
A programming language characterizing

quantum polynomial time

Emmanuel Hainry, Romain Péchoux, Mário Silva
Université de Lorraine, Nancy, France

Model of a quantum program

� For qubits, input and output are unit-norm complex vectors in the bit state-space

1

Model of a quantum program

� For qubits, input and output are unit-norm complex vectors in the bit state-space

� Programs are reversible and norm-preserving Programs encode unitary transformations

1

Model of a quantum program

� For qubits, input and output are unit-norm complex vectors in the bit state-space

� Programs are reversible and norm-preserving Programs encode unitary transformations

� The outcome of the computation is the result of measuring the output:

1

Model of a quantum program

� For qubits, input and output are unit-norm complex vectors in the bit state-space

� Programs are reversible and norm-preserving Programs encode unitary transformations

� The outcome of the computation is the result of measuring the output:

� A function is successfully approximated by a program if

1

Motivation

quantum circuit

set of instructions

2

Motivation
Soundness: Does the encode a

 that grows polynomially on the size of
the input?

Completeness: For any such ,
can we always find a corresponding ?

set of instructions
family of circuits

polynomial transformation
program

set of instructions

quantum circuit

2

Related work
Bellantoni & Cook (1992) “A new recursion-theoretic characterization

of the polytime functions”�

� class of functions sound and complete for FP

Selinger (2004) “Towards a quantum programming language”:�
� simple programming language with loops and recursion

Dal Lago et al. (2010) “Quantum implicit computational complexity”�
� quantum lambda calculus characterization of BQP

Yamakami (2020) “A schematic definition of quantum polynomial time
computability”�

� class of functions sound and complete for FBQP

3

The syntax of FOQ
First-Order Quantum

4

The syntax of FOQ
First-Order Quantum

program body

procedure declarations

4

The syntax of FOQ

procedure declarations

 « decl proc[integer input](quantum input){S} »

quantum control

 « qcase cqubit of {0 -> S0, 1 -> S1} �
� branches S0 and S1 cannot affect cqubit

(recursive) procedure call

 « call proc[integer](qubits) »

First-Order Quantum

4

5

(some) Denotational Semantics

6

(some) Denotational Semantics

The width of a procedure

Restrictions on recursion

WF programs (well-founded�

� all mutually recursive calls decrease the number of qubits

 -> ensured termination

PFOQ programs (polynomial time�

� all mutually recursive calls decrease the number of qubit�
�

 -> ensured termination
at most one mutually recursive call per (quantum) branch

in polynomial time

8

Restrictions on recursion

WF programs (well-founded) -> ensured termination

PFOQ programs (polynomial time) -> ensured poly-time termination

8

Restrictions on recursion
Quantum
Fourier
Transform

9

Restrictions on recursion
Quantum
Fourier
Transform

9

Restrictions on recursion
Quantum
Fourier
Transform

9

Results

Soundness. If a PFOQ program successfully approximates some function , then is
in FBQP. (proof: simulation by a poly-time quantum Turing machine.)

Completeness. For any function in FBQP, there exists a PFOQ program that
successfully approximates . (proof: simulation of Yamakami’s function algebra.)

PFOQ ~ FBQP

PFOQ programs correspond to uniform families of poly-sized circuits

where

� All terminating programs (in particular WF programs) have an inverse program in FOQ.

10

Circuit compilation
11

Building a poly-sized circuitPFOQ program

12

Building a poly-sized circuitPFOQ program

Possible compilation strategy

12

Building a poly-sized circuit
13

grows in

Building a poly-sized circuit
14

With complexity we can merge k adjacent copies of the same unitary from different branches.

Circuit compilation
15

Circuit compilation
15

Circuit compilation
15

Circuit compilation
15

Guaranteeing adjacency
16

Guaranteeing adjacency
17

example: Composition

Guaranteeing adjacency
18

example: Procedure call (first occurrence of procedure and size)

Guaranteeing adjacency
19

example: Procedure call (not the first occurrence)

Building a poly-sized circuit

� Same-sized instances of a procedure can always be
merge�

� In this case, all procedure calls can be computed
using only procedure instances

20

Conclusion

21

� FOQ is a first order quantum programming language with
quantum control and recursive procedures�

� Syntactical restrictions allow for classes WF and PFOQ with
properties of (poly-time) termination�

� PFOQ programs can be directly compiled into circuits that grow
polynomially on the size of the input

Future work
� Expand the syntax (while loops, measurements)�

� Applying restrictions to established languages

(ProtoQuipper).

Thank you!

