
Sequence Prediction with Hyperdimensional Computing

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández,

Marco Antonio Ramírez Salinas

Instituto Politécnico Nacional (IPN), Centro de Investigación en Computación,

Mexico City, Mexico

jobquiroz@hotmail.com, barron2131@gmail.com, marco.a.ramirez.s@gmail.com

Abstract. Hyperdimensional Computing is an emergent model of computation

where all objects are represented in high-dimensional vectors. This model in-

cludes a well-defined set of arithmetic operations that produce new high-

dimensional vectors, which, in addition to represent basic entities, can also rep-

resent more complex data structures such as sets, relations and sequences. This

paper presents a method for sequence prediction using Hyperdimensional Com-

puting and the Sparse Distributed Memory model. The proposed method is

based on the encoding, storage and retrieval of sequence vectors, which store

the k consecutive vectors of a sequence. The next element of a sequence is se-

lected by taking into account the current, as well as the k immediate preceding

elements of the sequence. Each vector is associated to a sequence vector that is

stored in memory; the way in which each vector is associated to its sequence

vectors is the main contribution of this paper. We present experimental results

for the encoding and prediction of randomly generated sequences and the re-

sults indicate that the method performs correct predictions.

Keywords: hyperdimensional computing, prediction methods, sequence repre-

sentation, sparse distributed memory.

1 Introduction

Sequence learning is essential to human intelligence, sequences are everywhere, go-

ing from low-level sensory-motor behavior up to high-level problem solving and rea-

soning. Sequential processes can also be found in fields such as robotics, finances,

language processing, etc.

Hyperdimensional Computing is an emergent model of computation. It is based on

the manipulation of high-dimensional vectors which are used not only to represent

variables and values, but also to represent relations, sets and sequences [2].

In this work, we use a Hyperdimensional Computing approach for sequence pre-

diction. We present the main idea behind the use of high-dimensional vectors as a

representation scheme, describe the operations used to manipulate these vectors and

propose a method for storage and prediction of sequences.

117

ISSN 1870-4069

Research in Computing Science 138 (2017)pp. 117–126; rec. 2017-09-25; acc. 2017-10-26

mailto:jobquiroz@hotmail.com
mailto:barron2131@gmail.com

The rest of the paper is organized as follows: Section 2 summarizes several works

related to the use of HD Computing for sequence representation. Section 3 explains

the main properties and operations used in HD Computing. In Section 4 we describe a

new method for storage and prediction of sequences, Section 5 presents the experi-

mental results and finally, Section 6 draws the conclusions and future work.

2 Related Work

2.1 Hyperdimensional Computing

The main difference between hyperdimensional computing (HD computing) and tra-

ditional computing relies on the type of elements used for computation. In HD com-

puting information is encoded in high-dimensional vectors (typically between 1,000

and 10,000 bits long). These vectors have no dedicated fields, information is distrib-

uted along all vector.

Kanerva [6] summarizes the main properties of HD Computing and explains three

applications where it can be used: language processing, learning from example and

analogy-making.

Hyperdimensional spaces can be binary, real or complex, in [9] Rahimi et al. give a

brief review of several frameworks for HD Computing, each framework having its

own set of symbols and operations. They also describe a hardware architecture for

operating high dimensional vectors.

HD Computing has been applied in different domains, such as visual character

recognition [3], cognitive software agents [14], robotics [5], biosignal processing

[10], and sequence prediction [1, 13].

2.2 Sequence Prediction with Hyperdimensional Computing

One of the first applications conceived for the Sparse Distributed Memory [7] was to

store and retrieve sequences, in order to learn a sequence the memory can be operated

in heteroassociative mode, where each location stores the next value of the sequence,

forming a chain of pointers. Even though this approach has several flaws, it was the

first idea to develop a prediction system based on HD Computing.

Kanerva proposed the use of several Sparse Distributed Memories for storing se-

quences, where each memory could store higher order sequential structures [7]. The

main limitation of this approach was the need of a very large memory system. This

type of learning has been applied in the modeling of service robot movement [22].

Bose et al. [1] proposed a framework for online sequence learning based on an associ-

ative memory model. In their approach, the prediction value is obtained as a result of

the sum of a set of history vectors.

In [13] Snaider and Franklin proposed a modification to the SDM model that al-

lows a more efficient way to store and retrieve sequences. These sequences are en-

coded using hyperdimensional operations (sums and permutations). Räsänen and

Saarinen propose a predictor based on HD Computing where, unlike the two previous

118

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 138 (2017) ISSN 1870-4069

approaches, there is no need of a special memory, “the idea is to represent the previ-

ously observed history of each possible sequence state using a single vector of very

large dimensionality” [12].

