secs. B.3, B.5 in Appendix B.

aperiodic function (not to be confused with non-periodic function) —

A function which is not included in the class of almost-periodic functions. See Fig.

B.3 in Appendix B.

non-periodic function (not to be confused with aperiodic function) —

A function which is not included in the class of periodic functions. See Fig. B.3 in

Appendix B.

repetitive structure (or repetitive function) —

A structure (or a function) which is repetitive according to a certain rule, but which

is not necessarily periodic (or almost-periodic). For example: concentric circles;

gratings with logarithmic line-distances; screen gradations; etc. Note that such

structures are sometimes called in literature quasi-periodic (like in [Bryngdahl74

p. 1290]); however, we reserve the term quasi-periodic only to its meaning in the

context of the theory of almost-periodic functions (see Sec. B.5 in Appendix B).

coordinate-transformed structure —

A repetitive structure r(x,y) which is obtained by the application of a non-linear

coordinate transformation g(x,y) on a certain initial periodic structure p(x,y). More

formally, using vector notation:  r(x) = p(g(x)).  Curvilinear gratings (such as

parabolic or circular gratings) and gratings with a varying frequency (such as a
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grating with logarithmic line-distances) are examples of coordinate-transformed

structures.

profile-transformed structure —

A repetitive structure r(x,y) which is obtained by the application of a non-linear

transformation t(z) on the profile of a certain initial periodic structure p(x,y). More

formally, using vector notation:  r(x) = t(p(x)).  Screen gradations are an example

of profile-transformed structures.

coordinate-and-profile transformed structure —

A repetitive structure r(x,y) which is obtained from a certain initial periodic

structure p(x,y) by the application of both a non-linear coordinate-transformation

g(x,y) and a non-linear profile-transformation t(z). More formally, using vector

notation:  r(x) = t(p(g(x))).  An example of a coordinate-and-profile-transformed

structure is given in Remark 2 of Sec. 10.2.

intensity profile (of a structure r(x,y)) —

A function (surface) over the x,y plane that gives at any point (x,y) the intensity of

the structure r(x,y).

periodic profile (of a curvilinear grating, curved grid, etc.) —

The periodic profile of a curvilinear grating or a curved screen r(x,y) is defined as

the intensity profile of the original, uncurved periodic grating (or screen), before

the non-linear transformation has been applied to it (see Sec. 10.2). Examples of

curvilinear gratings with a cosinusoidal periodic profile are shown in Fig. 10.1;

examples with a square-wave periodic profile are shown in Fig. 10.8(left). Note

that in periodic structures the periodic profile coincides with the intensity profile.

normalized periodic profile (of a curvilinear grating, curved grid, etc.) —

See Sec. 10.2.

geometric layout (of a curvilinear grating, curved grid, etc.) —

The geometric layout of a curvilinear grating r(x,y) is the locus of the centers of its

curvilinear corrugations in the x,y plane; it is defined by the bending function of the

curvilinear grating (see Sec. 10.2). Similarly, the geometric layout of a curved grid

or a curved screen is defined by its two bending functions. Fig. 10.1 shows

curvilinear gratings with various geometric layouts; Fig. 10.2(b) shows a curved

screen whose geometric layout is given by two inverse hyperbolic sine functions.

bending function (of a curvilinear grating, curved grid, etc.) —

The bending function of a curvilinear grating r(x,y) = p(g(x,y)) is the non-linear

function x' = g(x,y) which bends the original, uncurved periodic grating p(x') into

the curvilinear grating r(x,y). The bending functions of a curved grid or a curved

screen r(x,y) = p(g1(x,y),g2(x,y)) are the two components x' = g1(x,y), y' = g2(x,y) of

the non-linear coordinate transformation g(x,y) = (g1(x,y),g2(x,y)) which bends the

original, uncurved periodic grid or screen p(x',y') into the curved structure r(x,y).
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We usually assume that the bending transformation is smooth (a diffeomorphism),

so that it has no abrupt jumps or other troublesome singularities.

local period (of a curvilinear grating, curved grid, etc.) —

The local period of a curvilinear grating (or curved grid) at a point (x,y) is the

period of the straight, periodic grating (or grid) which is defined by the tangents to

the curvilinear grating (or curved grid) at a small neighbourhood around the point

(x,y). In a periodic structure the local period is constant throughout the x,y plane,

and it equals the period of the structure.

zone grating (or zone plate) —

According to the classical definition, a zone grating is a circularly symmetric

grating which is obtained by drawing a family of concentric circles  x2
 + y2 = nr1

2,

n = 1,2,... (where the radius of the n-th circle is proportional to n:  rn = r1 n,  r1

being the radius of the central circle), and blackening alternate rings (zones)

between these circles. This construction implies that the surface areas of the central

circle and of each of the black or white rings which surround it are all equal.

According to this classical definition the periodic-profile of a zone grating is a

binary (black-and-white) square wave with opening ratio τ/T = 1/2. Such classical

zone gratings are called Fresnel zone plates, and they are often used in optics as

focusing devices which are based on diffraction [Baez61, Myers51] (just like

focusing lenses, that are based on refraction, or focusing mirrors, that are based on

reflectance). However, we prefer to use the term zone grating in a wider sense,

where the periodic-profile may have an opening ratio other than 1/2, or even where

the periodic-profile is not at all a binary square wave. For example, a zone grating

may have a cosinusoidal periodic-profile; such a zone grating is sometimes called a

Gabor zone plate [Chau69]. In fact, we extend the definition of a zone grating

even further, allowing also elliptic, hyperbolic and linear zone gratings

[Welberry76]; see Example 10.7 in Sec. 10.3.

D.3 Terms in the spectral domain

spectrum (or frequency spectrum; not to be confused with colour spectrum) —

The frequency decomposition of a given function, which specifies the contribution

of each frequency to the function in question. The frequency spectrum is obtained

by taking the Fourier transform of the given function.

visibility circle —

A circle around the spectrum origin whose radius represents the cutoff frequency,

i.e., the threshold frequency beyond which fine detail is no longer detected by the

eye. Obviously, its radius depends on several factors such as the viewing distance,

the light conditions, etc. It should be noted that the visibility circle is just a first-

order approximation. In fact, the sensitivity of the human eye is a continuous 2D
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bell-shaped function [Daly92 p. 6], with a steep “crater” in its center

(representing frequencies which are too small to be perceived), and “notches” in

the diagonal directions (owing to the drop in the eye sensibility in the diagonal

directions [Ulichney88 pp.79–84]).

frequency vector —

A vector in the u,v plane of the spectrum which represents the geometric location of

an impulse in the spectrum (see Sec. 2.2 and Fig. 2.1).

DC impulse —

The impulse that is located on the spectrum origin. This impulse represents the

frequency of zero, which corresponds to the constant component in the Fourier

series decomposition of the periodic image; the amplitude of the DC impulse

corresponds to the intensity of this constant component. This impulse is

traditionally called the DC impulse because it represents in electrical transmission

theory the direct current component, i.e., the constant term in the frequency

decomposition of an electric wave; we are following here this naming convention.

comb (or impulse-comb, Dirac-comb, impulse-train) —

An infinite train of equally spaced impulses located on a straight line in the

spectrum. Any 1-fold periodic function is represented in the spectrum by a comb

centered on the spectrum origin. The step and the direction of this comb represent

the frequency and the orientation of the periodic function; its impulse amplitudes,

which are given by the Fourier series development of the periodic function,

determine its intensity profile.

nailbed (or impulse-nailbed) —

An infinite 2D train of equally spaced impulses located in the spectrum on a

dot-lattice (either square-angled or skewed). Any 2-fold periodic function is

represented in the spectrum by an impulse nailbed centered on the spectrum origin.

The steps and the two main directions of this nailbed represent the frequency and

the orientation of the two main directions of the function’s 2D periodicity; the

impulse amplitudes, which are given by the 2D Fourier series development of the

periodic function, determine its intensity profile.

compound impulse —

An impulse in the spectrum which is composed of several distinct impulses that

happen to fall on the same location and hence “fuse down” into a single impulse.

The amplitude of a compound impulse is the sum of the amplitudes (real or

complex) of the individual impulses from which it is composed. See Sec. 6.4 in

Chapter 6.

compound comb —

A comb of compound impulses.
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compound nailbed —

A nailbed of compound impulses.

support (of a comb, a nailbed, a spectrum, etc.) —

The set of the geometric locations on the u,v plane of all the impulses of the

specified comb, nailbed, or spectrum.

lattice (or dot-lattice; not to be confused with screen or dot-screen) —

An algebraic structure, subset of n; see definition 5.1 in Sec. 5.2.1. Note that our

definition is narrower than the classical definition of a lattice in algebra textbooks

such as [Jacobson85 pp. 457–459]; it rather corresponds to a lattice (or a lattice of

points) in geometry of numbers [Cassels71 p. 9], or a lattice in crystallography.

