MASSIMO DI PIERRO

ANNOTATED ALGORITHMS IN PYTHON3;

WITH APPLICATIONS IN PHYSICS, BIOLOGY, FINANCE (2ND ED.)

EXPERTS4SOLUTIONS

Copyright 2013 by Massimo Di Pierro. All rights reserved.

THE CONTENT OF THIS BOOK IS PROVIDED UNDER THE TERMS OF THE CRE-
ATIVE COMMONS PUBLIC LICENSE BY-NC-ND 3.0.

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW.
ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE
OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EX-
TENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR
GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have
used their best efforts in preparing this book, they make no representations or
warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives
or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate.
Neither the publisher nor the author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For more information about appropriate use of this material, contact:

Massimo Di Pierro

School of Computing

DePaul University

243 S Wabash Ave

Chicago, IL 60604 (USA)

Email: massimo.dipierro@gmail.com

Library of Congress Cataloging-in-Publication Data:

ISBN: 978-0-9911604-0-2
Build Date: July 19, 2021

http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

to my son

Contents

1 Introduction 15
1.1 Mainldeas Lo Lo Lo 16
1.2 AboutPython 18
1.3 Book Structure. oL L. 19
1.4 BookSoftware L. 21

2 Overview of the Python Language 23
21 AboutPython 23

2.1.1 Python versus Java and C++ syntax 24
212 help, dir oo oo 24
22 Typesofvariables 25
221 dntandlong 26
222 floatand decimal 27
2.2.3 complexo e 30
2,24 Str ... e e e 30
225 listandarray. 31
226 tuple 33
227 dict. ... 35
228 set ... 36
2.3 Python control flow statements 37
231 for...in o 38
23.2 while L 40
2.3.3 if...elif...else 40
2.3.4 try...except...else...finally 41

2.3.5 def...returno 43

23.6 lambda 46

24 Classes 47
2.4.1 Special methods and operator overloading 48
2.4.2 class Financial Transaction 49

2.5 Fileinput/output 51
2.6 How to import modules 51
26.1 mathand cmath. 52

262 05 ..o 53

263 SYS .o 53

2.6.4 datetime 53

265 time 54

2.6.6 wurllibandjson 55
267 pickle 55

268 sqlite L 56

2.6.9 NUNPY « v v i e e e e e e e e e 60
2.6.10 matplotlib 62

3 Theory of Algorithms 71
3.1 Order of growth of algorithms 72
3.1.1 Best and worst running times 75

3.2 Recurrence relations 79
3.2.1 Reducible recurrence relations 81

3.3 Typesofalgorithms. 84
3.3.1 Memoization 86

3.4 Timing algorithms 89
3.5 Datastructures 90
3.5.1 Arrays 90

352 List oo 90

353 Stack 91
354 Queue o 91

35.5 Sorting 92

3.6 Treealgorithms 94
3.6.1 Heapsort and priority queues. 94

3.6.2 Binarysearchtrees 98

3.6.3 Othertypesoftrees 100

3.7 Graphalgorithms 100

3.7.1 Breadth-firstsearch. 102
3.7.2 Depth-firstsearch 103
3.7.3 Disjointsets, 104
3.7.4 Minimum spanning tree: Kruskal 107
3.7.5 Minimum spanning tree: Prim 108
3.7.6 Single-source shortest paths: Dijkstra 110
3.8 Greedy algorithms 112
3.8.1 Huffmanencoding 112
3.8.2 Longest common subsequence 115
3.8.3 Needleman-Wunsch 118
3.8.4 Continuous Knapsack 119
3.8.5 Discrete Knapsack 120
3.9 Artificial intelligence and machine learning 124
3.9.1 Clustering algorithms 124
3.92 Neuralnetwork 129
3.9.3 Genetic algorithms 134
3.10 Long and infiniteloops 136
3.10.1 BNPand NPC 136
3.10.2 Cantor"sargument 137
3.10.3 Godel'stheorem 138
Numerical Algorithms 141
4.1 Well-posed and stable problems 141
4.2 Approximations and error analysis 142
4.2.1 Error propagation 144
4.2.2 buckingham 00000 145
4.3 Standard strategies 146
4.3.1 Approximate continuous with discrete 146
4.3.2 Replace derivatives with finite differences 146
4.3.3 Replace nonlinear with linear 148
4.3.4 Transform a problem into a different one 150
4.3.5 Approximate the true result via iteration 151
43.6 Taylorseries 151

4.3.7 Stopping Conditions 158

44

4.5

4.6

4.7

4.8

4.9
4.10

4.11

Linearalgebra 159

4.4.1 Linearsystems 160
4.4.2 Examples of linear transformations 167
4.4.3 Matrix inversion and the Gauss—Jordan algorithm 168
4.4.4 Transposingamatrix 170
4.4.5 Solving systems of linear equations 171
4.4.6 Norm and condition number again 172
4.4.7 Cholesky factorization 175
4.4.8 Modern portfolio theory 177
4.4.9 Linear least squares, X o 180
4.4.10 Trading and technical analysis 184
4.4.11 Eigenvalues and the Jacobi algorithm 186
4.4.12 Principal component analysis 189
Sparse matrix inversion 191
4.5.1 Minimum residual 191
4.5.2 Stabilized biconjugate gradient 192
Solvers for nonlinear equations 195
4.6.1 Fixed-point method 195
4.6.2 Bisectionmethod 197
4.6.3 Newtonmethod 197
4.6.4 Secantmethod 198
Optimization in one dimension 199
4.7.1 Bisectionmethod 199
4.7.2 Newtonmethod 200
4.7.3 Secantmethod 200
4.7.4 Golden sectionsearch 201
Functions of many variables 202
4.8.1 Jacobian, gradient, and Hessian 203
4.8.2 Newton method (solver) 205
4.8.3 Newton method (optimize) 206
4.8.4 Improved Newton method (optimize) 207
Nonlinear fitting 208
Integration Lo 211
4.10.1 Quadrature 213
Fourier transforms 215

4.12 Differential equations

5 Probability and Statistics

5.1 Probability

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7

Conditional probability and independence
Discrete random variables
Continuous random variables
Covariance and correlations
Strong law of large numbers
Central limit theorem
Errorinthemean.

5.2 Combinatorics and discrete random variables

5.2.1
5.2.2
5.2.3
5.2.4

Different plugs in different sockets.
Equivalent plugs in different sockets
Coloredcards
Gambler's fallacy

6 Random Numbers and Distributions

6.1 Randomness, determinism, chaos and order

6.2 Realrandomness

6.2.1
6.2.2

Memoryless to Bernoulli distribution
Bernoulli to uniform distribution.

6.3 Entropy generators

6.4 Pseudo-randomness

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.4.7
6.4.8
6.4.9
6.4.10
6.4.11

Linear congruential generator
Defects of PRNGs
Multiplicative recursive generator
Lagged Fibonacci generator

Marsaglia"s add-with-carry generator
Marsaglia"s subtract-and-borrow generator
Liischer"s generator

Knuth"s polynomial congruential generator

PRNGs in cryptography
Inverse congruential generator
Marsenne twister L.

223
223
225
226
227
230
231
231
232
233
234
234
235
236

237
237
238
239
240
241
241
242
244
244
245
245
245

10

6.5 DParallel generators and independent sequences
6.5.1 Non-overlapping blocks
6.5.2 Leapfrogging
6.53 Lehmertrees
6.6 Generating random numbers from a given distribution .
6.6.1 Uniform distribution
6.6.2 Bernoulli distribution
6.6.3 Biased dice and table lookup
6.6.4 Fishman-Yarberry method
6.6.5 Binomial distribution
6.6.6 Negative binomial distribution
6.6.7 Poisson distribution

252

6.7 Probability distributions for continuous random variables264

6.7.1 Uniforminrange
6.7.2 Exponential distribution
6.7.3 Normal/Gaussian distribution
6.7.4 Pareto distribution
6.75 Inandonacircle
6.76 Inandonasphere
6.8 Resampling
6.9 Binning o 0L

Monte Carlo Simulations

7.1 Introduction oL L.
711 Computing 7t
7.1.2 Simulating an online merchant

7.2 Error analysis and the bootstrap method

7.3 A general purpose Monte Carlo engine
73.1 Valueatrisk
7.3.2 Network reliability
7.3.3 Criticalmass

7.4 Monte Carlo integration
7.4.1 One-dimensional Monte Carlo integration
7.4.2 Two-dimensional Monte Carlo integration
7.4.3 n-dimensional Monte Carlo integration

264

275
275
275
278
281
283
284
286
288
290
291
293

7.5 Stochastic, Markov, Wiener, and processes.
7.5.1 Discrete random walk (Bernoulli process)
7.5.2 Random walk: Ito process
7.6 Optionpricing
7.6.1 Pricing European options: Binomial tree
7.6.2 Pricing European options: Monte Carlo
7.6.3 Pricing any option with Monte Carlo
7.7 Markov chain Monte Carlo (MCMC) and Metropolis . .
7.71 Thelsingmodel
7.8 Simulated annealing
7.8.1 Proteinfolding

Parallel Algorithms
8.1 Parallel architectures
8.1.1 Flynntaxonomy
8.1.2 Network topologies
8.1.3 Network characteristics
8.2 Parallel metrics
8.2.1 Latency and bandwidth
822 Speedup
8.2.3 Efficiency,
8.2.4 Isoefficiency
825 Cost
8.2.6 Costoptimality
827 Admahl'slaw oo
8.3 Message passing
83.1 Broadcast
8.3.2 Scatterand collect
833 Reduce
83.4 Barrier
8.3.5 Global running times
8.4 MP4PY
8.5 Master-Worker and Map-Reduce
86 pyOpenCL
8.6.1 A first example with PyOpenCL

295

. 296

297
298
300
302
304
306
309
313
313

11

12

8.6.2 Laplacesolver 351

9 Appendices 355
9.1 Appendix A: Math Review and Notation 355
91.1 Symbols o oL 355

912 Settheory 356

9.1.3 Logarithms 359

9.1.4 Finitesums 360

9.1.5 Limits(n —o00) 361

Index 367

Bibliography 371

CONTENTS 13

1

Introduction

This book is assembled from lectures given by the author over a period of
10 years at the School of Computing of DePaul University. The lectures
cover multiple classes, including Analysis and Design of Algorithms, Sci-
entific Computing, Monte Carlo Simulations, and Parallel Algorithms.
These lectures teach the core knowledge required by any scientist inter-
ested in numerical algorithms and by students interested in computa-
tional finance.

The notes are not comprehensive, yet they try to identify and describe
the most important concepts taught in those courses using a few common
tools and unified notation.

In particular, these notes do not include proofs; instead, they provide
definitions and annotated code. The code is built in a modular way and
is reused as much as possible throughout the book so that no step of the
computations is left to the imagination. Each function defined in the code
is accompanied by one or more examples of practical applications.

We take an interdisciplinary approach by providing examples in finance,
physics, biology, and computer science. This is to emphasize that, al-
though we often compartmentalize knowledge, there are very few ideas
and methodologies that constitute the foundations of them all. Ultimately,
this book is about problem solving using computers. The algorithms you

16 ANNOTATED ALGORITHMS IN PYTHONS3

will learn can be applied to different disciplines. Throughout history, it
is not uncommon that an algorithm invented by a physicist would find
application in, for example, biology or finance.

Almost all of the algorithms written in this book can be found in the nlib
github repository:

https://github.com/mdipierro/nlib

1.1 Main Ideas

Even if we cover many different algorithms and examples, there are a few
central ideas in this book that we try to emphasize over and over.

The first idea is that we can simplify the solution of a problem by using
an approximation and then systematically improve our approximation by
iterating and computing corrections.

The divide-and-conquer methodology can be seen as an example of this
approach. We do this with the insertion sort when we sort the first two
numbers, then we sort the first three, then we sort the first four, and so
on. We do it with merge sort when we sort each set of two numbers,
then each set of four, then each set of eight, and so on. We do it with the
Prim, Kruskal, and Dijkstra algorithms when we iterate over the nodes of
a graph, and as we acquire knowledge about them, we use it to update
the information about the shortest paths.

We use this approach in almost all our numerical algorithms because any
differentiable function can be approximated with a linear function:

fx+0x) = f(x) + ' (x)ox (1.1)

We use this formula in the Newton method to solve nonlinear equations
and optimization problems, in one or more dimensions.

We use the same approximation in the fix point method, which we use
to solve equations like f(x) = 0; in the minimum residual and conjugate
gradient methods; and to solve the Laplace equation in the last chapter of
the book. In all these algorithms, we start with a random guess for the
solution, and we iteratively find a better one until convergence.

https://github.com/mdipierro/nlib

INTRODUCTION 17

The second idea of the book is that certain quantities are random, but even
random numbers have patterns that we can capture using instruments
like distributions and correlations. The presence of these patterns helps
us model those systems that may have a random output (e.g., nuclear
reactions, financial systems) and also helps us in computations. In fact,
we can use random numbers to compute quantities that are not random
(Monte Carlo methods). The most common approximation that we make
in different parts of the book is that when a random variable x is localized
at a point with a given uncertainty, éx, then its distribution is Gaussian.
Thanks to the properties of Gaussian random numbers, we conclude the
following:

¢ Using the linear approximation (our first big idea), if z = f(x), the

uncertainty in the output is

0z = f'(x)éx (1.2)

¢ If we add two independent Gaussian random variables z = x 4 y, the
uncertainty in the output is

0z = \/6x2 + oy? (13)

e If we add N independent and identically distributed Gaussian vari-
ables z = Y x;, the uncertainty in the output is

6z = VNéx (1.4)

We use this over and over, for example, when relating the volatility
over different time intervals (daily, yearly).

