
Analysis of integrated transcriptomics and
metabolomics data — a systems biology

approach

Dissertation

zur Erlangung des Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von

Carsten O. Daub

Potsdam

2004



Dekan: Prof. Dr. Robert Seckler

Gutachter: Prof. Dr. Hanspeter Herzel

Prof. Dr. Martin Vingron

Dr. Joachim Selbig



Abstract

Recent high-throughput technologies enable the acquisition of a variety of comple-

mentary data and imply regulatory networks on the systems biology level. A common

approach to the reconstruction of such networks is the cluster analysis which is based

on a similarity measure.

We use the information theoretic concept of the mutual information, that has been

originally defined for discrete data, as a measure of similarity and propose an exten-

sion to a commonly applied algorithm for its calculation from continuous biological

data. We compare our approach to previously existing algorithms. We develop a

performance optimised software package for the application of the mutual informa-

tion to large-scale datasets. Furthermore, we design and implement a web-based

service for the analysis of integrated data measured with different technologies. Ap-

plication to biological data reveals biologically relevant groupings and reconstructed

signalling networks show agreements with physiological findings.

Kurzfassung

Moderne Hochdurchsatzmethoden erlauben die Messung einer Vielzahl von komple-

mentären Daten und implizieren die Existenz von regulativen Netzwerken auf einem

systembiologischen Niveau. Ein üblicher Ansatz zur Rekonstruktion solcher Netz-

werke stellt die Clusteranalyse dar, die auf einem Ähnlichkeitsmaß beruht.

Wir verwenden das informationstheoretische Konzept der wechselseitigen Informa-

tion, das ursprünglich für diskrete Daten definiert ist, als Ähnlichkeitsmaß und schla-

gen eine Erweiterung eines für gewöhnlich für die Anwendung auf kontinuierliche bio-

logische Daten verwendeten Algorithmus vor. Wir vergleichen unseren Ansatz mit

bereits existierenden Algorithmen. Wir entwickeln ein geschwindigkeitsoptimiertes

Computerprogramm für die Anwendung der wechselseitigen Information auf große

Datensätze. Weiterhin konstruieren und implementieren wir einen web-basierten

Dienst für die Analyse von integrierten Daten, die durch unterschiedliche Meßme-

thoden gemessen wurden. Die Anwendung auf biologische Daten zeigt biologisch

relevante Gruppierungen, und rekonstruierte Signalnetzwerke zeigen Übereinstim-

mungen mit physiologischen Erkenntnissen.



Acknowledgements

The present work has been carried out in the Bioinformatics group at the Max

Planck Institute of Molecular Plant Physiology in Golm.

First and foremost, I would like to thank Sebastian Kloska, who supervised my work

from November 2000 to August 2001, and Joachim Selbig, who supervised my work

from February 2002 on. They introduced me into the field of bioinformatics and

their support build a bases for this work. I am grateful to Sebastian Kloska for

continuing his support even after he left the institute and to Joachim Selbig for

taking over the supervision. I also would like to thank Bernd Müller-Röber for his

advices.

The stimulating discussions with the members of the bioinformatics group, present

and past, Jan Hannemann, Stefanie Hartmann, Peter Humburg Jan Hummel, Peter
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Chapter 1

Introduction

1.1 Systems biology

Cells, tissues, organs and organisms are examples of biological systems. Tradition-

ally, the understanding of such systems was approached by investigating progres-

sively smaller details of the systems to gain an understanding of the larger concepts.

Recently, the understanding of a biological system as a whole comes to the fore with

the intention to describe the structure and dynamics of phenomena that are not re-

solvable into local events. Systems biology aims at answering a set of key questions

dealing with

• basic structures and properties of biological networks,

• behaviour of biological systems over time under various conditions,

• robustness and stability of biological networks, and

• modification of biological systems to achieve desired properties.

Even though this trend is relatively new within biology, early attempts originated in

other fields of science have been made [1]. In recent years, new attempts have made
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use of breakthroughs in measurement techniques, such as large-scale gene expression

measurements, metabolite and protein profiling. These attempts can be divided

into two groups. The first attempt integrates data from different levels and sources

[2] whereas the other attempt shifts the focus from the elementary components of

biological processes to systems of such components [3]. Both approaches demand

the cooperation of scientists from different disciplines, such as biology, computer

science, systems theory, physics, chemistry, and interdisciplinary areas of applied

science.

1.2 Microarray technology

Living cells interact with their environment and respond to external signals. They

adapt their metabolic processes in a highly regulated fashion. The nucleotide se-

quence encoding a gene under regulation is thereby transcribed from the DNA,

which is located in the cell nucleus, to messenger RNA (mRNA). The transcript

leaves the nucleus into the cytoplasm where the mRNA is used by the ribosomes as

template for the production of proteins. Each mRNA molecule is a template for a

specific protein. The amount of produced proteins is thereby mainly regulated by

the amount of the corresponding mRNA.

The aim of microarray technology is the measurement of the levels of thousands of

mRNA molecules at once thus providing insight into the transcriptional state of a

cell (transcriptome) [4, 5, 6]. For a specific cell status, mRNA levels correspond-

ing to all transcribed genes are measured in parallel probes. To this end, mRNA

prepared from cell samples is reversively transcribed to cDNA by enzymes with si-

multaneous incorporation of marker molecules. The marker molecules later allow for

a quantitative analysis of the cDNA molecules. Different kind of marker molecules

are commonly used, based on radioactive or fluorescent labeling. The labeled cDNA

molecules are then applied to the microarray.

The microarray consists of a supporting material, usually chemically treated glass

slides or nylon membranes. Spots of DNA fragments are immobilised on these slides
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Figure 1.1: Microarray technology. Samples from cells grown under specific

experimental conditions are prepared and mRNA is extracted. Then mRNA is

reversely transcribed into more stable cDNA with simultaneous incorporation of

labelling molecules and hybridised to the microarray. Spot intensities are detected

and post-processed.

or membranes, which then also are called arrays. The DNA fragments within each

spot are identical and represent characteristic target sequences for the labeled cDNA

molecules of the probe. These fragments correspond to genes of interest. When the

probe molecules are applied to the microarray, the single stranded cDNA molecules

bind only to the spots consisting of DNA fragments of complementary sequences

resulting in double stranded DNA. This process is often referred to as hybridisation.

The level of labeled cDNA on a particular spot can be detected and corresponds to

the amount of original mRNA complementary to the DNA fragments in the spot.

The schematic work-flow of a microarray analysis is shown in Figure 1.1.

Microarray technology has been used for a variety of applications ranging from stud-

ies of knock-out mutant organisms, analysis on time-series from organisms reacting

to different environmental conditions [7], to therapeutical [8, 9] and diagnostic [10]

purposes.
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Sample Gas chromatograph or
liquid chromatograph

Mass spectrometer
time-of-flight or

quadrupole

Computer

Figure 1.2: Metabolite profiling technology. Tissues are homogenised and ex-

tracted to gain proper samples. Chromatography splits metabolites up according

to their chemical properties, e.g. hydrophobicity or polarity. Mass spectrometry is

then applied for identification and quantification of the samples.

1.3 Metabolite profiling technology

Similar to the quantification of predefined targets of mRNA with microarrays, the

classical metabolite profiling aims at the quantification of a number of predefined

target metabolites. A target can be a set of metabolites shared among different

pathways or all metabolites of a specific pathway. In extension to the target oriented

metabolite profiling, the global detection of all metabolites present in a sample –

the metabolome – was approached. Metabolomic analyses thereby aim to provide

a comprehensive insight into the metabolic state of a system — the full suite of

metabolites expressed in a cell.

Approaches for tissue sampling, probe homogenisation, extraction, storage, and sam-

ple preparation have to be made adequately to maintain an unbiased approach for the

estimated large number of metabolites. Many different protocols are available, but

no comprehensive comparison of extraction techniques has been published. Common

criteria for all these methods are a high reproducibility, robustness, and recovery.

Numerous techniques exist for the detection of metabolites. All commonly used

ones characterise the samples according to more than one physical parameter: in a
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first step metabolites are separated by chromatography according to their chemical

properties (for example hydrophobicity or polarity). Depending on the substance

class of metabolites under interest, gas chromatography (GC) or liquid chromatog-

raphy (LC), also with their derivations like reverse-phase liquid chromatography

(RPLC) and normal-phase liquid chromatography (NPLC), are among the most

frequently used techniques. After the chromatographical separation of the samples,

mass spectrometry (MS) is applied for metabolite detection. MS has shown its

suitability for metabolite detection in complex matrices [11, 12]. Figure 1.2 shows a

schematic overview of the experimental setup. The parallel use of GC/MS and other

combinations like RPLC/MS comprehensively covers the accurate identification and

quantification of a large fraction of all available metabolites.
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1.4 Protein measurement technology

A large variety of different protein identification and quantification strategies has

been described and employed by the proteomic community. Conventional proteomics

relies heavily on 2-D gel electrophoresis followed by the identification of proteins by

direct excision and processing from the gel (2-D PAGE). However, many proteins

such as hydrophobic membrane-associated proteins or proteins of low abundance

fail to be detected. For this, techniques for the labeling of amino acids, that are

incorporated into the proteins, or the chemical labeling of the proteins are applied

[13]. A prominent examples for the chemical labeling is the isotope-coded affinity tag

(ICAT) where the thiol group of cystein is labeled at the alkylation step of sample

preparation. Labeled proteins are either enzymatically or chemically digested or

separated on a gel and detected based on MS.

1.5 Data integration

For a systems biology approach towards the understanding of the regulation of

networks within organisms, data from various experimental sources are integrated.

Samples are chemically processed in a way that metabolites, proteins, and mRNA

are extracted and abundances of compounds can be measured separately.

In an ideal case, each sample is taken from an organism grown under highly con-

trolled conditions. These conditions might reflect a time series of developmental

stages, stress conditions, or genetically modified organisms with altered gene activ-

ities like knock-out genes or over expressed genes. A flow chart for the integrated

extraction of metabolites, proteins and mRNA from one biological sample is shown

in Figure 1.3. mRNA, metabolite, and protein abundance values for one experiment

are obtained from the very same sample. For the analysis in a systems biological

approach, data from these different experimental sources are integrated into one

dataset.

The dataset can be organised as a matrix with the rows containing expression,
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Figure 1.3: Proposed flow chart for the investigation of cross-correlations of

metabolites, proteins and mRNA by integrative extraction from one sample (taken

from [14]).
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exp. 1 exp. 2 exp. 3 . . . exp. n

gene 1 g1,1 g1,2 g1,3 . . . g1,n

gene 2 g2,1 g2,2 g2,3 . . . g2,n

gene 3 g3,1 g3,2 g3,3 . . . g3,n

. . . . . . . . . . . . . . . . . .

gene k gk,1 gk,2 gk,3 . . . gk,n

metabolite 1 m1,1 m1,2 m1,3 . . . m1,n

metabolite 2 m2,1 m2,2 m2,3 . . . m2,n

metabolite 3 m3,1 m3,2 m3,3 . . . m3,n

. . . . . . . . . . . . . . . . . .

metabolite l ml,1 ml,2 ml,3 . . . ml,n

protein 1 p1,1 p1,2 p1,3 . . . p1,n

protein 2 p2,1 p2,2 p2,3 . . . p2,n

protein 3 p3,1 p3,2 p3,3 . . . p3,n

. . . . . . . . . . . . . . . . . .

protein m pm,1 pm,2 pm,3 . . . pm,n

Table 1.1: Dataset format. Samples from the very same tissue are analysed with

different experimental techniques. Resulting experimental data is integrated into

one dataset. All data within one column refer to the same experimental condition

(mutant or time point in a time series) and are measured from the very same tissue.

Each row corresponds to a gene, metabolite, or protein.

metabolite, and protein abundances and the columns representing the experimental

conditions. An example matrix comprising such a structure is shown in Table 1.1.

1.6 Current methods of data analysis

Within the analysis of gene expression data and metabolite data, the term data

analysis summarises various steps of data processing. The analysis starts from

images containing the raw information about gene abundances or chromatograms

with peaks representing the metabolite concentrations. The application of high-
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level multivariate statistical technique to this raw data assumes a prior low-level

normalisation.

1.6.1 Data normalisation

To enable the comparison of expression data obtained from different array experi-

ments or of metabolite concentrations measured from different samples, a correction

for technical and biological variation needs to be applied. The detailed procedures

vary depending on the array formats and experimental designs. Basically, the nor-

malisation procedures for gene expression data attempt to correct for the

• number of cells in the sample

• efficiency of total RNA isolation

• efficiency of mRNA isolation and labelling

• efficiency of hybridisation

• sensitivity of signal measurement.

For metabolite measurement the corrections attempt for the

• smoothing of all peaks of a chromatogram

• determination and subtraction of the background noise

• division of each peak by the area of a standard substance peak which was

added to the sample in a defined amount

• normalisation to the fresh weight (FW) or to the total ion chromatogram (TIC)

These data preprocessing steps are often referred to as low-level data analysis.
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Normalisation can be applied among attributes (corresponding to the rows in Ta-

ble 1.1) or among the experiments (corresponding to the columns in Table 1.1) of

a dataset depending on the aims of the normalisation. A common strategy for the

normalisation of metabolite concentration data, for example, is the assumption that

all cells of an organism contain on average a constant concentration of metabolites.

This assumption can be realised by the normalisation with the vector norm for each

of the experimental conditions in the data matrix. For the L1-norm, all data points

within an experimental condition are divided by the sum of these data points. Alter-

natively, normalisations within the attributes can be applied. Such normalisations

might correct, for example, for different variances within the attributes. Among

commonly applied corrections are the normalisation the the mean, median, or to

the variance.