However, any lattice by our definition is indeed a lattice also in the larger sense.

frequency lattice (of a periodic function) —

The lattice formed by the set of all the integer linear combinations of the

fundamental frequency(ies) of a periodic function, in the spectral domain. It is the

reciprocal lattice of the period-lattice in the image domain (see Sec. A.4 in

Appendix A).

reciprocal lattice (or dual lattice) —

See Appendix A, Sec. A.4.

module (or -module; has nothing to do with the module of a complex number) —

An algebraic structure, subset of n; see definition 5.2 in Sec. 5.2.1. Note that our

definition is narrower than the classical definition of a module in algebra textbooks

such as [Lang78 pp. 127–128]; however, any module by our definition is indeed a

module also in the larger sense.

cluster (or impulse-cluster; has nothing to do with clusters in halftoning) —

A subset (either a lattice or a module) of impulse-locations in the spectrum support

which collapse down, at a given singular state, into a single point in the spectrum.

Algebraically, each cluster contains all points (impulses) which belong to one

equivalence class in the singular state, and to each equivalence class there

corresponds a cluster in the spectrum (see Chapter 5). As the superposed layers

move away from the singular state, each cluster spreads-out in the spectrum. The

impulse cluster which is generated around the spectrum origin (which belongs to

the equivalence class of 0) has a particular significance, since it represents the

spectrum of the isolated (extracted) moiré in question.

line-impulse —

A generalized function which is impulsive along a 1D line through the plane, and

null everywhere else. A line-impulse can be graphically illustrated as a “blade”

whose behaviour is continuous along its 1D line support but impulsive in the

perpendicular direction. As an example, the spectrum of a parabolic cosinusoidal

grating consists of two parallel line-impulses (see Example 10.5 in Sec. 10.3).
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Note that the amplitude of a line-impulse does not necessarily die out away from

its center, and it may even rapidly oscillate between two constant values.

compound line-impulse —

A line-impulse in the spectrum which is composed of several distinct line-impulses

that happen to fall on the same 1D line and hence “fuse down” into a single line-

impulse. Note that the center (skeleton location) of each of the individual line-

impulses may be found in a different point along their common support. The

amplitude of a compound line-impulse is the sum of the amplitudes (real or

complex) of the individual line-impulses from which it is composed.

curvilinear impulse —

A generalized function which is impulsive along a 1D curvilinear path through the

plane, and null everywhere else. A curvilinear impulse can be graphically illustrated

as a curvilinear “blade” whose behaviour is continuous along its 1D curvilinear

support but impulsive in the perpendicular direction.

hump —

A 2D continuous surface, often bell-shaped, elliptic or hyperbolic, which is defined

around a given center on the plane. For example, the convolution of two non-

parallel line-impulses gives a hump (see Sec. 10.7.3 and Fig. 10.13). Note that the

amplitude of a hump does not necessarily die out away from its center, and in

some cases it may even rapidly oscillate between two constant values.

wake —

A 2D continuous surface which trails off from an impulsive element (line-impulse,

curvilinear impulse, etc.), gradually dying out as it goes away from the impulsive

element in question. The amplitude of the wake may be considered as negligible

with respect to that of its generating impulsive element. As an example, the

spectrum of the cosinusoidal circular grating cos(2π  f x2  +  y 2 ) is a circular

impulse ring of radius f, with a particular dipole-like impulsive behaviour on the

perimeter of the circle and a negative, continuous wake which gradually trails off

toward the center (see Example 10.6 in Sec. 10.3 and Fig. 10.4(d)).

local frequency (of a curvilinear grating, curved grid, etc.) —

The local frequency of a curvilinear grating (or curved grid) at a point (x,y) is the

frequency of the straight, periodic grating (or grid) which is defined by the

tangents to the curvilinear grating (or curved grid) at a small neighbourhood

around the point (x,y). In a periodic structure the local frequency is constant

throughout the x,y plane, and it equals the frequency of the structure. See also

Remark 10.4 in Sec. 10.2, and Sec. 11.4.

internal discrepancy —

The distance between the centers (skeleton locations) of two consecutive line-

impulses in a cluster of line-impulses which has collapsed on a common line to
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form a compound line-impulse; see Sec. C.8 in Appendix C. If all the individual

line-impulses are collapsed with a common center, the internal discrepancy of the

compound line-impulse is zero. One may also define by analogy the internal

discrepancy of a cluster of humps as the distance between the centers (skeleton

locations) of two consecutive humps of the cluster.

skeleton —

According to the gradual transition approach (see Sec. 10.4.1) we may often think

of a line-impulse cluster, a hump-cluster etc. as originating from an impulse-cluster

whose impulses have “leaked out” or “melted down” to form the line-impulses

or humps in question. This impulse-cluster is called the skeleton of the line-

impulse cluster (or of the hump cluster). See, for example, Sec. 10.7.3.

skeleton location (or center of a line-impulse, a hump, etc.) —

The location in the spectrum of the skeleton-impulse which “leaked out” to give

the line-impulse or hump in question.

impulsive spectrum —

A spectrum which only consists of impulses, i.e., whose support consists of a

finite or at most denumerably infinite number of points. All periodic and almost-

periodic functions have impulsive spectra.

line-spectrum —

A spectrum which consists of line impulses (see, for example, Fig. 10.11).

hybrid spectrum —

A spectrum which contains any combination of impulses, line-impulses and

continuous humps (as opposed to a purely impulsive spectrum, a purely line-

spectrum or a purely continuous spectrum). See, for instance, Example 10.14 of

Sec. 10.7.4 and Fig. 10.13.

singular support (of a spectrum, etc.; distinguish from a singular locus of a moiré) —

The subset of the spectrum support over which the spectrum is impulsive. The

singular support of a given spectrum includes the support of all the impulsive

elements which are included in the spectrum (impulses, line-impulses, etc.), but not

the support of continuous elements such as humps or wakes.

D.4 Terms related to moiré

moiré effect (or moiré phenomenon) —

A visible phenomenon which occurs when repetitive structures (such as line-

gratings, dot-screens, etc.) are superposed. It consists of a new pattern which is

clearly observed in the superposition, although it does not appear in any of the

original structures.
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(k1,...,km)-moiré —

The 1-fold periodic structure in the image domain which corresponds to the

(k1,...,km)-comb in the spectrum convolution (the spectrum of the superposition);

see Sec. 2.8. In other words, this is the moiré which is generated due to the

interaction between the ki harmonic frequencies of the respective layers in the

superposition. This moiré may be visible if at least its fundamental impulse, the

(k1,...,km)-impulse, is located inside the visibility circle.

singular moiré (or singular state, singular superposition) —

A configuration of the superposed layers in which the period of the moiré in

question becomes infinitely large (i.e., its frequency becomes 0), and hence it can

no longer be seen in the superposition. Singular moirés are unstable moiré-free

states, since any slight deviation in the angle or frequency of any of the superposed

layers may cause the moiré in question to “come back from infinity” and to

reappear with a large, visible period. Formally, we say that a (k1,...,km)-moiré

reaches a singular state whenever the geometric location of its fundamental

impulse, the (k1,...,km)-impulse in the spectrum convolution, falls on the spectrum

origin (0,0) (i.e., whenever the frequency vectors f1,...,fm which define the

superposed layers are linearly dependent over : ∑kifi = 0). Note that every

(k1,...,km)-moiré can be made singular by sliding the vector-sum ∑kifi to the

spectrum origin, namely: by appropriately modifying the vectors f1,...,fm (or the

frequencies and angles of the superposed layers).

stable moiré-free state —

A moiré-free configuration of the superposed layers in which no moiré becomes

visible even when small deviations occur in the angle or frequency of any of the

layers (see Fig. 2.8).

unstable moiré-free state —

A moiré-free configuration of the superposed layers in which any slight deviation

in the angle or frequency of any of the layers causes the reappearance of a moiré

with a large, visible period (see Fig. 2.8). Any singular state is an unstable moiré-

free state.

combined-moiré (or composite-moiré) —

A 2D moiré which is combined of two or more (k1,...,km)-moirés. See Sec. 2.8.

moiré profile (or moiré intensity profile; moiré intensity surface) —

A function (surface) which defines the intensity level of the moiré at any point of

the image (see Secs. 2.10 and 4.1).

macrostructure, microstructure (within a superposition) —

The superposition of two or more layers (gratings, screens, etc.) may generate new

structures which appear in the superposition but not in the original layers. These

new structures can be classified into two categories: the macrostructures, i.e., the
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moiré effects proper, which are much coarser than the detail of the original layers;

and the microstructures, i.e., the tiny geometric forms which are almost as small as

the periods of the original layers, and are normally visible only from a close

distance or through a magnifying glass (see Chapter 8).

rosettes —

The various tiny flower-like shapes which are often present in the microstructure

of dot-screen or grid superpositions.

singular locus of a moiré (not to be confused with singular support in the spectrum) —

The locus in the image domain (a point, a straight line, a curve etc.) along which a

moiré between curved, repetitive layers is singular. Along this singular locus the

moiré locally disappears to the eye, its local period there being infinitely large. But

at any other point of the x,y plane outside this singular locus the moiré in question

has a finite local period, which gradually decreases as one moves away from the

singular locus. For example, the singular locus of the moiré shown in Fig.