¢ If we compute an average of N independent and identically distributed

Gaussian random variables, z = 1/N)_ x;, the uncertainty in the aver-
age is

0z =90x/VN (1.5)

We use this to estimate the error on the average in a Monte Carlo com-

putation. In that case, we write it as du = 0/+/ N, and o is the standard
deviation of {x;}.

18 ANNOTATED ALGORITHMS IN PYTHONS3

The third idea is that the time it takes to run an iterative algorithm is pro-
portional to the number of iterations. It is therefore our goal to minimize
the number of iterations required to reach a target precision. We develop
a language to compare algorithms based on their running time and clas-
sify algorithms into categories. This is useful to choose the best algorithm
based on the problem at hand.

In the chapter on parallel algorithms, we learn how to distribute those
iterations over multiple parallel processes and how to break individual
iterations into independent steps that can be executed concurrently on
parallel processes, to reduce the total time required to obtain a solution
within a given target precision. In the parallel case, the running time ac-
quires an overhead that depends on the communication patterns between
the parallel processes, the communication latency, and bandwidth.

In the ultimate analysis, we can even try to understand ourselves as a par-
allel machine that models the input from the world by approximations.
The brain is a graph that can be modeled by a neural network. The learn-
ing process is an ongoing optimization process in which the brain adjusts
its synapses to produce better and better responses. The decision process
mimics a search tree. We solve problems by searching for the most simi-
lar problems that we have encountered before, then we refine the solution.
Our DNA is a code that evolved to efficiently compress the information
necessary to grow us from a single cell into a complex being. We evolved
according to evolutionary mechanisms that can be modeled using genetic
algorithms. We can find our similarities with other organisms using the
longest common subsequence algorithm. We can reconstruct our evolu-
tionary tree using shortest-path algorithms and find out how we came to
be.

1.2 About Python

The programming language used in this book is Python [1] version 3.8.
This is because Python algorithms are very similar to the corresponding
pseudo-code, and therefore this language is easy to read and understand
compared to other languages such as C++ or Java. Moreover, Python

INTRODUCTION 19

is a popular language in many Universities and Companies (including
Google).

The goal of the book is to explain the algorithms by building them from
scratch. It is not our goal to teach the user about existing libraries that
may be (and often are) faster than our implementation. Two notable ex-
amples are NumPy [2] and SciPy [3]. These libraries provide a Python
interface to the BLAS and LaPack libraries for linear algebra and appli-
cations. Although we wholeheartedly recommend using them when de-
veloping production code, we believe they are not appropriate for teach-
ing the algorithms themselves because those algorithms are written in C,
FORTRAN, and assembly languages and are not easy to read.

1.3 Book Structure

This book is divided into the following chapters:
¢ This introduction.

* An introduction to the Python programming language. The introduc-
tion assumes the reader is not new to basic programming concepts,
such as conditionals, loops, and function calls, and teaches the basic
syntax of the Python language, with particular focus on those built-
in modules that are important for scientific applications (math, cmath,
decimal, random) and a few others.

e Chapter 3 is a short review of the general theory of algorithms with
applications. There we review how to determine the running time of
an algorithm from simple loops to more complex recursive algorithms.
We review basic data structures used to store information such as lists,
arrays, stacks, queues, trees, and graphs. We also review the classifi-
cation of basic algorithms such as divide-and-conquer, dynamic pro-
gramming, and greedy algorithms. In the examples, we peek into com-
plex algorithms such as Shannon-Fano compression, a maze solver, a
clustering algorithm, and a neural network.

* In chapter 4, we talk about traditional numerical algorithms, in particu-
lar, linear algebra, solvers, optimizers, integrators, and Fourier-Laplace

20 ANNOTATED ALGORITHMS IN PYTHON3

transformations. We start by reviewing the concept of Taylor series and
their convergence to understand approximations, sources of error, and
convergence. We then use those concepts to build more complex algo-
rithms by systematically improving their first-order (linear) approxima-
tion. Linear algebra serves us as a tool to approximate and implement
functions of many variables.

® In chapter 5, we provide a review of probability and statistics and im-
plement basic Python functions to perform statistical analysis of ran-
dom variables.

® In chapter 6, we discuss algorithms to generate random numbers from
many distributions. Python already has a built-in module to generate
random numbers, and in subsequent chapters, we utilize it, yet in this
chapter, we discuss in detail how pseudo random number generators
work and their pitfalls.

¢ In chapter 7, we write about Monte Carlo simulations. This is a numer-
ical technique that utilizes random numbers to solve otherwise deter-
ministic problems. For example, in chapter 4, we talk about numerical
integration in one dimension. Those algorithms can be extended to
perform numerical integration in a few (two, three, sometimes four)
dimensions, but they fail for very large numbers of dimensions. That
is where Monte Carlo integration comes to our rescue, as it increasingly
becomes the integration method of choice as the number of variables
increases. We present applications of Monte Carlo simulations.

® In chapter 8, we discuss parallel algorithms. There are many paradigms
for parallel programming these days, and the tendency is toward
inhomogeneous architectures. Although we review many different
types of architectures, we focus on three programming paradigms that
have been very successful: message-passing, map-reduce, and multi-
threaded GPU programming. In the message-passing case, we create a
simple “parallel simulator” (PSim) in Python that allows us to under-
stand the basic ideas behind message passing and issues with different
network topologies. In the GPU case, we use the pyOpenCL [4] library
to run OpenCL kernels on the GPU (or CPUs).

INTRODUCTION 21

¢ Finally, in the appendix, we provide a compendium of useful formulas
and definitions.

1.4 Book Software

We utilize the following software libraries developed by the author and
available under an Open Source BSD License:

® http://github.com/mdipierro/nlib

® http://github.com/mdipierro/buckingham

We also utilize the following third party libraries:

® http://www.numpy.org/

® http://matplotlib.org/

® https://github.com/ziyuang/mincemeatpy

®* https://pypi.org/project/pyopencl/

All the code included in these notes is released by the author under the
three-clause BSD License.

Acknowledgements

Many thanks to Alan Etkins, Brian Fox, Dan Bowker, Ethan Sud-
man, Holly Monteith, Konstantinos Moutselos, Luca De Alfaro, Michael
Gheith, Paula Mikrut, Sean Neilan, and John Plamondon for reviewing
different editions of this book. We also thank all the students of our
classes for their useful comments and suggestions. Finally, we thank
Wikipedia, from which we borrowed a few ideas and examples.

http://github.com/mdipierro/nlib
http://github.com/mdipierro/buckingham
http://www.numpy.org/
http://matplotlib.org/
https://github.com/ziyuang/mincemeatpy
https://pypi.org/project/pyopencl/

2

Overview of the Python Language

2.1 About Python

Python is a general-purpose high-level programming language. Its design
philosophy emphasizes programmer productivity and code readability. It
has a minimalist core syntax with very few basic commands and simple
semantics. It also has a large and comprehensive standard library, includ-
ing an Application Programming Interface (API) to many of the under-
lying operating system (OS) functions. Python provides built-in objects
such as linked lists (list), tuples (tuple), hash tables (dict), arbitrarily
long integers (long), complex numbers, and arbitrary precision decimal
numbers.

Python supports multiple programming paradigms, including object-
oriented (class), imperative (def), and functional (lambda) programming.
Python has a dynamic type system and automatic memory management
using reference counting (similar to Perl, Ruby, and Scheme).

Python was first released by Guido van Rossum in 1991 [6]. The lan-
guage has an open, community-based development model managed by
the nonprofit Python Software Foundation. There are many interpreters
and compilers that implement the Python language, including one in Java
(Jython), one built on .Net (IronPython), and one built in Python itself
(PyPy). In this brief review, we refer to the reference C implementation

24 ANNOTATED ALGORITHMS IN PYTHON3

created by Guido.

You can find many tutorials, the official documentation, and library refer-
ences of the language on the official Python website. [1]

For additional Python references, we can recommend the books in ref. [6]
and ref. [7].

You may skip this chapter if you are already familiar with the Python
language.

2.1.1 Python versus Java and C++ syntax

Java/C++ Python
assignment | a =b; a=">b
comparison | if (1 ==b) ifa=="0:
loops for(a = 0;a < m;a++) | for a in range(0, n):
block Braces {...} indentation
function float f(float a) { def f(a):
function call | f(a) f(a)
arrays/lists | ali] ali]
member a.member a.member
nothing null / voidx* None

As in Java, variables that are primitive types (bool, int, float) are passed by
copy, but more complex types, unlike C++, are passed by reference. This
means when we pass an object to a function, in Python, we do not make
a copy of the object, we simply define an alternate name for referencing
the object in the function.

2.1.2 help, dir

The Python language provides two commands to obtain documentation
about objects defined in the current scope, whether the object is built in
or user defined.

“u_r,

We can ask for help about an object, for example, “1”:

1 >>> help(1l)

2

o u kW

N o e W =

®

©

1C

11

OVERVIEW OF THE PYTHON LANGUAGE 25

Help on int object:

class int(object)
| int(x[, basel) -> integer

Convert a string or number to an integer, if possible. A floating point
argument will be truncated towards zero (this does not include a string
representation of a floating point number!) When converting a string, use
the optional base. It is an error to supply a base when converting a
non-string. If the argument is outside the integer range a long object
will be returned instead.

Methods defined here:

__abs__(...)
X.__abs__() < == > abs(x)

“u_r

and because “1” is an integer, we get a description about the int class and
all its methods. Here the output has been truncated because it is very
long and detailed.

Similarly, we can obtain a list of object attributes (including methods) for
any object using the command dir. For example:

>>> dir(1)

["__abs__", " _add__", "__and__", "__class__", "__cmp__", "__coerce__",
"__delattr__", "__div__", "__divmod__", "__doc__", "__float__",
"__floordiv__", "__getattribute__", "__getnewargs__", "__hash__", "__hex__",
"__index__", "__init__", "__int__", "__invert__", "__long__", "__lshift__",
"“__mod__", "__mul__", "__neg__", "__new__", "__nonzero__", "__oct__",
"“__or__", "__pos__", " __pow__", "__radd__", "__rand__", "__rdiv__",
"__rdivmod__", "__reduce__", "__reduce_ex__", "__repr__", "__rfloordiv__",

" _rlshift__", "__rmod__", "__rmul__", "__ror__", "__rpow__", "__rrshift__",
" _rshift_ ", " __rsub__", " _rtruediv__", " __rxor__", "__setattr__",

" _str ", " _sub__", " _truediv__", "__xor__"]

2.2 Types of variables

Python is a dynamically typed language, meaning that variables do not
have a type and therefore do not have to be declared. Variables may also
change the type of value they hold through their lives. Values, on the
other hand, do have a type. You can query a variable for the type of value
it contains:

>>> a = 3

N

w

o w

® N

NoR

w

26 ANNOTATED ALGORITHMS IN PYTHON3

>>> type(a)

<type 'int's>

>>> a = 3.14

>>> type(a)

<type 'float'>

>>> a = "hello python
>>> type(a)

<type 'str'>

Python also includes, natively, data structures such as lists and dictionar-
ies.

2.2.1 int and long

There are two types representing integer numbers: int and long. The dif-
ference is that int corresponds to the microprocessor's native bit length.
Typically, this is 32 bits and can hold signed integers in range [—23!, +231),
whereas the long type can hold almost any arbitrary integer. It is impor-
tant that Python automatically converts one into the other as necessary,
and you can mix and match the two types in computations. Here is an
example:

>>> a = 1024

>>> type(a)

<type 'int's>

>>> b = a *x 128

>>> b
20815864389328798163850480654728171077230524494533409610638224700807216119346720
59602447888346464836968484322790856201558276713249664692981627981321135464152584
82590187784406915463666993231671009459188410953796224233873542950969577339250027
68876520583464697770622321657076833170056511209332449663781837603694136444406281
042053396870977465916057756101739472373801429441421111406337458176

>>> type(b)

<type "long">

Computers represent 32-bit integer numbers by converting them to base
2. The conversion works in the following way:

def int2binary(n, nbits=32):
if n<0:
return [1 if bit == 0 else 0 for bit in int2binary(-n-1, nbits)]
bits = [0] * nbits
for i in range(nbits):
n, bits[i] = divmod(n, 2)
if n: raise OverflowError
return bits

N

OVERVIEW OF THE PYTHON LANGUAGE 27

The case n < 0 is called two"s complement and is defined as the value
obtained by subtracting the number from the largest power of 2 (232 for
32 bits). Just by looking at the most significant bit, one can determine the
sign of the binary number (1 for negative and o for zero or positive).

2.2.2 float and decimal

There are two ways to represent decimal numbers in Python: using the
native double precision (64 bits) representation, float, or using the decimal
module.

Most numerical problems are dealt with simply using float:

>>> pi = 3.141592653589793
>>> two_pi = 2.0 * pi

Floating point numbers are internally represented as follows:

x = £m2° (2.1)

where x is the number, m is called the mantissa and is zero or a num-
ber in the range [1, 2), and e is called the exponent. The sign, m, and e
can be computed using the following algorithm, which also writes their
representation in binary:

def float2binary(x, nm=4, ne=4):

if x == 0:
return 0, [0] x nm, [0] * ne
sign, mantissa, exponent = (1 if x<0 else 0), abs(x), 0

while abs(mantissa)>=2:

mantissa, exponent = 0.5 * mantissa, exponent+l
while O<abs(mantissa)<l:

mantissa, exponent = 2.0 * mantissa, exponent-1
mantissa = int2binary(int(2 *x (nm-1) * mantissa), nm)
exponent = int2binary(exponent, ne)
return sign, mantissa, exponent

Because the exponent is stored in a fixed number of bits (11 for a 64-bit
floating point number), exponents smaller than —1022 and larger than
1023 cannot be represented. An arithmetic operation that returns a num-

1022 ~ 10—308

ber smaller than 2~ cannot be represented and results in

an underflow error. An operation that returns a number larger than

N

N

w

28 ANNOTATED ALGORITHMS IN PYTHON3

21023 ~ 10%%8 also cannot be represented and results in an overflow er-

ror.