1.6.2 High-level data analysis

The repertoire of high-level data analysis methods applied is manifold. Methods

recently reported in literature can be grouped into

• projection

• classification

• clustering

Projection

Projection methods reduce the dimensionality of high dimensional datasets to enable

their visualisation in two- or three-dimensional space. Their application helps to

circumvent the constrains arising from high feature spaces compared to relatively

few experiments which is sometimes referred to as the curse of dimensionality and

is commonly arising in gene expression and metabolite analysis [15]. Projection
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methods aim at representing distances between objects in the original data space as

closely as possible in a reduced data space [16].

Classification

Classification aims at finding characteristic discriminative features (so called clas-

sifiers) to assign objects to groups. The groups have to be known in advance for

the training of the classifier. These classifiers are then used to assign new objects

to existing groups. In the field of cancer research, the objects may consist of sam-

ples of tumor and non-tumor cells [17]. Classifiers achieved from samples of known

cancer status are used to assign new samples to the ’tumor’ or ’non-tumor’ group.

For Arabidopsis thaliana objects consisting of different ecotypes were distinguished

using metabolic properties [18].

Clustering

Clustering aims at the grouping of objects which show similar patterns of features.

For the analysis of microarray data or metabolite data, these objects might consist

of groups of genes/metabolites or groups of experiments. The similarity between

objects are determined differently depending on the algorithm used. For K-means

clustering [19, 20], the number of clusters has to be selected in advance. The algo-

rithm searches in an iterative manner for the optimal location of cluster centers in

the Euclidean space spanned by the dimensions of the dataset under consideration.

Self-organizing maps (SOM) search for optimal positions of cluster centers for a map

of nodes in a high dimensional space spanned by the dimensions of the dataset. The

initial geometry of the nodes has to be chosen in advance. For biclustering [21, 22],

subsets of objects exhibiting consistent patterns over both genes/metabolites and

experiments of a dataset are detected.

Hierarchical clustering bases on the prior calculation of a distance matrix containing

the pair-wise comparisons of all objects of a dataset. The distance between these

objects is a measure of the correlation between them and can be defined in various
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ways. Examples of correlation measures range from linear correlation and Bayesian

similarity metrics [23] to information theoretic concepts like mutual information

[24, 25]. The result of the application of a clustering algorithm to a distance matrix

is commonly displayed as dendrogram where the lengths of the branches correspond

to the distances between the objects. Figure 1.4 depicts an example dendrogram

together with the courses of expression values for the two main clusters of genes.

Compared to the manifold of methods reported for the analysis of microarray data,

the analysis of metabolomic studies is so far restricted to relatively few approaches.

Metabolic correlation networks have been calculated from the pair-wise comparison

of metabolite concentrations [27, 28, 29]. Based on the theory of stochastic systems,

the correlations of a metabolomic network have been interpreted as fingerprint of

the underlying biophysical system and have been compared to known biochemical

pathways [30]. Different genotypes have been distinguished using machine learning

techniques [18] and principal component analysis (PCA) [12].

The frequently reported methods for the analysis of gene expression and metabolite

data are summarised in Table 1.2.
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Figure 1.4: Clustering. The result of a hierarchical clustering displays all genes of a

dataset (example data is a cutout from [26]) in a dendrogram (top). The expression

values of genes within the two main clusters (middle, bottom) show a fairly similar

course.
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Method Microarray Metabolomic

Projection

Principal component analysis (PCA) [16, 31] [12]

Singular value decomposition (SVD) [32, 33]

Canonical correlation analysis (CCA) [34]

Independent component analysis (ICA) [35] [36]

Classification

Support vector machines (SVM) [37, 38]

Decision trees [39]

Artificial neural networks [40] [18]

k-nearest neighbours [41]

Clustering

K-means clustering [19, 20]

Self organizing maps (SOM) [42]

Expectation maximisation (EM) algorithm [43, 44, 45]

Autoclass algorithm [46]

FITCH [47]

Hierarchical clustering [26] [27, 28, 29]

Clustering based on random graph theory [48]

Biclustering [21, 22]

Gene Shaving [49]

Table 1.2: Data analysis. An overview of frequently reported methods used for

the analysis of data from gene expression and metabolite measurements.
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1.7 Contributions

1.7.1 Mutual information

For the elucidation of functional relationships inherent in data, the clustering of

data matrices of co-expressed genes [26] or metabolites [12] is a commonly used ap-

proach. For the obtained results, the choice of the similarity measure is as crucial

as the choice of the clustering method itself [50]. Often, linear similarity measures

such as the Euclidean distance [51] or the Pearson correlation coefficient [26] are

applied. As extension to these linear methods, information theoretic concepts, such

as the mutual information, have been used [24, 25, 52, 53, 54] to enable the detec-

tion of non-linear correlations within data. The concept of mutual information was

initially developed for discrete data. For its application to continuous data from

gene expression or metabolite measurements, the experimental data need to be par-

titioned into discrete intervals, or bins. In a widely used approach [24], each data

point is assigned to one, and only one, bin. Even small fluctuations due to biological

or measurement noise can thereby strongly affect the resulting mutual information

[55].

We have developed a generalisation to the classical binning in which we aim to

overcome some of the drawbacks associated with the simple approach. Within this

algorithm, data points are allowed to be assigned to several bins simultaneously. We

implemented the algorithm into a software package.

1.7.2 MetaGeneAlyse

Furthermore, we have developed a software package for the analysis of gene expres-

sion data, metabolite data, and datasets merged from both types of data: Meta-

GeneAlyse is a compilation of scripts and programs for data normalisation, data

analysis, and data visualisation, accessible via a web-frontend. Among several other

algorithms for distance matrix calculation, it contains a routine for the calculation
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of mutual information based on the generalised binning method.

1.7.3 Application on data

We applied the mutual information as a measure of similarity to evaluate the de-

pendencies between genes and metabolites. In a first application, we addressed the

question whether recent large-scale gene expression datasets are well described by

commonly used linear similarity measures or if we are able to detect non-linear

gene-gene association.

Aiming at the discovery of novel biological insights into large-scale gene expression

dataset, we carried out a cluster analysis using mutual information as similarity

measure and evaluated the results on the basis of biological expert knowledge.

In an integrated systems biology approach, for samples of gene expression and

metabolite measurements, we reconstruct a network of informational fluxes arising

from stress response.



Chapter 2

Data analysis

2.1 Mutual information

2.1.1 Introduction to mutual information

The detection of relationships between objects plays a central role for the evaluation

of complex networks. To unravel functional connections inherent in such networks,

the clustering of objects is a commonly used procedure. The choice of an appropriate

distance measure underlying the clustering procedure is thereby highly important. In

extension to other distance measures, mutual information provides a general measure

for statistical independence between objects. Since this work later on exemplifies

the concepts derived in this chapter in terms of analysing data from gene expression

and metabolite measurements, one might think of objects as genes or metabolites

which are also commonly referred to as the variables of a dataset.

Within the analysis of biological data, the concept of mutual information has been

used in various contexts ranging from gene expression [24, 52, 53, 54] and DNA

sequence analysis [56, 57], to reverse engineering [58]. Due to its general applicability,

mutual information is also widely utilised in diverse disciplines, such as physics [59],
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image recognition [60], speech recognition [61], and various others. Extending the

abilities of commonly used linear measures, such as the Euclidean distance or the

Pearson correlation coefficient, mutual information is able to detect any type of

functional relationship as illustrated in Figure 2.1.

2.1.2 Definition of the mutual information

2.1.3 Shannon entropy

The concept of the mutual information was initially developed for discrete random

data. Examples for discrete biological data are DNA sequence information or the

number of plants showing a specific phenotype. For a random variable, A, with a

finite set of MA possible states, a1, . . . , aMA
, and each state with its corresponding

probability p(ai), the Shannon entropy H(A) is defined as [63]

H(A) = −
MA
∑

i=1

p(ai) log p(ai) (2.1)

In a more descriptive definition, the Shannon entropy can be seen as a measure for

how evenly the the states of the system A are distributed. In the case where the

outcome of a measurement on A is completely determined to be aj, thus if p(aj) = 1

and p(ai) = 0 for all i 6= j, the entropy becomes zero. Whereas in the other extreme

case, where all probabilities are equal, the entropy becomes maximal.

The joint entropy H(A,B) of two random variables A and B is defined analogously

H(A,B) = −
MA
∑

i=1

MB
∑

j=1

p(ai, bj) log p(ai, bj) (2.2)

where p(ai, bj) denotes the joint probability that A is in state ai and B is in state

bj. Alternatively, the joint probability can be expressed in terms of the conditional

entropy H(A|B)

H(A,B) = H(A|B) +H(B) (2.3)
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Figure 2.1: Ability of the mutual information. Two variables X and Y (100

data points) show a hypothetical dependency according to the function f(x) =

4x(1−x) (top). The Pearson correlation coefficient is not able to detect a significant

correlation as shown in the histogram plot of the dataset compared to 300 realisations

of shuffled data (left). Mutual information clearly shows that the two datasets are

not statistically independent (right). This figure is taken from [62].
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with H(A|B) being defined as

H(A|B) = −
MA
∑

i=1

MB
∑

j=1

p(ai, bj) log p(ai|bj) (2.4)

When now considering the general relation valid for arbitrary systems A and B

H(A|B) ≤ H(A) (2.5)

this leads to a relation for the joint entropy

H(A,B) ≤ H(A) +H(B) (2.6)

The equality is fulfilled only in the case of statistical independence of A and B. The

definition of the mutual information MI(A,B) is given by [63, 64]

MI(A,B) = H(A) +H(B)−H(A,B) ≥ 0 (2.7)

Only for statistical independence of A and B the mutual information becomes zero.

It increases the less statistically independent A and B are.

2.1.4 Kullback entropy

In a different approach, the mutual information was given by Kullback in the form

of a conditional entropy

K(p|p0) :=
∑

pi log
pi
p0
i

≥ 0 (2.8)

The Kullback entropy can be regarded as a measure of distance between the two

probability distributions p and p0 and interpreted as information gain when replacing

an initial probability p0 by a final one p. The Kullback entropy, therefore, established

as distance measure between the two distributions. Assuming the hypothesis of

statistical independence for p0 for two systems A and B, p0(ai, bj) can be written as

p0(ai, bj) = p(ai) p(bj) (2.9)

and the Kullback entropy can be rewritten as

K(p|p0) =
MA
∑

i=1

MB
∑

j=1

p(ai, bj) log
p(ai, bj)

p(ai) p(bj)
(2.10)

With the particular choice of p and p0, the Kullback entropy corresponds the the

mutual information of Eq. (2.7).
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2.1.5 Entropy estimation from continuous data

The estimation of the mutual information according to Eq. (2.2) and Eq. (2.7) as-

sumes the knowledge of the probability distributions of the variables A and B. In

the case of discrete data, the estimation of the probabilities p(ai) is straightfor-

ward. Examples for discrete data are DNA sequence information and the number of

individuals showing a specific characteristic. In most practical applications, these

distributions are not known, but have to be estimated from continuous data.

Simple binning approach

The most straightforward and widely used approach [24, 53] for the estimation of

mutual information from continuous data bases on a histogram technique in which

data is binned into M discrete intervals ai, i = 1 . . .MA. For experimental data

consisting of N measurements of a variable xu, u = 1 . . . N , the number of data

points within each of the bins is counted by an indicator function Θi

Θi(xu) =







1 if xu ∈ ai

0 otherwise (2.11)

The probabilities for each interval are then estimated based on the relative frequency

of data points in that interval

p̂(ai) =
1

N

∑

k

Θi(xu) (2.12)

The joint probabilities p̂(ai, bj) for two variables are calculated analogously from a

two dimensional histogram.

When estimating mutual information from continuous data using the simple binning,

as described above, each data point is assigned to one, and only one, bin. Due to even

small fluctuations arising from biological or measurement noise, data points near to

the border of a bin might be shifted to neighbouring bins. The arbitrarily chosen

borders of the bins can thereby strongly affect the resulting mutual information [55],

especially for datasets of moderate size.
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Size of data

When calculating mutual information according to the simple binning approach from

a finite dataset with N data points, the estimated value of the mutual information

is always larger than the ’true’ one [25, 65, 66, 67, 68]. For illustration, the mutual

information is estimated from a dataset of known distribution for which the ’true’

mutual information is known. In literature, this effect is referred to as finite size

effect.

Figure 2.2 (top) shows an example of ’measurements’ of the two variable x and y.

Both variables are artificially generated independent and equidistributed random

numbers and the ’true’ mutual information between them is zero. For numerical

estimation, data is divided into Mx = Mx = 10 bins and the mutual information

is calculated according to the simple binning approach using the indicator function

of Eq. (2.11). This ’experiment’ is repeated for 300 independent realisations of the

dataset and the distribution of the 300 outcomes are plotted as histogram. From

this it can be clearly observed that the estimated mutual information fluctuates

around a value larger than the ’true’ value of zero.

