
Package: fs (via r-universe)
September 27, 2024

Title Cross-Platform File System Operations Based on 'libuv'

Version 1.6.4.9000

Description A cross-platform interface to file system operations,
built on top of the 'libuv' C library.

License MIT + file LICENSE

URL https://fs.r-lib.org, https://github.com/r-lib/fs

BugReports https://github.com/r-lib/fs/issues

Depends R (>= 3.6)

Imports methods

Suggests covr, crayon, knitr, pillar (>= 1.0.0), rmarkdown, spelling,
testthat (>= 3.0.0), tibble (>= 1.1.0), vctrs (>= 0.3.0), withr

VignetteBuilder knitr

ByteCompile true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Copyright file COPYRIGHTS

Encoding UTF-8

Language en-US

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

SystemRequirements GNU make

Repository https://r-lib.r-universe.dev

RemoteUrl https://github.com/r-lib/fs

RemoteRef HEAD

RemoteSha cb107acf193caf0fbd62b4ca5c49b7129149ae8f

1

https://fs.r-lib.org
https://github.com/r-lib/fs
https://github.com/r-lib/fs/issues

2 copy

Contents

copy . 2
create . 4
delete . 5
dir_ls . 6
dir_tree . 8
file_access . 9
file_chmod . 10
file_chown . 11
file_info . 11
file_move . 13
file_show . 13
file_temp . 14
file_touch . 15
fs_bytes . 16
fs_path . 16
fs_perms . 17
id . 18
is_absolute_path . 19
is_file . 19
link_path . 20
path . 21
path_expand . 22
path_file . 23
path_filter . 24
path_math . 25
path_package . 27
path_sanitize . 27
path_tidy . 28

Index 29

copy Copy files, directories or links

Description

file_copy() copies files.

link_copy() creates a new link pointing to the same location as the previous link.

dir_copy() copies the directory recursively at the new location.

copy 3

Usage

file_copy(path, new_path, overwrite = FALSE)

dir_copy(path, new_path, overwrite = FALSE)

link_copy(path, new_path, overwrite = FALSE)

Arguments

path A character vector of one or more paths.
new_path A character vector of paths to the new locations.
overwrite Overwrite files if they exist. If this is FALSE and the file exists an error will be

thrown.

Details

The behavior of dir_copy() differs slightly than that of file.copy() when overwrite = TRUE.
The directory will always be copied to new_path, even if the name differs from the basename of
path.

Value

The new path (invisibly).

Examples

file_create("foo")
file_copy("foo", "bar")
try(file_copy("foo", "bar"))
file_copy("foo", "bar", overwrite = TRUE)
file_delete(c("foo", "bar"))

dir_create("foo")
Create a directory and put a few files in it
files <- file_create(c("foo/bar", "foo/baz"))
file_exists(files)

Copy the directory
dir_copy("foo", "foo2")
file_exists(path("foo2", path_file(files)))

Create a link to the directory
link_create(path_abs("foo"), "loo")
link_path("loo")
link_copy("loo", "loo2")
link_path("loo2")

Cleanup
dir_delete(c("foo", "foo2"))
link_delete(c("loo", "loo2"))

4 create

create Create files, directories, or links

Description

The functions file_create() and dir_create() ensure that path exists; if it already exists it will
be left unchanged. That means that compared to file.create(), file_create() will not trun-
cate an existing file, and compared to dir.create(), dir_create() will silently ignore existing
directories.

Usage

file_create(path, ..., mode = "u=rw,go=r")

dir_create(path, ..., mode = "u=rwx,go=rx", recurse = TRUE, recursive)

link_create(path, new_path, symbolic = TRUE)

Arguments

path A character vector of one or more paths. For link_create(), this is the target.

... Additional arguments passed to path()

mode If file/directory is created, what mode should it have?
Links do not have mode; they inherit the mode of the file they link to.

recurse should intermediate directories be created if they do not exist?

recursive (Deprecated) If TRUE recurse fully.

new_path The path where the link should be created.

symbolic Boolean value determining if the link should be a symbolic (the default) or hard
link.