Here is an example of overflow:

>>> a = 10.0 *x 200
>>> a3 * a
inf

And here is an example of underflow:

>>> a = 10.0 **x -200

>>>a * a

0.0

Another problem with finite precision arithmetic is the loss of precision
in computation. Consider the case of the difference between two numbers
with very different orders of magnitude. To compute the difference, the
CPU reduces them to the same exponent (the largest of the two) and then
computes the difference in the two mantissas. If two numbers differ for
a factor 2F, then the mantissa of the smallest number, in binary, needs to
be shifted by k positions, thus resulting in a loss of information because
the k least significant bits in the mantissa are ignored. If the difference be-

252 all bits in the mantissa

tween the two numbers is greater than a factor
of the smallest number are ignored, and the smallest number becomes

completely invisible.

Following is a practical example that produces an incorrect result:

>>>a = 1.0

>>> b = 2.0 ** 53
>>> a+b-b

0.0

a simple example of what occurs internally in a processor to add two
floating point numbers together. The IEEE 754 standard states that for
32-bit floating point numbers, the exponent has a range of —126 to +127:

262 in IEEE 754: 0 10000111 00000110000000000000000 (+ e:8 m:1.0234375)
3 in IEEE 754: 0 10000000 10000000000000000000000 (+ e:1 m:1.5)
265 in IEEE 754: 0 10000111 00001001000000000000000

To add 262.0 to 3.0, the exponents must be the same. The exponent of the
lesser number is increased to the exponent of the greater number. In this
case, 3"s exponent must be increased by 7. Increasing the exponent by 7

N

-~

1

2

3
4

1

4

OVERVIEW OF THE PYTHON LANGUAGE 29

means the mantissa must be shifted seven binary digits to the right:

0 10000111 60000110000000000000000
0 10000111 00000011000000000000000 (The implied ~~1'' is also pushed seven
places to the right)

0 10000111 00001001000000000000000 which is the IEEE 754 format for 265.0

In the case of two numbers in which the exponent is greater than the
number of digits in the mantissa, the smaller number is shifted right off
the end. The effect is a zero added to the larger number.

In some cases, only some of the bits of the smaller number"s mantissa are
lost if a partial addition occurs.

This precision issue is always present but not always obvious. It may
consist of a small discrepancy between the true value and the computed
value. This difference may increase during the computation, in particular,
in iterative algorithms, and may be sizable in the result of a complex
algorithm.

Python also has a module for decimal floating point arithmetic that al-
lows decimal numbers to be represented exactly. The class Decimal incor-
porates a notion of significant places (unlike the hardware-based binary
floating point, the decimal module has a user-alterable precision):

>>> from decimal import Decimal, getcontext
>>> getcontext().prec = 28 # set precision
>>> Decimal(1l) / Decimal(7)
Decimal("0.1428571428571428571428571429")

Decimal numbers can be used almost everywhere in place of floating
point number arithmetic but are slower and should be used only where
arbitrary precision arithmetic is required. It does not suffer from the over-
flow, underflow, and precision issues described earlier:

>>> from decimal import Decimal

>>> a = Decimal(10.0) *x 300

>>> a x a
Decimal("1.000000000000000000000000000E+600")

a2 0w N R

N

30 ANNOTATED ALGORITHMS IN PYTHON3

2.2.3 complex

Python has native support for complex numbers. The imaginary unit is
represented by the character j:

>>> ¢ = 142j

>>> C

(1+23)

>>> c.real

1.0

>>> c.imag

2.0

>>> abs(c)

2.2360679775

The real and imaginary parts of a complex number are stored as 64-bit

floating point numbers.

Normal arithmetic operations are supported. The cmath module contains
trigonometric and other functions for complex numbers. For example,
>>> phi = 1j

>>> import cmath

>>> cmath.exp(phi)
(0.540302305868+0.8414709848087)

2.2.4 str

Python supports the use of two different types of strings: ASCII strings
and Unicode strings. ASCII strings are delimited by "...", "...",
wen v or i, Triple quotes delimit multiline strings. Unicode
strings start with a u, followed by the string containing Unicode charac-
ters. A Unicode string can be converted into an ASCII string by choosing
an encoding (e.g., UTF8):

>>> a = "this is an ASCII string"
>>> b = u"This is a Unicode string"
>>> a = b.encode("utf8")

After executing these three commands, the resulting a is an ASCII string
storing UTF8 encoded characters.
It is also possible to write variables into strings in various ways:

>>> "number is " + str(3)
number is 3

w

@

A 0w N =

R T

N

OVERVIEW OF THE PYTHON LANGUAGE 31

>>> "number is %s" % (3)

number is 3

>>> "number is %(number)s" % dict(number=3)
number is 3

The final notation is more explicit and less error prone and is to be pre-
ferred.

Many Python objects, for example, numbers, can be serialized into strings
using str or repr. These two commands are very similar but produce
slightly different output. For example,

>>> for i in [3, "hello"]:

.. print(str(i), repr(i))
33
hello "hello"

For user-defined classes, str and repr can be defined and redefined using
the special operators __str__ and __repr__. These are briefly described
later in this chapter. For more information on the topic, refer to the official

Python documentation [8].
Another important characteristic of a Python string is that it is an iterable
object, similar to a list:

>>> for i in "hello":
print(i)

o~~~ ®M® =T -

2.2.5 list and array

The distinction between lists and arrays is usually in their implementation
and in the relative difference in speed of the operations they can perform.
Python defines a type called list that internally is implemented more like
an array.

The main methods of Python lists are append, insert, and delete. Other
useful methods include count, index, reverse, and sort:

>>> b = [1, 2, 3]
>>> type(b)

w

v

w

32 ANNOTATED ALGORITHMS IN PYTHON3

<type "list">

>>> b.append(8)
>>> b.insert(2, 7)
>>> del b[0]

>>> b

[2, 7, 3, 8]
>>> len(b)

4

>>> b.append(3)
>>> b.reverse()
" 3 appears ", b.count(3), " times. The number 7 appears at index ", b.

index(7)
[3, 8, 3, 7, 2] 3 appears 2 times. The number 7 appears at index 3

>>> b,

insert 7 at index 2 (3rd element)

Lists can be sliced:

>>> a= [2, 7, 3, 8]
>>> al:3]
[2, 7, 3]
>>> afl:]
[7, 3, 8]
>>> al-2:1]

7 [3, 8]

and concatenated/joined:

>>>
>>>

>>>

a
a
>>> b
a
[2, 3,

[
[
[
b

2, 7, 3, 8]
2, 3]
5, 6]

5, 6]

A list is iterable; you can loop over it:

>>> 3

[

1, 2, 3]

>>> for i in a:

1
2
B

p

rint (i)

A list can also be sorted in place with the sort method:

>>> a.sort()

There is a very common situation for which a list comprehension can be

used. Consider the following code:

>>> 3
>>> b

[1, 2, 3, 4, 5]

[

]

>>> for x in a:
if x % 2 ==

~

B2 0w N R

w

OVERVIEW OF THE PYTHON LANGUAGE 33

b.append(x * 3)
>>> b
[6, 12]
This code clearly processes a list of items, selects and modifies a subset
of the input list, and creates a new result list. This code can be entirely

replaced with the following list comprehension:

>>>a = [1, 2, 3, 4, 5]

>>> b = [x x 3 for x in a if x % 2 == 0]
>>> b

[6, 12]

Python has a module called array. It provides an efficient array imple-
mentation. Unlike lists, array elements must all be of the same type, and
the type must be either a char, short, int, long, float, or double. A type
of char, short, int, or long may be either signed or unsigned. Notice these
are C-types, not Python types.

>>> from array import array

>>> a = array("d", [1, 2, 3, 4, 5])

array("d", [1.0, 2.0, 3.0, 4.0, 5.0])

An array object can be used in the same way as a list, but its elements
must all be of the same type, specified by the first argument of the con-
structor (“d” for double, “1” for signed long, “f” for float, and “c” for
character). For a complete list of available options, refer to the official
Python documentation.

Using “array” over “list” can be faster, but more important, the “array”
storage is more compact for large arrays.

2.2.6 tuple

A tuple is similar to a list, but its size and elements are immutable. If a
tuple element is an object, the object itself is mutable, but the reference to
the object is fixed. A tuple is defined by elements separated by a comma
and optionally delimited by round parentheses:

>>a=1, 2, 3
>>>a = (1, 2, 3)

The round brackets are required for a tuple of zero elements such as

>>> a = () # this is an empty tuple

N

W

w

34 ANNOTATED ALGORITHMS IN PYTHON3

A trailing comma is required for a one-element tuple but not for two or
more elements:

>>> a = (1) # not a tuple
>>>a = (1,) # this is a tuple of one element
>>> b = (1, 2) # this is a tuple of two elements

Since lists are mutable; this works:

>>> a = [1, 2, 3]
>>> a[l] =5
>>> a

[1, 5, 3]
the element assignment does not work for a tuple:

>>>a = (1, 2, 3)
>>> all]
2
>>> a[l] =5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: "tuple" object does not support item assignment

A tuple, like a list, is an iterable object. Notice that a tuple consisting of a
single element must include a trailing comma:

>>> g = (1)
>>> type(a)
<type 'int's>
>>>a = (1,)
>>> type(a)
<type "tuple">

Tuples are very useful for efficient packing of objects because of their
immutability. The brackets are often optional. You may easily get each
element of a tuple by assigning multiple variables to a tuple at one time:

>>> a = (2, 3, "hello")

>>> (X, Yy, z) = a

>>> X

2

>>> 7

hello

>>> a = "alpha", 35, "sigma" # notice the rounded brackets are optional
>>>p, r, q=a

print(r)

35

n

OVERVIEW OF THE PYTHON LANGUAGE 35

2,277 dict

A Python dict-ionary is a hash table that maps a key object to a value
object:

>>> a = {"k":"v", "k2":3}
>>> a["k"]

3 V

IS

~

& W N o=

>>> a["k2"]

3

>>> "k" in a

True

>>> "y" in a

False

You will notice that the format to define a dictionary is the same as the
JavaScript Object Notation [JSON]. Dictionaries may be nested:

>>> a = {"x":3, "y":54, "z":{"a":1, "b":2}}

>>> g["z"]

{"a": 1, "b": 2}
>>> a["z"]["a"]

5 1

N

Keys can be of any hashable type (int, string, or any object whose class
implements the __hash__ method). Values can be of any type. Different
keys and values in the same dictionary do not have to be of the same type.
If the keys are alphanumeric characters, a dictionary can also be declared
with the alternative syntax:

>>> a = dict(k="v", h2=3)
>>> a["k"]

3 V

-~

ol

N W A W R

>>> a
{uhzu: 3, ngn uvu}

Useful methods are has_key, keys, values, items, and update:

>>> a = dict(k="v", k2=3)
>>> a.keys()

["k2", "k"1]

>>> a.values()

[3, "v"]

>>> a.update({"n1":"new item"}) # adding a new item

>>> a.update(dict(n2="newer item")) # alternate method to add a new item

>>> a["n3"] = "newest item" # another method to add a new item

>>> a.items()

[("k2", 3), ("k", "v"), ("n3", "newest item"), ("n2", "newer item"), ("nl", "new

item")]

36 ANNOTATED ALGORITHMS IN PYTHON3

The items method produces a list of tuples, each containing a key and its
associated value.

Dictionary elements and list elements can be deleted with the command
del:

>>>a = [1, 2, 3]
>>> del a[l]
>>> g

[1, 3]

5 >>> a = dict(k="v", h2=3)

>>> del a["h2"]

>>> a

{"k": "v"}

Internally, Python uses the hash operator to convert objects into integers
and uses that integer to determine where to store the value. Using a key
that is not hashable will cause an un-hashable type error:

>>> hash("hello world")

-1500746465

>>> k = [1, 2, 3]

>>> a = {k:"4"}

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: "list"

2.2.8 set

A set is something between a list and a dictionary. It represents a non-
ordered list of unique elements. Elements in a set cannot be repeated.
Internally, it is implemented as a hash table, similar to a set of keys in a
dictionary. A set is created using the set constructor. Its argument can be
a list, a tuple, or an iterator:

>>> s = set([1, 2, 3, 4, 5, 5, 5, 5]) # notice duplicate elements are removed
>>> S

set([1, 2, 3, 4, 5])

>>> s = set((1, 2, 3, 4, 5))

5 >>> S

set([1, 2, 3, 4, 5])

>>> s = set(i for i in range(l, 6))
>>> S

set([1, 2, 3, 4, 5])

Sets are not ordered lists therefore appending to the end is not applicable.

N

w

® N o w s W

OVERVIEW OF THE PYTHON LANGUAGE 37

Instead of append, add elements to a set using the add method:

>>> s = set()
>>> s.add(2)
>>> s,add(3)
>>> s.add(2)
>>> §

set([2, 3])

Notice that the same element cannot be added twice (2 in the example).
There is no exception or error thrown when trying to add the same ele-
ment more than once.