Kernel density estimation

Besides the commonly applied partitioning of data into discrete bins, more sophisti-

cated methods are available for estimating the mutual information in a continuous

form

M̂I(X,Y ) =
∫

x

∫

y
f̂(x, y) log

f̂(x, y)

f̂(x) f̂(y)
(2.13)

where X and Y are variables that have been jointly measured under u = 1 . . . N con-

ditions yielding the samples (x1, y1), (x2, y2), . . . , (xN , yN). Within the kernel density

estimation (KDE) approach [55], the histogram of the simple binning approach is

freed from a particular choice of the origin of the bins and their position. So called

kernel functionsK(x) are placed on each data point and the kernel density estimator
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Figure 2.2: Overestimation of mutual information. The mutual information

calculated from data is systematically overestimated. A dataset of N = 300 arti-

ficially generated, independent and equidistributed data points for two variables is

generated (top). The mutual information obtained from 300 independent realisa-

tions using Mx = My = 10 bins is calculated and plotted as histogram (bottom).
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f̂(x) is calculated by

f̂(x) =
1

Nhd

N
∑

i=1

K
(

x− xi
h

)

(2.14)

with d being the dimensionality. The parameter h is called window width or smooth-

ing parameter and estimation procedures for its optimal choice have been proposed

[69]

hoptimal ≈
(

4

d+ 2

)1/(d+4)

N−1/(d+4) (2.15)

One example among several suggested types of kernel functions K(x) [69] is a mul-

tivariate Gaussian function

K(x) =
1

(2π)d/2
exp

(

−
1

2
xTx

)

(2.16)

As illustrated in Figure 2.3, one may understand the kernel functions as little ’bumps’

placed at the positions of each observation.

The probability density of Eq. (2.14) can be estimated with standard numerical

integration methods and used for the calculation of the mutual information according

to Eq. (2.13).
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Figure 2.3: Kernel density estimator. A Gaussian kernel density estimator f̂(x)

can be heuristically understood as placing Gaussian ’bumps’ at the position of each

observation. The estimator according to Eq. (2.14) is then given by the sum of all

bumps.
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2.2 Fuzzy mutual information

In a different approach for the estimation of the probability density, we present

our extension to the classical binning strategy. Within this approach, data points

are allowed to be assigned to several bins simultaneously. For this, the indicator

function Θ(x) according to Eq. (2.11) is generalised to a set of polynomial B-spline

functions. The shape of the B-spline functions is determined by the spline order k

which thereby also determines the number of bins each data point is assigned to. A

spline order k = 1 corresponds to the simple binning as described in the previous

section: each data point is assigned to exactly one bin. For higher spline orders,

k ≥ 2, each data point is assigned to exactly k bins. The respective weights are

given by the values of the B-spline functions at that data point. Figure 2.4 depicts

examples for different spline orders.

2.2.1 B-spline functions

The first step in the definition of the B-spline functions is the definition of a knot

vector ti for bin i and one given spline order k = 1 . . .M − 1 [70]

ti :=















0 if i < k

i− k + 1 if k ≤ i ≤M − 1

M − 1− k + 2 if i > M − 1

(2.17)

where the spline order determines the degree and thereby the shape of the polynomial

functions. The domain of the B-spline functions lies in the interval z ∈ [0,M−k+1].

To cover the range of the variable x, the new indicator function based on the B-

spline functions needs to be linearly transformed to map the range of x. For an

example with M = 5 bins and spline order k = 3, the domain of the B-spline

function lies in the interval [0, 3]. To map this interval to the range of a variable

x ∈ [min(x),max(x)], the domain of the B-spline functions needs to be linearly

transformed to the range of x.
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Figure 2.4: B-spline functions. For the calculation of mutual information, the

continuous experimental data for the variable a needs to be binned. The indicator

function of Eq. (2.11) counts the number of data points within each bin (example

with M = 5 bins, top left). The generalised indicator function of Eq. (2.18) extends

the bins to polynomial B-spline functions. The spline order k determines the shape

of the B-spline functions. The bins now overlap in a way that each data point is

assigned to exactly k bins. The weight of each data point to each of the bins is

given by the intersection with the respective graphs of the B-spline functions at the

data point. By definition, all weights contributing to one data point sum up to

unity (example with M = 5 bins and spline order k = 2 . . . 4, top right, bottom left,

bottom right, respectively).
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The recursive definition of the B-spline functions reads [70]

Bi,1(z) :=







1 if ti ≤ z < ti+1

0 otherwise

Bi,k(z) := Bi,k−1(z)
z−ti

ti+k−1−ti
+

Bi+1,k−1(z)
ti+k−z

ti+k−ti+1

(2.18)

An important property of B-spline functions is the implicit standardisation of coef-

ficients: All weights belonging to one data point sum up to unity.

2.2.2 Algorithm

In the following, the calculation of the entropy using the B-spline approach is de-

scribed in detail. First, the marginal entropies for both variables have to be cal-

culated separately. Then, the joint entropy is calculated and from this the mutual

information.

Marginal entropy

In the histogram binning of the simple binning approach, each data point of a

variable x is assigned to exactly one bin by the indicator function of Eq. (2.11).

Within the B-spline approach, this indicator function is extended. The new indicator

function, which is given in Eq. (2.18), assigns each data point to more than one bin.

For a spline order of k, each point is assigned to exactly k bins. Thus, a spline order

k = 1 corresponds to the simple binning and the B-spline approach can be regarded

as extension to this simple binning.

The indicator function of the B-spline approach is determined by the spline order

k and the number of bins M . Its domain is also determined by these parameters

to [0,M − k + 1]. To enable the application of this function to all values of x with
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the domain [min(x),max(x)], the indicator function Bi,k(z) has to be modified into

B̃i,k(x) with

z = x−min(x)
Mx − k + 1

max(x)−min(x)
(2.19)

The new indicator function covers exactly the domain of x.

Now, the proportion of each data point xu to each of the bins ai can be determined

by B̃i,k(x). In a graphical interpretation, as shown in Figure 2.5 for exemplarily

chosen data points, each data point intersects with and thereby is assigned to ex-

actly k spline functions. All coefficients belonging to one data point are implicitly

normalised as a property the the underlying B-spline functions.

From this point on, only the above determined coefficients are used for the calcula-

tion of the probability p(ai). For each bin ai, a loop over all N data points averages

all coefficients belonging to ai

p(ai) =
1

N

N
∑

u=1

B̃i,k(xu) (2.20)

The marginal entropy H(x) for variable x is then calculated according to Eq. 2.1.

Joint entropy

For the calculation of the joint entropy, the weighting coefficients B̃i,k(xu) and

B̃i,k(yu) are determined for both variables x and y independently. The joint proba-

bilities p(ai, bj) are then calculated for each of the Mx ×My 2-dimensional bins

p(ai, bj) =
1

N

N
∑

u=1

B̃i,k(xu)× B̃j,k(yu) (2.21)

The joint entropy can then be calculated according to Eq. 2.2.

Finally, the mutual information MI(x, y) is calculated from the marginal entropies

and the joint entropy according to Eq. 2.7. This procedure is summarised in Fig-

ure 2.6.
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Figure 2.5: Binning based on B-spline functions. Extending the simple binning

approach, each data point is assigned to more than one bin depending on the spline

order k. For k = 3, each data point intersects with exactly three spline functions

and the proportion to each ’bin’ is represented by the intersection. One property of

B-spline functions is the implicit normalisation: all proportions for one data point

sum up to unity. For the two marginal data points (x = 0.0 and x = 1.0) just one

intersection is shown since the other coefficients overlap with the data points itself.
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Input

• Variables x and y with values xu and yu, u = 1 . . . N

• Bins ai, i = 1 . . .Mx and bj, j = 1 . . .My

• Spline order k

Output

• Mutual information between variable x and y

Algorithm

1. Calculation of marginal entropy for variable x

(a) Determine B̃i,k(x) = Bi,k(z) according to Eq. 2.19

(b) Determine Mx weighting coefficients for each xu from B̃i,k(xu) in O(MN)

(c) Sum over all xu and determine p(ai) for each bin ai according to Eq. 2.20

with complexity in O(MN)

(d) Determine entropy H(x) according to Eq. (2.1) in O(M) time

2. Calculation of joint entropy of two variables x and y

(a) Apply steps 1 (a) and (b) to both variables x and y, independently

(b) Calculate joint probabilities p(ai, bj) for all Mx ×My bins according to

Eq. (2.21) in O(M 2N) time

(c) Calculate the joint entropy H(x, y) according to Eq. (2.2) in O(M 2) time

3. Calculate the mutual information MI(x, y) according to Eq. (2.7)

Figure 2.6: Calculation of mutual information with B-spline functions —

Algorithm and complexity
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2.2.3 Exemplary calculation of mutual information

Based on a simple example of two artificially generated variables (see Figure 2.7),

the mutual information is calculated from the simple binning approach, as well as

from the B-spline approach. The same number of Mx = My = 3 bins is used for

both algorithms and the spline order was set to k = 2.

Simple binning

The histograms of each of the two variables are composed of three bins. Due to

the symmetry of data, all bins are equally populated, p(a1) = p(a2) = p(a3) = 2
6

for variable x and p(b1) = p(b2) = p(b3) = 2
6
for variable y. For the marginal

entropies follows H(x) = H(y) = −3× 2
6
log 2

6
= log2 3 ≈ 1.58. The joint histogram

contains just three populated bins with two values in each bin p(a1, b3) = p(a2, b2) =

p(a3, b1) =
2
6
. For the joint entropy and the mutual information follows H(x, y) =

log2 3 and MI(x, y) = log2 3.

B-spline approach

Following the work-flow of the previous subsection, the modified indicator function

B̃i,k(x) is determined according to Eq. (2.19) to B̃i,k(x) = Bi,k(2x) (rule 1(a)). For

each value xu of variable x, three weighting coefficients are determined (rule 1(b)).

For each of the three bins, probabilities are determined according to Eq. (2.21)(rule 1(c)).

Weighting coefficients and probability values for variable x are summarised in Ta-

ble 2.1. The analogous procedure is applied to variable y and marginal entropies

are calculated H(x) = H(y) = log2(10) − 0.6 log2(3) − 0.4 log2(4) ≈ 1.57. Both,

H(A) and H(B), are slightly smaller than the entropies calculated from the simple

binning.

The joint probabilities are calculated to be p(a1, b1) = p(a3, b3) = 0, p(a1, b2) =

p(a2, b1) = p(a2, b3) = p(a3, b2) = 0.56/6, p(a1, b3) = p(a3, b1) = 1.24/6, p(a2, b2) =

1.28/6 (rule 2 (b)) resulting in H(x, y) = 2.69 and MI(x, y) = 0.45.
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Figure 2.7: Example: estimating mutual information from data. For the

calculation of the mutual information, the two artificially generated continuous vari-

ables x and y have to be binned. The simple binning approach leads to different

joint entropies H(x, y) and thereby to different values for the mutual information

than the estimation with B-spline functions.
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Bi=1,k=2(xu) Bi=2,k=2(xu) Bi=3,k=2(xu)

x1 1.0 0.0 0.0

x2 0.6 0.4 0.0

x3 0.2 0.8 0.0

x4 0.0 0.8 0.2

x5 0.0 0.4 0.6

x6 0.0 0.0 1.0

p(ai) 1.8/6 2.4/6 1.8/6

Table 2.1: For the calculation of probabilities p(ai) according to the B-spline ap-

proach, Mx weighting coefficients are determined for each value xu of variable x.

Compared to the simple binning, the joint entropy calculated from B-spline functions

is significantly increased resulting in a decreased mutual information.

2.2.4 Improvements

In this section, some of the improvements of the estimation of mutual information

using B-spline functions are illustrated. Properties arising from this approach are

compared to the properties arising from the standard binning approach and from

the application of kernel density estimators. Examples are chosen from variables

of known distributions because the true mutual information for these examples is

known and can be compared to the numerically estimated results. Additionally,

we define a significance value to determine the ability of the different estimation

procedures to differentiate between data drawn from a given distribution and the

null hypothesis of statistical independence.

Sample size

As exemplarily shown in section 2.1.5 and discussed in literature [65, 66, 67, 68, 25],

the mutual information is systematically overestimated for a finite size of N data
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points. Moreover, the deviation of the true mutual information MI true and the

observed mutual information MIobserved scales linearly with the inverse size of the

dataset for the estimation from bins

〈

MIobserved
〉

≈MItrue +
(M − 1)2

2

1

N
(2.22)

The evaluation of the influence of the size of data on the mutual information is

carried out on the basis of artificial data. Datasets of artificially generated equidis-

tributed random numbers of different sizes are generated. The mutual information

based on the simple binning, on the ’fuzzy’ approach, as well as on kernel density

estimators is calculated for all these datasets. From an ensemble of 600 gener-

ated datasets, the average mutual information is plotted over the inverse size of the

datasets (1/N) (Figure 2.8, top). Additionally, the standard deviations are plotted

(Figure 2.8, bottom).

It can be observed that the mutual information estimated from the simple binning

(k = 1) shows a linear scaling in accordance with Eq. (2.22). With increasing size

of the datasets (1/N → 0) the mutual information approaches the true value of zero

for random data. For the extension to B-spline functions (example with k = 3), the

linear scaling is preserved and the mutual information also approaches zero for large

datasets. It has to be noted that the slope is significantly decreased in contrast to

the simple binning. The KDE approach, however, shows an asymptotic run with a

linear tail for large datasets with intermediate values in-between the ones for k = 1

and k = 3.