Value

The path to the created object (invisibly).

Examples

file_create("foo")
is_file("foo")
dir_create applied to the same path will fail
try(dir_create("foo"))

dir_create("bar")
is_dir("bar")
file_create applied to the same path will fail
try(file_create("bar"))

delete 5

Cleanup
file_delete("foo")
dir_delete("bar")

delete Delete files, directories, or links

Description

file_delete() and link_delete() delete file and links. Compared to file.remove they always
fail if they cannot delete the object rather than changing return value or signalling a warning. If any
inputs are directories, they are passed to dir_delete(), so file_delete() can therefore be used
to delete any filesystem object.

dir_delete() will first delete the contents of the directory, then remove the directory. Compared
to unlink it will always throw an error if the directory cannot be deleted rather than being silent or
signalling a warning.

Usage

file_delete(path)

dir_delete(path)

link_delete(path)

Arguments

path A character vector of one or more paths.

Value

The deleted paths (invisibly).

Examples

create a directory, with some files and a link to it
dir_create("dir")
files <- file_create(path("dir", letters[1:5]))
link <- link_create(path_abs("dir"), "link")

All files created
dir_exists("dir")
file_exists(files)
link_exists("link")
file_exists(link_path("link"))

Delete a file
file_delete(files[1])

6 dir_ls

file_exists(files[1])

Delete the directory (which deletes the files as well)
dir_delete("dir")
file_exists(files)
dir_exists("dir")

The link still exists, but what it points to does not.
link_exists("link")
dir_exists(link_path("link"))

Delete the link
link_delete("link")
link_exists("link")

dir_ls List files

Description

dir_ls() is equivalent to the ls command. It returns filenames as a named fs_path character
vector. The names are equivalent to the values, which is useful for passing onto functions like
purrr::map_dfr().

dir_info() is equivalent to ls -l and a shortcut for file_info(dir_ls()).

dir_map() applies a function fun() to each entry in the path and returns the result in a list.

dir_walk() calls fun for its side-effect and returns the input path.

Usage

dir_ls(
path = ".",
all = FALSE,
recurse = FALSE,
type = "any",
glob = NULL,
regexp = NULL,
invert = FALSE,
fail = TRUE,
...,
recursive

)

dir_map(
path = ".",
fun,
all = FALSE,

dir_ls 7

recurse = FALSE,
type = "any",
fail = TRUE

)

dir_walk(
path = ".",
fun,
all = FALSE,
recurse = FALSE,
type = "any",
fail = TRUE

)

dir_info(
path = ".",
all = FALSE,
recurse = FALSE,
type = "any",
regexp = NULL,
glob = NULL,
fail = TRUE,
...

)

Arguments

path A character vector of one or more paths.

all If TRUE hidden files are also returned.

recurse If TRUE recurse fully, if a positive number the number of levels to recurse.

type File type(s) to return, one or more of "any", "file", "directory", "symlink", "FIFO",
"socket", "character_device" or "block_device".

glob A wildcard aka globbing pattern (e.g. *.csv) passed on to grep() to filter paths.

regexp A regular expression (e.g. [.]csv$) passed on to grep() to filter paths.

invert If TRUE return files which do not match

fail Should the call fail (the default) or warn if a file cannot be accessed.

... Additional arguments passed to grep.

recursive (Deprecated) If TRUE recurse fully.

fun A function, taking one parameter, the current path entry.

Examples

dir_ls(R.home("share"), type = "directory")

Create a shorter link
link_create(system.file(package = "base"), "base")

8 dir_tree

dir_ls("base", recurse = TRUE, glob = "*.R")

If you need the full paths input an absolute path
dir_ls(path_abs("base"))

dir_map("base", identity)

dir_walk("base", str)

dir_info("base")

Cleanup
link_delete("base")

dir_tree Print contents of directories in a tree-like format

Description

Print contents of directories in a tree-like format

Usage

dir_tree(path = ".", recurse = TRUE, ...)

Arguments

path A path to print the tree from

recurse If TRUE recurse fully, if a positive number the number of levels to recurse.