10.18(c) is a straight line which coincides with the x axis. Note that the singular

locus of any moiré between periodic layers consists of the entire x,y plane.

moiré eyelet (or eye-shaped moiré) —

A moiré effect whose singular locus consists of a single point. The moiré eyelet is

centered on its singular locus point, where its local period is infinitely large, and

around this point its frequency gradually increases in all directions until it exceeds

the resolving power of the eye and disappears. See, for example, the moiré eyelets

in Fig. 10.14(a).

additive / subtractive moiré (not to be confused with additive superposition) —

Classical terms often used in literature to designate moirés which are generated by

frequency sums or frequency differences, respectively, in the spectrum. For

example, the (1,-1)-moiré is subtractive, while the (1,1)-moiré is additive. Note,

however, that these terms cannot be generalized to more complex cases such as the

(1,1,-1)-moiré between three gratings. These terms are mostly useful in the

superposition of two curvilinear gratings, where both the additive and the

subtractive moiré are often observed simultaneously, each of them having a

different shape and location (see, for example, Fig. 10.31). In this case the most

convenient way to define them is based on their indicial equations (see Sec. 11.2):

the additive moiré is the system of moiré fringes which corresponds to the indicial

equation m  + n = p, while the subtractive moiré is the system of moiré fringes

which is selected by the indicial equation m – n = p.

D.5 Terms related to light and colour

colour spectrum (not to be confused with frequency spectrum) —

The wavelength decomposition of a given light,  which specifies the contribution of
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each visible light wavelength λ (approximately between λ = 380 nm for violet and

λ = 750 nm for red) to the given light. The colour spectrum determines the visible

colour of the light in question.

monochrome (or black-and-white; not to be confused with monochromatic) —

Achromatic light, image, etc. involving only black, white and all the intermediate

gray levels. The colour spectrum of an ideal monochrome light is flat, i.e., it has a

constant value (between 0 and 1) for all wavelengths λ of the visible light.

monochromatic (not to be confused with monochrome) —

Chromatic light, image, etc. involving only a single pure wavelength λ of the visible

light. The colour spectrum of an ideal monochromatic light consists of a single

impulse of intensity 1 at the wavelength λ.

reflectance (or reflectance function) —

A function r(x,y) which assigns to any point (x,y) of a monochrome image viewed

by reflection a value between 0 and 1 representing its light reflection: 0 for black

(or no reflected light), 1 for white (or full light reflection), and intermediate values

for in-between shades. More formally, reflectance is defined at any point (x,y) as

the ratio of reflected to incident radiant power [Wyszecki82 p. 463].

transmittance (or transmittance function) —

A function r(x,y) which assigns to any point (x,y) of a monochrome image viewed

by transmission (such as a transparency, a film, etc.) a value between 0 and 1

representing its light transmission: 0 for black (or no transmitted light), 1 for white

(or full light transmission), and intermediate values for in-between shades. More

formally, transmittance is defined at any point (x,y) as the ratio of transmitted to

incident radiant power [Wyszecki82 p. 463].

chromatic reflectance (or chromatic reflectance function) —

A function r(x,y;λ) which assigns to any point (x,y) of a colour image viewed by

reflection its full colour spectrum. In other words, it gives for every wavelength λ
of the visible light (approximately between λ = 380 nm and λ = 750 nm) a value

between 0 and 1, which represents the reflectance of light of wavelength λ at the

point (x,y) of the image. This is a straightforward generalization of the reflectance

function r(x,y) in the monochrome case.

chromatic transmittance (or chromatic transmittance function) —

A function r(x,y;λ) which assigns to any point (x,y) of a colour image viewed by

transmission its full colour spectrum. In other words, it gives for every wavelength

λ of the visible light (approximately between λ = 380 nm and λ = 750 nm) a value

between 0 and 1, which represents the transmittance of light of wavelength λ at the

point (x,y) of the image. This is a straightforward generalization of the

transmittance function r(x,y) in the monochrome case.
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D.6 Miscellaneous terms

binary (grating, etc.) —

A structure which contains only two transmittance (or reflectance) levels: 0 and 1.

discrete —

A subset D of n is called discrete if there exists a number d > 0 so that for any

points a,b∈D the distance between a and b is larger than d. Note, however, that the

term discrete is also used (often carelessly) as the opposite of continuous. For

example: discrete spectra (including everywhere dense spectra of almost-periodic

functions!) vs. continuous spectra in [Champeney87 pp. 109–114]; or in our own

case, the discrete mapping Ψ vs. the continuous mapping Φ, in Sec. 5.5.

dense (or everywhere dense; has nothing to do with the term density below) —

A subset S of n is called dense or everywhere dense in n if [S] = n, where [S]

denotes the closure of S, i.e., the set containing S and all its limit points

[EncMath88 Vol. 3 p. 434]. Note that a dense subset of n is not necessarily

continuous; for example, the set  of all rational numbers is everywhere dense in

 but nowhere continuous.

density (has nothing to do with the term dense above) —

A representation of reflectance (or transmittance) values in logarithmic terms (see

Fig. 2.9). This representation corresponds better to human visual perception due to

the rather logarithmic nature of the eye’s sensibility to light intensity [Pratt91 pp.

27–29]. Also called reflection density (or transmission density), or more generally:

optical density [Rosenfeld82 p. 4].

scaling (of a comb, nailbed, etc.; not to be confused with spreading-out / squeezing) —

We distinguish between amplitude scalings, and period or frequency scalings (in

which the expansion or contraction occurs along the x,y axes in the image, or the

u,v axes in the spectrum).

squeezing / spreading-out (of an impulse cluster; not to be confused with scaling) —

We reserve these terms only to lateral (or spatial) contractions or expansions in the

geometric locations of the cluster impulses when the superposed layers approach

or move away from a singular state (see Sec. 5.6.3). A cluster can be squeezed

towards its “center”, or spread-out from the “center” outwards.

commensurable (or commensurate) —

Two vectors v1,v2 ∈ n (or real numbers in ) are called commensurable if there

exist non-zero integers m,n for which v2 = m
n  v1 (so that both v1 and v2 can be

measured as integer multiples of the same length unit, say 1
nv1). Note that two

numbers x,y ∈  are commensurable iff their ratio x/y is rational. More generally, k

vectors v1,...,vk ∈ n (or real numbers in ) are called commensurable if they are

linearly dependent over  (which is identical to linear dependence over ).
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incommensurable (or incommensurate) —

Two vectors v1,v2 ∈ n (or real numbers in ) are called incommensurable if

there do not exist non-zero integers m,n so that v2 = m
n  v1. Note that two numbers

x,y ∈  are incommensurable iff their ratio x/y is irrational. More generally, k

vectors v1,...,vk ∈ n (or real numbers in ) are called incommensurable if they

are linearly independent over  (which is identical to linear independence over ).

vector (or point in a vector space) —

An element of the vector space in question ( n, the u,v plane, etc.). We always

consider vectors as radius-vectors attached to the origin, and we do not distinguish

between a vector and a point in the vector space (=  the end point or the head of the

vector).

phase (of a periodic function, a moiré, etc.) —

See Appendix C Sec. C.4 and Chapter 7 Secs. 7.1–7.5.

geometry of numbers (or geometric number theory) —

A branch of number theory, initiated by Minkowski in 1896, that studies number-

theoretical problems by the use of geometric methods [EncMath88 Vol. 4 pp.

267–271]. One of the distinctive characteristics of geometry of numbers is that it

combines concepts from both continuous and discrete mathematics: it studies

properties which come from the realm of continuous mathematics (like volume,

area, etc.) in relation to lattices, which are discrete objects [Kannan87 p. 2]. A

typical task of this theory is the problem of finding the minimum of some real

function f(x1,...,xm) where (x1,...,xm) are restricted to integral points (i.e., to points of

the lattice m), normally with some supplementary condition, such as

(x1,...,xm) ≠ 0. The main concepts we use from the theory of geometry of numbers

(see Chapter 5) are the restriction of the continuous linear mapping Φ (which is

defined on m) into its counterpart Ψ which is only defined on integral points, i.e.,

on m (see Secs. 5.3–5.5); the investigation of their kernels and images and the

interrelations between their ranks over  and over ; and the notions of lattice and

module (which are already bordering on algebra).

diffeomorphism —

A diffeomorphism (in our case, on 2) is a one-to-one continuously differentiable

mapping of 2 onto itself whose inverse mapping is also continuously differen-

tiable.

chirp (or chirp signal) —

An oscillatory signal with an increasing (or decreasing) oscillation rate. For

example,  cos(ax2)  is a 1D chirp signal, and  cos(ax2 + by2)  is a 2D chirp signal.

equivalent grating number —

The number m of virtual gratings in a given superposition (where each 2D dot-

screen or line-grid contributes two virtual gratings). See Sec. 2.12 in Chapter 2.
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virtual gratings (or grating equivalents) —

See Sec. 2.12 and Sec. 7.5.2.

separable function (of two variables) —

A function f(x,y) is said to be separable if it can be presented as (or separated into)

a product of a function of x and a function of y:  f(x,y) = g(x)·h(y) [Gaskill78 pp.