More importantly, a similar result holds for the standard deviation of the mutual

information. In accordance with literature [66, 71], the standard deviation for the

simple binning (k = 1) scales linearly with 1/N . This scaling still holds for the

B-spline approach (k = 3) but the slope is decreased significantly. The standard

deviations for KDE, again, lie in-between k = 1 and k = 3.
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Figure 2.8: Sample size. The mutual information is calculated for artificially

generated equidistributed random numbers for which the true mutual information

is known to be zero. The average over an ensemble of 600 trials is shown as a

function of the inverse size of the dataset 1/N (top). The standard deviation of

the 600 trials for each dataset size is plotted over 1/N (bottom). The numerical

estimation was done for two spline orders, k = 1 and k = 3 using M = 6, bins and

for the kernel density estimation approach. The lines show a least squares fit fixed

in the origin.
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Spline order and number of bins

In the following, the influence of the spline order k and the number of bins M on

the estimation of the mutual information is characterised. Data for this evaluation

will be drawn from the distribution shown in Figure 2.1.

The interpretation of the results obtained from the subsequent analysis bases on the

testing whether the calculated results are consistent with a previously chosen null

hypothesis. Following an intuitive approach, the null hypothesis assumes statistical

independence of variables. The mutual information calculated from experimental

data is therefore tested against a surrogate dataset, which is consistent with the

chosen null hypothesis of statistical independence. One commonly used way to

generate such a dataset (see [25] for details and other methods) is by random per-

mutations of the original dataset. A significance S can then be defined from the

mutual information of the original dataset MIdata, the average value obtained from

surrogate data 〈MI surr〉, and its standard deviation σsurr

S :=
MIdata − 〈MIsurr〉

σsurr
(2.23)

Depending on the distribution of the calculated mutual information and the signif-

icance S, the null hypothesis can be rejected to a certain level α. For the ideal case

of Gaussian distributed mutual information values, S ≥ 2.6 can be treated as sig-

nificant at a level of 99%. For distributions diverging from a Gaussian distribution,

a more general reasoning was suggested [72, 73].

The influence of the spline order k on the estimated mutual information is evalu-

ated on a dataset drawn from the distribution shown in Figure 2.1. In contrast to

the previously chosen datasets drawn from equidistributed random numbers, this

dataset is constructed to represent ’real’ measurements on variables, e.g. on genes

or on metabolites. For a dataset constructed in such a way consisting of 300 data

points, the mutual information is calculated for a range of spline orders k = 1 . . . 5

(Figure 2.9). The number of bins for the estimation was chosen to M = 6. From

300 shuffled realisations of the dataset, the mean and maximum mutual information

are shown with standard deviation as error-bars.
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Figure 2.9: Spline order. For a dataset of 300 data points representing a ’real’

measurement, drawn from the distribution shown in Figure 2.1 (top), the mutual

information is calculated (top, crosses). The number of bins is fixed to M = 6. For

300 shuffled realisations of this dataset, the average mutual information (top, circles)

together with standard deviations as error-bars is shown. The largest value found

within the ensemble of shuffled data is drawn as dotted line (top). The significance

according to Eq. (2.23) is calculated (bottom).
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As can be observed from the difference of the largest values obtained from shuffled

data (Figure 2.9, top, dotted line) to the values obtained from the ’real’ measure-

ments (Figure 2.9, top, crosses), the null hypothesis can be rejected for all shown

spline orders. This result runs in accordance with the example shown in Figure 2.1.

To estimate the strength of the rejection, the significance according to Eq. (2.23) is

calculated (Figure 2.9, bottom). It can be seen that the largest change in significance

occurs in the transition from k = 1 (simple boxes) to k = 2 with an increase by

roughly two-fold. The utilisation of more sophisticated functions (k ≥ 3) does not

further improve the significance. In the context of kernel density estimators, similar

findings have been reported [69]. This finding might arise from the distribution of

surrogate data: As can be seen in Figure 2.9 (top, circles), the standard deviation of

surrogate data σsurr is decreased for k ≥ 2 compared to k = 1 leading to an increase

of significance according to Eq. (2.23).

Based on the same dataset, the dependency of the mutual information on the number

of bins M is evaluated. For the exemplarily chosen spline orders k = 1 and k = 3

the mutual information is calculated from 300 data points (Figure 2.10) drawn from

the distribution shown in Figure 2.1. Again, from 300 shuffled realisations the mean

and maximum mutual information are shown with standard deviation as error-bars.

The mutual information calculated from data, as well as from surrogate data, shows

a robust run without strong fluctuations. From this it can be concluded that the

choice of the number of bins does not affect the resulting mutual information notably

as long as it is chosen to be within a reasonable range. Even though the absolute

numbers are effected, especially the relation to surrogate data is of importance.

For this, the significances for both spline orders are calculated (Figure 2.11) ac-

cording to Eq. (2.23) and compared to the significances obtained from the KDE

approach. It can be observed that the significances of the mutual information calcu-

lated with B-spline functions increased roughly by two-fold compared to the simple

binning. The significances obtained from KDE are not depending on the number of

bins M and were determined to be similar to the significances estimated from the
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Figure 2.10: Number of bins. Drawn from the distribution shown in Figure 2.1,

the mutual information is calculated from 300 data points for two spline orders

k = 1 (top) and k = 3 (bottom) as a function of the number of bins M (crosses).

Calculated from 300 surrogates the mean (circles), standard deviations (error-bars),

and largest values (dotted line) are shown.
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B-spline approach. The numerically expensive integration of KDE, however, limits

the size of utilisable datasets. The KDE run time requirements were O(104) times

higher than the ones from the B-spline approach. Strategies to simplify the inte-

gration step were proposed [25] but have to be used with caution since they assume

particular properties of the distribution of experimental data that are in general not

fulfilled.

After this introduction into the mutual information and our suggestions for an im-

proved estimation, we turn towards the development of software tools.
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Figure 2.11: Significance. The significance S is shown as a function of the number

of binsM for the two examples of Figure 2.10. For kernel density estimators (KDE),

the significance is not depending on M and was estimated to S = 92.
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2.3 Software development

Within the scope of the work presented here, two software packages have been

developed. With the first package, the mutual information can be calculated for

continuous data. It includes an implementation of the extension dicussed in this

thesis. The second software is a web-based service for the analysis of data obtained

from different measurement technologies.

2.3.1 Calculating the mutual information — mis calc

The algorithm for the numerical estimation of the mutual information from B-spline

functions is implemented into the software package mis calc under the programming

language C++.

mis calc runs on the command line. The data has to be provided in the form of

a data matrix. Each row, containing the data for one variable, is regarded as a

vector of data and pairwise comparisons of all vectors are carried out. The mutual

information for each comparison is calculated.

Besides the mandatory arguments like the bin number and the spline order, several

optional arguments can be passed on the command line. The program supports

different output formats, additional calculation of the Pearson correlation coefficient,

the prior shuffling of data for significance analyses, as well as a multi-processor

threading option. The progress of the calculation optionally can be visualised with a

graphical animation which is based on the graphical library qt1. The implementation

was carried out in close collaboration with Sebastian Kloska.

In the default settings, first the marginal entropies of all vectors are calculated and

then used for the calculation of a particular pair of vectors. When the dataset

contains undefined values, however, the joint entropy for two vectors might base on

different number of entries. The marginal entropies for such vectors also need to be

1http://www.trolltech.com/qt/
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recalculated so that the marginal, as well as the joint entropy are estimated from

the same values. For such cases, mis calc offers an on-the-fly option. This option

has to be used with caution, since the mutual information depends on the size of the

sample it is calculated from (see discussion about finite size effect below). Mutual

information values calculated from different numbers of data points are no longer

comparable unless a correction is appended.

The package was developed with the GNU C++ compiler2 and the recent version,

mis calc v6.3, was compiled with gcc v3.3.2 under the operating system Linux.

A natural approach for the calculation of the mutual information is the implemen-

tation of the measurements in the form of a two dimensional matrix (see Table 1.1).

The object representation of the matrix should allow for the manipulation of data

and should handle operations on the whole set or on subsets in a way that facilitates

the solution of the given problem. Furthermore, we decided to design the system in

a way that enables different threads to work on the solution in parallel. Since the

calculation of mutual information for a single row is numerically independent from

the calculation of all other pairwise comparisons of rows, mis calc benefits very much

from a multiprocessor system when designed in this fashion. The recent version runs

in multiple instances. These instances might be distributed over several processors

of one computer or over different computers where each instance communicates via

the CORBA3 interface with a master instance that tracks progress and status of the

slave programs.

Details about the implementation of mis calc are given in the appendix.

2.3.2 MetaGeneAlyse

The analysis of data demands software tools that comprise the algorithms and vi-

sualisation techniques required for the specific type of data under consideration.

For this, we developed the software package MetaGeneAlyse [74] for the analysis of

2http://www.gnu.org/ software/gcc
3http://www.corba.org
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data from gene expression measurements, metabolite measurements, and datasets

merged from both types of data.

Overview

MetaGeneAlyse is a web-based service which allows for the analysis of integrated

data containing gene-expression data and metabolite data. At the web front-end4

(Figure 2.12, center), a tabular-separated dataset can be uploaded (Figure 2.12, top

left). As file format we chose the general ASCII text table format containing genes

and/or metabolites in rows and experiments in columns. As normalisation is an

important preprocessing step towards the analysis of integrated data, several nor-

malisation algorithms were implemented (Figure 2.12, top right), like normalisation

to the maximum, mean, median, variance, standard deviation, vector norm, root

mean square, z-score, and others. Analysing directly the normalised dataset can be

done with k-means clustering and principal component analysis (Figure 2.12, bottom

right). Different types of hierarchical clustering, which are based on the prior cal-

culation of a distance matrix, are also implemented (Figure 2.12, bottom left). The

underlying distance matrix is then calculated as first step using a distance measure

(e.g. Euclidean or Manhattan distance, Pearsons correlation coefficient or mutual

information). The distance matrices can also be downloaded to be post-processed

by the user. Different file formats for the download are available to directly import

the distance matrix into graph visualisation tools like Pajek5. Analyses on shuffled

datasets are useful for the calculation of significance levels, therefore our service

allows the shuffling of uploaded datasets. Documentation is available in HTML and

PDF format and can be downloaded from the website.

Concept of data access

A common way of interaction with web-based services is via the authorisation of

previously registered users. After a personal log on, each user gets access to her or

4http://metagenealyse.mpimp-golm.mpg.de
5http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Figure 2.12: MetaGeneAlyse Overview. In the web-interface of MetaGeneAlyse

(center), integrated datasets containing gene-expression and/or metabolite data can

be uploaded (top left) and normalised (top right). Among various analysis methods,

principal component analysis (bottom right) and hierarchical clustering (bottom

left) are implemented.
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his data. This approach, however, acts discouraging upon many users when they

get in contacts with the tool. It also requires the implementation and support of a

user administration. Therefore, MetaGeneAlyse realises a different concept: An 8

digit long random ID number is assigned to each intermediate result of the analysis

procedure. At the dataset upload, a valid email address has to be provided for

the identification of the owner the dataset (see Figure 2.12, top left). This email

address is inherited by all subsequent analysis results. Thus, the user can access all

intermediate result of her or his analysis and re-check or continue a previous analysis

in a different way. With knowledge about the ID and the email address of the owner

of a dataset, it also can be deleted.
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2.4 Application on data

The evaluation of gene expression data [26] and metabolite data [27, 28, 29] is often

carried out on the basis of clustering algorithms. In the context of gene expression

data, mutual information has shown to reveal biologically relevant clusters of genes

[24, 77].

In the first example, the global question is asked whether mutual information is

able to detect non-linear correlations in large scale gene-expression datasets. After

this, a clustering analysis is applied to a large scale gene expression dataset and

the resulting clusters are evaluated by annotations of genes. Finally, an integrated

dataset containing gene expression data and metabolite data for sulfur depletion

time series experiments on Arabidopsis thaliana is analysed.

2.4.1 Global comparison of MI to Pearson correlation

Linear measures, such as the Pearson correlation coefficient, are among the most

frequently used similarity measures even in recent publications [78]. In this example,

non of the above mentioned analyses are repeated or deepened, but it is determined

whether any correlation detected using mutual information would be missed by

solely applying the Pearson correlation coefficient.

In the ideal case of Gaussian distributed data, the relationship between the mutual

information and the Pearson correlation for genes X and Y reads [79]

R(X,Y ) =
√

1− exp(−2MI(X,Y )) (2.24)

For this, the mutual information and the Pearson correlation are calculated for two

large-scale gene expression datasets. From the pairwise comparison of all genes

within a dataset, the tuple (MI(X,Y ), R(X,Y )) is plotted (Figure 2.13) together

with the prediction of Eq. (2.24).

The first dataset contains cDNA measurements for Saccharomyces cerevisiae for up

to 300 experiments [80]. To avoid numerical effects arising from different numbers
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Figure 2.13: Comparison of mutual information and Pearson correlation

coefficient. The Pearson correlation coefficient and the mutual information for all

pairwise comparisons of genes for two large-scale gene expression datasets is shown

together with the expected mutual information calculated from Eq. (2.24). For the

first dataset (top) genes containing undefined values were omitted resulting in 5345

genes measured under 300 experimental conditions [80]. For the second dataset

(bottom) containing 22608 genes measured under 102 experimental conditions [78],

a representative fraction is shown.
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of defined expression values (missing data points) for each gene, exclusively genes

that are fully defined for all experimental conditions were utilised resulting in 5345

genes6. Details for this dataset are given in the appendix.

First, some well-known facts can be confirmed: the Pearson correlation distinguishes

between positive and negative correlation, whereas the mutual information gives ex-

clusively positive correlations. Positive Pearson correlations are more frequent than

negative ones. Further, the relation of the Pearson correlation to the mutual in-

formation follows in principle the theoretical prediction but with large fluctuations.