... Arguments passed on to dir_ls

type File type(s) to return, one or more of "any", "file", "directory", "symlink",
"FIFO", "socket", "character_device" or "block_device".

recursive (Deprecated) If TRUE recurse fully.
all If TRUE hidden files are also returned.
fail Should the call fail (the default) or warn if a file cannot be accessed.
glob A wildcard aka globbing pattern (e.g. *.csv) passed on to grep() to filter

paths.
regexp A regular expression (e.g. [.]csv$) passed on to grep() to filter paths.
invert If TRUE return files which do not match

file_access 9

file_access Query for existence and access permissions

Description

file_exists(path) is a shortcut for file_access(x, "exists"); dir_exists(path) and link_exists(path)
are similar but also check that the path is a directory or link, respectively. (file_exists(path)
returns TRUE if path exists and it is a directory.)

Usage

file_access(path, mode = "exists")

file_exists(path)

dir_exists(path)

link_exists(path)

Arguments

path A character vector of one or more paths.

mode A character vector containing one or more of ’exists’, ’read’, ’write’, ’execute’.

Details

Cross-compatibility warning: There is no executable bit on Windows. Checking a file for mode
’execute’ on Windows, e.g. file_access(x, "execute") will always return TRUE.

Value

A logical vector, with names corresponding to the input path.

Examples

file_access("/")
file_access("/", "read")
file_access("/", "write")

file_exists("WOMBATS")

10 file_chmod

file_chmod Change file permissions

Description

Change file permissions

Usage

file_chmod(path, mode)

Arguments

path A character vector of one or more paths.

mode A character representation of the mode, in either hexidecimal or symbolic for-
mat.

Details

Cross-compatibility warning: File permissions differ on Windows from POSIX systems. Win-
dows does not use an executable bit, so attempting to change this will have no effect. Windows also
does not have user groups, so only the user permissions (u) are relevant.

Examples

file_create("foo", mode = "000")
file_chmod("foo", "777")
file_info("foo")$permissions

file_chmod("foo", "u-x")
file_info("foo")$permissions

file_chmod("foo", "a-wrx")
file_info("foo")$permissions

file_chmod("foo", "u+wr")
file_info("foo")$permissions

It is also vectorized
files <- c("foo", file_create("bar", mode = "000"))
file_chmod(files, "a+rwx")
file_info(files)$permissions

file_chmod(files, c("644", "600"))
file_info(files)$permissions

file_chown 11

file_chown Change owner or group of a file

Description

Change owner or group of a file

Usage

file_chown(path, user_id = NULL, group_id = NULL)

Arguments

path A character vector of one or more paths.

user_id The user id of the new owner, specified as a numeric ID or name. The R process
must be privileged to change this.

group_id The group id of the new owner, specified as a numeric ID or name.

file_info Query file metadata

Description

Compared to file.info() the full results of a stat(2) system call are returned and some columns
are returned as S3 classes to make manipulation more natural. On systems which do not support all
metadata (such as Windows) default values are used.

Usage

file_info(path, fail = TRUE, follow = FALSE)

file_size(path, fail = TRUE)

Arguments

path A character vector of one or more paths.

fail Should the call fail (the default) or warn if a file cannot be accessed.

follow If TRUE, symbolic links will be followed (recursively) and the results will be that
of the final file rather than the link.

12 file_info

Value

A data.frame with metadata for each file. Columns returned are as follows.

path The input path, as a fs_path() character vector.

type The file type, as a factor of file types.

size The file size, as a fs_bytes() numeric vector.

permissions The file permissions, as a fs_perms() integer vector.

modification_time

The time of last data modification, as a POSIXct datetime.

user The file owner name - as a character vector.

group The file group name - as a character vector.

device_id The file device id - as a numeric vector.

hard_links The number of hard links to the file - as a numeric vector.
special_device_id

The special device id of the file - as a numeric vector.

inode The inode of the file - as a numeric vector.

block_size The optimal block for the file - as a numeric vector.

blocks The number of blocks allocated for the file - as a numeric vector.

flags The user defined flags for the file - as an integer vector.

generation The generation number for the file - as a numeric vector.

access_time The time of last access - as a POSIXct datetime.

change_time The time of last file status change - as a POSIXct datetime.

birth_time The time when the inode was created - as a POSIXct datetime.