Because sets are not ordered, the order in which you add items is not
necessarily the order in which they will be returned:

>>> s = set([6, "b", "beta", -3.4, "a", 3, 5.3])
>>> (s)
set(["a", 3, 6, 5.3, "beta", "b", -3.4])

The set object supports normal set operations like union, intersection, and
difference:

>>> a = set([1, 2, 3])

>>> b = set([2, 3, 4])

>>> ¢ = set([2, 3])

>>> a.union(b)

set([1, 2, 3, 4])

>>> a.intersection(b)

set([2, 3])

>>> a.difference(b)

set([1])

>>> if len(c) == len(a.intersection(c)):
print('"c is a subset of a")

. else:

print('"c is not a subset of a")

c is a subset of a
To check for membership,

>>> 2 in a
True

2.3 Python control flow statements

Python uses indentation to delimit blocks of code. A block starts with a
line ending with colon and continues for all lines that have a similar or

N U A W

38 ANNOTATED ALGORITHMS IN PYTHON3

higher indentation as the next line:

>>> i =0

>>> while i < 3:
print(i)

. i=1+1

0

1

2

It is common to use four spaces for each level of indentation. It is a

good policy not to mix tabs with spaces, which can result in (invisible)
confusion.

2.3.1 for...in

In Python, you can loop over iterable objects:

>>> a = [0, 1, "hello", "python"]
>>> for i in a:

print(i)
0

5 1

o

~

hello
python

"y
1

In the preceding example, you will notice that the loop index “i” takes on

the values of each element in the list [0, 1, "hello", "python"] sequentially.
The Python range keyword creates a list of integers automatically that may

be used in a “for” loop without manually creating a long list of numbers.

>>> a = range(0, 5)

>>> 3

[0, 1, 2, 3, 4]

>>> for i in a:

s print(i)
0

1

2

3

4

The parameters for range(a, b, c) are as follows: the first parameter is
the starting value of the list. The second parameter is the next value if
the list contains one more element. The third parameter is the increment
value.

N

o u kW

OVERVIEW OF THE PYTHON LANGUAGE 39

The keyword range can also be called with one parameter. It is matched
to “b” with the first parameter defaulting to o and the third to 1:

>>> range(5)

[0, 1, 2, 3, 4]

>>> range(53, 57)

[53, 54, 55, 561

>>> range(102, 200, 10)

[102, 112, 122, 132, 142, 152, 162, 172, 182, 192]
>>> range(0, -10, -1)

[e, -1, -2, -3, -4, -5, -6, -7, -8, -91]

The keyword range is very convenient for iterating over a list of numbers.
This is equivalent to the C/C++/C#/Java syntax:
for(int i=0; i<4; i=i+l1) { ... }

Another useful command is enumerate, which counts while looping and
returns a tuple consisting of (index, value):

>>> a = [0, 1, "hello", "python"]

>>> for (i, j) in enumerate(a): # the () around i, j are optional
print(i, j)

00

11

2 hello

3 python

There is also a keyword range(a, b, c) that returns a list of integers start-
ing with the value a, incrementing by ¢, and ending with the last value
smaller than b, where a defaults to o and c defaults to 1.

You can jump out of a loop using break:

>>> for i in [1, 2, 3]:
print(i)
break

1

You can jump to the next loop iteration without executing the entire code
block with continue:

>>> for i in [1, 2, 3]:
print(i)
continue
print("test")

N

w

N

aoA W

[N T N

40 ANNOTATED ALGORITHMS IN PYTHON3

Python also supports list comprehensions, and you can build lists using
the following syntax:

>>>a = [i*x i for i in [0, 1, 2, 3]:

>>> a

[0, 1, 4, 9]

Sometimes you may need a counter to “count” the elements of a list while
looping:

>>> a = [e * (i+1) for (i, e) in enumerate(["a", "b", "c", "d"1)]

>>> a
["a", "bb", "ccc", "dddd"]

2.3.2 while

Comparison operators in Python follow the C/C++/Java operators of ==
, !=, .., and so on. However, Python also accepts the <> operator as not
equal to and is equivalent to !=. Logical operators are and, or, and not.

The while loop in Python works much as it does in many other program-
ming languages, by looping an indefinite number of times and testing a
condition before each iteration. If the condition is False, the loop ends:

>>> i =0

>>> while i < 10:
i=1i+1

>>>]

10

The for loop was introduced earlier in this chapter.

There is no loop...until or do...while construct in Python.

2.3.3 if...elif...else

The use of conditionals in Python is intuitive:

>>> for i in range(3):

if i ==
print("zero")

elif i ==
print("one")

else:

s print("other")

zero

one

10

10

W

e

<

OVERVIEW OF THE PYTHON LANGUAGE 41

other

The elif means “else if.” Both elif and else clauses are optional. There
can be more than one elif but only one else statement. Complex condi-
tions can be created using the not, and, and or logical operators:

>>> for i in range(3):
ifi==0o0r (i=1and i+ 1==2):
print ("0 or 1")

2.3.4 try...except...else...finally

Python can throw - pardon, raise - exceptions:

>>> try:
a=1/0
. except Exception, e:
print("oops: %s" % e)
. else:
print("no problem here")
. finally:
print("done")
oops: integer division or modulo by zero
done

If an exception is raised, it is caught by the except clause, and the else
clause is not executed. The finally clause is always executed.

There can be multiple except clauses for different possible exceptions:

>>> try:
raise SyntaxError
. except ValueError:
print("value error")
. except SyntaxError:
print("syntax error")
syntax error

The finally clause is guaranteed to be executed while the except and else
are not. In the following example, the function returns within a try block.
This is bad practice, but it shows that the finally will execute regardless
of the reason the try block is exited:
>>> def f(x):
try:
r=x * X

return r # bad practice
except:

42 ANNOTATED ALGORITHMS IN PYTHON3

print("exception occurred %s" % e
else:

print("nothing else to do")
finally:

print("Finally we get here")

>>> y = f(3)

Finally we get here
>>> "result is ",y

result is 9

For every try, you must have either an except or a finally, while the else
is optional.

Here is a list of built-in Python exceptions:

BaseException

+-- SystemExit

+-- KeyboardInterrupt

+-- Exception
+-- GeneratorExit
+-- StopIteration
+-- StandardError
| +-- ArithmeticError

| | +-- FloatingPointError

| | +-- OverflowError

| | +-- ZeroDivisionError

| +-- AssertionError

| +-- AttributeError

| +-- EnvironmentError

| | +-- IOError

| | +-- OSError

| | +-- WindowsError (Windows)

| | +-- VMSError (VMS)

| +-- EOFError

| +-- ImportError

| +-- LookupError

| | +-- IndexError

| | +-- KeyError

| +-- MemoryError

| +-- NameError

| | +-- UnboundLocalError

| +-- ReferenceError

| +-- RuntimeError

| | +-- NotImplementedError

| +-- SyntaxError

| | +-- IndentationError

| | +-- TabError

| +-- SystemError

w

OVERVIEW OF THE PYTHON LANGUAGE 43

| +-- TypeError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning

For a detailed description of each of these, refer to the official Python
documentation.

Any object can be raised as an exception, but it is good practice to raise
objects that extend one of the built-in exception classes.

2.3.5 def...return

Functions are declared using def. Here is a typical Python function:

>>> def f(a, b):

. return a + b
>>> (4, 2)

6

There is no need (or way) to specify the type of an argument(s) or the

return value(s). In this example, a function f is defined that can take two
arguments.

Functions are the first code syntax feature described in this chapter to
introduce the concept of scope, or namespace. In the preceding example,
the identifiers a and b are undefined outside of the scope of function f:

>>> def f(a):
. return a + 1
>>> f(1)
2
>>> a
Traceback (most recent call last):

File "<pyshell#22>", line 1, in <module>

print(a)

44 ANNOTATED ALGORITHMS IN PYTHON3

NameError: name "a" is not defined

Identifiers defined outside of the function scope are accessible within the
function; observe how the identifier a is handled in the following code:

>>> g =1

>>> def f(b):

ce return a + b

>>> f(1)

>>> g = 2

>>> f(1) # new value of a is used

>>>a =1 # reset a
>>> def g(b):
a =2 # creates a new local a
. return a + b
>>> g(2)
>>> a # global a is unchanged
1

If a is modified, subsequent function calls will use the new value of the
global a because the function definition binds the storage location of the
identifier a, not the value of a itself at the time of function declaration;
however, if a is assigned-to inside function g, the global a is unaffected be-
cause the new local a hides the global value. The external-scope reference
can be used in the creation of closures:

>>> def f(x):

def g(y):

return x * y

return g
>>> doubler = f(2) # doubler is a new function
>>> tripler = f(3) # tripler is a new function
>>> quadrupler = f(4) # quadrupler is a new function
>>> doubler(5)

>>> tripler(5)

>>> quadrupler(5)

Function f creates new functions; note that the scope of the name g is
entirely internal to f. Closures are extremely powerful.

Function arguments can have default values and can return multiple re-

OVERVIEW OF THE PYTHON LANGUAGE 45

sults as a tuple (notice the parentheses are optional and are omitted in the
example):

>>> def f(a, b=2):

. return a + b, a - b

>>> x, y = f(5)

>>> X

7

>>>y

3

Function arguments can be passed explicitly by name; therefore the order
of arguments specified in the caller can be different than the order of

arguments with which the function was defined:

>>> def f(a, b=2):

.. return a + b, a - b
>>> x, y = f(b=5, a=2)

>>> X

Functions can also take a runtime-variable number of arguments. Param-
eters that start with + and »+ must be the last two parameters. If the xx
parameter is used, it must be last in the list. Extra values passed in will
be placed in the * identifier parameter, whereas named values will be
placed into the *x identifier. Notice that when passing values into the
function, the unnamed values must be before any and all named values:

>>> def f(a, b, *x extra, ** extraNamed):

print("a = ", a)
print("b = ", b)
print('"extra = ", extra)
. print("extranamed = ", extraNamed)
>>> f(1, 2, 5, 6, x=3, y=2, z=6)
a= 1
b= 2
extra = 6)

(5,
extranamed = {"y": 2, "x": 3, "z": 6}
Here the first two parameters (1 and 2) are matched with the parameters

a and b, while the tuple 5, 6 is placed into extra and the remaining items
(which are in a dictionary format) are placed into extraNamed.

In the opposite case, a list or tuple can be passed to a function that re-

voe W N

46 ANNOTATED ALGORITHMS IN PYTHON3

quires individual positional arguments by unpacking them:

>>> def f(a, b):
return a + b

>>> ¢ = (1, 2)
>>> f(* C)
3

and a dictionary can be unpacked to deliver keyword arguments:

>>> def f(a, b):

. return a + b
>>> ¢ = {"a":1, "b":2}
>>> f(%% C)

5 3

N

w

N

w

2.3.6 lambda

The keyword lambda provides a way to define a short unnamed function:

>>> a = lambda b: b + 2

>>> a(3)

5

The expression “lambda [a]:[b]” literally reads as “a function with argu-
ments [a] that returns [b].” The lambda expression is itself unnamed, but
the function acquires a name by being assigned to identifier a. The scop-
ing rules for def apply to lambda equally, and in fact, the preceding code,
with respect to a, is identical to the function declaration using def:

>>> def a(b):

return b + 2
>>> a(3)
5
The only benefit of lambda is brevity; however, brevity can be very conve-
nient in certain situations. Consider a function called map that applies a
function to all items in a list, creating a new list:
>>>a=1[1,7,2, 5 4, 8]
>>> map(lambda x: x + 2, a)
[3, 9, 4, 7, 6, 10]
This code would have doubled in size had def been used instead of 1ambda.
The main drawback of lambda is that (in the Python implementation) the
syntax allows only for a single expression; however, for longer functions,
def can be used, and the extra cost of providing a function name decreases

N

w

@R woN R

OVERVIEW OF THE PYTHON LANGUAGE 47

as the length of the function grows.

Just like def, lambda can be used to curry functions: new functions can be
created by wrapping existing functions such that the new function carries
a different set of arguments:

>>> def f(a, b): return a + b

>>> g = lambda a: f(a, 3)

>>> g(2)

5

Python functions created with either def or lambda allow refactoring of

existing functions in terms of a different set of arguments.

2.4 Classes

Because Python is dynamically typed, Python classes and objects may
seem odd. In fact, member variables (attributes) do not need to be specif-
ically defined when declaring a class, and different instances of the same
class can have different attributes. Attributes are generally associated with

the instance, not the class (except when declared as “class attributes,
which is the same as “static member variables” in C++/Java).

Here is an example:

>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.myvariable = 3
>>> myinstance.myvariable

Notice that pass is a do-nothing command. In this case, it is used to define
a class MyClass that contains nothing. MyClass() calls the constructor of
the class (in this case, the default constructor) and returns an object, an
instance of the class. The (object) in the class definition indicates that our
class extends the built-in object class. This is not required, but it is good
practice.

Here is a more involved class with multiple methods:

>>> class Complex(object):
z =2
def __init _(self, real=0.0, imag=0.0):
self.real, self.imag = real, imag

48 ANNOTATED ALGORITHMS IN PYTHON3

def magnitude(self):
return (self.real *x 2 + self.imag *x 2) *x 0.5
def __add__(self, other):
return Complex(self.real+other.real, self.imag+other.imag)
= Complex(1l, 3)
Complex(2, 1)
a+b
.magnitude()

>>>
>>>

>>>

0o 0o o

>>>

5

Functions declared inside the class are methods. Some methods have
special reserved names. For example, __init__ is the constructor. In the
example, we created a class to store the real and the imag part of a complex
number. The constructor takes these two variables and stores them into
self (not a keyword but a variable that plays the same role as this in Java
and (this) in C++; this syntax is necessary to avoid ambiguity when
declaring nested classes, such as a class that is local to a method inside
another class, something Python allows but Java and C++ do not).