Many tuples showing high Pearson correlation and low mutual information can be

detected. These gene-gene pairs, with high linear correlation but a low statistical

independence, arise from outlying expression values, as exemplarily shown for a

gene-gene comparison in Figure 2.14, A. In contrary, tuples with low Pearson cor-

relation but high mutual information, thus indicating non-linear correlations, are

not observed. The only remarkable tuple, marked with an arrow in Figure 2.13 and

depicted in Figure 2.14, B, arises also from outlying values.

The second dataset contains cDNA measurements for 102 experiments on 22608

genes derived from 20 different human tissues [78]. In contrast to the first dataset,

tuples with low Pearson correlation but high mutual information are indeed detected.

For two exemplary chosen tuples, as depicted in Figure 2.14 C and D, clusters of

data points (each data point refers to one experimental condition) can be clearly

detected by eye. Such type of correlations are missed by analyses based exclusively

on linear measures, such as the the analysis done in the original publication of this

dataset.

In summary, the analysis confirms for the first dataset that the Pearson correla-

tion cofficient does not miss any non-linear correlations. As a side effect, gene-gene

pairs containing outlying values were detected. For the second dataset, however,

a substantial amount of non-linear correlations was detected. Gene-gene pairs ex-

emplarily chosen from this fraction show a clustering of data points (experiments).

6The datasets actually contains open reading frames (ORF). The difference between ORFs and

genes in the case of yeast is that the genes additionally contain the promoter and terminator

sequences. The term genes is used synonymously to the term ORF throughout this example
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Figure 2.14: Remarkable gene-gene comparisons. Examples of gene-gene plots

for two genes X and Y are shown for characteristic tuples (MI(X,Y ), R(X,Y ))

detected in Figure 2.13. For the first gene expression dataset under consideration

[80], no non-linear correlations are detected. Moreover, tuples with high Pearson

correlation and low mutual information, examples A and B, resulting from outlying

values are detected. For the second dataset [78], however, tuples with low Pearson

correlation and high mutual information are observed, see examples C and D. Such

non-linear correlations are missed by solely using linear correlation measures.
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Even though such patterns of expression values can be easily detected by eye, the

enormous number of gene-gene comparisons (there are around 255 million pairwise

comparisons for the second dataset) requires computational methods for the detec-

tion of such patterns.
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2.4.2 Application of MI on a gene expression dataset

The clustering of co-expressed genes [26] is a frequently applied method for the

evaluation of regulatory networks. Thereby, the choice of the underlying similarity

measure is as crucial as the choice of the clustering method itself [50]. However, the

appropriateness of similarity measures have not been systematically explored [81]

and often they are used on an ad-hoc basis without justification.

Now, the global comparison of mutual information to a linear measure for the two

gene expression datasets in section 2.4.1 is extended. Thereby, mutual information

is used as a measure of similarity for the hierarchical clustering of expression data for

one of the already introduced datasets [80]. Details for this dataset are given in the

appendix. The resulting clusters of genes are evaluated on the basis of annotations

of the Munich Information Center for Protein Sequences (MIPS)7.

Even though it was shown in the last section (2.4.1) that this dataset does not

contain non-linear correlations, the utilisation of mutual information as similar-

ity measure might reveal additional functional relationships: Similarity measures

evaluate and thereby rank the correlations. The Pearson correlation coefficient ex-

clusively detects linear correlations and thereby tends to underestimate correlations

aside linear ones.

To this end, a similarity matrix containing all pairwise comparisons of genes based

on mutual information is calculated. We choose the number of bins to M = 8. This

seems reasonable for the dataset under analysis containing 300 measurements for

each gene (see also the discussion about a reasonable bin number in section 3.2).

The spline order is set to k = 2. Following a simple clustering approach, all gene-

gene associations below a certain threshold of similarity are removed. This procedure

corresponds to the single linkage clustering. It chains two clusters together if they

are connected with just one single association. Thereby, it tends to build few large

clusters. On the other hand it is able to detect branched or bended structures.

The choice of an appropriate threshold has a large influence on the resulting clusters,

7http://mips.gsf.de/
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size of clusters 181 84 32 30 12 10 8 7 6 4 3 2

frequency of clusters 1 1 1 1 1 1 1 2 3 2 8 28

Table 2.2: Distribution of cluster sizes. Application of single linkage clustering

to a large-scale gene expression dataset [80] results in clusters of different sizes for

the threshold shown in Figure 2.15.

as shown in Figure 2.15. For small thresholds, many associations are left and all

genes fall into one cluster. With increasing threshold, more separated clusters are

build. From a certain threshold on, the number of clusters again decreases because

genes are left without any association. These genes are not regarded as clusters.

The number of genes, as well as the number of associations used for the clustering

continuously decrease with increasing thresholds. The connectivity, which is defined

as the number of actual links compared the the number of potential links, increases

with increasing the threshold.

For the subsequent analysis, the threshold leading to the maximum number of 50

clusters was chosen. The threshold is marked with a dotted line in Figure 2.15. Even

though this choice is arbitrary, it is supported by the assumption that the biological

interpretation on a small number of large clusters or on a large number of cluster

containing just a few genes each might not be reasonable. The distribution of the

clusters sizes is typical for single linkage clustering (see Table 2.2).

The Munich Information Center for Protein Sequences (MIPS) provided annotations

for the whole genome of Saccharomyces cerevisiae. They are hierarchically organised

in 30 main classes with different levels of accuracy (Figure 2.16)8. Each gene is

annotated with one or several class identifiers and additionally with a free text

description (Figure 2.17).

The generated clusters were evaluated on the basis of these biological annotations:

8MIPS does no longer provide this information as table but only in databases that are

accessible at http://mips.gsf.de/genre/proj/yeast/index.jsp. The original tables can still be

accessed via http://rsat.ulb.ac.be/rsat/data/genomes/Saccharomyces cerevisiae/catalogs/ at the

files mips orf class description.tab and mips functional catalog scheme.tab
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Figure 2.15: Characterisation of clusters. A large scale gene expression dataset

[80] was hierarchically clustered based on mutual information as similarity metric.

The clustering result depends on a threshold that is chosen for the single linkage

clustering: the number of obtained clusters (left, top), the number of used genes

(right, top), the number of associations used for the clustering (left, bottom), and

the connectivity (right, bottom) are shown subject to the threshold.
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01 METABOLISM

02 ENERGY

03 CELL CYCLE AND DNA PROCESSING

04 TRANSCRIPTION

05 PROTEIN SYNTHESIS

...

65 STORAGE PROTEIN

67 TRANSPORT FACILITATION

96 OUT OF USE (Historical categories, please update annotation

for all ORFs in this categorie)

98 CLASSIFICATION NOT YET CLEAR-CUT

99 UNCLASSIFIED PROTEINS

--------------------------------------------------------------

1 METABOLISM

01.01 amino acid metabolism

01.01.01 amino acid biosynthesis

01.01.01.01 assimilation of ammonia,

biosynthesis of the glutamate group

01.01.01.01.01 assimilation of ammonia

01.01.01.01.02 biosynthesis of the glutamate group

...

02 ENERGY

02.01 glycolysis and gluconeogenesis

02.01.01 glycolysis methylglyoxal bypass

02.01.03 regulation of glycolysis and gluconeogenesis

02.05 Entner-Doudoroff pathway

...

03 CELL CYCLE AND DNA PROCESSING

03.01 DNA processing

03.01.01 cellular DNA uptake

03.01.01.01 bacterial competence

...

Figure 2.16: Annotation — listing of main classes. The Munich Information

Center for Protein Sequences (MIPS) provides annotations for the whole genome of

Saccharomyces cerevisiae. The annotations are hierarchically organised in 30 main

classes (cut-out shown in top) with different levels of accuracy (bottom).
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...

YAL042w 08.07 S.cerevisiae;

ERV46 - protein involved in vesicular transport between the

endoplasmic reticulum and Golgi apparatus

YAL041w 14.04.03.01;14.04.03.03;03.03.01;62.02.05;13.11.03.07;

62.02.05;14.01.03;40.03 S.cerevisiae;

CDC24 - GTP/GDP exchange factor for Cdc

YAL040c 14.01;14.04.03.01;03.01.03;03.03.01;40.03 S.cerevisiae;

CLN3 - cyclin, G1/S-specific

YAL039c 01.07.04;06.07;40.16 S.cerevisiae;

CYC3 - holocytochrome-c synthase (cytochrome c heme lyase)

YAL038w 01.05.01;02.01;40.03 S.cerevisiae;

CDC19 - pyruvate kinase

YAL037c-a 99 S.cerevisiae;

putative ORF - identified by SAGE

YAL037w 99 S.cerevisiae;

FUN11 - strong similarity to GTP-binding proteins

YAL036c 99 S.cerevisiae;

FUN11 - strong similarity to GTP-binding proteins

...

Figure 2.17: Annotation — listing of genes. MIPS provides annotations ac-

cording to functional classes and additionally in free format for the whole genome

of Saccharomyces cerevisiae. A gene can be annotated to several classes.
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cluster 1

class genes total

1 5 84

3 4 84

4 24 84

5 3 84

6 3 84

8 1 84

10 1 84

11 2 84

14 2 84

30 1 84

40 22 84

98 3 84

99 41 84

cluster 2

class genes total

2 1 32

5 16 32

6 3 32

13 1 32

40 18 32

98 1 32

99 12 32

cluster 3

class genes total

5 28 30

6 2 30

14 1 30

40 28 30

99 1 30

Table 2.3: Evaluation of clustering results. The result of a clustering is evalu-

ated on the basis of biological annotations which are organised in annotation classes.

the frequency of assignments of annotation classes to clusters were determined. For

three of the largest clusters, containing 84, 31, and 29 genes, a detailed analysis

was performed. The number of genes falling into each main class, as shown in

Figure 2.16, are listed for each of the three clusters in Table 2.3.

For the first cluster, nearly half of the genes (41 out of 84) have not yet been

classified (class 99). Within the next two most populated classes, the class TRAN-

SCRIPTION (04) is mainly represented by the subclass RNA transcription (04.01)

with 18 of 24 genes (data not shown). The class SUB-CELLULAR LOCALISATION

(40) is mainly represented by the subclass nucleus (40.10, data not shown) with 18

of 23 genes with an overlap to the RNA transcription subclass of 15 genes. With-

out consideration of the unclassified genes, the first cluster is mainly represented by

genes participating in the RNA transcription in the nucleus.
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YGL069c 99 questionable ORF

YPR099c 99 questionable ORF

YMR158w-b 99 questionable ORF

YKL169c 99 questionable ORF

YJL104w 99 weak similarity to C.elegans hypothetical protein F45G2.c

YPR100w 99 weak similarity to C.elegans hypothetical protein CEC25A1

YJR101w 99 RSM54 - weak similarity to superoxide dismutases

YKL195w 99 similarity to rabbit histidine-rich calcium-binding protein

YIL093c 99 RSM53 - weak similarity to S.pombe hypothetical protein SPBC16A3

YMR158w 99 weak similarity to E.coli ribosomal S8 protein

YGR021w 99 similarity to M.leprae yfcA protein

YHR116w 99 weak similarity to TRCDSEMBLNEW:AE003592 6 CG4186 D. melanogaster

Table 2.4: Assigning functions to unclassified genes. Within the second cluster

containing 32 genes, 12 gene are annotated as unclassified. It is verified for these

genes if their sequences overlap with already annotated genes of if other organisms

contain similar sequences with annotations that match with annotations already

found in this cluster.

The second cluster mainly contains genes annotated to PROTEIN SYNTHESIS -

ribosome biogenesis (05.01) for 16 genes and SUB-CELLULAR LOCALISATION

- mitochondrion (40.16) for 16 of a total of 18 genes. Thus, this cluster is mainly

containing genes annotated as ribosomal biogenesis in the mitochondrion.

For the 12 unclassified genes in this cluster it was verified by their position in the

genome whether they correspond to other already annotated genes (see Table 2.4).

Four of the questionable genes (YGL069c, YPR099c, YMR158w-b, YKL169c) showed

to strongly overlap with genes that already were part of the same cluster (YGL068w,

YPR100w, YMR159c, YKL170w, respectively). Based on the protein sequences of

the remaining 8 genes, BLASTP9 searches [82] were performed. They aimed at find-

ing similar genes in other species that share the same annotations as the genes al-

ready participating in this cluster. We accepted matches with an e-value below 10−4

as significant. For 6 of these 8 genes (YJL104w, YPR100w, YJR101w, YKL195w,

YIL093c, YMR158w), the top scoring BLASTP results showed genes with free text

annotations containing the keywords mitochondria or ribosome (one example of the

BLASTP search for gene YMR158w is shown in table 2.5). For the remaining two

genes, there was no BLASTP hit indicating ribosomal annotations found.