16–17; Cartwright90 p. 117]. Note, however, that we use this term in a slightly

larger sense: A 2D function f(x,y) is separable if it can be presented as a product of

two independent 1D functions. Therefore, although  f(x,y) = g(x)·h(y)  may no

longer be separable (in the narrower sense) after it has undergone a rotation or a

skewing transformation, we will still consider it as separable (with respect to the

rotated or skewed axes x' and y':  f(x',y') = g(x')·h(y')).

inseparable function (of two variables) —

A function that is not separable. For example, the function representing a square

white dot is separable: rect(x,y) = rect(x)·rect(y), while the function representing a

circular white dot is inseparable. See also Sec. 2.12.

spatially separable (not to be confused with a separable function) —

Two functions F(u,v) and G(u,v) in the spectrum are called spatially separable if

their supports in the u,v plane are not overlapping. Spatially separable elements in

the spectrum can be separated and extracted by means of filtering, i.e., by

multiplying the spectrum with an appropriate 2D low-pass or band-pass filter (see,

for example, Fig 10.22).

spatially inseparable (not to be confused with an inseparable function) —

Two functions F(u,v) and G(u,v) in the spectrum are called spatially inseparable if

their supports in the u,v plane are at least partially overlapping. Spatially

inseparable elements in the spectrum cannot be separated or extracted by

multiplying the spectrum with 2D low-pass or band-pass filters (see, for example,

Fig 10.27).

dots per inch (dpi) (or dots per centimeter; not to be confused with lines per inch) —

A term used to specify the resolution of a digital device such as a printer, a scanner,

etc. For example, a device whose resolution is 300 dpi can only address points on

an underlying pixel-grid whose period is 1/300 of an inch, and no in-between

points or pixel-fractions can be addressed. Some devices have different resolutions

in the horizontal and in the vertical directions.

lines per inch (lpi) (or lines per centimeter; not to be confused with dots per inch) —

A term used to specify the frequency of gratings, dot-screens, etc. This term

specifies the number of periods per inch. For example: the finest grating that can

be produced on a 300 dpi device, namely: a sequence of alternating one-pixel wide

black and white lines, is a grating of 150 lpi (since one period consists here of two

device pixels).
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1D —

One dimensional (layer, periodicity, spectrum, impulse comb, etc.). Strictly, a one

dimensional entity is an entity that has only one dimension (such as a straight

line). However, by abuse of language we often use this term to designate a 2D

entity that only varies along one dimension, while its other dimension is constant.

For example, we say that an impulse comb such as in Fig. 2.5(d) or 2.5(e) is 1D,

even though it subsists in the 2D u,v spectrum, because it varies only in one

dimension, while in the orthogonal direction it remains constantly zero. Similarly,

we often say that a 1-fold periodic structure such as a line grating (see, for

example, Fig. 2.5(a) or 2.5(b)) is a 1D structure, even though it actually spreads in

the 2D x,y space, because it only varies along one dimension but remains constant

along the orthogonal direction (i.e. along the individual grating lines). Such a 1D

periodic layer is, in fact, a constant extension of a really one-dimensional structure

(such as a square wave) into the second dimension. Note that we sometimes use

the terms “1D periodic” and “1-fold periodic” interchangeably as synonyms.

2D —

Two dimensional (layer, periodicity, spectrum, impulse nailbed, etc.). Strictly, any

entity that has two dimensions, including a 1-fold periodic structure such as a line

grating, is a 2D layer. However, by abuse of language we often use this term

to designate a 2D entity that indeed varies along two dimensions. For example,

we say that a structure such as a line grid or a dot screen is a 2D layer,

because it varies along two dimensions. Note that we sometimes use the terms

“2D periodic” and “2-fold periodic” interchangeably as synonyms.

domain / range transformation —

Any image r(x,y) (or function r: 2 → ) can undergo two types of coordinate

transformations: Either a transformation of its domain, r(x,y) |→ r(g(x,y)), or a

transformation of its range, r(x,y) |→  t(r(x,y)). As explained in Sec. D.6 of

Appendix D in Vol. II, in the first case g(x,y) is applied as an inverse transfor-

mation, while in the second case t(x) is used as a direct transformation. Similarly,

any mapping f(x,y), f: 2 → 2, can undergo two types of coordinate transfor-

mations: Either a transformation of its domain , f(x,y) |→  f(g(x,y)), or a

transformation of its range, f(x,y) |→ g(f(x,y)). Again, in the first case g(x,y) is

applied as an inverse transformation, while in the second case it is used as a direct

transformation.

direct / inverse transformation (or direct / inverse mapping) —

The mathematical terms used to designate a mapping (geometric transformation) g

and its inverse g–1. We have, therefore, g ( g–1(x,y)) = g–1(
 

g(x,y)) = (x,y). Note that

the designations direct and inverse are interchangeable, and they depend on our

point of view; thus, if we focus our attention to the mapping h = g–1, we may

consider h  as the direct mapping and h–1 = (g–1)–1 = g as its inverse. For

example, if g(x,y) = (2x,2y) then g–1(x,y) = (x/2,y/2); and if g(x,y) = (x/2,y/2) then
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g–1(x,y) = (2x,2y). Note that the similar terms direct / inverse transforms are

reserved to operators that act on functions, such as the Fourier transform.



List of notations and symbols

This list consists of the main symbols used in the text. They appear with a very brief

description and a reference to the page in which they are first used or defined. Obvious

symbols such as ‘+’, ‘–’, etc. have not been included.

Symbol Short description      Page

x, y The coordinates (axes) of the image plane                            10

u, v The coordinates (axes) of the spectral plane                            10

x', y' Rotated coordinates (axes) in the image plane                      380

p(x) A 1D periodic function                      375

p(x,y) A 2D periodic function                      378

p(x) The vector notation for p(x,y)                      379

P(u) The spectrum of p(x)                      377

P(u,v) The spectrum of p(x,y)                      379

P(u), P(f) The vector notation for P(u,v)                      380

r(x) A 1D reflectance (or transmittance) function                            21

r(x,y) A 2D reflectance (or transmittance) function                            10

R(u) The spectrum of r(x)                            22

R(u,v) The spectrum of r(x,y)                            11

d(x,y) A single dot (of a dot-screen)                            44

D(u,v) The spectrum of d(x,y)                            44

* 1D convolution (or T-convolution)                            86

* * 2D convolution (or T-convolution)           11, 95

θ, θ1, ... Angles of superposed layers           12, 18

α, β, γ Angle differences between superposed layers                            20, 68–69
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ϕ
M

Angle of a moiré effect           18, 20

α → 0° The angle difference α tends to 0°                      156

f,  f1, ... Frequencies of 1D periodic functions p(x), p1(x), ...                            12

fM Frequency of a moiré effect                            20

T, T1, ... Periods of 1D periodic functions p(x), p1(x), ...                            18

TM Period of a moiré effect                            20

P1, P2 Period-vectors                      381

T1, T2 Step-vectors                      393

P, F Matrices                      390

P–T The inverse transpose of matrix P                      390

a, b, r, s, t Real numbers (sometimes also used as integer numbers)                      169

a, b, r, t, w Vectors                      171

i, j, k, l, m, n Integer numbers                            33

i (In complex numbers): the imaginary unit, –1                            10

an, bn, cn, dn Fourier series coefficients; impulse amplitudes                       21, 23, 376

The set of all integer numbers (positive, negative, and 0)                      110

The set of all rational numbers                      113

The set of all real numbers                      110

The set of all complex numbers                      412

n The n-dimensional integer lattice                      110

n The n-dimensional Euclidean space                      110

L A lattice                      110

M A module                      110

rank M The rank of M (also denoted: rank M)                      111

rank M The integral rank of M                      111

f1,...,fm Frequency vectors in the u,v plane of the spectrum           12, 28
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v1,...,vm Vectors in n
                     110

Sp(v1,...,vm) The set of all linear combinations of v1,...,vm                      112

Md(v1,...,vm) The set of all integral linear combinations of v1,...,vm                      112

V, W Vector spaces                      115

dim V Dimension of vector space V                      117

Φ : V → W A linear transformation from vector space V to vector space W                      115

ImΦ The image of transformation Φ                      115

KerΦ The kernel of transformation Φ                      115

Ψf1,...,fm The discrete linear transformation from m to Md(f1,...,fm)                                 114–115

Φ f1,...,fm The continuous extension of Ψf1,...,fm                      115

Re[ ] The real-valued part of a complex entity                          253, 412

Im[ ] The imaginary-valued part of a complex entity                          253, 412

Abs[ ] The magnitude of a complex entity                      412

Arg[ ] The phase of a complex entity                      412

U A subspace of the vector space V                      116

V/U The quotient space of V modulo U                      117

0 The number zero                            37

0 The zero vector                            37

(u,v) The Cartesian coordinates of the frequency vector f                            12

(f,θ) The polar coordinates of the frequency vector f                            12

a·b Multiplication                            20

v·w Scalar product of two vectors                      181

v×w Vector product of two vectors                                 387–388

v–1 The reciprocal vector of v                      393

τ Opening (white width) of a binary grating or a square wave                            21

τ /T Opening ratio of a binary grating or a square wave                            23
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τε ε-almost-period of an almost-periodic function                      396

ε An arbitrarily small, positive real number                      396

|a| The absolute value of the number a (real or complex)                            21

|v| The length (= Euclidean norm) of the vector v                      388

v||w v is parallel to w                      384

v⊥w v is perpendicular to w                      384

proj(v)w The projection of v on w                      389

inf
a<x<b

f(x) Infimum (greatest lower bound) of f(x) within (a,b) ⊂                      399