The self variable is defined by the first argument of each method. They
all must have it, but they can use another variable name. Even if we use
another name, the first argument of a method always refers to the object
calling the method. It plays the same role as the this keyword in Java and
Ct+.

Method __add__ is also a special method (all special methods start and
end in double underscore) and it overloads the + operator between self
and other. In the example, a+b is equivalent to a call to a.__add__(b), and
the __add__ method receives self=a and other=b.

All variables are local variables of the method, except variables declared
outside methods, which are called class variables, equivalent to C++ static
member variables, which hold the same value for all instances of the class.

2.4.1 Special methods and operator overloading

Class attributes, methods, and operators starting with a double under-
score are usually intended to be private (e.g., to be used internally but
not exposed outside the class), although this is a convention that is not
enforced by the interpreter.

- N ISV

~

10

OVERVIEW OF THE PYTHON LANGUAGE 49

Some of them are reserved keywords and have a special meaning:
* __len__

® _ _getitem__

® __setitem _

They can be used, for example, to create a container object that acts like a
list:

>>> class MyList(object):

>>> def __init__(self, x a): self.a = list(a)

>>> def __len__(self): return len(self.a)

>>> def __getitem__(self, key): return self.alkey]

>>> def __setitem__(self, key, value): self.alkey] = value
>>> b = MyList(3, 4, 5)

>>> b[1]

4

>>> b.a[l] = 7

>>> b.a

[3, 7, 5]

Other special operators include __getattr__ and __setattr__, which define
the get and set methods (getters and setters) for the class, and __add__,
__sub__, __mul__, and __div__, which overload arithmetic operators. For
the use of these operators, we refer the reader to the chapter on linear
algebra, where they will be used to implement algebra for matrices.

2.4.2 class Financial Transaction

As one more example of a class, we implement a class that represents
a financial transaction. We can think of a simple transaction as a single
money transfer of quantity a that occurs at a given time t. We adopt
the convention that a positive amount represents money flowing in and a
negative value represents money flowing out.

The present value (computed at time fy) for a transaction occurring at
time t days from now of amount A is defined as

PV(t,A) = Ae™ " (2.2)

where r is the daily risk-free interest rate. If ¢ is measured in days, r
has to be the daily risk-free return. Here we will assume it defaults to

Noom

W

50 ANNOTATED ALGORITHMS IN PYTHON3

r = 005/365 (5% annually).

Here is a possible implementation of the transaction:

from datetime import date
from math import exp
today = date.today()
r_free = 0.05/365.0

class FinancialTransaction(object):
def __init _(self, t, a, description=""'):
self.t=t
self.a = a
self.description = description
def pv(self, tO=today, r=r_free):
return self.a x exp(r * (t0-self.t).days)
def __str__(self):
return "%.2f dollars in %i days (%s)" % \
(self.a, self.t, self.description)

Here we assume t and ty are datetime.date objects that store a date. The
date constructor takes the year, the month, and the day separated by a
comma. The expression (t0-t).days computes the distance in days be-
tween ty and t.

Similarly, we can implement a Cash Flow class to store a list of transactions,
with the add method to add a new transaction to the list. The present value
of a cash flow is the sum of the present values of each transaction:

class CashFlow(object):
def __init__(self):
self.transactions = []
def add(self, transaction):
self.transactions.append(transaction)
def pv(self, t0, r=r_free):
return sum(x.pv(t0, r) for x in self.transactions)
def __str__(self):
return "\n".join(str(x) for x in self.transactions)

What is the net present value at the beginning of 2012 for a bond that
pays $1000 the 20th of each month for the following 24 months (assuming
a fixed interest rate of 5% per year)?

>>> bond = CashFlow()
>>> today = date(2012, 1, 1)
>>> for year in range(2012, 2014):
for month in range(1l, 13):
coupon = FinancialTransaction(date(year, month, 20), 1000)

® N

NooR

w

N

W

N

w

OVERVIEW OF THE PYTHON LANGUAGE 51

. bond.add(coupon)
>>> round(bond.pv(today, r=0.05/365), 0)
22826

This means the cost for this bond should be $22, 826.

2.5 File input/output

In Python, you can open and write in a file with

>>> file = open("myfile.txt", "w")
>>> file.write("hello world")
>>> file.close()

Similarly, you can read back from the file with

>>> file = open("myfile.txt", "r")
>>> file.read()
hello world

Alternatively, you can read in binary mode with “rb, ” write in binary
mode with “wb, ” and open the file in append mode “a” using standard
C notation.

The read command takes an optional argument, which is the number of
bytes. You can also jump to any location in a file using seek :

You can read back from the file with read:

>>> file.seek(6)
>>> file.read()
world

and you can close the file with:

>>> file.close()

2.6 How to import modules

The real power of Python is in its library modules. They provide a large
and consistent set of application programming interfaces (APIs) to many
system libraries (often in a way independent of the operating system).

For example, if you need to use a random number generator, you can do
the following:

N

N

N

52 ANNOTATED ALGORITHMS IN PYTHON3

>>> import random
>>> random.randint (0, 9)
5

This prints a random integer in the range of (o, 9], 5 in the example. The
function randint is defined in the module random. It is also possible to
import an object from a module into the current namespace:

>>> from random import randint
>>> randint(0, 9)

or import all objects from a module into the current namespace:

>>> from random import x
>>> randint(0, 9)

or import everything in a newly defined namespace:

>>> import random as myrand
>>> myrand.randint (0, 9)

In the rest of this book, we will mainly use objects defined in modules
math, cmath, os, sys, datetime, time, and pickle. We will also use the random
module, but we will describe it in a later chapter.

In the following subsections, we consider those modules that are most
useful.

2.6.1 math and cmath

Here is a sampling of some of the methods available in the math and cmath
packages:

® math.isinf(x) returns true if the floating point number x is positive or
negative infinity

® math.isnan(x) returns true if the floating point number x is NaN; see
Python documentation or IEEE 754 standards for more information

® math.exp(x) returns e =* x

® math.log(x[, base] returns the logarithm of x to the optional base; if
base is not supplied, e is assumed

® math.cos(x), math.sin(x), math.tan(x) returns the cos, sin, tan of the
value of x; x is in radians

w

-~

N

OVERVIEW OF THE PYTHON LANGUAGE 53

® math.pi, math.e are the constants for pi and e to available precision

® math.isinf(x) can be used to check if a number is infinity.

2.6.2 os

This module provides an interface for the operating system API:

>>> import os
>>> os.chdir("..")
>>> os.unlink("filename_to_be_deleted")

Some of the os functions, such as chdir, are not thread safe, for example,
they should not be used in a multithreaded environment.

os.path.join is very useful; it allows the concatenation of paths in an OS-
independent way:

>>> import os

>>> a = os.path.join("path", "sub_path")
>>> a

path/sub_path

System environment variables can be accessed via
>>> 0s.environ

which is a read-only dictionary.

2.6.3 sys

The sys module contains many variables and functions, but used the most
is sys.path. It contains a list of paths where Python searches for modules.
When we try to import a module, Python searches the folders listed in
sys.path. If you install additional modules in some location and want
Python to find them, you need to append the path to that location to
sys.path:

>>> import sys
>>> sys.path.append("path/to/my/modules")

2.6.4 datetime

The use of the datetime module is best illustrated by some examples:

>>> import datetime

w

w

N

54 ANNOTATED ALGORITHMS IN PYTHONj3

>>> datetime.datetime.today()

2008-07-04 14:03:90

>>> datetime.date.today()

2008-07-04

Occasionally you may need to time stamp data based on the UTC time as

opposed to local time. In this case, you can use the following function:

>>> import datetime

>>> datetime.datetime.utcnow()

2008-07-04 14:03:90

The datetime module contains various classes: date, datetime, time, and
timedelta. The difference between two dates or two datetimes or two time
objects is a timedelta:

>>>

datetime.datetime(2008, 1, 1, 20, 30)
datetime.datetime (2008, 1, 2, 20, 30)
=b - a

.days

>>>
>>>
>>>
1

0 0o T o
[}

We can also parse dates and datetimes from strings:

>>> s = "2011-12-31"

>>> a = datetime.datetime.strptime(s, "%Y-%m-%d")
>>> a.year, a.day, a.month

2011 31 12

Notice that “%Y” matches the four-digit year, “%m” matches the month as
a number (1-12), “%d” matches the day (1-31), “%H"” matches the hour,
“%M” matches the minute, and “%S” matches the seconds. Check the
Python documentation for more options.

2.6.5 time

The time module differs from date and datetime because it represents time
as seconds from the epoch (beginning of 1970):

>>> import time
>>> t = time.time()
1215138737.571

Refer to the Python documentation for conversion functions between time
in seconds and time as a datetime.

OVERVIEW OF THE PYTHON LANGUAGE 55

2.6.6 urllib and json

The urllib is a module to download data or a web page from a URL:

>>> import urllib.request

>>> page = urllib.request.urlopen("http://www.google.com/")

>>> html = page.read()

Many web services return data in JSON format. JSON is slowly replacing
XML as a favorite protocol for data transfer on the web. It is lighter,
simpler to use, and more human readable. JSON can be thought of as
serialized JavaScript. the JSON data can be converted to a Python object
using a library called json:

>>> import json
>>>a = [1, 2, 3]

>>> b = json.dumps(a)
>>> type(b)

5 <type 'str'>

®©

>>> c = json.loads(b)

>>> a == C

True

The module json has loads and dumps methods which work very much as
pickle"s methods, but they serialize the objects into a string using JSON
instead of the pickle protocol.

2.6.7 pickle

This is a very powerful module. It provides functions that can serialize
almost any Python object, including self-referential objects. For example,
let"s build a weird object:

>>> class MyClass(object): pass
>>> myinstance = MyClass()

>>> myinstance.x = "something"
>>>a = [1, 2, {"hello":"world"}, [3, 4, [myinstancel]]
and now:

>>> import pickle
>>> b = pickle.dumps(a)
>>> ¢ = pickle.loads(b)

In this example, b is a string representation of a, and c is a copy of a
generated by deserializing b. The module pickle can also serialize to and

56 ANNOTATED ALGORITHMS IN PYTHON3

deserialize from a file:

>>> pickle.dump(a, open("myfile.pickle", "wb"))

> >>> c = pickle.load(open("myfile.pickle", "rb"))

2.6.8 sqlite

The Python dictionary type is very useful, but it lacks persistence because
it is stored in RAM (it is lost if a program ends) and cannot be shared by
more than one process running concurrently. Moreover, it is not transac-
tion safe. This means that it is not possible to group operations together
so that they succeed or fail as one.

Think for example of using the dictionary to store a bank account. The
key is the account number and the value is a list of transactions. We
want the dictionary to be safely stored on file. We want it to be accessible
by multiple processes and applications. We want transaction safety: it
should not be possible for an application to fail during a money transfer,
resulting in the disappearance of money:.

Python provides a module called shelve with the same interface as dict,
which is stored on disk instead of in RAM. One problem with this module
is that the file is not locked when accessed. If two processes try to access
it concurrently, the data become corrupted. This module also does not
provide transactional safety.

The proper alternative consists of using a database. There are two types
of databases: relational databases (which normally use SQL syntax) and
non-relational databases (often referred to as NoSQL). Key-value persis-
tent storage databases usually follow under the latter category. Relational
databases excel at storing structured data (in the form of tables), estab-
lishing relations between rows of those tables, and searches involving
multiple tables linked by references. NoSQL databases excel at storing
and retrieving schemaless data and replication of data (redundancy for
fail safety).

Python comes with an embedded SQL database called SQLite [9]. All data
in the database are stored in one single file. It supports the SQL query
language and transactional safety. It is very fast and allows concurrent

OVERVIEW OF THE PYTHON LANGUAGE 57

read (from multiple processes), although not concurrent write (the file
is locked when a process is writing to the file until the transaction is
committed). Concurrent write requests are queued and executed in order
when the database is unlocked.

Installing and using any of these database systems is beyond the scope of
this book and not necessary for our purposes. In particular, we are not
concerned with relations, data replications, and speed.

As an exercise, we are going to implement a new Python class called
PersistentDictionary that exposes an interface similar to a dict but uses
the SQLite database for storage. The database file is created if it does not
exist. PersistentDictionary will use a single table (also called persistence)
to store rows containing a key (pkey) and a value (pvalue).

For later convenience, we will also add a method that can generate a
UUID key. A UUID is a random string that is long enough to be, most
likely, unique. This means that two calls to the same function will return
different values, and the probability that the two values will be the same
is negligible. Python includes a library to generate UUID strings based
on a common industry standard. We use the function uuidg, which also
uses the time and the IP of the machine to generate the UUID. This means
the UUID is unlikely to have conflicts with (be equal to) another UUID
generated on other machines. The uuid method will be useful to generate
random unique keys.

We will also add a method that allows us to search for keys in the database
using GLOB patterns (in a GLOB pattern, “ * ” represents a generic wild-

“uyry

card and is a single-character wildcard).

Here is the code:

Listing 2.1: in file: nlib.py

import os
import uuid
import sqlite3
import pickle
import unittest

class PersistentDictionary(object):

58 ANNOTATED ALGORITHMS IN PYTHON3

A sqlite based key, value storage.

The

value can be any pickleable object.

Similar interface to Python dict
Supports the GLOB syntax in methods keys(), items(), __delitem__()

Usage Example:
>>> p = PersistentDictionary(path="test.sqlite")

>>>

key = "test/" + p.uuid()

>>> plkey] = {"a": 1, "b": 2}
>>> p[key]

{'a'

>>>
1
>>>

1, 'b': 2}
len(p.keys("test/*"))

del plkey]

CREATE_TABLE = "CREATE TABLE persistence (pkey, pvalue)"

SELECT_KEYS = "SELECT pkey FROM persistence WHERE pkey GLOB ?"