9http://www.ncbi.nlm.nih.gov/BLAST/
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name description raw score evalue

gi-6323808-ref-NP 013879.1 Mitochondrial Ribosome Protein,... 306 8e-83

gi-19075281-ref-NP 587781.1 hypothetical protein [Schizosa... 118 3e-26

gi-32419391-ref-XP 330139.1 hypothetical protein [Neurospo... 97 8e-20

gi-22297638-ref-NP 680885.1 30S ribosomal protein S8 [Ther... 52 3e-06

gi-3122821-sp-O24702-RS8 SYNP6 30S ribosomal protein S8 gi... 50 1e-05

gi-32423687-gb-AAP81230.1 ribosomal protein S8 [Candidatus... 50 2e-05

gi-34764952-ref-ZP 00145288.1 SSU ribosomal protein S8P [F... 50 2e-05

gi-15599445-ref-NP 252939.1 30S ribosomal protein S8 [Pseu... 49 2e-05

gi-17231694-ref-NP 488242.1 30S ribosomal protein S8 [Nost... 48 4e-05

gi-19704951-ref-NP 602446.1 SSU ribosomal protein S8P [Fus... 48 5e-05

gi-16329928-ref-NP 440656.1 30S ribosomal protein S8 [Syne... 48 6e-05

gi-11467730-ref-NP 050782.1 ribosomal protein S8 [Guillard... 47 1e-04

gi-33152940-ref-NP 874293.1 30S ribosomal protein S8 [Haem... 47 1e-04

gi-11465767-ref-NP 053911.1 ribosomal protein S8 [Porphyra... 46 2e-04

gi-30352068-ref-NP 848095.1 ribosomal protein S8 [Adiantum... 45 3e-04

gi-23104453-ref-ZP 00090917.1 COG0096: Ribosomal protein S... 45 3e-04

gi-16125511-ref-NP 420075.1 ribosomal protein S8 [Caulobac... 45 3e-04

gi-23468111-ref-ZP 00123672.1 COG0096: Ribosomal protein S... 45 5e-04

gi-1173279-sp-P12879 RS8 BACSU 30S ribosomal protein S8 (BS... 45 5e-04

gi-32030989-ref-ZP 00133685.1 COG0096: Ribosomal protein S... 45 5e-04

gi-28202208-ref-NP 777449.1 ribosomal protein S8 [Anthocer... 45 5e-04

gi-32034703-ref-ZP 00134841.1 COG0096: Ribosomal protein S... 45 6e-04

gi-15603266-ref-NP 246340.1 RpS8 [Pasteurella multocida] ... 44 8e-04

Table 2.5: Example of BLASTP result. BLASTP searches were performed for

genes that group together with genes annotated my MIPS as ribosomal proteins in

the mitochondrion. For these unclassified genes, it was intended to find genes in

other species with similar annotations.
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The third cluster contains 30 genes of which 28 were annotated as PROTEIN SYN-

THESIS - ribosome biogenesis (05.01) and SUB-CELLULAR LOCALISATION -

cytoplasm (40.03). One of the 2 unclassified genes (YGL102c) is overlapping with

another gene (YGL103w) which is annotated to (05.01) and (40.03). Thus, genes

in this cluster are nearly exclusively annotated as ribosomal biogenesis in the

cytoplasm.

It can be summarised that the hierarchical clustering of a large-scale gene expression

dataset based on the mutual information as similarity measure leads to a meaning-

ful grouping of genes according to their biological annotation. From the whole

dataset containing 5345 genes, three subsets of genes were exemplarily identified

(Figure 2.18). These subsets refer to genes taking part in the

• RNA transcription in the nucleus,

• protein synthesis in the mitochondrion, and

• protein synthesis in the cytoplasm.

The clustering method was exemplarily chosen without comprehensive evaluation.

A different choice of this parameter will result in different clusters and thereby will

reveal different aspects of the dataset.
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RNA transcription

nucleus

protein synthesis

cytoplasm

protein synthesis

mitochondrion

Figure 2.18: Identification of clusters. Hierarchical clustering based on mu-

tual information as similarity measure is applied to a large-scale gene expression

dataset [80]. Gene clusters are build for a set of exemplarily chosen parameters.

The clusters can be characterised according the annotations of genes.
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2.4.3 Analysis of informational fluxes in an integrative gene-

metabolite network of sulfur stress response

Living organisms react to their changing environment and constitute complex sys-

tems of multiple informational fluxes interconnected in dense networks. Revealing

such networks gives insight into the regulatory context of a biosystem and enables

the definition of global models of biosystem functionality.

The regulations within a biosystem affect various levels, starting from the expression

of genes to the production of proteins and metabolites. Towards the comprehensive

description of the informational fluxes in a biosystem, the reconstruction of the un-

derlying network needs to be based on data from different experimental techniques.

For this, we generate a gene-metabolite network of correlations reconstructed from

an integrated dataset containing gene expression data for 6454 genes and metabo-

lite data for 81 metabolites measured under the same experimental conditions [83].

Arabidopsis thaliana plants were grown under sulfur depletion conditions (see ap-

pendix) with the aim to unravel the informational flux response that is triggered by

the depletion of sulfur as a major nutrient.

We are interested in the response of genes and metabolites to the sulfur stress con-

ditions applied. Therefore we reduce in a first step the number of genes to those

genes that show a high Pearson correlation to sulfur and sulfur-responding metabo-

lites. Those metabolites are defined as sulfur-responding, which show significantly

altered relative concentration levels in sulfur starved plants. Besides sulfur itself,

these are glutathione, anthocyanins, allantoin, o-acetylserine, putrescine, raffinose,

serine, shikimic acid, tryptophan, and uric acid. The comparison of these metabo-

lites to all genes was repeated with randomised gene expression data to determine

a threshold for significant metabolite-gene correlations. Only genes showing sig-

nificant correlations to at least one of the sulfur-responding metabolites were used

for further network reconstruction. The procedure is exemplarily shown for the

sulfur-responding metabolite serine in Figure 2.19.

Based on this reduced dataset, containing the reduced number of genes and all
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Figure 2.19: Identification of sulfur correlated genes. A subset off genes that

show a significant Pearson correlation to sulfur and sulfur-related metabolites is

determined as shown for the metabolite serine in this example. The histogram of

Pearson correlation coefficients resulting from the comparison of serine to all genes

is shown. The same comparisons to randomised gene expression data is shown as

straight line. The error-bars denote the standard deviation obtained from 1000 real-

isations of shuffled gene expression data. Exclusively genes occurring in a histogram

bin that contains at least twice as much associations from original data as from

randomised data are chosen for further analysis. This corresponds to the first and

the last two bins in the example shown.
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metabolites, the pairwise comparison of all items is carried out. In addition to

the Pearson correlation coefficient, we also calculate the mutual information for all

pairs with the aim to exclude correlations arising from unevenly distributed data or

outlying data points. A similar approach has been previously reported in literature

[84]. For further analysis, both similarity measures were transformed to comply with

the demands of a distance measure. For the Pearson correlation coefficient R, the

transformed measure is obtained by

Rt =
√

2 (1− abs(R)) (2.25)

with abs(R) denoting the absolute value of R. For the mutual information MI the

transformation reads

MIt = 1−
MI

MImax

(2.26)

with MImax denoting the maximum mutual information obtained from all pairwise

comparisons.

The distance matrices obtained from the application of both measures, Rt and MIt,

are displayed in Figure 2.20 together with the results obtained from randomised

realisations of the dataset. From visual inspection of Figure 2.20, we estimate an

area of relevant associations containing only few associations obtained from shuffled

data to Rt < 0.45 (corresponding to R ≥ 0.90) and MIt < 0.30. By this, a network

is defined that contains 541 elements (genes and metabolites) with 5212 associations

among them.

Network topology

The topology of a network can be regarded as a key aspect in the characterisation of

the global network properties which can be directly predicted from its structure [85,

86, 87]. An important property of a network is the probability distribution of vertex

connections P (k), denoting the probability that a vertex interacts with k other

vertices. The connectivities k of the network under consideration are distributed

inhomogeniously with an average connectivity of k̄ = 6.6 (Figure2.21, top). Since

the distribution of the connectivities follow a power law [88]

P (k) ∝ k−γ (2.27)
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Figure 2.20: Detection of relevant associations for network reconstruction.

For all pairwise comparisons of the reduced dataset, the Pearson correlation coeffi-

cient and the mutual information were calculated and displayed together with asso-

ciations obtained from shuffled realisations of the dataset. Both similarity measures

were transformed to fulfill the requirements of a distance measure with small values

indication high similarities. Thresholds are defined by visual inspection (dashed

lines) to minimise associations that are also shown from shuffled data. The peak

aroundMIt ≈ 0.5 arises from gene/gene, metabolite/gene, or metabolite/metabolite

associations containing outlying values. These associations would falsely be detected

as high correlations using the Pearson correlation coefficient alone.
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the parameter γ can determined to γ ≈ 2.3 (Figure 2.21, bottom). It hereby fits

into the range that has been observed in literature for other inhomogeniously-wired

networks which are referred to as scale-free networks [88]. Such networks are char-

acterised by a majority of nodes (genes or metabolites in the present study) showing

just few connections to other nodes and few nodes showing a high connectivity to

others. Networks showing this scale-free topology possess several universal charac-

teristics like a high tolerance to errors due to high robustness. Nodes showing a

high connectivity, however, are critically important for network stability and can be

considered as putative controllers. On the other hand, they can also be regarded as

sites of systems vulnerability.

Implementing a causal relationship

Both applied similarity measures, Pearson correlation coefficient and the mutual in-

formation, do not allow for the detection of the cause and the effect in the detected

connection. For the network under consideration, this implies that the direction of

informational flows between the elements is not defined. The experimental setup,

however, is designed in a way that the primary cause of the systems excitement is a

priori known: It arises from the depletion of sulfur in the surrounding medium. By

this, we can assume that the changed sulfur levels can be regarded as the starting

point of system excitation. For further analysis, sulfur is defined as the cause of

excitation and all system responses to this excitation are regarded as effects. The

reconstructed network (Figure 2.22) is based on the Pearson correlation coefficient

as similarity measure. The mutual information is used as a ’filter’ to remove associ-

ations arising from unevenly distributed data which correspond to outlying values.

Examples of biologically meaningful pathways

From the whole network, we extract in a first example routes of informational fluxes

which are directed from sulfur towards sulfur-responding metabolites. We exclu-

sively include connections (corresponding to edges in the graph) that link one of
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Figure 2.21: Network properties. The properties of a network can be predicted

from its structure [85, 86, 87]. If the distribution of the connections per vertex P (k)

(top) follows a power law (Eq. 2.27), the topology of the network can be determined

[88]. For the reconstructed network, the exponent of Eq. 2.27 is estimated by the

slope of the linear right tail (bottom) to γ ≈ 2.3.
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Pajek Pajek

Figure 2.22: Introduction of cause-to-effect. The reconstructed network, based

on the Pearson correlation coefficient as similarity measures, does not contain any

causality (left). By taking the knowledge about the experimental conditions of sulfur

depletion into account, sulfur can be regarded as starting point of initial system

excitation. Thereby, sulfur can be placed in the center of the network representation

(top node, right) and an cause-to-effect relationship can be introduced (from top to

bottom, right).
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the sulfur-responding metabolites to sulfur itself (directly or indirectly). From each

of the sulfur-responding metabolites, we additionally include all connections that

are directed downstream (in the sense of the informational flux), (Figure 2.23 A).

A commonly observed response of plants to sulfur depletion is the accumulation

of anthocyanins [83]. We find this confirmed in our reconstructed network by the

position of the corresponding node (Figure 2.23, A). We observe only two edges for

the node ’anthocyanins’, both being upstream directed. This node can thereby be

regarded as a physiological endpoint.

In a second example, we apply the same extraction to hormone-related metabolites

and genes (Figure 2.23 B). Here, we detect a path to another well known physiolog-

ical endpoint, the enhanced lateral root formation [83], represented by auxin related

metabolites and genes. Starting from sulfur as the initial source of excitation, nitri-

lase 3 and the putative myrosinase-associated protein (At3g14210) are known to be

involved in auxin biosynthesis. Downstream of the informational flux, we observe

calmodulin 3, an auxin signal transduction factor, and the highly connected node

IAA28, an auxin-related transcriptional factor which is mainly expressed in roots

[89].
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Figure 2.23: Biologically meaningful network fragments. From the net-

work shown in Figure 2.22, biologically meaningful partitions referring to sulfur-

responding metabolites (A, top) and hormone-related metabolites and genes (B,

bottom) are extracted.



Chapter 3

Discussion

3.1 Mutual information

We introduced the concept of the mutual information and suggested its application

as a measure of statistical independence between variables. In the context of the

evaluation of complex biological networks, linear measures are commonly used on an

ad hoc basis for the detection of correlations. From the biological point of view, also

more general dependencies among biological measures, e.g. gene expression data

or concentrations from protein or metabolite measurements, are supposable. We

showed in an example based on artificial data that the mutual information extends

these linear measures.

We continued with the definition of the mutual information in terms of discrete

data and summarised some properties. This definition assumeed knowledge about

the probability distribution of data. For the application to biological data, however,

these distributions have to be estimation from continuous data. After introducing

a simple histogram approach for this estimation, we presented and exemplified some

of the known effects arising from this approach. In addition to the simple histogram

binning, we summarised the estimation of the probability density on the basis of

kernel density estimators (KDE) [59].
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3.2 Fuzzy mutual information

After mentioning some of the drawbacks of the histogram binning, we proposed an

extension of the bins to polynomial B-spline functions: Data points are no longer

assigned to exactly one bin but to several bins simultaneously with a weight given

by the B-spline functions. By definition, the weighting coefficients sum up to unity,

which corresponds to an implicit normalisation. The algorithm is thereby reminis-

cent of kernel density estimators, it keeps the basic idea to associate data points to

discrete bins. In contrast to KDE, the bins defined by B-spline functions are not

placed at the positions of the data points but at the positions of the original rect-

angular bin. The spline order k determines the shape of the polynomial functions

and specifies the number of non-zero coefficients. Due to the implicit normalisation,

the probability to occupy a bin, p(ai), is obtained by the sum over all coefficients

that belong to this bin, ai. For KDE, the probability density has to be calculated

by numerical integration methods which is a time consuming procedure. To clarify

the application of the B-spline approach, we demonstrated the calculation of the

mutual information for artificial example data in detail.