See Also

dir_info() to display file information for files in a given directory.

Examples

write.csv(mtcars, "mtcars.csv")
file_info("mtcars.csv")

Files in the working directory modified more than 20 days ago
files <- file_info(dir_ls())
files$path[difftime(Sys.time(), files$modification_time, units = "days") > 20]

Cleanup
file_delete("mtcars.csv")

file_move 13

file_move Move or rename files

Description

Compared to file.rename file_move() always fails if it is unable to move a file, rather than signal-
ing a Warning and returning an error code.

Usage

file_move(path, new_path)

Arguments

path A character vector of one or more paths.

new_path New file path. If new_path is existing directory, the file will be moved into that
directory; otherwise it will be moved/renamed to the full path.
Should either be the same length as path, or a single directory.

Value

The new path (invisibly).

Examples

file_create("foo")
file_move("foo", "bar")
file_exists(c("foo", "bar"))
file_delete("bar")

file_show Open files or directories

Description

Open files or directories

Usage

file_show(path = ".", browser = getOption("browser"))

14 file_temp

Arguments

path A character vector of one or more paths.

browser a non-empty character string giving the name of the program to be used as the
HTML browser. It should be in the PATH, or a full path specified. Alternatively,
an R function to be called to invoke the browser.
Under Windows NULL is also allowed (and is the default), and implies that the
file association mechanism will be used.

Value

The directories that were opened (invisibly).

file_temp Create names for temporary files

Description

file_temp() returns the name which can be used as a temporary file.

Usage

file_temp(pattern = "file", tmp_dir = tempdir(), ext = "")

file_temp_push(path)

file_temp_pop()

path_temp(...)

Arguments

pattern A character vector with the non-random portion of the name.

tmp_dir The directory the file will be created in.

ext The file extension of the temporary file.

path A character vector of one or more paths.

... Additional paths appended to the temporary directory by path().

Details

file_temp_push() can be used to supply deterministic entries in the temporary file stack. This can
be useful for reproducibility in like example documentation and vignettes.

file_temp_pop() can be used to explicitly remove an entry from the internal stack, however gen-
erally this is done instead by calling file_temp().

path_temp() constructs a path within the session temporary directory.

file_touch 15

Examples

path_temp()
path_temp("does-not-exist")

file_temp()
file_temp(ext = "png")
file_temp("image", ext = "png")

You can make the temp file paths deterministic
file_temp_push(letters)
file_temp()
file_temp()

Or explicitly remove values
while (!is.null(file_temp_pop())) next
file_temp_pop()

file_touch Change file access and modification times

Description

Unlike the touch POSIX utility this does not create the file if it does not exist. Use file_create()
to do this if needed.

Usage

file_touch(path, access_time = Sys.time(), modification_time = access_time)

Arguments

path A character vector of one or more paths.

access_time, modification_time
The times to set, inputs will be coerced to POSIXct objects.

Examples

file_create("foo")
file_touch("foo", "2018-01-01")
file_info("foo")[c("access_time", "modification_time", "change_time", "birth_time")]

16 fs_path

fs_bytes Human readable file sizes

Description

Construct, manipulate and display vectors of file sizes. These are numeric vectors, so you can com-
pare them numerically, but they can also be compared to human readable values such as ’10MB’.

Usage

as_fs_bytes(x)

fs_bytes(x)

Arguments

x A numeric or character vector. Character representations can use shorthand sizes
(see examples).

Examples

fs_bytes("1")
fs_bytes("1K")
fs_bytes("1Kb")
fs_bytes("1Kib")
fs_bytes("1MB")

fs_bytes("1KB") < "1MB"

sum(fs_bytes(c("1MB", "5MB", "500KB")))

fs_path File paths

Description

Tidy file paths, character vectors which are coloured by file type on capable terminals.