SELECT_VALUE = "SELECT pvalue FROM persistence WHERE pkey GLOB ?"
INSERT_KEY_VALUE = "INSERT INTO persistence(pkey, pvalue) VALUES (?, ?)"
UPDATE_KEY_VALUE = "UPDATE persistence SET pvalue = ? WHERE pkey = ?"
DELETE_KEY_VALUE = "DELETE FROM persistence WHERE pkey LIKE 7"
SELECT_KEY_VALUE = "SELECT pkey, pvalue FROM persistence WHERE pkey GLOB ?"

def

def

def

__init__(self,
path="persistence.sqlite",
autocommit=True,
serializer=pickle):
self.path = path
self.autocommit = autocommit
self.serializer = serializer
create_table = not os.path.exists(path)
self.connection = sqlite3.connect(path)
self.connection.text_factory = str # do not use unicode
self.cursor = self.connection.cursor()
if create_table:
self.cursor.execute(self.CREATE_TABLE)
self.connection.commit ()

uuid(self):
return str(uuid.uuid4())

keys(self, pattern=" * "):

"returns a list of keys filtered by a pattern, * is the wildcard"
self.cursor.execute(self.SELECT_KEYS, (pattern,))

return [row[0] for row in self.cursor.fetchall()]

def __contains__(self, key):

90

91

93
94
95
96
97
98

99
100
101
102
103

104

def

OVERVIEW OF THE PYTHON LANGUAGE 59

return True if self.get(key)!=None else False

__iter__(self):

for key in self:
yield key

def __setitem_ _(self, key, value):

def

def

def

def

def

def

if key in self:
if value is None:
del self[key]
else:
svalue = self.serializer.dumps(value)
self.cursor.execute(self.UPDATE_KEY_VALUE, (svalue, key))
else:
svalue = self.serializer.dumps(value)
self.cursor.execute(self.INSERT_KEY_VALUE, (key, svalue))
if self.autocommit: self.connection.commit ()

get(self, key):
self.cursor.execute(self.SELECT_VALUE, (key,))

row = self.cursor.fetchone()

return self.serializer.loads(row[0]) if row else None

__getitem__(self, key):
self.cursor.execute(self.SELECT_VALUE, (key,))
row = self.cursor.fetchone()

if not row: raise KeyError

return self.serializer.loads(row[0])

__delitem__(self, pattern):
self.cursor.execute(self.DELETE_KEY_VALUE, (pattern,))
if self.autocommit: self.connection.commit()

items(self, pattern=" * "):
self.cursor.execute(self.SELECT_KEY_VALUE, (pattern,))
return [(row[0], self.serializer.loads(row[1])) \

for row in self.cursor.fetchall()]

dumps (self, pattern=" * "):

self.cursor.execute(self.SELECT_KEY_VALUE, (pattern,))

rows = self.cursor.fetchall()

return self.serializer.dumps(dict((row[0], self.serializer.loads(row[1])
)

for row in rows))

loads(self, raw):

data = self.serializer.loads(raw)

for key, value in data.iteritems():
self[key] = value

60 ANNOTATED ALGORITHMS IN PYTHON3

This code now allows us to do the following;:
* Create a persistent dictionary:

1 >>> p = PersistentDictionary(path="storage.sqlite", autocommit=False)
e Store data in it:

>>> p["some/key"] = "some value"

where “some/key” must be a string and “some value” can be any
Python pickleable object.
* Generate a UUID to be used as the key:

>>> key = p.uuid()
>>> p[key] = "some other value"

N

e Retrieve the data:

>>> data = p["some/key"]

* Loop over keys:

>>> for key in p: print(key, pl[key])
e List all keys:

>>> keys = p.keys()

e List all keys matching a pattern:

>>> keys = p.keys("some/ * ")

¢ List all key-value pairs matching a pattern:

>>> for key, value in p.items("some/ * "): print(key, value)

® Delete keys matching a pattern:

>>> del p["some/ * "]

2.6.9 numpy

The library numpy [2] is the Python library for efficient arrays, multidimen-
sional arrays, and their manipulation. numpy does not ship with Python
and must be installed separately.

On most platforms, this is as easy as typing in the Bash Shell:

pip install numpy

Yet on other platforms, it can be a more lengthy process, and we leave it

OVERVIEW OF THE PYTHON LANGUAGE 61

to the reader to find the best installation procedure.

The basic object in numpy is the ndarray (n-dimensional array). Here we
make a 10 x 4 x 3 array of 64 bits float:

>>> import numpy
>>> a = numpy.ndarray((10, 4, 3), dtype=numpy.float64)

The class ndarray is more efficient than Python's list. It takes much less
space because their elements have a fixed given type (e.g., float64). Other
popular available types are: int8, int16, int32, int64, uint8, uint16, uint32,
uint6y, float16, float32, float64, complex64, and complex128.

We can access elements:

>>> a0, 0, 0] =1
>>> a[0, 0, 0]

;5 1.0

9

We can query for its size:

>>> a.shape
(10, 4, 3)

We can reshape its elements:

>>> b = a.reshape((10, 12))
>>> a.shape
(10, 12)

We can map one type into another
>>> ¢ = b.astype(float32)
We can load and save them:

>>> numpy.save("array.np", a)
>>> b = numpy.load("array.np")

And we can perform operations on them (most operations are element-
wise operations):

>>> a = numpy.array([[1, 21, [3, 41]1) # converts a list into a ndarray
>>> 3
[[1 2]
[3 4]]
>>> a+l
[[2 3]
[4 5]]
>>> a+a
[[2 4]

A W N o=

N o W

@

62 ANNOTATED ALGORITHMS IN PYTHON3

[6 8]]
>>> g * 2
[[2 4]
[6 8]]
>>> a x a
[[1 4]
[9 16]]
>>> numpy.exp(a)
[[2.71828183 7.3890561]
[20.08553692 54.59815003]]

The numpy module also implements common linear algebra operations:

>>> from numpy import dot
>>> from numpy.linalg import inv
>>> dot(a, a)
[[7 10]
[15 221]
>>> inv(a)
[[-2. 1.1
[1.5 -0.5]]
These operations are particularly efficient because they are implemented

on top of the BLAS and LaPack libraries.

There are many other functions in the numpy module, and you can read
more about it in the official documentation.

2.6.10 matplotlib

Library matplotlib [10] is the de facto standard plotting library for Python.
It is one of the best and most versatile plotting libraries available. It has
two modes of operation. One mode of operation, called pylab, follows a
Matlab-like syntax. The other mode follows a more Python-style syntax.
Here we use the latter.

You can install matplotlib with
pip install matplotlib

and it requires numpy. In matplotlib, we need to distinguish the following
objects:

® Figure: a blank grid that can contain pairs of XY axes

® Axes: a pair of XY axes that may contain multiple superimposed plots

N

w

OIS

o

N

w

-~

OVERVIEW OF THE PYTHON LANGUAGE 63

® FigureCanvas: a binary representation of a figure with everything that
it contains

* plot: a representation of a data set such as a line plot or a scatter plot

In matplotlib, a canvas can be visualized in a window or serialized into
an image file. Here we take the latter approach and create two helper
functions that take data and configuration parameters and output PNG
images.

We start by importing matplotlib and other required libraries:

Listing 2.2: in file: nlib.py
import math
import cmath
import random
import os
import tempfile
os.environ["MPLCONfigureDIR"] = tempfile.mkdtemp()

Now we define a helper that can plot lines, points with error bars, his-
tograms, and scatter plots on a single canvas:

Listing 2.3: in file: nlib.py
import io
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.patches import Ellipse

class Canvas(object):

def __init__(self, title='', xlab="x", ylab="y", xrange=None, yrange=None):

self.fig = Figure()
self.fig.set_facecolor("white")
self.ax = self.fig.add_subplot(111)
self.ax.set_title(title)
self.ax.set_xlabel(xlab)
self.ax.set_ylabel(ylab)
if xrange:

self.ax.set_xlim(xrange)
if yrange:

self.ax.set_ylim(yrange)
self.legend = []

def save(self, filename="plot.png"):
if self.legend:

64
65
66

67

64

ANNOTATED ALGORITHMS IN PYTHON3

legend = self.ax.legend([e[0] for e in self.legend],
[e[1] for e in self.legend])
legend.get_frame().set_alpha(0.7)
if filename:
FigureCanvasAgg(self.fig).print_png(open(filename, "wb"))
else:
s = 10.StringIO()
FigureCanvasAgg(self.fig).print_png(s)
return s.getvalue()

def binary(self):
return self.save(None)

def hist(self, data, bins=20, color="blue", legend=None):
q = self.ax.hist(data, bins)
#if legend:
self.legend.append((q[0], legend))
return self

def plot(self, data, color="blue", style="-", width=2,
legend=None, xrange=None):
if callable(data) and xrange:
X = [xrange[0]+0.01 * i * (xrange[l]-xrange[0]) for i in range(O,
101)]
y = [data(p) for p in x]
elif data and isinstance(data[0@], (int, float)):
x, y = range(len(data)), data
else:
X, y = [p[0] for p in data], [p[l] for p in data]
q = self.ax.plot(x, y, linestyle=style, linewidth=width, color=color)
if legend:
self.legend.append((q[0], legend))
return self

def errorbar(self, data, color="black", marker="0", width=2, legend=None):
x, y, dy = [p[0] for p in data], [p[l] for p in data], [p[2] for p in

data]

q = self.ax.errorbar(x, y, yerr=dy, fmt=marker, linewidth=width, color=
color)

if legend:

self.legend.append((q[0], legend))
return self

def ellipses(self, data, color="blue", width=0.01, height=0.01, legend=None)

for point in data:
X, y = point[:2]
dx = point[2] if len(point)>2 else width
dy point[3] if len(point)>3 else height

68
69
71

72

74

75

77
78

79

OVERVIEW OF THE PYTHON LANGUAGE 65

ellipse = Ellipse(xy=(x, y), width=dx, height=dy)
self.ax.add_artist(ellipse)
ellipse.set_clip_box(self.ax.bbox)
ellipse.set_alpha(0.5)
ellipse.set_facecolor(color)

if legend:
self.legend.append((q[0], legend))

return self

def imshow(self, data, interpolation="bilinear"):
self.ax.imshow(data).set_interpolation(interpolation)
return self

Notice we only make one set of axes.

The argument 111 of figure.add_subplot(111) indicates that we want a
grid of 1 x 1 axes, and we ask for the first one of them (the only one).

The linesets parameter is a list of dictionaries. Each dictionary must have
a “data” key corresponding to a list of (x,y) values. Each dictionary is
rendered by a line connecting the points. It can have a “label, ” a “color,
7 a “style, ” and a “width.”

The pointsets parameter is a list of dictionaries. Each dictionary must
have a “data” key corresponding to a list of (x,y, dy) values. Each dictio-
nary is rendered by a set of circles with error bars. It can optionally have
a “label, ” a “color, ” and a “marker” (symbol to replace the circle).

The histsets parameter is a list of dictionaries. Each dictionary must
have a “data” key corresponding to a list of x values. Each dictionary is
rendered by histogram. Each dictionary can optionally have a “label” and
a “color.”

The ellisets parameter is also a list of dictionaries. Each dictionary must
have a “data” key corresponding to a list of (x,y,dx,dy) values. Each
dictionary is rendered by a set of ellipses, one per point. It can optionally
have a “color.”

We chose to draw all these types of plots with a single function because it
is common to superimpose fitting lines to histograms, points, and scatter
plots.

As an example, we can plot a parabola 3 * x * 2 — 2 * x + 5 in the interval

66 ANNOTATED ALGORITHMS IN PYTHON3

[-3, 3] using 100 points.

Listing 2.4: in file: nlib.py
1 >>> parabola = lambda x: 3 * X ** 2 -2 * X + 5
> >>> points = [(i * 3/50, parabola(i * 3/50)) for i in range(-50, 51)]
3 >>> Canvas(title="Parabola", xlab="x", ylab="y").plot(points).save("images/
parabola.png")

Parabola

35 4

30 4

251

204

15 4

10 A

Figure 2.1: Example of a line plot.

Here is an example of a histogram of 1000 random gaussian points with
mean 3 and standard deviation 5:

Listing 2.5: in file: nlib.py
>>> points = [random.gauss(3, 5) for d in range(1000)]
>>> Canvas(title="Gaussian", xlab="arithmetic return", ylab="frequency").hist(
points).save("images/gaussian.png")

N

Here is a scatter plot for random data points:

Listing 2.6: in file: nlib.py
>>> from random import gauss
>>> points = [(gauss(0®, 1), gauss(®, 1), gauss(0, 0.2), gauss(0, 0.2))
Ces for i in range(30)]
>>> Canvas(title="example scatter plot", xrange=(-2, 2), yrange=(-2, 2)

N

-~

w

[

w

OVERVIEW OF THE PYTHON LANGUAGE 67

Gaussian

120

100 A

[=x]
o
L

60

frequency

20 A

-10 -5 0 5 10 15
arithmetic return

Figure 2.2: Example of a histogram plot. Distribution of daily arithmetic returns for the
APPL stock in 2011 (source: Yahoo! Finance).