We showd that our approach improves the simple histogram binning method by com-

paring it to KDE. We provided a systematic comparison between these algorithms

on the basis of artificial data with known distributions.

At first, we calculated the mutual information for uniformly distributed data of

different sizes for which the ’true’ value is known to be zero. In accordance with

literature, we found for the simple histogram approach that the mutual information,

as well as its standard deviation, scale linearly with the inverse size of the data.

The same result holds for the estimation with B-spline functions, but with a 4-

fold smaller slope for the mutual information as well as for its standard deviation.

The KDE approach showed an asymptotic run with intermediate values for large

datasets. For small datasets, the KDE approach gave even values slightly below

the values obtained from the B-spline approach. In summary, the overestimation,

which is depending on the size of the data, showed to be strongly reduced by the

utilisation of B-spline functions for the estimation of mutual information compared
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to the histogram binning and the KDE approach. Only for small datasets (≤ 100

values) the KDE approach gave slightly better results than the B-spline approach.

Then, we studied the influence of the parameters spline order k and number of

bins M on the estimation of the mutual information. We generated an artificial

dataset which was constructed in a way to represent a ’real’ measurement on a

biological system. We compared the different estimation algorithms in their abil-

ity to distinguish the given dataset from a dataset which was consistent with the

null hypothesis of statistical independence. For this, we defined the significance S

according to Eq. (2.23).

From the significances calculated from different spline orders it was observed that

the null hypothesis was rejected for all spline orders. A nearly two-fold increase was

shown for the step from k = 1 to k = 2, whereas for higher spline orders (k ≥ 3) the

significances stayed at the same level as for k = 2 and did not further improve the

estimation for the distribution under consideration. Similar observations have been

reported for KDE [69] where the particular choice of the kernel functions showed to

be of minor influence for the result of estimation. In the given example, however,

the calculations were carried out on the basis of one single dataset of a given size.

The implications of the spline order on datasets of smaller sizes might be larger,

since also overestimation effects have a larger influence. Further investigations with

systematic evaluation based on data drawn from different distributions and different

sizes need to be done.

The influence of the number of bins M on the significances was calculated for three

estimators, k = 1, k = 3, and KDE for a range of bins M = 2 . . . 10. A reasonable

number of bins for the calculation of the mutual information was determined by the

size of the data. The number of bins in the 2-D histogram used for the calculation of

the joint entropy (see Figure 2.7) should be smaller than the number of data points.

In a rough estimation it was suggested to use 3 to 10 times more data points than

2-D bins. This implies for the example dataset containing 300 data points, that a

reasonable number of bins is in the range of M = 6 . . . 10. Within this range it was

observed that the significance was roughly doubled with the change of the spline

order from k = 1 to k = 3. The discrimination of correlations from the hypothesis
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of statistical independence was thereby significantly improved.

The KDE approach does not depend on the binning1 and is thereby independent

on the parameter M . The significance obtained from KDE lied in the range of

the results obtained by k = 3. The runtime requirements of the KDE approach,

however, were O(104) times higher than the ones of the B-spline approach. This

limits the application of KDE to datasets of moderate sizes. For a large-scale gene

expression dataset containing measurements for several thousand genes, the runtime

exceeds a reasonable limit. Since the pairwise comparison of genes can be calculated

in parallel, the utilisation of multi processor computers or computer clusters enables

the processing of larger data matrices. Strategies for a simplification of the numerical

integration step for KDE have been proposed [25]. The mutual information can be

regarded as an average over a probability distribution and Eq. (2.13) can be written

as

M̂I(X,Y ) =

〈

log
f̂(x, y)

f̂(x) f̂(y)

〉

(3.1)

If the distribution is well represented by the dataset, the integration can be approx-

imated by a summation over the data points

M̂I(X,Y ) =
1

N

N
∑

i=1

log

[

f̂(xi, yi)

f̂(xi) f̂(yi)

]

(3.2)

This simplification has to be applied with caution since it assumes that all data

points are independent realisations of the underlying distribution.

3.3 Software development

3.3.1 Calculating the mutual information — mis calc

Within this work, we used the mutual information as a measure of similarity for

gene expression data and metabolite concentration data. For this, we carried out a

1The numerical integration step in the KDE approach also bases on a binning procedure, but

this binning is different from the binning discussed here.
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comparative analysis between all genes and/or metabolites contained in the partic-

ular dataset under consideration. The number of compared attributes thereby lied

in the range of up to several thousands and the number of pairwise comparisons up

to several hundred millions.

To enable the application of the mutual information to large-scale datasets, as for

example the datasets analysed in this work, we developed the software package

mis calc. It calculates the mutual information for the pairwise comparisons of the

attributes of a data matrix. We incorporated the improvements described in this

work and provided the possibility to calculate the mutual information on the basis

of B-spline functions. By taking advantage of the independence of these compar-

isons among each other, the mis calc software can be operated in a mode, where

the comparisons can be calculated on different processors of one computer or even

on different computers in parallel. Additionally, it was designed in a performance

optimised way with a caching algorithm. For the underlying programming language,

C++, compilers with effective optimisation routines are available.

Numerical programming environments, like Matlab and R, also allow for the calcula-

tion of the mutual information. They are very flexible and the utilisation of different

estimation algorithms is relatively easy to realise. However, the run time require-

ments of these programming environments make the application to large datasets a

very time consuming task. For datasets containing thousands of attributes, the run-

times exceed the limit for practical applicability. For the calculation of significance

thresholds from shuffled data, this drawback becomes even more apparent.

From a programmers point of view, the mis calc software package bases on a variety

of self-made classes with different level of abstraction. The classes can be accessed

via their application interfaces (API) and thereby can also be used for further soft-

ware development. A description of the main classes is given in the appendix.
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3.3.2 MetaGeneAlyse

Highly powerful techniques allow for the large-scale and parallel profiling of gene-

expression and metabolite data from the same biological samples. The analysis of

such integrated data enables the elucidation of different levels of cellular regulation

and leads to new insights into genetic and physiological control.

We have developed MetaGeneAlyse [74], a web-based service for the analysis of

integrated datasets containing gene-expression and metabolite data. MetaGeneAl-

yse incorporates a variety of normalisation algorithms that are essential for the

preprocessing of data obtained from different measurement technologies. Various

algorithms are available for data analysis and visualisation, enabling a researcher to

easily obtain an overview over her or his data.

Several tools for the exploration of microarray data are freely available. They are

usually offered as software tools for download and run on the users workstation.

Our web-service, however, offers the possibility to run time-consuming calculations

on the server-side. It is thereby possible to analyse even large data matrices that

could not be processed with software running on the client-side.

3.4 Application on data

3.4.1 Global comparison of MI to Pearson correlation

Linear correlation measures are among the most frequently applied similarity mea-

sure in literature. They are often used on an ad hoc basis without discussion about

their appropriateness in the given context. It thereby remains unclear if a consid-

erable number of non-linear correlations might be missed. In our first application

example we addressed the question whether previous analyses, based on linear cor-

relation measures, sufficiently described the correlations within datasets or whether

the mutual information is able to detect additional correlations that are not detected
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by linear correlation measures, such as the Pearson correlation coefficient. The rela-

tion between the mutual information and the Pearson correlation can be explicitly

given for Gaussian distributed data [79]. Both similarity measures were applied to

two large-scale gene expression datasets [80, 78] with the intention to verify whether

non-linear correlations, shown as deviations from the theoretical relation, can be

detected.

At first it was confirmed that the Pearson correlation results in values in the range

[−1, 1] whereas the mutual information showed exclusively positive values. It also

has to be noted that the theoretical relation shown in both applications is not

corrected for the systematic overestimation of the mutual information. A correction

would result in a horizontal shift of the theoretical prediction towards higher mutual

information values. For our analysis we neglected this correction since we were

interested in qualitative deviations.

Our observations showed for the first dataset, that it was fairly well described by

the theoretical relation of the mutual information and the Pearson correlation. In

particular, we did not detect gene-gene association (each association corresponded

to one data point in Figure 2.13) with low Pearson correlation and high mutual

information which would be missed by solely using the linear Pearson correlation.

Other deviations from the theoretical relation were observed for low mutual informa-

tion and high Pearson correlation values. Such associations arised from gene-gene

comparisons containing outlying values as was exemplarily shown in Figure 2.14, A.

The mutual information assigned low similarity values to these comparisons since

the corresponding marginal entropies already resulted in low values. A similar ap-

proach has been reported [84] were the marginal entropies of genes were used as a

filter to remove genes containing outlying values.

We concluded, that previous analyses on the first dataset under consideration based

on linear correlation measures [80] did not miss any non-linear associations. This

presents an important finding since it is by all means supposable that the regu-

lations inherent in the genetic network under consideration show a more complex

behaviour than the observed linear correlations. Even for one of the largest gene

expression dataset at hand, insufficient data might complicate the detection of such
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complex patterns of regulation. Alternatively, the biological mechanism underlying

the regulatory networks might not lead to non-linear correlations. Experimental

methods for probe and target preparation and measurement techniques also might

complicate the detection of non-linear associations.

The second dataset also showed to follow the theoretical relation in principle. Again,

outlying values with high Pearson correlations and low mutual information were

detected. In contrast to the first dataset, this dataset contained tuples arising from

low Pearson correlations and high mutual information. Detailed gene-gene plots for

two interesting tuples are depicted in Figure 2.14 C and D. From these examples

can be seen, that the data points for two genes form compact clusters. Without

attempting to draw conclusions about the biological context of such clusters here,

it might be reasonable to check whether this clustering arises from the choice of the

oligonucleotide probe in the probe set.

Even though the examples shown in Figure 2.14 C and D are easily classified by vi-

sual inspection, the amount of pairwise comparisons from large-scale gene expression

experiments are in an order of magnitude where comprehensive visual inspection is

no longer applicable.

3.4.2 Application of MI to gene expression dataset

After the global comparison of the mutual information to the linear Pearson correla-

tion, we used the mutual information as a basis for a hierarchical clustering analysis.

The calculation of the mutual information, as well as the application of clustering

procedures, require the choice of adequate parameters. In this example we did not

attempt to carry out a comprehensive analysis with a variety of sets of parameters

but showed the exemplary application for one set of parameters.

From our particular set of parameters starting with our choice of a dataset, the

number of bins and the spline order for the calculation of the mutual information,

the clustering algorithm we applied, the threshold we used for the building of clusters

and the database we used for evaluating the cluster results, we obtained a biologically
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interesting result. We were able to identify three large gene cluster where each of the

clusters contained genes that were annotated to just a few of the available annotation

classes. Even more interestingly, two of the clusters separated genes, that take part

in the protein synthesis, according to their sub-cellular localisation, the cytoplasm

and the mitochondrion. So far not annotated genes within one of these clusters

showed sequence similarity to similar annotated genes in other organisms.

We also addressed the question whether similar result can be obtained by the utili-

sation of the Pearson correlation coefficient as similarity measure (data not shown).

The similarity matrix, containing the pairwise comparisons of all genes of the dataset

under consideration, is not directly comparable to the similarity matrix based on

the mutual information. For this, we carried out the same characterisation of clus-

ter results on the basis of the Pearson correlation coefficient as similarity measure,

as is done in Figure 2.15 (data not shown). By this, we were not able to detect

any clusters that were comparable to the clusters we found by the utilisation of the

mutual information as similarity measure.

The utilisation of different parameters for the calculation of the mutual information

and different clustering algorithms might lead to other complementary results. A

comprehensive testing of parameters and the evaluation of their results were not in

the scope of this work but could present a direction for future work.

3.4.3 Analysis of informational fluxes in an integrative gene-

metabolite network of sulfur stress response

Plant growth and development are dependent on a variety of biotic and abiotic

factors. Since plants are immobile, they have evolved a variety of physiological

mechanisms to attain the nutrients they need. For situations of limited nutrient

supply, plants are forced to respond with adaptive strategies to assure their sur-

vival. Under the limitation of the essential nutrient sulfur, Arabidopsis thaliana

plants respond to this stress condition [83]. The reaction involves the sensing of

the depletion, transduction of the perceived signal to control points of regulation,
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and the triggering and silencing of gene expression and thereby the production of

proteins and metabolites.

Our approach aimed at the revealing of informational fluxes that are triggered by

the excitation of sulfur depletion on the genetic, as well as on the metabolic level.

We intended to verify, whether well known stress response changes in expression

levels and in the metabolic content of Arabidopsis thaliana can be interconnected by

an integrated analysis. We extended a previous study [83] in which the reaction to

sulfur depletion was measured on the gene expression level. For this, we additionally

measured metabolite concentrations of probes that were sampled under the same

experimental conditions as for the expression data.

The strategy of our analysis based on the assumption, that the sulfur-depletion

conditions constitute an external excitation. This excitation is a trigger for the

plant and the excitation propagates through the signalling network. Therefore, we

focusd our analysis on potentially relevant genes that respond to the sulfur starvation

conditions: for a chosen set of sulfur-responding metabolites we neglected all genes

that did not show correlations to at least one of these sulfur-responding metabolites.

Here, we used the linear Pearson correlation coefficient as a measure of correlation.

This subset of genes, together with all measured metabolites, build the bases for

further analysis.