F(u,v) = F [f(x,y)] F(u,v) is the Fourier transform of f(x,y)                            17

f(x,y) = F –1[F(u,v)] f(x,y) is the inverse Fourier transform of F(u,v)                            91

f(x,y) ↔ F(u,v) f(x,y) and F(u,v) are a Fourier pair                      259

~ Is Fourier series of ...                      429

≈ Approximately equal                            29

m The number of superposed gratings (or grating equivalents)           26, 46

(k1,...,km) An index-vector: an m-tuple of integers (= a point in m)                            30

fk1,...,km
The frequency-vector of the (k1,...,km)-impulse                            32

ak1,...,km
The amplitude of the (k1,...,km)-impulse                            32

(k1,...,km)-moiré The 1D moiré corresponding to the (k1,...,km)-comb                            34

{k1,...,km}-moiré A family of moirés                            35

mk1,...,km
(x) The isolated (extracted) (k1,...,km)-moiré     91, 162

Mk1,...,km
(u) The spectrum of the isolated (k1,...,km)-moiré           91, 94

δ(u) The impulse symbol                            23

δ(u,v) The 2D impulse symbol                      379

rect(x) A square pulse: 1 in the range –0.5 ≤ x ≤ 0.5,  and 0 elsewhere                            21

rect(x,y) A 2D square pulse: 1 in the range –0.5 ≤ x,y ≤ 0.5,  and 0 elsewhere                        44

sinc(x) sin(πx)
πx

  for x ≠ 0,  and 1 for x = 0                            22
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a mod b The remainder of the integer division of a by b                      169

φ The period-shift of p(x)                      169

|o| The period-shift of p(x)                      172

ϕ Phase increment (in the sense of complex numbers)                                 413–417

ξ Period-coordinate                      211

Ξ(x,y) Period-coordinate function                      215

g(x,y) A 2D coordinate transformation                      256

f(x,y) Local frequency vector                      364

∀ For all ...                            21

p End of example, proof, etc.                            22

List of abbreviations

Symbol Short description      Page

1D 1-dimensional                      123

2D 2-dimensional     10, 123

1D-L A 1D lattice                                 122–123

1D-M A 1D module                                 122–123

2D-L A 2D lattice                                 122–123

2D-M A 2D module                                 122–123

CMYK The four process ink colours: Cyan, Magenta, Yellow, blacK                            60

RGB The three colour display primaries: Red, Green, Blue                                  235, 243

DC The impulse at the spectrum origin (i.e., at frequency zero)                            12



508 List of abbreviations

DFT Discrete Fourier transform                            99

FFT Fast Fourier transform                                        84, 100

dpi Dots per inch (printer resolution)                      448

lpi Lines per inch (frequency of a grating or a screen)                     448

iff If and only if                      111
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Index

Page numbers followed by the letter “g” indicate entries in the glossary (Appendix D).

A

additive colour combination, 239

additive composition of colour spectra, see

under colour spectra

additive moiré, 17, 52, 300, 355, 496g

additive superposition, see under superposition

rules

affine transformation, 190, 476–477

algebraic approach, see under approaches for

investigating moiré phenomena

algebraic structure of the spectrum, 109–153,

159

aliasing, 48–50

DFT artifact, 64, 104, 271

almost-period, 398, 401

almost-periodic function, 90, 150–151, 395–407,

488g

spectrum of, 395–407

amplitude modulation (AM), 17, 53–54

anti-counterfeiting, see applications of moiré

phenomena: document security

aperiodic function, 405, 488g

applications of moiré phenomena, 1

art, 1

crystallography, 1

document security (authentication, anti-

counterfeiting), 1, 106–107, 188–190, 

248, 351, 433

flatness analysis, 57

generating the contour plot of a deformation

(or a function), 362, 370–371

generating the contour plot of derivatives of

a deformation (or a function), 372

halftone screen meter (halftone tester), 351

latent images, 187–189

kinematics, 187

magnification checking, 58

magnification of angles, 56, 58

magnification of curvilinear gratings, 371, 

373

magnification of deformations (or 

distortions), 56–58, 371, 373

magnification of displacements (or shifts), 

179, 186, 190

magnification of periods, 56, 58

magnification of screens, 96–99, 104

magnification of velocity, 187

measuring in-plane deformations, 56

measuring out-of-plane deformations, 57

measuring small angles, 56

measuring small displacements, 179, 186

measuring small periods, 56

measuring the diopter of optical lenses, 58

measuring the refractive index, 186–187

measuring velocity, 187

metrology, 1

modelling of physical phenomena, 351–352

moiré deflectometry, 57

moiré interferometry, 57

moiré refractometry, 186–187

moiré topography, 57

optical alignment (precision alignment), 1, 

179, 186, 374

Scrambled Indicia®, 189

screen tester, 351

shadow moiré, 57

strain analysis, 1, 56

testing lenses, 57–58

vibration analysis, 57

approaches for investigating moiré phenomena:

algebraic approach, 2, 9

approximation using the first harmonic, 

360–363

geometric approach, 2, 9
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indicial equations, 9, 353–360, 370–374

local frequency method, 363–369

non-standard analysis, 2, 9, 87, 97, 329, 348

spectral, Fourier-based approach, 2–3, 9–15, 

51–52, 233, 236–241, 249, 282–283, 

348, 353, 359–360, 369, 433–448

authentication, see applications of moiré

phenomena: document security

auto moiré, 432

B

basis, 110–112

see also integral basis

bending rate, 251

bending function, 250, 252, 489–490g

Besicovitch almost-periodic function, 402

binary, 498g

grating, see under grating

image, 15

square wave, see square wave

blade, see line-impulse

Bohl almost-periodic function, 402

Bohr almost-periodic function, 402

C

Cartesian coordinates, see under coordinates

Cartesian ovals, 373–374

Cauchy’s diagonal summation, 156–157, 431

chirp, 423–425, 499g

chromatic reflectance function, 237, 497g

chromatic transmittance function, 237, 497g

clear-centered rosettes, see under rosettes

cluster, 35, 90–93, 109, 123–126, 126–148,

151–153, 492g

collapsing (of a cluster, etc.), 91, 117–118, 120,

126–145, 152–153, 289–290, 420

colorimetric stability of screen superpositions,

248

colorimetry, 233–236

colour, 234–236

physical aspects of, 234–235

physiological aspects of, 235–236

colour combination:

additive, 239

subtractive, 238

colour moiré, 106, 233–248

colour printing, 60–64, 248

see also screen combinations for colour

printing

colour separation, see colour printing

colour spaces:

CIE L*a*b*, 235

CIE tristimulus XYZ, 235

RGB, 235

colour spectra, 234–241, 496–497g

additive composition of, 239–241, 243–245

multiplicative composition of, 237–238, 241,

243–245

colour theory, 234–236

colour vision, 234–236

comb, 23–25, 28, 32, 33, 491g

combined moiré, see under moiré

commensurable, 113, 157, 159, 396, 498g

complementary gratings, 55

composition of colour spectra, see under colour

spectra

compound:

comb, 153, 491g

impulse, 26, 32, 153, 163, 194, 204, 491g

line-impulse, 290, 294, 420–423, 493g

nailbed, 153, 492g

conformal transformation (or mapping), 256

constructive interference, 352

content moiré, see screening moiré

contour lines, see level lines

contour plot, see applications of moiré

phenomena: generating the contour plot

of a deformation; moiré topography

contrast, see perceptual contrast

convolution, 11, 16, 89

of combs, 24, 241, 283

of impulsive spectra, 16, 20

of line-impulses, 290–292, 419–420

of nailbeds, 41, 46, 90

vs. T-convolution, 86, 104

convolution theorem, 11, 237

coordinate-and-profile transformed structure,

250, 257, 489g

coordinate transformation, 256

affine, 258–259

defined by an implicit function, 351

influence on the spectrum, 258–264

non-linear, 259–264

polar to Cartesian, 262–263

coordinate-transformed structure, 250–258, 488g

coordinates:

Cartesian, 12, 18, 262–263, 381

polar, 12, 18, 262–263, 381

cosinusoidal grating, see under grating

counter-phase, 196–199, 219–223, 415

counterfeit deterrents, see applications of moiré

phenomena: document security

curved grid, 250, 252–257, 278–279, 486g

curved screen, 250, 252–257, 278–279,

281–282, 337–343, 487g

curvilinear grating, 250–252, 264–274, 275–

278, 279–281, 329–337, 486g

naming conventions for, 251
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curvilinear impulse, 493g