 In this work we propose a prediction model based on HD Computing operators and

the original SDM model, without the need of increasing the size of the memory.

3 Hyperdimensional Computing Background

One of the most relevant properties of the high-dimensional spaces is that most of the

space is nearly orthogonal to any given point. This means that if two random vectors

are generated, it is highly probable (more than 99.999%) that they are mutually or-

thogonal. These properties where exploited in the SDM model developed by Kanerva

in 1988 [7]. However, the properties of high-dimensional spaces can also be used to

perform other type computations, for which is necessary to define a set of HD compu-

ting operators.

3.1 HD Computing Operations

HD Computing is based on three operations: addition, multiplication and permutation.

In this paper we use binary vectors, but these three operations can be defined for other

types of vectors [9]. A more detailed explanation of HD Computing operations can be

found in [6].

Addition

Addition is an element-wise binary average. The sum vector 𝑋𝑠 = ∑ 𝑥𝑘
𝑛
𝑘=1 is com-

puted by adding each component 𝑖 of each vector 𝑥𝑘 and then using the threshold

function Θ to maintain the values as 0 or 1:

𝑋𝑠,𝑖 = Θ (
1

𝑛
 ∑ 𝑥𝑘,𝑖

𝑛

𝑘=1

), (1)

where
Θ(𝑢) = {1 𝑓𝑜𝑟 𝑢 > 0.5, 0 𝑓𝑜𝑟 𝑢 < 0.5, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The components of the sum vector can be computed independently, which means

that it can be easily parallelized. The result vector 𝑋𝑠 is the concatenation of all the

corresponding components.

The sum vector has the property of being similar to the vectors added together;

therefore the addition operation is used to encode sets of vectors. The elements of the

sum are ‘visible’ in the representation of the set.

Multiplication

For binary vectors, multiplication is realized with an element-wise exclusive-or

119

Sequence Prediction with Hyperdimensional Computing

Research in Computing Science 138 (2017)ISSN 1870-4069

(XOR); the resulting vector is dissimilar to the original ones. Multiplication is a

reversible operation; in fact, the XOR operator is its own inverse.

 Multiplication is a mapping of points in space. Given two vectors A and B, it is

possible to generate C, and later retrieve either A or B.

𝐶 = 𝐴 ∗ 𝐵 ⟹ 𝐴 = 𝐶 ∗ 𝐵 ⟹ 𝐵 = 𝐶 ∗ 𝐴. (2)

 Another interesting property of multiplication is that preserves distance, 𝑑(𝐴, 𝐵) =
𝑑(𝐴 ∗ 𝑋, 𝐵 ∗ 𝑋), “it is like moving a constellation of points bodily into a different part

of the space while maintaining the relations (distances) between them” [6].

Permutation

Permutation randomly reorders the components of the original vector, and just as

multiplication, the resulting vector is dissimilar to the original one. Permutation is

invertible and it also maintains distance: 𝑑(𝐴, 𝐵) = 𝑑(ΠA, ΠB).

𝐵 = Π𝐴 ⇒ 𝐴 = Π−1𝐵. (3)

 Unlike the two previous operations, permutation is not explicitly defined; it is pos-

sible to permute a vector by changing all its components to a different place, or only

some of them. An easy way to permute a vector is by performing a circular shift oper-

ation, which will change all the components and can easily be inverted. In this work

we implemented permutation as a shift right logical operation and the inverse permu-

tation as a shift left logical operation.

3.2 Clean-Up Memory

All previous operators allow us to encode, map and retrieve hyperdimensional patters,

but in most cases the retrieval is not going to be exact. For example, 𝑋 = 𝑋1 ∗ 𝐴 +
𝑋2 ∗ 𝐵 is storing the association of 𝐴 with 𝑋1 and 𝐵 with 𝑋2. In order to retrieve 𝐴 we

can multiply 𝑋 by 𝑋1:

𝑋 ∗ 𝑋1 = (𝑋1 ∗ 𝐴 + 𝑋2 ∗ 𝐵) ∗ 𝑋1 (4)

⇒ 𝑋 ∗ 𝑋1 = 𝐴 + 𝑋1 ∗ 𝑋2 ∗ 𝐵.

The resulting vector contains the sum of the desire value (𝐴) and an unknown vec-

tor (𝑋1 ∗ 𝑋2 ∗ 𝐵). In order to discriminate this last vector we can use an auto-

associative memory that approximates 𝑋 ∗ 𝑋1 to 𝐴.

