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Abstract. Hyperdimensional Computing is an emergent model of computation 

where all objects are represented in high-dimensional vectors. This model in-

cludes a well-defined set of arithmetic operations that produce new high-

dimensional vectors, which, in addition to represent basic entities, can also rep-

resent more complex data structures such as sets, relations and sequences. This 

paper presents a method for sequence prediction using Hyperdimensional Com-

puting and the Sparse Distributed Memory model. The proposed method is 

based on the encoding, storage and retrieval of sequence vectors, which store 

the k consecutive vectors of a sequence. The next element of a sequence is se-

lected by taking into account the current, as well as the k immediate preceding 

elements of the sequence. Each vector is associated to a sequence vector that is 

stored in memory; the way in which each vector is associated to its sequence 

vectors is the main contribution of this paper. We present experimental results 

for the encoding and prediction of randomly generated sequences and the re-

sults indicate that the method performs correct predictions.   

 

Keywords: hyperdimensional computing, prediction methods, sequence repre-

sentation, sparse distributed memory. 

1 Introduction 

Sequence learning is essential to human intelligence, sequences are everywhere, go-

ing from low-level sensory-motor behavior up to high-level problem solving and rea-

soning. Sequential processes can also be found in fields such as robotics, finances, 

language processing, etc.  

Hyperdimensional Computing is an emergent model of computation. It is based on 

the manipulation of high-dimensional vectors which are used not only to represent 

variables and values, but also to represent relations, sets and sequences [2]. 

In this work, we use a Hyperdimensional Computing approach for sequence pre-

diction. We present the main idea behind the use of high-dimensional vectors as a 

representation scheme, describe the operations used to manipulate these vectors and 

propose a method for storage and prediction of sequences. 
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The rest of the paper is organized as follows: Section 2 summarizes several works 

related to the use of HD Computing for sequence representation. Section 3 explains 

the main properties and operations used in HD Computing. In Section 4 we describe a 

new method for storage and prediction of sequences, Section 5 presents the experi-

mental results and finally, Section 6 draws the conclusions and future work. 

2 Related Work 

2.1 Hyperdimensional Computing 

The main difference between hyperdimensional computing (HD computing) and tra-

ditional computing relies on the type of elements used for computation. In HD com-

puting information is encoded in high-dimensional vectors (typically between 1,000 

and 10,000 bits long). These vectors have no dedicated fields, information is distrib-

uted along all vector. 

Kanerva [6] summarizes the main properties of HD Computing and explains three 

applications where it can be used: language processing, learning from example and 

analogy-making. 

Hyperdimensional spaces can be binary, real or complex, in [9] Rahimi et al. give a 

brief review of several frameworks for HD Computing, each framework having its 

own set of symbols and operations. They also describe a hardware architecture for 

operating high dimensional vectors.  

HD Computing has been applied in different domains, such as visual character 

recognition [3], cognitive software agents [14], robotics [5], biosignal processing 

[10], and sequence prediction [1, 13]. 

2.2 Sequence Prediction with Hyperdimensional Computing 

One of the first applications conceived for the Sparse Distributed Memory [7] was to 

store and retrieve sequences, in order to learn a sequence the memory can be operated 

in heteroassociative mode, where each location stores the next value of the sequence, 

forming a chain of pointers. Even though this approach has several flaws, it was the 

first idea to develop a prediction system based on HD Computing. 

Kanerva proposed the use of several Sparse Distributed Memories for storing se-

quences, where each memory could store higher order sequential structures [7]. The 

main limitation of this approach was the need of a very large memory system. This 

type of learning has been applied in the modeling of service robot movement [22]. 

Bose et al. [1] proposed a framework for online sequence learning based on an associ-

ative memory model. In their approach, the prediction value is obtained as a result of 

the sum of a set of history vectors.  

In [13] Snaider and Franklin proposed a modification to the SDM model that al-

lows a more efficient way to store and retrieve sequences. These sequences are en-

coded using hyperdimensional operations (sums and permutations). Räsänen and 

Saarinen propose a predictor based on HD Computing where, unlike the two previous 
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approaches, there is no need of a special memory, “the idea is to represent the previ-

ously observed history of each possible sequence state using a single vector of very 

large dimensionality” [12]. 

 In this work we propose a prediction model based on HD Computing operators and 

the original SDM model, without the need of increasing the size of the memory. 

3 Hyperdimensional Computing Background 

One of the most relevant properties of the high-dimensional spaces is that most of the 

space is nearly orthogonal to any given point. This means that if two random vectors 

are generated, it is highly probable (more than 99.999%) that they are mutually or-

thogonal. These properties where exploited in the SDM model developed by Kanerva 

in 1988 [7]. However, the properties of high-dimensional spaces can also be used to 

perform other type computations, for which is necessary to define a set of HD compu-

ting operators. 