Colouring can be customized by setting the LS_COLORS environment variable, the format is the same
as that read by GNU ls / dircolors.

Colouring of file paths can be disabled by setting LS_COLORS to an empty string e.g. Sys.setenv(LS_COLORS
= "").

Usage

as_fs_path(x)

fs_path(x)

fs_perms 17

Arguments

x vector to be coerced to a fs_path object.

See Also

https://geoff.greer.fm/lscolors, https://github.com/trapd00r/LS_COLORS, https://github.
com/seebi/dircolors-solarized for some example colour settings.

fs_perms Create, modify and view file permissions

Description

fs_perms() objects help one create and modify file permissions easily. They support both numeric
input, octal and symbolic character representations. Compared to octmode they support symbolic
representations and display the mode the same format as ls on POSIX systems.

Usage

as_fs_perms(x, ...)

fs_perms(x, ...)

Arguments

x An object which is to be coerced to a fs_perms object. Can be an number or
octal character representation, including symbolic representations.

... Additional arguments passed to methods.

Details

On POSIX systems the permissions are displayed as a 9 character string with three sets of three
characters. Each set corresponds to the permissions for the user, the group and other (or default)
users.

If the first character of each set is a "r", the file is readable for those users, if a "-", it is not readable.

If the second character of each set is a "w", the file is writable for those users, if a "-", it is not
writable.

The third character is more complex, and is the first of the following characters which apply.

• ’S’ If the character is part of the owner permissions and the file is not executable or the direc-
tory is not searchable by the owner, and the set-user-id bit is set.

• ’S’ If the character is part of the group permissions and the file is not executable or the direc-
tory is not searchable by the group, and the set-group-id bit is set.

• ’T’ If the character is part of the other permissions and the file is not executable or the directory
is not searchable by others, and the ’sticky’ (S_ISVTX) bit is set.

https://geoff.greer.fm/lscolors
https://github.com/trapd00r/LS_COLORS
https://github.com/seebi/dircolors-solarized
https://github.com/seebi/dircolors-solarized

18 id

• ’s’ If the character is part of the owner permissions and the file is executable or the directory
searchable by the owner, and the set-user-id bit is set.

• ’s’ If the character is part of the group permissions and the file is executable or the directory
searchable by the group, and the set-group-id bit is set.

• ’t’ If the character is part of the other permissions and the file is executable or the directory
searchable by others, and the ”sticky” (S_ISVTX) bit is set.

• ’x’ The file is executable or the directory is searchable.

• ’-’ If none of the above apply. Most commonly the third character is either ’x’ or -.

On Windows the permissions are displayed as a 3 character string where the third character is only
- or x.

Examples

Integer and numeric
fs_perms(420L)
fs_perms(c(511, 420))

Octal
fs_perms("777")
fs_perms(c("777", "644"))

Symbolic
fs_perms("a+rwx")
fs_perms(c("a+rwx", "u+rw,go+r"))

Use the `&` and `|`operators to check for certain permissions
(fs_perms("777") & "u+r") == "u+r"

id Lookup Users and Groups on a system

Description

These functions use the GETPWENT(3) and GETGRENT(3) system calls to query users and groups
respectively.

Usage

group_ids()

user_ids()

Value

They return their results in a data.frame. On windows both functions return an empty data.frame
because windows does not have user or group ids.

is_absolute_path 19

Examples

list first 6 groups
head(group_ids())

list first 6 users
head(user_ids())

is_absolute_path Test if a path is an absolute path

Description

Test if a path is an absolute path

Usage

is_absolute_path(path)

Arguments

path A character vector of one or more paths.

Examples

is_absolute_path("/foo")
is_absolute_path("C:\\foo")
is_absolute_path("\\\\myserver\\foo\\bar")

is_absolute_path("foo/bar")

is_file Functions to test for file types

Description

Functions to test for file types

Usage

is_file(path, follow = TRUE)

is_dir(path, follow = TRUE)

is_link(path)

is_file_empty(path, follow = TRUE)

20 link_path

Arguments

path A character vector of one or more paths.

follow If TRUE, symbolic links will be followed (recursively) and the results will be that
of the final file rather than the link.