This auto-associative memory is called clean-up memory [8], its function is store

all the items that the system should recognize. When a noisy version of an item is

given as input, the memory must either output the most similar item or indicate that

the input is not close enough to any of the store items.

In the previous example is possible to obtain 𝐴 by performing a read operation

from memory.

𝐴 ≅ 𝑅𝑒𝑎𝑑(𝑋 ∗ 𝑋1) = 𝑅𝑒𝑎𝑑(𝐴 + 𝑛𝑜𝑖𝑠𝑒). (5)

120

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 138 (2017) ISSN 1870-4069

 Every time a pattern becomes meaningful it can be recorded in memory, which

becomes in “a catalog of meaningful patterns”.

In this work we use the Sparse Distributed Memory [7] as clean-up memory. The

SDM is an architecture that can store high dimensional binary vectors and retrieve

them based on partial matches. The storing of patters is distributed, meaning that a

single pattern is stored in many physical locations (called Hard Addresses).

3.3 Sequence Representation

A sequence is a complex structure that represents events that occur in certain order.

The ability to store and recall sequences is very important in a system that pretends to

have an intelligent behavior. There are several ways to represent sequences with HD

Computing [6], in this work we focus in the representation of sequences by permuting

sums.

The addition operation allow us to represent a set of vectors without a particular

order, this may not be useful to store sequences, unless the order of each vector is

somewhat codified. Permutations can be used for this purpose.

Since permutation generates a vector dissimilar from the original one, the order of

the vector can be encoded as the number of permutations performed to the vector

before the sum. For example, the sequence ABC, can be encoded as:

𝑆 = 𝐴 + Π𝐵 + ΠΠ𝐶. (6)

In order to retrieve each element we have to perform inverse permutations and use

the clean-up memory. Since all the permuted vectors are not stored in memory, they

are considered noise:
𝐴 ≅ 𝑅𝑒𝑎𝑑(𝑆) = 𝑅𝑒𝑎𝑑(𝐴 + 𝑛𝑜𝑖𝑠𝑒),

𝐵 ≅ 𝑅𝑒𝑎𝑑(Π−1𝑆) = 𝑅𝑒𝑎𝑑(𝐵 + 𝑛𝑜𝑖𝑠𝑒), (7)

𝐶 ≅ 𝑅𝑒𝑎𝑑(Π−1Π−1𝑆) = 𝑅𝑒𝑎𝑑(𝐶 + 𝑛𝑜𝑖𝑠𝑒).

The amount of vectors that can be encoded with this method manly is limited by its

dimensionality. For dimensions near 1,000 the limits is close to 4 to 5 vectors.

4 Prediction Model

The sequence prediction problem consists in that given 𝑥𝑛−𝑘+1, … , 𝑥𝑛−1, 𝑥𝑛, we want

to predict 𝑥𝑛+1. In this section we describe a prediction model based on HD Compu-

ting. The model is divided in two: a storage phase, where a set of sequences is stored

in memory, and a prediction phase, where the model provide the next value for a giv-

en sequence.

121

Sequence Prediction with Hyperdimensional Computing

Research in Computing Science 138 (2017)ISSN 1870-4069

4.1 Encoding and Storage of Sequences

The first step is to associate each value of a sequence 𝑥𝑖 to a random binary vector 𝑋𝑖.

Due to the properties of high dimensional spaces, we can assume that all vectors 𝑋𝑖

are not only different, but also mutually orthogonal. All vectors 𝑋 are then stored in

memory in auto-associative mode.

Each vector 𝑋𝑖 must be associated with a sequence vector 𝑆𝑖, which encodes the k

future vectors 𝑋𝑖+1, … , 𝑋𝑖+𝑘.

𝑆𝑖 = 𝑋𝑖+1 + Π𝑋𝑖+1 + ⋯ + Π𝑘𝑋𝑖+𝑘 . (8)

Since 𝑋𝑖 has already been used as an address to memory, it is not possible to asso-

ciate the value 𝑋𝑖 to 𝑆𝑖 in a direct way. But we can map the address 𝑋𝑖 to another part

of the space where the association of 𝑋𝑖 and 𝑆𝑖 could take place. One way to imple-

ment such mapping is by multiplicate 𝑋𝑖 by a known random binary vector 𝑀. The

resulting vector 𝑋𝑖 ∗ 𝑀 is used as an address to store 𝑆𝑖:

𝑊𝑟𝑖𝑡𝑒(𝑀 ∗ 𝑋𝑖) = 𝑆𝑖 . (9)

In this prediction model the memory is not only used as a clean-up system (auto-

associative mode), but also as a way to associate symbols (hetero-associative mode).