3.1 HD Computing Operations 

HD Computing is based on three operations: addition, multiplication and permutation. 

In this paper we use binary vectors, but these three operations can be defined for other 

types of vectors [9]. A more detailed explanation of HD Computing operations can be 

found in [6]. 

 

Addition 

Addition is an element-wise binary average. The sum vector  𝑋𝑠 = ∑ 𝑥𝑘
𝑛
𝑘=1  is com-

puted by adding each component 𝑖 of each vector  𝑥𝑘 and then using the threshold 

function Θ to maintain the values as 0 or 1: 

𝑋𝑠,𝑖 = Θ (
1

𝑛
 ∑ 𝑥𝑘,𝑖

𝑛

𝑘=1

),                                                    (1) 

where 
Θ(𝑢) = {1 𝑓𝑜𝑟 𝑢 > 0.5, 0 𝑓𝑜𝑟 𝑢 < 0.5, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

The components of the sum vector can be computed independently, which means 

that it can be easily parallelized. The result vector 𝑋𝑠 is the concatenation of all the 

corresponding components.  

The sum vector has the property of being similar to the vectors added together; 

therefore the addition operation is used to encode sets of vectors. The elements of the 

sum are ‘visible’ in the representation of the set. 

 

Multiplication 

For binary vectors, multiplication is realized with an element-wise exclusive-or 
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(XOR); the resulting vector is dissimilar to the original ones.  Multiplication is a 

reversible operation; in fact, the XOR operator is its own inverse.  

 Multiplication is a mapping of points in space. Given two vectors A and B, it is 

possible to generate C, and later retrieve either A or B. 

𝐶 = 𝐴 ∗ 𝐵      ⟹ 𝐴 = 𝐶 ∗ 𝐵       ⟹ 𝐵 = 𝐶 ∗ 𝐴.                            (2) 

 Another interesting property of multiplication is that preserves distance, 𝑑(𝐴, 𝐵) =
𝑑(𝐴 ∗ 𝑋, 𝐵 ∗ 𝑋), “it is like moving a constellation of points bodily into a different part 

of the space while maintaining the relations (distances) between them” [6]. 

 

Permutation 

Permutation randomly reorders the components of the original vector, and just as 

multiplication, the resulting vector is dissimilar to the original one. Permutation is 

invertible and it also maintains distance: 𝑑(𝐴, 𝐵) = 𝑑(ΠA, ΠB). 

𝐵 =  Π𝐴    ⇒    𝐴 = Π−1𝐵.                                                   (3) 

 Unlike the two previous operations, permutation is not explicitly defined; it is pos-

sible to permute a vector by changing all its components to a different place, or only 

some of them. An easy way to permute a vector is by performing a circular shift oper-

ation, which will change all the components and can easily be inverted. In this work 

we implemented permutation as a shift right logical operation and the inverse permu-

tation as a shift left logical operation. 

3.2 Clean-Up Memory 

All previous operators allow us to encode, map and retrieve hyperdimensional patters, 

but in most cases the retrieval is not going to be exact. For example, 𝑋 = 𝑋1 ∗ 𝐴 +
𝑋2 ∗ 𝐵 is storing the association of 𝐴 with 𝑋1 and 𝐵 with 𝑋2. In order to retrieve 𝐴 we 

can multiply 𝑋 by 𝑋1: 

𝑋 ∗ 𝑋1 = (𝑋1 ∗ 𝐴 + 𝑋2 ∗ 𝐵) ∗ 𝑋1                                          (4) 

⇒  𝑋 ∗ 𝑋1 = 𝐴 + 𝑋1 ∗ 𝑋2 ∗ 𝐵. 

The resulting vector contains the sum of the desire value (𝐴) and an unknown vec-

tor (𝑋1 ∗ 𝑋2 ∗ 𝐵). In order to discriminate this last vector we can use an auto-

associative memory that approximates 𝑋 ∗ 𝑋1 to 𝐴. 

This auto-associative memory is called clean-up memory [8], its function is store 

all the items that the system should recognize. When a noisy version of an item is 

given as input, the memory must either output the most similar item or indicate that 

the input is not close enough to any of the store items.  

In the previous example is possible to obtain 𝐴 by performing a read operation 

from memory. 

𝐴 ≅ 𝑅𝑒𝑎𝑑(𝑋 ∗ 𝑋1) = 𝑅𝑒𝑎𝑑(𝐴 + 𝑛𝑜𝑖𝑠𝑒).                              (5) 
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 Every time a pattern becomes meaningful it can be recorded in memory, which 

becomes in “a catalog of meaningful patterns”.  

In this work we use the Sparse Distributed Memory [7] as clean-up memory. The 

SDM is an architecture that can store high dimensional binary vectors and retrieve 

them based on partial matches. The storing of patters is distributed, meaning that a 

single pattern is stored in many physical locations (called Hard Addresses). 