Value

A named logical vector, where the names give the paths. If the given object does not exist, NA is
returned.

See Also

file_exists(), dir_exists() and link_exists() if you want to ensure that the path also exists.

Examples

dir_create("d")

file_create("d/file.txt")
dir_create("d/dir")
link_create(path(path_abs("d"), "file.txt"), "d/link")

paths <- dir_ls("d")
is_file(paths)
is_dir(paths)
is_link(paths)

Cleanup
dir_delete("d")

link_path Read the value of a symbolic link

Description

Read the value of a symbolic link

Usage

link_path(path)

Arguments

path A character vector of one or more paths.

Value

A tidy path to the object the link points to.

path 21

Examples

file_create("foo")
link_create(path_abs("foo"), "bar")
link_path("bar")

Cleanup
file_delete(c("foo", "bar"))

path Construct path to a file or directory

Description

path() constructs a relative path, path_wd() constructs an absolute path from the current working
directory.

Usage

path(..., ext = "")

path_wd(..., ext = "")

Arguments

... character vectors, if any values are NA, the result will also be NA. The paths
follow the recycling rules used in the tibble package, namely that only length 1
arguments are recycled.

ext An optional extension to append to the generated path.

See Also

path_home(), path_package() for functions to construct paths relative to the home and package
directories respectively.

Examples

path("foo", "bar", "baz", ext = "zip")

path("foo", letters[1:3], ext = "txt")

22 path_expand

path_expand Finding the User Home Directory

Description

• path_expand() performs tilde expansion on a path, replacing instances of ~ or ~user with
the user’s home directory.

• path_home() constructs a path within the expanded users home directory, calling it with no
arguments can be useful to verify what fs considers the home directory.

• path_expand_r() and path_home_r() are equivalents which always use R’s definition of the
home directory.

Usage

path_expand(path)

path_expand_r(path)

path_home(...)

path_home_r(...)

Arguments

path A character vector of one or more paths.

... Additional paths appended to the home directory by path().

Details

path_expand() differs from base::path.expand() in the interpretation of the home directory of
Windows. In particular path_expand() uses the path set in the USERPROFILE environment variable
and, if unset, then uses HOMEDRIVE/HOMEPATH.

In contrast base::path.expand() first checks for R_USER then HOME, which in the default configu-
ration of R on Windows are both set to the user’s document directory, e.g. C:\\Users\\username\\Documents.
base::path.expand() also does not support ~otheruser syntax on Windows, whereas path_expand()
does support this syntax on all systems.

This definition makes fs more consistent with the definition of home directory used on Windows
in other languages, such as python and rust. This is also more compatible with external tools such
as git and ssh, both of which put user-level files in USERPROFILE by default. It also allows you to
write portable paths, such as ~/Desktop that points to the Desktop location on Windows, macOS
and (most) Linux systems.

Users can set the R_FS_HOME environment variable to override the definitions on any platform.

See Also

R for Windows FAQ - 2.14 for behavior of base::path.expand().

https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://doc.rust-lang.org/std/env/fn.home_dir.html#windows
https://cran.r-project.org/bin/windows/base/rw-FAQ.html#What-are-HOME-and-working-directories_003f

path_file 23

Examples

Expand a path
path_expand("~/bin")

You can use `path_home()` without arguments to see what is being used as
the home diretory.
path_home()
path_home("R")

This will likely differ from the above on Windows
path_home_r()

path_file Manipulate file paths

Description

path_file() returns the filename portion of the path, path_dir() returns the directory portion.
path_ext() returns the last extension (if any) for a path. path_ext_remove() removes the last
extension and returns the rest of the path. path_ext_set() replaces the extension with a new
extension. If there is no existing extension the new extension is appended.

Usage

path_file(path)

path_dir(path)

path_ext(path)

path_ext_remove(path)

path_ext_set(path, ext)

path_ext(path) <- value

Arguments

path A character vector of one or more paths.

ext, value The new file extension.

Details

Note because these are not full file paths they return regular character vectors, not fs_path()
objects.