) .ellipses(points).save("images/scatter.png")

Here is a scatter plot showing a spiral:

Listing 2.7: in file: nlib.py
>>> points = [(r/20 * math.cos(r/20), r/20 * math.sin(r/20), 1.0, 1.0)
e for r in range(1000)]
>>> Canvas(title="Spiral", xlab="x", ylab="y",
xrange=(-50, 50), yrange=(-50, 50),
) .ellipses(points).save("images/spiral.png")

Listing 2.8: in file: nlib.py
>>> def f(x, y): return (x-1) **x 2+(y-2) *x 2
>>> points = [[f(0.1 x i-3, 0.1 * j-3) for i in range(61)] for j in range(61)]
>>> Canvas(title="example 2d function").imshow(points).save("images/color2d.png"

)
The class Canvas is both in nlib.py and in the Python module canvas [11].

68 ANNOTATED ALGORITHMS IN PYTHON3

example scatter plot

2.0
1.5 1
-
' ®

10 1 - am
0.5 - .0 .

' []

= 0.0 .
' L \

-®
-1.0 1 . ' .

—1.5 A

2.0 T T T A T T T

2.0

20

.
.
AL

vee

st Yeu,
", o
Mrssnneet?

—20

—40

Figure 2.4: Example of a scatter plot.

OVERVIEW OF THE PYTHON LANGUAGE 69

example 2d function

B

10

20

60
0 10 20 30 40 50 60
x

Figure 2.5: Example of a two-dimensional color plot using for f(x,y) = (x —1)% + (y —
2)2.

3
Theory of Algorithms

An algorithm is a step-by-step procedure for solving a problem and is
typically developed before doing any programming. The word comes
from algorism, from the mathematician al-Khwarizmi, and was used to
refer to the rules of performing arithmetic using Hindu-Arabic numerals
and the systematic solution of equations.

In fact, algorithms are independent of any programming language. Effi-
cient algorithms can have a dramatic effect on our problem-solving capa-
bilities.

The basic steps of algorithms are loops (for, conditionals (if), and func-
tion calls. Algorithms also make use of arithmetic expressions, logical ex-
pressions (not, and, or), and expressions that can be reduced to the other
basic components.

The issues that concern us when developing and analyzing algorithms are
the following:

1. Correctness: of the problem specification, of the proposed algorithm,
and of its implementation in some programming language (we will
not worry about the third one; program verification is another subject
altogether)

2. Amount of work done: for example, running time of the algorithm in
terms of the input size (independent of hardware and programming

O N

I

72 ANNOTATED ALGORITHMS IN PYTHON3

language)

3. Amount of space used: here we mean the amount of extra space (sys-
tem resources) beyond the size of the input (independent of hardware
and programming language); we will say that an algorithm is in place
if the amount of extra space is constant with respect to input size

4. Simplicity, clarity: unfortunately, the simplest is not always the best in
other ways

5. Optimality: can we prove that it does as well as or better than any
other algorithm?

3.1 Order of growth of algorithms

The insertion sort is a simple algorithm in which an array of elements is
sorted in place, one entry at a time. It is not the fastest sorting algorithm,
but it is simple and does not require extra memory other than the memory
needed to store the input array.

The insertion sort works by iterating. Every iteration i of the insertion sort
removes one element from the input data and inserts it into the correct
position in the already-sorted subarray A[j] for 0 < j < i. The algorithm
iterates n times (where n is the total size of the input array) until no input
elements remain to be sorted:

def insertion_sort(A):
for i in range(1l, len(A)):
for j in range(i, 0, -1):
if A[jI<A[j-1]:
A[j1, A[j-1] = A[j-1], A[j]
else: break

Here is an example:

>>> import random

>>> a=[random.randint(0, 100) for k in range(20)]

>>> insertion_sort(a)

>>> 3

[6, 8 9, 17, 30, 31, 45, 48, 49, 56, 56, 57, 65, 66, 75, 75, 82, 89, 90, 99]

One important question is, how long does this algorithm take to run?
How does its running time scale with the input size?

THEORY OF ALGORITHMS 73

Given any algorithm, we can define three characteristic functions:
® Tuorst(n): the running time in the worst case

® Thest(n): the running time in the best case

* Taverage(n): the running time in the average case

The best case for an insertion sort is realized when the input is already
sorted. In this case, the inner for loop exits (breaks) always at the first
iteration, thus only the most outer loop is important, and this is propor-
tional to n; therefore Tpeg (1) o n. The worst case for the insertion sort is
realized when the input is sorted in reversed order. In this case, we can
prove, and we do so subsequently, that Tyors¢ (1) o n2. For this algorithm,
a statistical analysis shows that the worst case is also the average case.

Often we cannot determine exactly the running time function, but we may
be able to set bounds to the running time.

We define the following sets:
* O(g(n)): the set of functions that grow no faster than g(n) when n — oo

e (O(g(n)): the set of functions that grow no slower than g(n) when
n— oo

* O(g(n)): the set of functions that grow at the same rate as g(n) when
n— oo

® 0(g(n)): the set of functions that grow slower than g(n) when n — oo
* w(g(n)): the set of functions that grow faster than g(n) when n — oo

We can rewrite the preceding definitions in a more formal way:

O(g(n)) = {f(n) : 3ng,co, Vn > ng, 0 < f(n) <cog(n)} (3.1)
Q(g(n)) = {f(n) : 3ng,co, ¥ > ny, 0 < cog(n) < f(n)} (3-2)
0(g(n)) = 0(g(n)) NQ(g(n)) (3-3)
o(g(n)) = O(g(n)) — Q(g(n)) (3-4)
w(g(n)) = Q(g(n)) — O(g(n)) (3-5)

74 ANNOTATED ALGORITHMS IN PYTHON3

We can also provide a practical rule to determine if a function f belongs
to one of the previous sets defined by g.

Compute the limit

) _
nlaoo g(n) ¢ (3-6)

and look up the result in the following table:

a is positive or zero = f(n)eO(gn) e f=g
a is positive or infinity = f(n) € Q(g(n)) < f =g
a is positive = f(n)cO@gn) = f~g (3.7)
a is zero — f(n)eo(gn) & f<g
a is infinity = f(n)ew(gn) & f-g

Notice the preceding practical rule assumes the limits exist.

Here is an example:

Given f(n) = nlogn + 3n and g(n) = n?

lim 1087+ 31 IHopial 1y 1/m
n—00 n n—oo 2

=0 (3.8)

we conclude that nlogn + 3n is in O(n?).

Given an algorithm A that acts on input of size 1, we say that the algo-
rithm is O(g(n)) if its worst running time as a function of # is in O(g(n)).
Similarly, we say that the algorithm is in Q)(g(n)) if its best running time
is in Q(g(n)). We also say that the algorithm is in ©(g(n)) if both its best
running time and its worst running time are in ®@(g(n)).

More formally, we can write the following;:

Tworst(n) € O(g(n)) = A€ 0(g(n)) (3.9)
Thest(n) € Qg(n)) = A e€Q(g(n)) (3.10)
A €O0(g(n))andA € O(g(n)) = Aec®(g(n)) (3.11)

(3.12)

o w s W N

THEORY OF ALGORITHMS 75

We still have not solved the problem of computing the best, average, and
worst running times.

3.1.1 Best and worst running times

The procedure for computing the worst and best running times is simi-
lar. It is simple in theory but difficult in practice because it requires an
understanding of the algorithm"s inner workings.

Consider the following algorithm, which finds the minimum of an array
or list A:

def find_minimum(A):
minimum = a[0]
for element in A:
if element < minimum:
minimum = element
return minimum

To compute the running time in the worst case, we assume that the max-
imum number of computations is performed. That happens when the if
statements are always True. To compute the best running time, we assume
that the minimum number of computations is performed. That happens
when the if statement is always False. Under each of the two scenarios, we
compute the running time by counting how many times the most nested
operation is performed.

In the preceding algorithm, the most nested operation is the evaluation of
the if statement, and that is executed for each element in A; for example,
assuming A has n elements, the if statement will be executed n times.

Therefore both the best and worst running times are proportional to #,
thus making this algorithm O(n), Q(n), and ®(n).

More formally, we can observe that this algorithm performs the following
operations:

¢ One assignment (line 2)
® Loops n =len(A) times (line 3)

¢ For each loop iteration, performs one comparison (line 4)

76 ANNOTATED ALGORITHMS IN PYTHON3

¢ Line 5 is executed only if the condition is true

Because there are no nested loops, the time to execute each loop iteration
is about the same, and the running time is proportional to the number of
loop iterations.

For a loop iteration that does not contain further loops, the time it takes to
compute each iteration, its running time, is constant (therefore equal to 1).
For algorithms that contain nested loops, we will have to evaluate nested
sums.

Here is the simplest example:

def loopO(n):
for i in range(0, n):
print(i)

which we can map into

T(n) = lgl =n € O(n) = loopd € O(n) (3-13)
i=0

Here is a similar example where we have a single loop (corresponding to
a single sum) that loops n? times:

def loopl(n):
for i in range(0, n * n):
print(i)

and here is the corresponding running time formula:

i<n?
Tn)=) 1= n? € ®(n*) = loopl € O(n?) (3.14)
i=0

The following provides an example of nested loops:

def loop2(n):
for i in range(0, n):
for j in range(0, n):
print(i, j)

Here the time for the inner loop is directly determined by n and does not

S

THEORY OF ALGORITHMS 77

depend on the outer loop"s counter; therefore

i<nj<n i<n
=Y Y 1=Y n=n*+..€0(n*) = loop2 € O(n?) (3.15)
i=0j=0 =0

This is not always the case. In the following code, the inner loop does
depend on the value of the outer loop:

def loop3(n):
for i in range(0, n):
for j in range(0, i):
print(i, j)
Therefore, when we write its running time in terms of a sum, care must
be taken that the upper limit of the inner sum is the upper limit of the

outer sum:

i<n j<i i<n

=) 21 = Zz = n(n—1) € O(n*) = loop3 € O(n?) (3.16)

i=0j=0

The appendix of this book provides examples of typical sums that come
up in these types of formulas and their solutions.

Here is one more example falling in the same category, although the inner
loop depends quadratically on the index of the outer loop:

Example: loopg

def loop4(n):
for i in range(0, n):
for j in range(0, i * i):
print(i, j)

Therefore the formula for the running time is more complicated:

T(n) = lil]i 1= li‘jz =_nn-1)2n—-1) € O(#n® (3.17)
i=0 j=0

= loop4 € O(n®) (3.18)

78 ANNOTATED ALGORITHMS IN PYTHON3

If the algorithm does not contain nested loops, then we need to compute
the running time of each loop and take the maximum:
Example: concatenateo

def concatenateO(n):
for i in range(n * n):

print(i)
for j in range(n * n * n):
print(j)
T(n) = @(max(n? 1)) = concatenated € O(n>) (3-19)

If there is an if statement, we need to compute the running time for each
condition and pick the maximum when computing the worst running
time, or the minimum for the best running time:

def concatenatel(n):
if a<0:
for i in range(n * n):
print(i)
else:
for j in range(n * n * n):
print(j)

Tworst(n) = ©(max(n?,n%)) = concatenatel € (n%) (3.20)

Tyest (1) = ©(min(n?,n%)) = concatenatel € Q(n?) (3.21)

This can be expressed more formally as follows:

O(f(m) +0(g(n)) = O(g(n))iff f(n) € O(g(n)) (3.22)
O(f(n) +0(e(n)) = O(g(n))iff f(n) € O(g(n)) (3:23)
O(f(n)) +0(g(n) = Q(f(n)) iff f(n) € Og(n)) (3.24)

which we can apply as in the following example:

T(n) = [n*+n +3+¢" —log 11] € ©(e") because 1> € O(e") (3.25)

0(n?) 0(e")

1
2

3

9

28

THEORY OF ALGORITHMS 79

3.2 Recurrence relations

The merge sort [13] is another sorting algorithm. It is faster than the inser-
tion sort. It was invented by John von Neumann, the physicist credited
for inventing also modern computer architecture and game theory.

The merge sort works as follows.

If the input array has length o or 1, then it is already sorted, and the
algorithm does not perform any other operation.

If the input array has a length greater than 1, it divides the array into two
subsets of about half the size. Each subarray is sorted by applying the
merge sort recursively (it calls itself!). It then merges the two subarrays
back into one sorted array (this step is called merge).

Consider the following Python implementation of the merge sort:

def mergesort(A, p=0, r=None):
if r is None: r = len(A)
if p<r-1:
q = int((p+r)/2)
mergesort(A, p, q)
mergesort(A, q, r)
merge(A, p, q, r)

def merge(A, p, q, r):
B, i, j = 1[I, p, q
while True:
if A[il<=A[j]:
B.append(A[i])
i=i+l
else:
B.append(A[j])
j=j+1
if i ==
while j<r:
B.append(A[j])
j=j+1
break
if j == r:
while i<q:
B.append(A[i])
i=i+l
break
Alp:r]=B

80 ANNOTATED ALGORITHMS IN PYTHON3

Because this algorithm calls itself recursively, it is more difficult to compute
its running time.

Consider the merge function first. At each step, it increases either i or j,
where i is always in between p and g and j is always in between g and r.
This means that the running time of the merge is proportional to the total
number of values they can span from p to r. This implies that

merge € O(r — p) (3.26)

We cannot compute the running time of the mergesort function using the
same direct analysis, but we can assume its running time is T (1), where
n =r — p and n is the size of the input data to be sorted and also the dif-
ference between its two arguments p and 7. We can express this running
time in terms of its components:

e It calls itself twice on half of the input data, 2T (n/2)
e It calls the merge once on the entire data, ©(n)

We can summarize this into

T(n) =2T(n/2) +n (3-27)

This is called a recurrence relation. We turned the problem of computing
the running time of the algorithm into the problem of solving the recur-
rence relation. This is now a math problem.

