[go: up one dir, main page]

Impaired glucose partitioning in primary myotubes from severely obese women with type 2 diabetes

Am J Physiol Cell Physiol. 2020 Dec 1;319(6):C1011-C1019. doi: 10.1152/ajpcell.00157.2020. Epub 2020 Sep 23.

Abstract

The purpose of this study was to determine whether intramyocellular glucose partitioning was altered in primary human myotubes derived from severely obese women with type 2 diabetes. Human skeletal muscle cells were obtained from lean nondiabetic and severely obese Caucasian females with type 2 diabetes [body mass index (BMI): 23.6 ± 2.6 vs. 48.8 ± 1.9 kg/m2, fasting glucose: 86.9 ± 1.6 vs. 135.6 ± 12.0 mg/dL, n = 9/group]. 1-[14C]-Glucose metabolism (glycogen synthesis, glucose oxidation, and nonoxidized glycolysis) and 1- and 2-[14C]-pyruvate oxidation were examined in fully differentiated myotubes under basal and insulin-stimulated conditions. Tricarboxylic acid cycle intermediates were determined via targeted metabolomics. Myotubes derived from severely obese individuals with type 2 diabetes exhibited impaired insulin-mediated glucose partitioning with reduced rates of glycogen synthesis and glucose oxidation and increased rates of nonoxidized glycolytic products, when compared with myotubes derived from the nondiabetic individuals (P < 0.05). Both 1- and 2-[14C]-pyruvate oxidation rates were significantly blunted in myotubes from severely obese women with type 2 diabetes compared with myotubes from the nondiabetic controls. Lastly, concentrations of tricarboxylic acid cycle intermediates, namely, citrate (P < 0.05), cis-aconitic acid (P = 0.07), and α-ketoglutarate (P < 0.05), were lower in myotubes from severely obese women with type 2 diabetes. These data suggest that intramyocellular insulin-mediated glucose partitioning is intrinsically altered in the skeletal muscle of severely obese women with type 2 diabetes in a manner that favors the production of glycolytic end products. Defects in pyruvate dehydrogenase and tricarboxylic acid cycle may be responsible for this metabolic derangement associated with type 2 diabetes.

Keywords: TCA cycle; glucose oxidation; glycogen synthesis; glycolysis; human skeletal muscle cell; pyruvate dehydrogenase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Case-Control Studies
  • Diabetes Mellitus, Type 2 / metabolism*
  • Female
  • Glucose / metabolism*
  • Glycogen / metabolism
  • Glycolysis / physiology
  • Humans
  • Insulin / metabolism
  • Muscle Fibers, Skeletal / metabolism*
  • Muscle, Skeletal / metabolism
  • Obesity / metabolism*
  • Oxidation-Reduction
  • Women

Substances

  • Insulin
  • Glycogen
  • Glucose