cutoff frequency, 13, 74

cyclic convolution, see T-convolution

D

DC impulse, 12, 17, 18, 30, 38, 91, 491g

deconvolution, 107–108

deflectometry, see applications of moiré

phenomena: moiré deflectometry

deformations, see various entries under

applications of moiré phenomena

dense, 90, 111–113, 146, 498g

relatively, 398

density, 39–40, 99, 498g

on the different meanings of the term, 433

Descartes ovals, see Cartesian ovals

descreening, see inverse halftoning

destructive interference, 352

DFT see discrete Fourier transform

diffeomorphism, 256, 499g

difference moiré, see subtractive moiré

diffraction, 3

dimension, 117

continuous and discrete, 121

see also rank; integral rank; 1D; 2D

diopter of optical lenses, see applications of

moiré phenomena: measuring the diopter of

optical lenses

discrepancy, see internal discrepancy

discrete, 111–113, 146, 498g

discrete Fourier transform, 64, 78, 99–100, 104,

252

artifacts of, see aliasing; leakage; rippling

inverse, 78, 84, 95, 105

displacement, see shift

document security, see under applications of

moiré phenomena

domain transformation, 257, 452, 466–468, 471,

478–480, 501g

dot-centered rosettes, see under rosettes

dot-lattice, see lattice

dot-screen, see screen

dot shape and size, 44–46, 48–49, 60, 83, 96–

103, 231

dots per inch (dpi), 500g

dual lattice, see reciprocal lattice

duality between the image and spectral domains,

10, 81, 88, 165, 236, 249, 258, 282, 369, 395

E

effective period-shift, 169, 171, 172, 174

effective shift, 169, 171, 172, 174

electromagnetic spectrum, 234

equi-support singular superpositions, 198

equivalence class, 116–118

equivalent grating number, 46, 499g

equivalent grid, 48

Euler identities, 377

extraction of a moiré, see moiré extraction

everywhere dense, see dense

eyelet, see under moiré

F

fast Fourier transform, see discrete Fourier

transform

FFT, see discrete Fourier transform

first order moiré, 29–30, 41

flatness analysis, see under applications of

moiré phenomena

forbidden zone, 70–71

Fourier-based approach, see under approaches

for investigating moiré phenomena

Fourier decomposition, see under Fourier series

Fourier series, 11, 21, 38, 45, 84, 272, 429–430

coefficients, 376–386, 400, 410, 429

curvilinear, 272

decomposition (expansion),

of curved grids, 274–275

of curved screens, 274–275

of curvilinear gratings, 272–274

of periodic functions, 376–386

exponential vs. trigonometric notation, 153–

154, 163, 165, 273, 376–377, 379

generalized, 150, 272, 278, 399–401

Fourier spectrum, see spectrum

Fourier transform, 10, 406

inverse, 10, 82, 84, 107, 242, 406

frequency domain, see spectral domain; spectrum

frequency lattice, 375–392, 492g

frequency-vector, 12, 18, 31, 378–394, 491g

orthogonality, 55

shortest, 384

zero, see zero frequency vector

fundamental frequency, 21, 34, 375

fundamental frequency-vector, 382

fundamental impulse, 27, 33–34, 38, 90

see also fundamental frequency

fundamental moiré theorem:

for the case of line gratings, 332, 449

for the case of dot screens, 341, 449

for the hybrid 1
1
2 D (1,-1)-moiré, 451

fundamental period, 375, 398

fundamental period-vector, 382

fundamental period-parallelogram, 382

G

generalized Fourier series, see under Fourier

series
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generating vectors, 111

geometric approach, see under approaches for

investigating moiré phenomena

geometric layout, 489g

of a curved screen, 256, 489g

of a curvilinear grating, 250, 489g

geometric location of an impulse, see impulse:

location

geometry of numbers, 109, 499g

gradation, see screen gradation; grating

gradation

gradual transition approach, 272, 283, 292, 297,

313, 442–443

grating, 486g

binary, 23–25, 54–55, 163, 256–257, 486g

circular, 251–253, 262–263, 273–274, 297–

311

cosine shaped, 251, 252, 255, 373, 486g

cosinusoidal, 15, 52–53, 251–253, 486g

curvilinear, see curvilinear gratings

elliptic, 252, 254

hyperbolic, 252, 254

parabolic, 251–253, 260, 273, 276–277, 

283–297, 324–327, 349

square wave, see grating: binary

virtual, see virtual gratings

grating gradation, 347

grid, 40, 486g

binary, 256–257

curved, see curved grid

hexagonal, 474–475

irregular (or non-regular), 464–480

oblique, see grid: slanted

regular (or square), 40, 55, 465, 470–472, 

486g

slanted (or skew-periodic), see screen: 

slanted

H

halftone screen, 487g

see also halftoning

halftone screen meter (halftone tester), see under

applications of moiré phenomena

halftoning, 13, 60–62, 240

inverse, see inverse halftoning

Hermitian, 168, 378

hexagonal grid, see grid: hexagonal

hexagonal screen, see screen: hexagonal

hexagonality matrix, 468, 474

hexagonality transformation, 468, 474

higher order moiré, 28, 34, 88, 102–103, 108,

246, 319

human visual system, 4, 13, 40, 54, 64, 99, 235–

236, 240–241

hump, 267, 290, 493g

hybrid function:

periodic in one direction and almost-periodic

in the other, 151, 407

periodic in one direction and aperiodic in the

other, 378

hybrid module, 123, 146, 151

hybrid spectrum:

continuous and impulsive, 292–293, 494g

discrete in one direction and dense in the 

other, 151

hybrid 1
1
2 D (1,-1)-moiré, 433–464

I

image, 10–13, 487g

image domain, 10, 88–89, 97, 102, 108, 149–

152, 155–156, 249, 275, 282–283, 353, 375

image of a linear transformation, 115–116

implicit function, 351

impulse, 11–12

amplitude, 12, 16, 20–21, 24, 26, 32, 46, 51,

87, 91–94, 110, 167, 240, 410–411

chromatic amplitude, 240–241

compound, see compound impulse

DC, see DC impulse

fundamental, see fundamental impulse

index (or label), 11–12, 51, 91–94, 284

indexing notation, 30–33

line, see line-impulse

location, 11–12, 16, 24, 26, 32, 46, 51, 87, 

91–94, 110, 114, 167, 240, 284, 411

magnitude, 167

order of, 30, 32

pair, 12–13, 16, 21, 41, 52

phase, 167

ring, 262, 297–306, 308

symbol, 23, 377

impulsive ring, see impulse: ring

impulsive spectrum, see under spectrum

incommensurable, 113, 158–159, 396, 499g

index-vector, 30–31

orthogonality, 55

indices-lattice, 114

indicial equations, see under approaches for

investigating moiré phenomena

initial phase, 168, 176, 194

in-phase, 168, 196–199, 219–223, 415

in-plane deformations, see applications of moiré

phenomena: measuring in-plane deformations

inseparable, 46, 94, 173–175, 177, 500g

integral basis, 110–112

see also basis

integral rank, 111–113, 119

see also rank
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intensity profile, 489g

see also under moiré

interference, 352

constructive, 352

destructive, 352

interferometry, see applications of moiré

phenomena: moiré interferometry

internal discrepancy, 290, 420, 493–494g

internal moiré, see auto moiré

inverse FFT, see discrete Fourier transform:

inverse

inverse Fourier transform, see Fourier transform:

inverse

inverse halftoning, 77–78

irrational:

angle, 120, 204–206

grid, 206–208

inclination of a plane, 120, 136, 138

line, 204–207

screen, 206–207

superposition, 204–210, 216

tangent (or slope), 204–208

J

Jacobian, 256

joint reflectance, 10

K

kernel of a linear transformation, 115–116

kinematics, 4, 187, 453–458; see also shift

L

latent images, see under applications of moiré

phenomena

lattice, 89–90, 109–114, 146, 375–392, 492g

see also frequency-lattice; period-lattice;

reciprocal lattice

lattice of clusters, 160, 164

leakage:

DFT artifact, 64, 104

in spectrum transitions, 266–272, 283, 292, 

297–300, 314

level lines, 57, 251–252, 358, 368–369

light, 234–236

light reflection, 234–235

light transmission, 234–235

limaçon, 374

limit-periodic function, 402, 404–405

line-grating, see grating

line-grid, see grid

line-impulse, 260, 265, 283–297, 419–420,

438–448, 492g

line screen (for printing), 80

line-spectrum, 494g

linear algebra, 115–118

linearly independent, 110

lines per inch (lpi), 500g

local frequency, 258, 343–347, 363–369, 374,

493g

local frequency method, see under approaches

for investigating moiré phenomena

local frequency vector, 364–369

local magnitude, 364

local opening ratio, 258

local period, 258, 288, 346, 490g

local phase, 364

local profile, 258

local singularity of a moiré, 294, 305,

346

locally identical profiles, 348

locally periodic, 363

locally straight, 363

locus:

of singular points (in the moiré parameter 

space), 69

singular locus (of a curved moiré), see 

singular: locus

lpi (lines per inch), 500g

M

macroscopic properties, 46, 191, 200–201

see also macrostructure

macrostructure, 54, 191, 200–201, 495g

and microstructure, 191, 200–201

magnification, see moiré magnification

magnitude of a complex-valued function, 412

magnitude spectrum, 166, 413

mapping, see transformation

measuring (small angles, periods, etc.), see

various entries under applications of moiré

phenomena

metameric colours, 236

metrology, see under applications of moiré

phenomena

microlens array, 106

hexagonal, 465

microscopic properties, 46, 201

see also microstructure; rosettes

microstructure, 54, 179–186, 191–232, 495g

and macrostructure, 191, 200–201

variance or invariance under layer shifts, 

184, 223–227

modelling of physical phenomena, see under

applications of moiré phenomena

module, 109–114, 146, 492g

moiré, 1, 494g

additive, see additive moiré

angle, 20, 26, 82, 96, 101–102, 108
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applications, see applications of moiré 