Once that all 𝑋𝑖 vectors have been stored and mapped to its corresponding sequence

vectors, the storage phase is finished.

4.2 Prediction of Sequences

In order to predict the next value of a sequence, the systems needs to have as an input

at least k consecutive elements of the sequence: 𝑥𝑗−𝑘+1, … , 𝑥𝑗 . The system approxi-

mates each value 𝑥𝑗 to a known value 𝑥𝑖 and then associates a vector 𝑋𝑗 to each 𝑥𝑗.

Each vector 𝑋𝑗−𝑘+1, … , 𝑋𝑗 is associated with a sequence vector 𝑆𝑗−𝑘+1, … , 𝑆𝑗 which

can be read from memory as follows:

𝑆𝑗−𝑘+1 = 𝑅𝑒𝑎𝑑(𝑋𝑗−𝑘+1 ∗ 𝑀),

… (10)

𝑆𝑗 = 𝑅𝑒𝑎𝑑(𝑋𝑗 ∗ 𝑀).

Since each sequence vector has encoded a vector 𝑋𝑗+1
𝑘 , the last step is to extract

each of these values in order to generate the final prediction vector 𝑋𝑗+1 from which is

possible to obtain the prediction value 𝑥𝑗+1, Fig 1.

𝑋𝑗+1
1 = 𝑅𝑒𝑎𝑑(Π−𝑘𝑆𝑗−𝑘+1),

…

𝑋𝑗+1
𝑘 = 𝑅𝑒𝑎𝑑(𝑆𝑗−𝑘+1), (11)

122

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 138 (2017) ISSN 1870-4069

𝑋𝑗+1 = ∑ 𝑋𝑗+1
𝑟

𝑘

𝑟=1

 → 𝑥𝑗+1.

Fig. 1. Prediction model with Hyperdimensional Computing.

5 Experimental Results

We performed several simulations to test how the proposed method is able to store

and predict sequences. As stated before, we use binary vectors with length of 1,000

dimensions, these vectors have 50% ones and 50% zeros randomly distributed. We

also use the original Sparse Distributed Memory model.

For each simulation we vary the number of Hard Addresses of the memory to see

how the capacity of the memory increases. We also increment the value of k which

represents the number of vectors taken into account to form the sequence vector and

to make a prediction (see section 4.2).

Table 1. Prediction Rate for different values of k and N = 50 sequences

N = 50 sequences

Hard

Addresses

Successful Prediction

k = 1 k = 2 k = 3 k = 4

100,000 41.28% 26.40% 58.89% 33.25%

250,000 60.17% 51.36% 70.12% 51.12%

500,000 71.50% 59.85% 79.85% 70.78%

1,000,000 74.80% 64.98% 91.24% 74.98%

At the beginning of the experiment we generate random sequences, which are then

encoded and stored into memory. Then we take k consecutive points of each sequence

and try to predict the entire sequence. Each sequence consists of 20 points and we

consider a prediction to be successful if it has at most 5% of error. The number of

points and the criteria for a successful prediction was taken as in [13], so we can

compare the results. Table 1 summarizes the results from the experiments.

In the SDM model all the data is distributed along several physical locations, if the

capacity of the memory increases then the number of sequences that can be success-

123

Sequence Prediction with Hyperdimensional Computing

Research in Computing Science 138 (2017)ISSN 1870-4069

fully predicted also increases. Unlike the system in [13] we do not modify the archi-

tecture of the memory, which results in a smaller size of memory, however, in this

method each element of each sequence takes two addresses, one for storing itself

(auto-associative mode) and one for storing its sequence vector (hetero-associative

mode).

Fig. 2. Percentage of successfully predicted sequences for different values of k.

The rate of successful predictions do not increase linearly with respect to the value

of k (Fig. 2), which might seem counterintuitive, because as the number of preceding

points increases the prediction is expected to get better. But one of the downsides of

the sum operation is that when the number of added vectors increases, the interference

between them increases as well. This interference mainly depends on the dimension-

ality of the vectors, for vectors with length 1,000 starts to be noticeable at approxi-

mately 4 to 5 vectors.

 The results presented in [13] show that their system was capable of successfully

retrieve up to 49 sequences out of 50, but when the number of sequences increased to

100 none of the sequences could be restored. In this case the capacity of the memory

system was the limiting factor, since they only implemented 200,000 Hard Addresses.

Another interesting behavior from Fig. 2 is that the prediction rate for k = 1 is bet-

ter than for k = 2. As seen in Section 3.1, the sum operation returns a random value

when the sum of the components is equal to 0.5 (which prevents the sum vector to be

constantly filled with ones or zeros) and when k = 2 the probabilities for this to hap-

pen are much greater that when k = 1 or k = 3. This behavior was also observed

in [13].