24 path_filter

See Also

base::basename(), base::dirname()

Examples

path_file("dir/file.zip")

path_dir("dir/file.zip")

path_ext("dir/file.zip")

path_ext("file.tar.gz")

path_ext_remove("file.tar.gz")

Only one level of extension is removed
path_ext_set(path_ext_remove("file.tar.gz"), "zip")

path_filter Filter paths

Description

Filter paths

Usage

path_filter(path, glob = NULL, regexp = NULL, invert = FALSE, ...)

Arguments

path A character vector of one or more paths.

glob A wildcard aka globbing pattern (e.g. *.csv) passed on to grep() to filter paths.

regexp A regular expression (e.g. [.]csv$) passed on to grep() to filter paths.

invert If TRUE return files which do not match

... Additional arguments passed to grep.

Examples

path_filter(c("foo", "boo", "bar"), glob = "*oo")
path_filter(c("foo", "boo", "bar"), glob = "*oo", invert = TRUE)

path_filter(c("foo", "boo", "bar"), regexp = "b.r")

path_math 25

path_math Path computations

Description

All functions apart from path_real() are purely path computations, so the files in question do not
need to exist on the filesystem.

Usage

path_real(path)

path_split(path)

path_join(parts)

path_abs(path, start = ".")

path_norm(path)

path_rel(path, start = ".")

path_common(path)

path_has_parent(path, parent)

Arguments

path A character vector of one or more paths.

parts A character vector or a list of character vectors, corresponding to split paths.

start A starting directory to compute the path relative to.

parent The parent path.

Value

The new path(s) in an fs_path object, which is a character vector that also has class fs_path.
Except path_split(), which returns a list of character vectors of path components.

Functions

• path_real(): returns the canonical path, eliminating any symbolic links and the special ref-
erences ~, ~user, ., and .., , i.e. it calls path_expand() (literally) and path_norm() (effec-
tively).

• path_split(): splits paths into parts.

• path_join(): joins parts together. The inverse of path_split(). See path() to concatenate
vectorized strings into a path.

26 path_math

• path_abs(): returns a normalized, absolute version of a path.

• path_norm(): eliminates . references and rationalizes up-level .. references, so A/./B and
A/foo/../B both become A/B, but ../B is not changed. If one of the paths is a symbolic link,
this may change the meaning of the path, so consider using path_real() instead.

• path_rel(): computes the path relative to the start path, which can be either an absolute or
relative path.

• path_common(): finds the common parts of two (or more) paths.

• path_has_parent(): determine if a path has a given parent.

See Also

path_expand() for expansion of user’s home directory.

Examples

dir_create("a")
file_create("a/b")
link_create(path_abs("a"), "c")

Realize the path
path_real("c/b")

Split a path
parts <- path_split("a/b")
parts

Join it together
path_join(parts)

Find the absolute path
path_abs("..")

Normalize a path
path_norm("a/../b\\c/.")

Compute a relative path
path_rel("/foo/abc", "/foo/bar/baz")

Find the common path between multiple paths
path_common(c("/foo/bar/baz", "/foo/bar/abc", "/foo/xyz/123"))

Cleanup
dir_delete("a")
link_delete("c")

path_package 27

path_package Construct a path to a location within an installed or development
package

Description

path_package differs from system.file() in that it always returns an error if the package does
not exist. It also returns a different error if the file within the package does not exist.

Usage

path_package(package, ...)

Arguments

package Name of the package to in which to search

... Additional paths appended to the package path by path().

Details

path_package() also automatically works with packages loaded with devtools even if the path_package()
call comes from a different package.

Examples

path_package("base")
path_package("stats")
path_package("base", "INDEX")
path_package("splines", "help", "AnIndex")

path_sanitize Sanitize a filename by removing directory paths and invalid characters

Description

path_sanitize() removes the following:

• Control characters

• Reserved characters

• Unix reserved filenames (. and ..)