phenomena

between almost periodic or fractal   

structures, 3

between discrete structures, 4

between random screens, 3

between various periodic or repetitive layers,

see under superposition

cell, 89, 97–102

cluster, 91–95

colour, see colour moiré

combined, 35, 41, 183, 185, 495g

definition, 1

degenerate, 34–35

direction, see moire: angle

eyelet, 295–297, 349, 496g

frequency, 20

geometrically equivalent, 48, 102

hierarchy, 34

historical background, 2–3

hybrid 1
1
2 D (1,-1)-moiré, 433–464

identification, 43–44, 48, 51

see also moiré notational system

in colour printing, 62–64, 71–77

in colour television, 243, 432

in image reproduction, 432

in the spectrum, 350

in the superposition of various periodic or 

repetitive layers, see under superposition

in three dimensions, 352

indexing, see moiré notational system

intensity profile, 26, 38–40, 81–108, 433, 

443–452, 495g

chromatic, 241–246

investigation approaches, see approaches for

investigating moiré phenomena

kinematics, 4, 187

magnification, see moiré magnification

minimization, see under unwanted moirés

notational system for, see moiré notational 

system

of higher order, see higher order moiré

of moiré, 34, 52

of the first order, see first order moiré

order of, 34

orientation, see moiré: angle

origin of the term, 1

parameter space, 64–70

perceptual contrast of, see perceptual

contrast

period, 20, 26, 82

phase, 176–186

polychromatic, see colour moiré

profile, see moiré: intensity profile

profile extraction:

in superposed gratings, 82–89, 242–245

in superposed screens, 89–103, 245–246

polychromatic, 241–246

sampling, see sampling moiré

sharpening, 55

singular, 35–38, 55–56, 63–71, 79–80, 124–

125, 288–290, 294–295, 367, 495g

subtractive, see subtractive moiré

temporal, 3

theorem, see fundamental moiré theorem

unwanted, see unwanted moirés

valid, 34–35, 79

visibility, 13, 16–17, 26, 34, 46, 62, 280, 

288, 293, 366

see also perceptual contrast

moiré analysis:

qualitative, 51, 81

quantitative, 51, 81, 91, 233, 243, 329–345

moiré extraction, 82–103, 436–448

polychromatic, 241–246

moiré-free superposition, 35–38, 62–64, 71–80

see also screen combinations for colour 

printing

unstable (singular), 37, 59, 63, 71, 194–200,

204, 495g

stable (non-singular), 37, 59, 63–64, 71–77,

201, 204–205, 495g

moiré fringe multiplication, 58

moiré inducing patterns, 351

moiré magnification, 58, 98, 108, 179, 478

see also applications of moiré phenomena

of angles, 56, 58

of curvilinear gratings, 371, 373

of deformations (or distortions), 56–58

of displacements (or shifts), 179, 186, 478

of periods, 56, 58

of screens, 96–99, 104, 108

of velocity, 187

one dimensional (1D), 433, 436

moiré notational system, 33–35, 41–43, 46–48

(1,-1)-moiré, 23–29, 40, 52, 84–87, 154–157,

179–181, 242–244, 284–289, 296–297, 

300–338, 350, 354–355, 359, 362, 367–

368, 372–374, 433

(1,-2)-moiré, 27–29, 179, 181, 296–297

(1,1)-moiré, 52, 296–297, 300–329, 362, 

367–368

(1,2)-moiré, 296–297

(2,-3)-moiré, 29

(3,-2)-moiré, 126–128

(1,1,1)-moiré, 128–132, 182

(1,-1,1)-moiré, 131, 133

(1,1,1,1,1)-moiré, 139, 141
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(1,0,-1,0)-moiré, 41–43, 47, 66–67, 83, 90–

93, 96–102, 161, 183, 245–247, 339, 

342–345, 351, 469–482

(1,1,-1,0)-moiré, 41–43, 66, 79, 138–140, 

147, 282

(1,0,-1,1)-moiré, 103, 105, 147

(1,2,-2,-1)-moiré, 41–43, 66–67, 90–93, 147,

194–196, 201–202

(2,1,-2,0)-moiré, 35, 66

(2,0,-1,2)-moiré, 195, 197

(0,1,-1,0,1,0)-moiré, 70–71, 142–145, 203

((1,1,1),(1,-1,0))-moiré, 131, 134–135

{1,1}-moiré, 35, 49, 61–62, 71, 75

{1,1,1}-moiré, 36–37, 61, 75, 199, 203, 209

{1,2,2}-moiré, 35, 49, 75

(k1,k2)-moiré, 29–30, 84, 88, 154, 157–158, 

280, 285, 288–290, 293–295, 300, 318–

319, 331–334, 349, 355–357, 359, 367

(k1,k2,k3,k4)-moiré, 65–68, 79, 90–95, 102, 

160–161, 281, 340–343, 346

(k1,...,km)-moiré, 33–35, 123–125, 162, 176–

179, 229, 356–358, 365–367, 495g

((k 1
(1),...,km

(1)), (k 1
(2),...,km

(2)))-moiré, 35, 41, 46–

48, 162–163

moiré synthesis, 81, 96–102, 249, 329–345,

453–464

monochromatic, 497g

monochrome, 497g

multiplicative composition of colour spectra, see

under colour spectra

multiplicative superposition, see under

superposition rules

N

nailbed, 23, 26, 41, 44–45, 491g

node lines, 352

non-linear, see under superposition rules;

coordinate transformation

non-periodic function, 405, 488g

non-separable, see inseparable

non-standard analysis, see under approaches for

investigating moiré phenomena

normalization, 87–88, 95, 330–332, 339–341,

444–452, 469, 482–484

normalized periodic profile, see under periodic

profile

notational system for moirés, see moiré

notational system

Nyquist frequency, 49–50, 68

O

opening, 21–23, 55, 273, 487g

opening ratio, 22–23, 26, 39–40, 54–55, 271,

487g

optical alignment, see under applications of

moiré phenomena

order:

of an impulse, see under impulse

of a moiré, see under moiré

of singularity, see under singularity

of the superposed layers, 480–482

orthogonal twin, see perpendicular impulse pair

orthogonality:

of index-vectors, see under index-vector

of frequency-vectors, see under frequency-

vector

out-of-plane deformations, see applications of

moiré phenomena: measuring out-of-plane

deformations

ovals of Descartes, see Cartesian ovals

P

parallax, 4, 106

perceptual contrast, 38–40, 88, 99

period, 375–394, 398, 487g

period-coordinate, 211–217, 226–231

period-coordinate function, 214–217

period lattice, 375–392, 488g

period parallelogram, 381, 487g

period-shift, 169, 171, 172, 174, 212, 226–231

period-shift function, 217

period-vector, 172–173, 381–394, 488g

shortest, 384

periodic function, 375–394, 404–405, 488g

see also almost-periodic function; radially 

periodic function

1-fold periodic function, 378, 380–381, 488g

2-fold periodic function, 378–380, 381–386,

487–488g

skew-periodic function, 381–386

spectrum of, 375–394, 404

periodic image, 11

see also periodic function

periodic moirés in the superposition of non-

periodic layers, 323–329, 334–337, 342–343,

350–351

periodic profile, 489g

of a curved screen, 252, 256, 489g

normalized, 252, 274, 339–341

of a curvilinear grating, 250, 489g

normalized, 251, 330–332

perpendicular impulse pair, 41, 55

perpendicular twin, see perpendicular impulse

pair

phase, 412–417

in a complex-valued function, 166, 412–417

in a periodic function, 166–175, 415–417

in a superposition, 165–190
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of a moiré, see under moiré

terminology, 168–175, 412–417

see also in-phase; counter-phase

phase spectrum, 166, 413

phasor, 413

pinhole screen, see under screen

polar coordinates, see under coordinates

polychromatic moiré, 106, 233–248

polychromatic T-convolution, 243–247

precision alignment, see applications of moiré

phenomena: optical alignment

precision measurement, see various entries

under applications of moiré phenomena

printing, 60–62

see also colour printing; halftoning

product grating, 155, 164

profile, see intensity profile; periodic profile

profile transformation, 258, 425

profile-transformed structure, 250, 257, 489g

pseudo moiré, 53–55

pulse-width modulation, 425–428

Q

qualitative moiré analysis, see under moiré

analysis

quantitative moiré analysis, see under moiré

analysis

quasi-crystals, 395

quasi-periodic function, 402, 404–405

quotient space, 117

R

radial frequency, 262, 274, 297, 306

radial period, 262, 274, 306

radially periodic function, 262, 265

“raised” cosine, 15, 17, 52–53, 352

random sampling, 77–78

random screen, see under screen

range transformation, 257, 501g

rank, 110–113, 119, 146–147

see also integral rank

rational:

angle, 204–206

approximant, 204–210, 232

grid, 206–208

line, 204–207

screen, 206–207

superposition, 139, 204–210, 216

tangent (or slope), 204–208

reciprocal lattice, 376, 388–389

reciprocal vector, 393

reciprocal vector pair, 388

reciprocity between the image and spectral

domains, see duality between the image and

spectral domains

redundancy level of a superposition, see under

superposition

reflectance function, 10, 39–40, 236–237, 497g

chromatic, 237, 497g

reflection, see light reflection

refractive index, see applications of moiré

phenomena: measuring the refractive index

refractometry, see applications of moiré

phenomena: moiré refractometry

relatively dense, 398

repetitive, non-periodic structures (or layers),

250–258, 488g

rigid motion, 179, 184–185

rippling (DFT artifact), 252, 271

rosettes, 46, 62, 191–232, 496g

see also microstructure

clear-centered, 200–201, 216, 219–223

dot-centered, 200–201, 216, 219–223

S

sampling moiré, 48–50, 68, 77–78, 432

scaling, 411, 498g

scanning moiré, see sampling moiré

Schuster fringes, 327

Scrambled Indicia®, 189

screen, 44, 486g

binary, 231

curved, see curved screen

halftone, see halftoning

hexagonal, 47, 465, 467–468, 473–475

irregular (or non-regular), 44, 47, 106, 465–

480

line, 80

oblique, see screen: slanted

pinhole, 97–98, 106, 245–246, 342–345, 349

random, 3, 59

regular, 44, 47, 55, 465, 470–472, 487g

slanted (or skew-periodic), 47, 467

screen combinations for colour printing:

classical 3-screen combination, 61, 63, 218–

223, 248

classical 4-screen combination, 61

stable moiré-free screen combinations, 71–80,

248

3 or 4 screens having identical angles and 

frequencies,  78, 248

4-screen combination with equal angle 

differences, 62, 224–225

screen gradation, 249, 347–348, 425–429, 487g
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screen tester, see under applications of moiré

phenomena

screen trap, 351

screening moiré, 432

separable, 46, 173–175, 500g

see also spatially separable

separable product theorem, 260

shadow moiré, see under applications of moiré

phenomena

shear, 286–287, 433–464, 467

shear theorem, 286, 447

shift, 165–190, 198–200, 216, 223–227, 334,

342–345, 412–417, 435, 453–458, 476–480

shift theorem, 166–167, 412–414

shortest:

basis vectors (of a lattice), 384–385

frequency-vectors, 384–385

period-vectors, 384–385

sign of the period (or the frequency) of the

moiré effect, 480–482

similarity matrix, 468, 470–471, 479

similarity transformation, 468, 470–471, 479

singular:

linear transformation, 116

locus, 288, 294, 305, 367, 374, 423, 496g

manifold, 69–71

moiré, see moiré: singular

point, 63–71, 91, 277

state, see superposition: singular

superposition, see superposition: singular

support, 494g

singularity, 38

criterion for, 125

local, see local singularity of a moiré

order of, 38, 125

skeleton, 283–284, 292–294, 298, 494g

skeleton location of a line-impulse or hump,

294, 438–439, 443, 494g

skew-periodic (or slanted):

function, see under periodic function

screen, see screen: slanted (or skew-periodic)

spatial integration (by the visual system), 240

spatially separable, 277–278, 300–301, 312,

500g

spectral approach, see under approaches for

investigating moiré phenomena

spectral domain, 10, 88–89, 155–156, 204, 249,

275, 282–283, 375

see also spectrum

spectrum, 10, 236, 490g

see also spectral domain; colour spectra; 

magnitude spectrum; phase spectrum

algebraic properties of, see algebraic structure

of the spectrum

colour, see colour spectra

continuous, 264–265, 276, 396, 406

see also spectrum: smooth

diffuse, 395

electromagnetic, see electromagnetic spectrum

everywhere dense, 395

hybrid, see hybrid spectrum

impulsive, 11, 259, 264–265, 276, 375–386,

399–401, 494g

non-impulsive, 264–265, 277

of a binary square wave, 21–23

of a chirp, 423–425

of a circular grating:

cosinusoidal, 262–263

binary, 277

of a curved screen, 278–279

of a curvilinear grating, 264–272, 275–278

of a grid, 40–41

of a (k1,k2)-moiré between two periodic 

gratings, 84

of a (k1,k2,k3,k4)-moiré between two periodic

screens, 94–95

of a parabolic grating:

cosinusoidal, 260

binary, 276

of a periodic function, 375–394

of a periodic grating, 23–24, 82

cosinusoidal, 14–15, 52

binary, 23–25, 55

whose individual lines are modulated by

2D information, 436–442, 460–464

of a screen, 44–46

of a screen gradation, 347–348, 425–429

of a superposition, 11

of a zone grating:

cosinusoidal, 262–264, 418–419

binary, 277–278

of an almost-periodic function, 395–407

partially impulsive, 249

see also spectrum: semi-impulsive

regularity, 265

semi-impulsive, 264, 283, 311

see also spectrum: partially impulsive

singularity, 265

smooth, 11, 259, 264–265

see also spectrum: continuous

the influence of a coordinate change, 258–264

spot function, 60, 487g

spreading out (of a cluster), 125–126, 147, 128–

145, 147, 498g
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square grid, see grid: regular

square wave, 21–23

stable moiré-free state, see under moiré-free

superposition

staggering, 459–464

standing waves, 352

step-vector, 173–175, 392–394, 488g

strain analysis, see under applications of moiré

phenomena

sub-Fourier series:

in one dimension, 331

in two dimensions, 340

subcomb, 88

subject moiré, see screening moiré

subnailbed, 94

subtractive colour combination, 238, 241

subtractive moiré, 17, 52, 300, 355, 496g

superposition, 4, 10

almost-periodic, 150–151, 193–195

counter-phase, 196–199

in-phase, 196–199

irrational, see under irrational

macrostructure of, see macrostructure

microstructure of, see microstructure

of a circular grating and a straight grating, 

297–306

of a parabolic grating and a straight grating,

283–290, 349, 420–423

of a zone grating and a square grid (or 

screen), 349

of a zone grating and a straight grating, 311–

319

of binary gratings, 23–30

of circular gratings, 306–311, 357, 373–374

of colour gratings, 242–245, 248

of colour screens, 245–246, 248

colorimetric stability, 248

of cosinusoidal gratings, 15–21

of curved screens, 281–282, 337–343

of curvilinear gratings, 279–281, 329–337

of general 2-fold periodic layers, 464–476

of hexagonal screens or grids, 474–475

of line-gratings, 82–89, 153–158, 242–245, 

354–356

of parabolic gratings, 290–297, 324–327, 

349, 356–357, 367

of periodic layers, 161–163, 176–186

of repetitive, non-periodic layers, 249–352

of screens, 44–48, 65–71, 83, 89–103, 

158–161, 245–246, 464–482

of square (or regular) grids, 40–44, 470–472

of zone gratings, 319–323, 327–329, 349–

350, 367–368

order of the layers, 480–482

periodic, 150–151, 192, 194–195

rational, see under rational

redundancy level of, 125

regular, 38

singular, 37–38, 55–56, 116, 146–164, 194–

200, 288–290, 343–347

superposition moiré, 4, 10–11, 432

superposition rules, 11, 17, 53, 246, 352

additive, 11, 17, 53–54, 245, 352

inverse additive, 11

linear, 17

multiplicative, 10–11, 17, 53–54, 236–237, 

245, 352

non-linear, 17

support (of a comb, a nailbed, a spectrum etc.),

87, 89, 110, 113–114, 121, 126–145, 149–

150, 159, 176, 194, 276, 378, 387, 404–406,

492g

synthesis of moiré effects, see moiré synthesis

T

T-convolution, 86–89, 97, 103–104, 329–343, 

469, 482–483

polychromatic, 243–247

vs. convolution, 86, 104

T-convolution theorem:

in one dimension, 86, 329–330

in two dimensions, 95, 337

T-cross-correlation, 86

Talbot effect, 4

television, 240, 243, 245

temporal moiré, 3

three dimensional moiré, 352

topography, see applications of moiré

phenomena: moiré topography

transformation:

direct, 471, 501g

domain, 257, 452, 466–468, 471, 478–480,

501g

inverse, 452, 466, 471, 478–480, 501g

range, 257, 501g

Φ, 115, 118–121

Ψ, 114–115, 118–121

Ξ, 214–218

translation, see shift

transmission, see light transmission

transmittance function, 10, 236–237, 497g

chromatic, 237, 497g

twin impulse, 13, 21, 74, 168

U

unscreening, see inverse halftoning

unstable moiré-free state, see under moiré-free

superposition
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unwanted moirés, 1, 59, 432

avoiding, 59, 77–78

minimization of, 59–80

reducing, 77–78

removing, 59, 78

V

vector, 495g

vector diagram, 19, 43, 70, 79, 101, 103

vector space, 112

partition into equivalence classes, 117–118

velocity, see applications of moiré phenomena:

measuring velocity

vibration analysis, see under applications of

moiré phenomena

virtual gratings, 46, 48, 173–174, 392, 500g

visibility circle, 13, 17, 18, 20, 25–29, 46, 74,

288, 490–491g

visibility of a moiré, see under moiré

W

wake, 262, 265, 277, 493g

water waves, 352

wave, see square wave; standing waves; water

waves. see also grating

wedge, see screen gradation

Z

-module, see module

zero amplitude, 32, 89, 110, 378, 387

zero index, 30, 43

zero frequency-vector, 18, 30

zone grating, 262, 349–350, 490g

circular, 252, 254, 262, 311–323, 418–419

elliptic, 252, 254, 262

hyperbolic, 252, 254, 263–264, 418–419

linear, 264

parabolic, 264

zone plate, see zone grating

0–9

0 (value in an image, etc.), 10, 21

1 (value in an image, etc.), 10, 21

1-fold periodic function, see under periodic

function

2-fold periodic function, see under periodic

function

1D, 21, 123, 501g

1
1
2 D, 433, 451

2D, 10, 123, 501g

3D moiré, 352

4D space, 69–70, 80
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