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Model of a quantum program

� For      qubits, input and output are unit-norm complex vectors in the       bit state-space  

� Programs are reversible and norm-preserving                   Programs encode unitary transformations 

� The outcome of the computation is the result of measuring the output:

� A function                                        is successfully approximated by a program if 
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Motivation

quantum circuit

set of instructions
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Motivation
Soundness: Does the  encode a 

 that grows polynomially on the size of 
the input?



Completeness: For any such , 
can we always find a corresponding ? 


set of instructions
family of circuits

polynomial transformation
program

set of instructions

quantum circuit
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Related work
Bellantoni & Cook (1992) “A new recursion-theoretic characterization

of the polytime functions”�

� class of functions sound and complete for FP



Selinger (2004) “Towards a quantum programming language”:�
� simple programming language with loops and recursion



Dal Lago et al. (2010) “Quantum implicit computational complexity”�
� quantum lambda calculus characterization of BQP



Yamakami (2020) “A schematic definition of quantum polynomial time 
computability”�

� class of functions sound and complete for FBQP
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The syntax of FOQ
First-Order Quantum
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The syntax of FOQ
First-Order Quantum

program body

procedure declarations
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The syntax of FOQ

procedure declarations

    « decl proc[integer input](quantum input){S} »

quantum control

    « qcase cqubit of {0 -> S0, 1 -> S1} �
� branches S0 and S1 cannot affect cqubit 


 

(recursive) procedure call

    « call proc[integer](qubits) »

First-Order Quantum
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(some) Denotational Semantics
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(some) Denotational Semantics



The width of a procedure



Restrictions on recursion 

WF programs (well-founded�

� all mutually recursive calls decrease the number of qubits

    -> ensured termination

PFOQ programs (polynomial time�

� all mutually recursive calls decrease the number of qubit�
�

    -> ensured termination 
at most one mutually recursive call per (quantum) branch 


in polynomial time

8



Restrictions on recursion 

WF programs (well-founded)    -> ensured termination

PFOQ programs (polynomial time)    -> ensured poly-time termination
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Restrictions on recursion 
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Results

Soundness. If a PFOQ program successfully approximates some function    , then    is 
in FBQP. (proof: simulation by a poly-time quantum Turing machine. )



Completeness. For any function    in FBQP, there exists a PFOQ program that 
successfully approximates   . (proof: simulation of Yamakami’s function algebra.)

PFOQ ~ FBQP

PFOQ  programs correspond to uniform families of poly-sized circuits

where

� All terminating programs (in particular WF programs) have an inverse program in FOQ.
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Circuit compilation
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Building a poly-sized circuitPFOQ program

12



Building a poly-sized circuitPFOQ program

Possible compilation strategy
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Building a poly-sized circuit
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Building a poly-sized circuit
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With complexity               we can merge k adjacent copies of the same unitary from different branches. 



Circuit compilation
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Circuit compilation
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Circuit compilation
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Guaranteeing adjacency
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Guaranteeing adjacency
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example: Composition 



Guaranteeing adjacency
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example: Procedure call (first occurrence of procedure and size)



Guaranteeing adjacency
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example: Procedure call (not the first occurrence)



Building a poly-sized circuit

� Same-sized instances of a procedure can always be 
merge�

� In this case, all procedure calls can be computed 
using only            procedure instances

20



Conclusion

21

� FOQ is a first order quantum programming language with 
quantum control and recursive procedures�

� Syntactical restrictions allow for classes WF and PFOQ with 
properties of (poly-time) termination�

� PFOQ programs can be directly compiled into circuits that grow 
polynomially on the size of the input

Future work
� Expand the syntax (while loops, measurements)�

� Applying restrictions to established languages

(ProtoQuipper).



Thank you!