• Trailing periods and spaces (invalid on Windows)

• Windows reserved filenames (CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM6,
COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9) The resulting
string is then truncated to 255 bytes in length

https://en.wikipedia.org/wiki/C0_and_C1_control_codes
https://web.archive.org/web/20230126161942/https://kb.acronis.com/content/39790
https://en.wikipedia.org/wiki/Comparison_of_file_systems#Limits

28 path_tidy

Usage

path_sanitize(filename, replacement = "")

Arguments

filename A character vector to be sanitized.

replacement A character vector used to replace invalid characters.

See Also

https://www.npmjs.com/package/sanitize-filename, upon which this function is based.

Examples

potentially unsafe string
str <- "~/.\u0001ssh/authorized_keys"
path_sanitize(str)

path_sanitize("..")

path_tidy Tidy paths

Description

untidy paths are all different, tidy paths are all the same. Tidy paths always use / to delimit direc-
tories, never have multiple / or trailing / and have colourised output based on the file type.

Usage

path_tidy(path)

Arguments

path A character vector of one or more paths.

Value

An fs_path object, which is a character vector that also has class fs_path

https://www.npmjs.com/package/sanitize-filename

Index

as_fs_bytes (fs_bytes), 16
as_fs_path (fs_path), 16
as_fs_perms (fs_perms), 17

base::basename(), 24
base::dirname(), 24
base::path.expand(), 22

copy, 2
create, 4

delete, 5
dir.create(), 4
dir_copy (copy), 2
dir_create (create), 4
dir_delete (delete), 5
dir_exists (file_access), 9
dir_exists(), 20
dir_info (dir_ls), 6
dir_info(), 12
dir_ls, 6, 8
dir_map (dir_ls), 6
dir_tree, 8
dir_walk (dir_ls), 6

file.create(), 4
file.info(), 11
file.remove, 5
file.rename, 13
file_access, 9
file_chmod, 10
file_chown, 11
file_copy (copy), 2
file_create (create), 4
file_create(), 15
file_delete (delete), 5
file_exists (file_access), 9
file_exists(), 20
file_info, 11
file_move, 13

file_show, 13
file_size (file_info), 11
file_temp, 14
file_temp_pop (file_temp), 14
file_temp_push (file_temp), 14
file_touch, 15
fs_bytes, 16
fs_bytes(), 12
fs_path, 16
fs_path(), 12
fs_perms, 17
fs_perms(), 12

grep, 7, 24
grep(), 7, 8, 24
group_ids (id), 18

id, 18
is_absolute_path, 19
is_dir (is_file), 19
is_file, 19
is_file_empty (is_file), 19
is_link (is_file), 19

link_copy (copy), 2
link_create (create), 4
link_delete (delete), 5
link_exists (file_access), 9
link_exists(), 20
link_path, 20

octmode, 17

path, 21
path(), 4, 22, 25, 27
path_abs (path_math), 25
path_common (path_math), 25
path_dir (path_file), 23
path_expand, 22
path_expand(), 26
path_expand_r (path_expand), 22

29

30 INDEX

path_ext (path_file), 23
path_ext<- (path_file), 23
path_ext_remove (path_file), 23
path_ext_set (path_file), 23
path_file, 23
path_filter, 24
path_has_parent (path_math), 25
path_home (path_expand), 22
path_home(), 21
path_home_r (path_expand), 22
path_join (path_math), 25
path_math, 25
path_norm (path_math), 25
path_package, 27
path_package(), 21
path_real (path_math), 25
path_rel (path_math), 25
path_sanitize, 27
path_split (path_math), 25
path_split(), 25
path_temp (file_temp), 14
path_tidy, 28
path_wd (path), 21
POSIXct, 12, 15

system.file(), 27

unlink, 5
user_ids (id), 18

	copy
	create
	delete
	dir_ls
	dir_tree
	file_access
	file_chmod
	file_chown
	file_info
	file_move
	file_show
	file_temp
	file_touch
	fs_bytes
	fs_path
	fs_perms
	id
	is_absolute_path
	is_file
	link_path
	path
	path_expand
	path_file
	path_filter
	path_math
	path_package
	path_sanitize
	path_tidy
	Index