3.3 Sequence Representation 

A sequence is a complex structure that represents events that occur in certain order. 

The ability to store and recall sequences is very important in a system that pretends to 

have an intelligent behavior. There are several ways to represent sequences with HD 

Computing [6], in this work we focus in the representation of sequences by permuting 

sums.  

The addition operation allow us to represent a set of vectors without a particular 

order, this may not be useful to store sequences, unless the order of each vector is 

somewhat codified. Permutations can be used for this purpose. 

Since permutation generates a vector dissimilar from the original one, the order of 

the vector can be encoded as the number of permutations performed to the vector 

before the sum. For example, the sequence ABC, can be encoded as:  

𝑆 = 𝐴 + Π𝐵 + ΠΠ𝐶.                                                           (6) 

In order to retrieve each element we have to perform inverse permutations and use 

the clean-up memory. Since all the permuted vectors are not stored in memory, they 

are considered noise: 
𝐴 ≅ 𝑅𝑒𝑎𝑑(𝑆) = 𝑅𝑒𝑎𝑑(𝐴 + 𝑛𝑜𝑖𝑠𝑒), 

𝐵 ≅ 𝑅𝑒𝑎𝑑(Π−1𝑆) = 𝑅𝑒𝑎𝑑(𝐵 + 𝑛𝑜𝑖𝑠𝑒),                                    (7) 

𝐶 ≅ 𝑅𝑒𝑎𝑑(Π−1Π−1𝑆) = 𝑅𝑒𝑎𝑑(𝐶 + 𝑛𝑜𝑖𝑠𝑒). 

The amount of vectors that can be encoded with this method manly is limited by its 

dimensionality. For dimensions near 1,000 the limits is close to 4 to 5 vectors.  

4 Prediction Model  

The sequence prediction problem consists in that given 𝑥𝑛−𝑘+1, … , 𝑥𝑛−1, 𝑥𝑛, we want 

to predict 𝑥𝑛+1. In this section we describe a prediction model based on HD Compu-

ting. The model is divided in two: a storage phase, where a set of sequences is stored 

in memory, and a prediction phase, where the model provide the next value for a giv-

en sequence.  
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4.1 Encoding and Storage of Sequences 

The first step is to associate each value of a sequence 𝑥𝑖 to a random binary vector 𝑋𝑖. 

Due to the properties of high dimensional spaces, we can assume that all vectors 𝑋𝑖 

are not only different, but also mutually orthogonal.  All vectors 𝑋 are then stored in 

memory in auto-associative mode. 

Each vector 𝑋𝑖 must be associated with a sequence vector 𝑆𝑖, which encodes the k 

future vectors 𝑋𝑖+1, … , 𝑋𝑖+𝑘. 

𝑆𝑖 = 𝑋𝑖+1 + Π𝑋𝑖+1 + ⋯ + Π𝑘𝑋𝑖+𝑘 .                                       (8) 

Since 𝑋𝑖 has already been used as an address to memory, it is not possible to asso-

ciate the value 𝑋𝑖 to 𝑆𝑖 in a direct way. But we can map the address 𝑋𝑖 to another part 

of the space where the association of 𝑋𝑖 and 𝑆𝑖 could take place. One way to imple-

ment such mapping is by multiplicate 𝑋𝑖 by a known random binary vector 𝑀. The 

resulting vector 𝑋𝑖 ∗ 𝑀 is used as an address to store 𝑆𝑖: 

𝑊𝑟𝑖𝑡𝑒(𝑀 ∗ 𝑋𝑖) = 𝑆𝑖 .                                                   (9) 

In this prediction model the memory is not only used as a clean-up system (auto-

associative mode), but also as a way to associate symbols (hetero-associative mode). 

Once that all 𝑋𝑖 vectors have been stored and mapped to its corresponding sequence 

vectors, the storage phase is finished. 

4.2 Prediction of Sequences 

In order to predict the next value of a sequence, the systems needs to have as an input 

at least k consecutive elements of the sequence: 𝑥𝑗−𝑘+1, … , 𝑥𝑗 . The system approxi-

mates each value 𝑥𝑗 to a known value 𝑥𝑖 and then associates a vector 𝑋𝑗 to each 𝑥𝑗. 

Each vector 𝑋𝑗−𝑘+1, … , 𝑋𝑗 is associated with a sequence vector 𝑆𝑗−𝑘+1, … , 𝑆𝑗 which 

can be read from memory as follows: 

𝑆𝑗−𝑘+1 = 𝑅𝑒𝑎𝑑(𝑋𝑗−𝑘+1 ∗ 𝑀), 

…                                                                           (10) 

𝑆𝑗 = 𝑅𝑒𝑎𝑑(𝑋𝑗 ∗ 𝑀). 