20%

30%

40%

50%

60%

70%

80%

90%

100%

100,000 250,000 500,000 1,000,000

S
u

cc
es

fu
l
P

re
d

ic
ti

o
n

Hard Addresses

k =

1
k =

2
k =

3

124

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 138 (2017) ISSN 1870-4069

6 Conclusions and Future Work

This works presented some highlights of Hyperdimensional Computing, which is an

emergent model of computation based on the storage and manipulation of high-

dimensional vectors. This type of computation allows us to encode from single con-

cepts up to more complex data structures such as sequences.

 We proposed a method for the encoding and prediction of sequences, based on

arithmetical operations and a Sparse Distributed Memory system. The main feature of

this method is the use of the multiplication operation as a way of mapping vectors in

space, in this particular case: mapping a vector to a sequence vector which allows us

to make predictions.

 We presented experimental results for the prediction method and explain some of

its limitations, such as the restriction in the number of vectors to be added into a sin-

gle vector. One of the goals for future implementations is to increase the dimensional-

ity of the vectors in order to reduce the interference, not only in sums, but in all three

operations.

 Another future modification is to develop a hierarchical model which allows us,

not only to predict single points, but also to predict sequences and other complex

structures, such as relations between concepts and sets.

References

1. Bose, J., Furber S., Shapiro, J.: An associative memory for the on-line recognition and

prediction of temporal sequences. In: Proc. IEEE International Joint Conference on Neural

Networks, Montreal, Canada, 1223–1228 (Jul./Aug. 2005)

2. Gallant, S., Okaywe T.: Representing Objects, Relations and Sequences. Neural Computa-

tion 25(8), 2038–2078 (2013)

3. Hong, Y., Chen S.: Character recognition in a Sparse Distributed Memory. IEEE Transac-

tions on Systems, Man and Cybernetics, 21(3), 674–678 (1991)

4. Jockel, S.: Crossmodal learning and prediction of autobiographical episodic experiences

using a Sparse Distributed Memory. Doctoral Thesis, University of Hamburg, Department

of Informatics (2010)

5. Jockel, S., Mendes, M., Zhang, J., Coimbra, P., Crisóstomo, M.: Robot navigation and ma-

nipulation based on a predictive associative memory. In: Proceedings IEEE 8th Internation-

al Conference on Development and Learning, Shanghai, China (June 2009)

6. Kanerva, P.: Hyperdimensional Computing: An Introduction to Computing in Distributed

Representation with High Dimensional Random Vectors. Cognitive Computation 1(2),

139–159 (2009)

7. Kanerva, P.: Sparse Distributed Memory. Cambridge, MA: Bradford/MIT Press (1988)

8. Plate, T.: Holographic reduced representation: distributed representation of cognitive struc-

ture. Stanfor: CSLI (2003)

9. Rahimi, A., Datta, S., Kleyko, D., Paxon, E., Olshausen, B., Kanerva, P., Rabaey, J.: High-

Dimensional Computing as a Nanoscalable Paradigm. IEEE Transactions on Circuits and

Systems: Regular Papers PP(99), 1–14 (2017)

10. Rahimi, A., Benatti, S., Kanerva, P., Benini, L., Rabaey, J.: Hyperdimensional Biosignal

Processing: A Case Study for EMG-based Hand Gesture Recognition. In: Proceedings of

125

Sequence Prediction with Hyperdimensional Computing

Research in Computing Science 138 (2017)ISSN 1870-4069

the International Conference on Rebooting Computing, San Diego, CA, USE, pp. 1–8

(Oct. 2016)

11. Rao, R., Fuentes, O.: Hierarchical Learning of Navigational Behaviors in an Autonomous

Robot using a Predictive Sparse Distributed memory. Autonomous Robots 5(3–4), 297–

316 (1998)

12. Räsänen, O., Saarinen, J.: Sequence Prediction with Sparse Distributed Hyperdimensional

Coding Applied to the Analysis of Mobile Phone Use Patterns. IEEE Transactions on Neu-

ral Networks and Learning Systems 27(9), 1878–1889 (2016)

13. Snaider, J., Franklin, S.: Extended Sparse Distributed Memory and Sequence Storage.

Cognitive Computation 4(2), 172–180 (2012)

14. Snaider, J., Franklin, S.: Vector LIDA. Procedia Computer Science 41, 188–203 (2004)

126

Job Isaias Quiroz Mercado, Ricardo Barrón Fernández, Marco Antonio Ramírez Salinas

Research in Computing Science 138 (2017) ISSN 1870-4069