Some recurrence relations can be difficult to solve, but most of them fol-
low in one of these categories:

THEORY OF ALGORITHMS 81

T(n)=aT(n—b)+0O(f(n)) = T€O(max(a",nf(n))) (3.28)
T(n) =T(b) + T(n —b—a) + O(f(n) = T€O(f(n)) (3.20)
T(n)=aT(n/b)+0O(n")Na < b" = TecOn™) (3-30)
T(n)=aT(n/b)+O(n")Na="0b" = TecO(n"logn) (3.31)
T(n)=aT(n/b) +O(n™) Aa > b" = TcO(n'8) (3-32)
T(n)=aT(n/b)+0O(n"log’ n) Na <b™ = TecO®O(n"logf n) (3.33)
T(n)=aT(n/b) +O(n"logf n) Aa = b" = TeO®(n" log" ! n)(3.34)
T(n)=aT(n/b) +O(n"logf n) Aa > b" = T cO(n'°%) (3-35)
T(n)=aT(n/b)+0(q") = T€O(q") (3.36)
T(n) =aT(n/a — b) + ©(f(n)) = TEO(f (n) log(n)) (337)

(they work for m > 0, p > 0, and g > 1).

These results are a practical simplification of a theorem known as the

master theorem [14].

3.2.1 Reducible recurrence relations

Other recurrence relations do not immediately fit one of the preceding

patterns, but often they can be reduced (transformed) to fit.

Consider the following recurrence relation:
T(n) = 2T(y/n) +logn
We can replace 1 with ¢ = 7 in eq. (3.38) and obtain
T(e5) = 2T (%) +k

If we also replace T(e¥) with S(k) = T(e*), we obtain

(3-38)

(3-39)

(3-40)

@R woN R

o U R W N R

82 ANNOTATED ALGORITHMS IN PYTHON3

so that we can now apply the master theorem to S. We obtain that S(k) €
®(klogk). Once we have the order of growth of S, we can determine the
order of growth of T(n) by substitution:

T(n) = S(logn) € ©(logn log logn) (3-41)
v

Note that there are recurrence relations that cannot be solved with any of
the methods described.

Here are some examples of recursive algorithms and their corresponding
recurrence relations with solution:

def factoriall(n):
if n == 0:
return 1
else:
return n x factoriall(n-1)

T(n)=Tn—-1)+1=T(n) € ©(n) = factoriall € O(n) (3.42)

def recursive0(n):
if n ==
return 1
else:
loop3(n)
return n x n x recursive@(n-1)

T(n) = T(n—1)+Py(n) = T(n) € O(n?) = recursived € O(n®) (3.43)

def recursivel(n):
if n == 0:
return 1
else:
loop3(n)
return n * recursivel(n-1) * recursivel(n-1)

T(n) =2T(n—1)+ P,(n) = T(n) € ©(2") = recursivel € ©(2")
(3.44)

THEORY OF ALGORITHMS 83

; def recursive2(n):
if n ==
return 1
else:
a=factorial@(n)
6 return a x recursive2(n/2) * recursivel(n/2)

aoE wN

T(n) =2T(n/2)+Pi(n) = T(n) € ©(nlogn) = recursive2 € O(nlogn)
(3-45)

One example of practical interest for us is the binary search below. It finds
the location of the element in a sorted input array A:

+ def binary_search(A, element):

2 a, b =0, len(A)-1

3 while b>=a:

4 x = int((a+b)/2)

5 if A[x]<element:

6 a = x+1

7 elif A[x]>element:
8 b = x-1

9 else:

10 return x

11 return None

Notice that this algorithm does not appear to be recursive, but in practice,
it is because of the apparently infinite while loop. The content of the while
loop runs in constant time and then loops again on a problem of half of
the original size:

T(n) =T(n/2) +1 = binary_search € ©(logn) (3-46)

The idea of the binary_search is used in the bisection method for solving
nonlinear equations.

Do not confuse T notation with ® notation:

The theta notation can also be used to describe the memory used by an
algorithm as a function of the input, Tyemory, as well as its running time.

84 ANNOTATED ALGORITHMS IN PYTHON3

Algorithm Recurrence Relationship Running time
Binary Search T(n)=T(5)+0O(1) O(log(n))
Binary Tree Traversal T(n) =2T(%)+©(1) O(n)
Optimal Sorted Matrix Search | T(n) = 2T(5) + ©(log(n)) | O(n)

Merge Sort T(n) =T(5)+O(n) ©(nlog(n))

3.3 Types of algorithms

Divide-and-conquer is a method of designing algorithms that (infor-
mally) proceeds as follows: given an instance of the problem to be solved,
split this into several, smaller sub-instances (of the same problem), in-
dependently solve each of the sub-instances and then combine the sub-
instance solutions to yield a solution for the original instance. This de-
scription raises the question, by what methods are the sub-instances to be
independently solved? The answer to this question is central to the con-
cept of the divide-and-conquer algorithm and is a key factor in gauging
their efficiency. The solution is unique for each problem.

The merge sort algorithm of the previous section is an example of a
divide-and-conquer algorithm. In the merge sort, we sort an array by
dividing it into two arrays and recursively sorting (conquering) each of
the smaller arrays.

Most divide-and-conquer algorithms are recursive, although this is not a
requirement.

Dynamic programming is a paradigm that is most often applied in the
construction of algorithms to solve a certain class of optimization prob-
lems, that is, problems that require the minimization or maximization of
some measure. One disadvantage of using divide-and-conquer is that
the process of recursively solving separate sub-instances can result in the
same computations being performed repeatedly because identical sub-
instances may arise. For example, if you are computing the path between
two nodes in a graph, some portions of multiple paths will follow the
same last few hops. Why compute the last few hops for every path when
you would get the same result every time?

N R W N R

© ®

THEORY OF ALGORITHMS 85

The idea behind dynamic programming is to avoid this pathology by ob-
viating the requirement to calculate the same quantity twice. The method
usually accomplishes this by maintaining a table of sub-instance results.
We say that dynamic programming is a bottom-up technique in which the
smallest sub-instances are explicitly solved first and the results of these
are used to construct solutions to progressively larger sub-instances. In
contrast, we say that the divide-and-conquer is a top-down technique.

We can refactor the mergesort algorithm to eliminate recursion in the al-
gorithm implementation, while keeping the logic of the algorithm un-
changed. Here is a possible implementation:

def mergesort_nonrecursive(A):
blocksize, n = 1, len(A)
while blocksize<n:
for p in range(0, n, 2 * blocksize):
q = p+blocksize
r = min(qg+blocksize, n)
if r>q:
Merge(A, p, q, r)
blocksize = 2 * blocksize

Notice that this has the same running time as the original mergesort be-
cause, although it is not recursive, it performs the same operations:

Thest € O(nlogn) (3-47)
Toverage € ©O(nlogn) (3.48)
Tworst € O(nlogn) (3-49)
Toemory € ©O(1) (3-50)

Greedy algorithms work in phases. In each phase, a decision is made
that appears to be good, without regard for future consequences. Gen-
erally, this means that some local optimum is chosen. This “take what
you can get now” strategy is the source of the name for this class of algo-
rithms. When the algorithm terminates, we hope that the local optimum
is equal to the global optimum. If this is the case, then the algorithm is
correct; otherwise, the algorithm has produced a suboptimal solution. If
the best answer is not required, then simple greedy algorithms are some-

86 ANNOTATED ALGORITHMS IN PYTHON3

times used to generate approximate answers, rather than using the more
complicated algorithms generally required to generate an exact answer.
Even for problems that can be solved exactly by a greedy algorithm, es-
tablishing the correctness of the method may be a nontrivial process.

For example, computing change for a purchase in a store is a good case of
a greedy algorithm. Assume you need to give change back for a purchase.
You would have three choices:

¢ Give the smallest denomination repeatedly until the correct amount is
returned

* Give a random denomination repeatedly until you reach the correct
amount. If a random choice exceeds the total, then pick another de-
nomination until the correct amount is returned

* Give the largest denomination less than the amount to return repeat-
edly until the correct amount is returned

In this case, the third choice is the correct one.

Other types of algorithms do not fit into any of the preceding categories.
One is, for example, backtracking. Backtracking is not covered in this
course.

3.3.1 Memoization

One case of a top-down approach that is very general and falls under the
umbrella of dynamic programming is called memoization. Memoization
consists of allowing users to write algorithms using a naive divide-and-
conquer approach, but functions that may be called more than once are
modified so that their output is cached, and if they are called again with
the same initial state, instead of the algorithm running again, the output
is retrieved from the cache and returned without any computations.

Consider, for example, Fibonacci numbers:

N

N

THEORY OF ALGORITHMS 87

Fib(0) = 0 (3.51)
Fib(1) = 1 (3.52)
Fib(n) = Fib(n—1)+Fib(n—2) forn > 1 (3-53)

which we can implement using divide-and-conquer as follows:

def fib(n):
return n if n<2 else fib(n-1)+fib(n-2)

The recurrence relation for this algorithm is T(n) = T(n —1) + T(n —2) +
1, and its solution can be proven to be exponential. This is because this
algorithm calls itself more than necessary with the same input values and
keeps solving the same subproblem over and over.

Python can implement memoization using the following decorator:

Listing 3.1: in file: nlib.py
class memoize(object):
def __init _ (self, f):
self.f = f
self.storage = {}
def __call__ (self, * args, ** kwargs):
key = str((self.f.__name__, args, kwargs))
try:
value = self.storage[key]
except KeyError:
value = self.f(x args, »* kwargs)
self.storage[key] = value
return value

and simply decorating the recursive function as follows:

Listing 3.2: in file: nlib.py

@memoize
def fib(n):
return n if n<2 else fib(n-1)+fib(n-2)

which we can call as

Listing 3.3: in file: nlib.py
>>> fib(11)
89

1

2

6

1

2

88 ANNOTATED ALGORITHMS IN PYTHON3

A decorator is a Python function that takes a function and returns a
callable object (or a function) to replace the one passed as input. In the
previous example, we are using the gmemoize decorator to replace the fib
function with the __call__ argument of the memoize class.

This makes the algorithm run much faster. Its running time goes from
exponential to linear. Notice that the preceding memoize decorator is very
general and can be used to decorate any other function.

One more direct dynamic programming approach consists in removing
the recursion:

def fib(n):
if n < 2: return n
a, b=20,1
for i in range(1l, n):
a, b =Db, atb
return b

This also makes the algorithm linear and T(n) € ®(n).

Notice that we easily modify the memoization algorithm to store the
partial results in a shared space, for example, on disk using the
PersistentDictionary:

Listing 3.4: in file: nlib.py

class memoize_persistent(object):
STORAGE = "memoize.sqlite"
def __init__ (self, f):
self.f = f
self.storage = PersistentDictionary(memoize_persistent.STORAGE)
def __call__ (self, * args, **x kwargs):
key = str((self.f.__name__, args, kwargs))
if key in self.storage:
value = self.storage[key]
else:
value = self.f(* args, **x kwargs)
self.storage[key] = value
return value

We can use it as we did before, but we can now start and stop the program
or run concurrent parallel programs, and as long as they have access to
the “memoize.sqlite” file, they will share the cache.

TN

w

® N o W

THEORY OF ALGORITHMS 89

3.4 Timing algorithms

The order of growth is a theoretical concept. In practice, we need to
time algorithms to check if findings are correct and, more important, to
determine the magnitude of the constants in the T functions.

For example, consider this:

def fl(n):
return sum(gl(x) for x in range(n))

def f2(n):
return sum(g2(x) for x in range(n *x 2))

Since f1is @(n) and f2 is @(n?), we may be led to conclude that the latter
is slower. It may very well be that g1 is 10° smaller than g2 and therefore
Tr1(n) = c1n, Tra(n) = can?, butif ¢y = 10°¢,, then Tgy (1) > Tpy(n) when
n < 10°.

To time functions in Python, we can use this simple algorithm:

import time

def timef(f, ns=1000, dt = 60):
t = t0 = time.time()
for k in range(1l, ns):
()
t = time.time()
if t - t0 > dt: break
return (t - t0) / k

This function calls and averages the running time of f() for the minimum
between ns=1000 iterations and dt=60 seconds.

It is now easy, for example, to time the fib function without memoize,

>>> def fib(n):
return n if n<2 else fib(n-1)+fib(n-2)
>>> for k in range(15, 20):
. print(k, timef(lambda:fib(k)))
15 0.000315684575338
16 0.000576375363706
17 0.000936052104732
18 0.00135168084153
19 0.00217730337912

and with memoize,

aoE wN

© ® N9 o

90 ANNOTATED ALGORITHMS IN PYTHON3

>>> @memoize

. def fib(n):

return n if n<2 else fib(n-1)+fib(n-2)

>>> for k in range(15, 20):
. print(k, timef(lambda:fib(k)))
15 4.24022311802e-06
16 4.02901146386e-06
17 4.21922128122e-06
18 4.02495429084e-06
19 3.73784963552e-06

The former shows an exponential behavior; the latter does not.

3.5 Data structures

3.5.1 Arrays

An array is a data structure in which a series of numbers are stored con-
tiguously in memory. The time to access each number (to read or write
it) is constant. The time to remove, append, or insert an element may
require moving the entire array to a more spacious memory location, and
therefore, in the worst case, the time is proportional to the size of the
array.

Arrays are the appropriate containers when the number of elements does
not change often and when elements have to be accessed in random order.

3.5.2 List

A list is a data structure in which data are not stored contiguously, and
each element has knowledge of the location of the next element (and per-
haps of the previous element, in a doubly linked list). This means that
accessing any element for (read and write) requires finding the element
and therefore looping. In the worst case, the time to find an element is
proportional to the size of the list. Once an element has been found, any
operation on the element, including read, write, d