Since each sequence vector has encoded a vector 𝑋𝑗+1
𝑘 , the last step is to extract 

each of these values in order to generate the final prediction vector 𝑋𝑗+1 from which is 

possible to obtain the prediction value 𝑥𝑗+1, Fig 1.  

𝑋𝑗+1
1 = 𝑅𝑒𝑎𝑑(Π−𝑘𝑆𝑗−𝑘+1), 

… 

𝑋𝑗+1
𝑘 = 𝑅𝑒𝑎𝑑(𝑆𝑗−𝑘+1),                                           (11) 
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𝑋𝑗+1 = ∑ 𝑋𝑗+1
𝑟

𝑘

𝑟=1

  →   𝑥𝑗+1. 

 

Fig. 1. Prediction model with Hyperdimensional Computing. 

5 Experimental Results 

We performed several simulations to test how the proposed method is able to store 

and predict sequences. As stated before, we use binary vectors with length of 1,000 

dimensions, these vectors have 50% ones and 50% zeros randomly distributed. We 

also use the original Sparse Distributed Memory model.  

For each simulation we vary the number of Hard Addresses of the memory to see 

how the capacity of the memory increases. We also increment the value of k which 

represents the number of vectors taken into account to form the sequence vector and 

to make a prediction (see section 4.2). 

Table 1. Prediction Rate for different values of k and N = 50 sequences 

N = 50 sequences 

Hard 

Addresses 

Successful Prediction 

k = 1 k = 2 k = 3 k = 4 

100,000 41.28% 26.40% 58.89% 33.25% 

250,000 60.17% 51.36% 70.12% 51.12% 

500,000 71.50% 59.85% 79.85% 70.78% 

1,000,000 74.80% 64.98% 91.24% 74.98% 

 

At the beginning of the experiment we generate random sequences, which are then 

encoded and stored into memory. Then we take k consecutive points of each sequence 

and try to predict the entire sequence. Each sequence consists of 20 points and we 

consider a prediction to be successful if it has at most 5% of error. The number of 

points and the criteria for a successful prediction was taken as in [13], so we can 

compare the results. Table 1 summarizes the results from the experiments.  

In the SDM model all the data is distributed along several physical locations, if the 

capacity of the memory increases then the number of sequences that can be success-
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fully predicted also increases. Unlike the system in [13] we do not modify the archi-

tecture of the memory, which results in a smaller size of memory, however, in this 

method each element of each sequence takes two addresses, one for storing itself 

(auto-associative mode) and one for storing its sequence vector (hetero-associative 

mode). 

 

 

Fig. 2. Percentage of successfully predicted sequences for different values of k. 

The rate of successful predictions do not increase linearly with respect to the value 

of k (Fig. 2), which might seem counterintuitive, because as the number of preceding 

points increases the prediction is expected to get better. But one of the downsides of 

the sum operation is that when the number of added vectors increases, the interference 

between them increases as well. This interference mainly depends on the dimension-

ality of the vectors, for vectors with length 1,000 starts to be noticeable at approxi-

mately 4 to 5 vectors.  

 The results presented in [13] show that their system was capable of successfully 

retrieve up to 49 sequences out of 50, but when the number of sequences increased to 

100 none of the sequences could be restored. In this case the capacity of the memory 

system was the limiting factor, since they only implemented 200,000 Hard Addresses.  

Another interesting behavior from Fig. 2 is that the prediction rate for k = 1 is bet-

ter than for k = 2. As seen in Section 3.1, the sum operation returns a random value 

when the sum of the components is equal to 0.5 (which prevents the sum vector to be 

constantly filled with ones or zeros) and when k = 2 the probabilities for this to hap-

pen are much greater that when k = 1 or k = 3. This behavior was also observed 

in  [13]. 
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6 Conclusions and Future Work 

This works presented some highlights of Hyperdimensional Computing, which is an 

emergent model of computation based on the storage and manipulation of high-

dimensional vectors. This type of computation allows us to encode from single con-

cepts up to more complex data structures such as sequences.  

 We proposed a method for the encoding and prediction of sequences, based on 

arithmetical operations and a Sparse Distributed Memory system. The main feature of 

this method is the use of the multiplication operation as a way of mapping vectors in 

space, in this particular case: mapping a vector to a sequence vector which allows us 

to make predictions.  

 We presented experimental results for the prediction method and explain some of 

its limitations, such as the restriction in the number of vectors to be added into a sin-

gle vector. One of the goals for future implementations is to increase the dimensional-

ity of the vectors in order to reduce the interference, not only in sums, but in all three 

operations.  

 Another future modification is to develop a hierarchical model which allows us, 

not only to predict single points, but also to predict sequences and other complex 

structures, such as relations between concepts and sets.  
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