In principle, the reconstruction of the signalling network based on the Pearson corre-

lation coefficient as similarity measure. To exclude false positive correlations arising

from unevenly distributed data, we additionally calculated the mutual information

for all comparisons of genes and metabolites and compared the results obtained from

both similarity measures (Figure 2.20). We thereby took our results from one of the

previous examples (section 2.4.1) into account where we detected situations with

outlying values. By this, we used the mutual information as a filter for false positive

correlations. The significance of correlations was estimated by visual inspection from

the superimposed comparison with similarities calculated from randomised datasets.

An area, defined by thresholds for the Pearson correlation coefficient and for the mu-

tual information, containing just few correlations arising from randomised data was

chosen (Figure 2.20).
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One important aspect in the characterisation of a network is its topology, from

which general properties of the system can be predicted [85, 86, 87]. The topology

of the resulting network was characterised as scale-free which confirms the find-

ings for other biological networks [88]. Due to the high redundancy of connections

within such networks, local errors or changes rarely lead to the loss of the global

information carrying ability of the networks and result in robustness. Highly con-

nected nodes, however, are critically important for network stability. In the network

under consideration, sulfur represents such a highly connected node and thereby

supports our approach that the excitation of the plant by sulfur depletion triggers

an informational stress response flux.

With focus on the sulfur-responding metabolites, we were able to verify the already

described accumulation of anthocyanins in Arabidopsis thaliana under sulfur stress

conditions [83]. The node ’anthocyanins’ in the reconstructed network (Figure 2.23,

A) showed only two edges, both were positioned between sulfur and anthocyanins

and though were directed upstream in the sense of the informational flux. Among

all metabolites, this was the only one that did not possess any link to parallel

or downstream nodes. Due to its position in the graph, we considered the node

’anthocyanins’ as physiological endpoint in the path of informational flux leading to

the accumulation of anthocyanins in the plant.

By focusing on hormone-related network elements, another highly connected node

was identified, the transcriptional factor IAA28 (Figure 2.23, B). Starting from sul-

fur, several interlacing redundant paths passed nitrilase 3 and a putative myrosinase-

associated protein, both involved in auxin biosynthesis and then lead via the auxin

signal transduction factor calmodulin 3 to the auxin regulated transcriptional factor

IAA28, which is known to be mainly expressed in roots. Analysis of IAA28 ex-

pression history in the Stanford Microarray Database2 provided us the experimental

evidence, that IAA28 is involved in auxin signalling. Auxin is known to control

latent root formation and the latent root formation is known to be triggered by

sulfur starvation. By this, the detected auxin path extended previous observations

regarding the transcriptional factor IAA28, which acted as a highly connected ’hub’

in the reconstructed network.

2http://genome-www.stanford.edu/microarray



Summary

The advent of high-throughput technologies opens new perspectives for the under-

standing of living organisms on a molecular level. The variety of complementary

data produced by these technologies provides the challenge of multifunctionality and

implies the presence of regulatory networks as opposed to isolated linear pathways

of causality. In a systems biology approach, the evaluation of an organism as a whole

and the understanding of underlying regulatory networks is addressed.

Towards the understanding of these networks, data from different experimental

sources needs to be integrated. Such sources range from gene expression data, to

data from protein and metabolite concentration measurements. The application of

data preprocessing steps is necessary to enable the integration and the combined

analysis of such data.

The evaluation of complex regulatory networks underlying molecular processes poses

a major challenge to current research. A commonly used approach is the clustering

of features on the basis of a similarity measure. In this context, the choice of an

adequate similarity measure, as well as the choice of the clustering method itself is

crucial for the results obtained. Information theoretic concepts, such as the mutual

information, were used to extend conventional similarity measures. Mutual infor-

mation presents a general measure of statistical independence and is thereby able to

detect any type of functional relationships, extending the potentialities of commonly

used linear measures.

Since the mutual information is defined for discrete data, its application to con-
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tinuous biological data requires adaptive procedures. In this work, we present an

algorithm for estimating the mutual information from continuous data and compare

our approach to previously existing algorithms.

The clustering of a large-scale dataset demands the pairwise comparisons among

all features of the dataset. For a number of features, in the order of thousands,

the number of comparisons becomes very large. To enable the application of the

mutual information to such datasets, we developed a performance optimised software

package that also incorporates the algorithm presented in this work.

We have designed and implementedMetaGeneAlyse, a web-based service that allows

the upload of data and its analysis with various methods including the presented

algorithm for the calculation of the mutual information. Due to the implementation

of adequate normalisation routines, MetaGeneAlyse enables the processing of data

that is measured with different experimental techniques and thereby complies with

the requirement of a systems biological approach. Since all calculations are done on

the server-side, even large analyses can be carried out independently of the technical

prerequisites of the researcher.

The application to publicly available datasets shows, that the mutual information

detects dependencies that are missed by linear correlation measures. Furthermore,

biologically relevant clusters were revealed that, again, could not be found by the

utilisation of linear measures. For an integrated in-house dataset containing gene

expression data and metabolite concentration data for stress response experiments,

the reconstructed signalling network showed agreements with physiological findings.



Zusammenfassung

Die Entwicklung von Hochdurchsatzmesstechnologien eröffnet neue Perspektiven

für das Verständnis von lebenden Organismen auf einem molekularen Niveau. Die

Vielseitigkeit der komplementären Daten, die durch solche Technologien hervorge-

bracht werden, eröffnen neue Herausforderungen. Sie implizieren die Existenz von

übergreifenden regulativen Netzwerken, im Gegensatz zu isolierten linearen Pfaden

von Ursächlichkeiten. Im systembiologischen Ansatz wird die Betrachtung eines

Organismus als Ganzes und das Verständnis des zugrunde liegenden regulativen

Netzwerkes betrachtet.

Für das Verständnis solcher Netzwerke müssen aus unterschiedlichen Meßtechnolo-

gien stammende Daten integriert werden. Als Beispiele können Genexpressions-

daten, und Daten von Protein- und Metabolitkonzentrationsmessungen angeführt

werden. Für die Integration und Auswertung dieser unterschiedlichen Daten wer-

den bestimmte, die Daten vorverarbeitende Schritte, angewendet.

Die Auswertung von komplexen regulativen Netzwerken, die molekularen Prozessen

zugrunde liegen, stellen eine Herausforderung für die aktuelle Forschung dar. Ein

üblicher Ansatz für die Rekonstruktion von Netzwerken besteht dabei in der Grup-

pierung der Daten. Die Grundlage solcher Gruppierungen bilden Ähnlichkeitsmaße

zwischen den zu gruppierenden Objekten des Datensatzes. Dabei haben sowohl

die Auswahl eines geeigneten Ähnlichkeitsmaßes, als auch die Auswahl eines Grup-

pierungsalgorithmus selbst, einen großen Einfluß auf das Ergebnis der Gruppierung.

In diesem Zusammenhang wird das informationstheoretische Konzept der wechsel-

seitigen Information verwendet. Die wechselseitige Information stellt ein allgemeines
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Maß für statistische Unabhängigkeit dar und erweitert das Potential von häufig ver-

wendeten linearen Ähnlichkeitsmaßen.

Die wechselseitige Information ist ursprünglich für die Anwendung auf diskrete

Daten definiert worden. Für ihre Anwendung auf kontinuierliche biologische Daten

muß das Konzept angepasst werden. In der vorliegenden Arbeit stellen wir einen

Algorithmus für die Anwendung der wechselseitigen Information auf kontinuierliche

Daten vor und vergleichen diesen mit bereits existierenden Algorithmen.

Der Gruppierung von Objekten eines Datensatzes liegt der paarweise Vergleich zwi-

schen allen diesen Objekten zugrunde. Für große Datensätze mit tausenden von

Objekten wird die Anzahl der zu vergleichenden Paare sehr groß. Um die wechsel-

seitige Information als Grundlage für die Gruppierung von Objekten verwenden zu

können, haben wir ein geschwindigkeitsoptimiertes Programm erstellt, das den in

dieser Arbeit vorgestellten Algorithmus beinhaltet.

Wir haben den web-basierten Dienst MetaGeneAlyse konzipiert und programmiert.

Er ermöglicht das Hochladen und Auswerten von Daten mit verschiedenen Metho-

den, auch mit der in dieser Arbeit vorgestellten Methode. Durch die Möglichkeit

der Anwendung verschiedener Normalisierungsmethoden auf die Daten können aus

unterschiedlichen Meßtechnologien stammende Daten ausgewertet werden. Dies

entspricht der Idee des systembiologischen Ansatzes. Bei der Benutzung von Meta-

GeneAlyse werden alle Berechnungen auf einem Servercomputer durchgeführt. Dies

ermöglicht die Auswertung von großen Datensätzen, unabhängig von den techni-

schen Voraussetzungen des jeweiligen Benutzers.

Die Anwendung der wechselseitigen Information als Ähnlichkeitsmaß auf öffentlich

zugängliche biologische Daten zeigt Abhängigkeiten, die bei der Verwendung von

linearen Maßen übersehen worden wären. Desweiteren finden wir biologisch rele-

vante Gruppierungen, die wir ebenfalls bei der Verwendung von linearen Maßen

nicht finden. Für einen im Institut erstellten integrierten Datensatz, der sowohl

Genexpressions- als auch Metabolitkonzentrationsdaten für Stressreaktionsexperi-

mente enthält, werden für das rekonstruierte Signalnetzwerk Übereinstimmungen

mit physiologischen Erkenntnissen festgestellt.



Appendix

Software development

Calculating mutual information — mis calc

Implementation details

The mis calc software package was developed under the programming language

C++. In the next subsections, we give an overview of the main classes and their

methods use by mis calc.

class SignalSpace SignalSpace represents an object which primarily implements

the basic algorithms for storing and manipulating a two dimensional representation

of the data. In addition to this, it offers methods to calculate single or pairwise

entropies, mutual information and other statistical values (e.g. Pearson correlation

coefficient). Since the calculation of the mutual information MI benefits heavily

when storing preliminary results, SignalSpace provides a transparent caching mech-

anism for such values.

Basic Concepts of class SignalSpace After instantiation of a SignalSpace ob-

ject, it can be used to hold signal vectors. A signal vector is a one dimensional
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sequence of values which are regarded as measurements made for the same feature

(gene, protein, etc.) under different conditions. It can also be associated with a

unique name (e.g. Accession number). Signal vectors are represented by the inner

class SignalSpace::vector which will be discussed in the next subsection. Most of

the numerical operations applied to the SignalSpace are implemented by calling the

appropriate methods on the SignalSpace::vector object.

Before working with a SignalSpace, the matrix has to be filled with data to be

analysed. After calling the open method, which sets the SignalSpace into its initial

state, one might add single vectors to the SignalSpace by applying the addRow

method or by reading a complete data set from a std::istream via a call to read.

Each signal vector may consist of variable length and may also contain undefined

values (e.g. in cases where the measurement failed).

After filling the SignalSpace with signal vectors, one has to call the close method

before performing any further calculations on the data. The close method declares

the data set to be complete and triggers the calculation of those values which can

be cached.

On a closed SignalSpace one might perform MI calculations by calling the mi

method or retrieve other correlation factors like pearson and entropy.

We did not want to be restricted to only pairwise calculation of statistical val-

ues, but wanted the design to allow the solution of higher dimensional problems.

Therefore, we decided to implement a generic addressing of vector sets. To most

of the statistical methods implemented by SignalSpace, indices are passed as an

std :: vector < int > from the standard template library STL. In this way, the

method SignalSpace::entropy(const vector < int > &) works on two vectors for

which the entropies are calculated on the basis of the same entries, or calculates a

solution for three or more vectors.

Entropies and Mutual Informations within class SignalSpace Entropies

are calculated based on the described algorithm in which the range of a signal vector
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is divided into an arbitrary number M of equally sized intervals. The algorithm

uses a B-spline weight function, as implemented by the class Spline to calculate the

probability of finding a given signal inside a given interval. by this, it is possible that

a single signal can be found in a number of intervals with a different probability.

Beside the number of intervals M one has to provide the spline weight order k which

has to be in the range 1 ≤ k ≤ M − 1 . The larger k, the larger the number of

intervals for which the probability is not 0. If k = 1, the modified method behaves

similar to the simple binning algorithm for MI calculation. M and k can be set

by calls to the methods setIntervals and setSplineWeight respectively. Calculation

of the MI can afterwards be performed by calling the mi method with an array of

indices identifying the vectors for which to calculate the mutual information.

Since the mutual information can be defined as MI(A,B) = H(A) + H(B) −

H(A,B), one can cache the single vector entropies H(A) and H(B) beforehand in

order to perform this time consuming step once for all vectors held by SignalSpace.

The same holds true for the distribution vectors which only depend on the individual

signal vectors and the parameters M and k. These are needed for the calculation

of single entropies, as well as for the joined entropy H(A,B). The caching mecha-

nism is implemented by filling up a vector with single vector entropies for all signal

vectors and by initialising a matrix with probability values for each of the signal

vectors. The so called distribution space gets filled whenever the SignalSpace gets

closed and holds valid data.

This caching strategy performs best if all vectors of the SignalSpace have the same

length and do not contain too many undefined values (nil) since the cached values

for single entropies might become invalid if vectors with undefined values have to be

compared. If, for example, we deal with two vectorsA andB, A = {0.9, 1.2, nil, 3.8, 9.5}

and B = {1.8, nil, 4.2, 9.3, 8.2} we might only work on those three indices for which

both vectors hold valid entries and the previously cached single vector entropies

H(A) and H(B) are invalid since they are based on 4 valid entries for each vector.

Example The following example code reads in a set of measurement from standard
input, sets M = 10 and k = 3, and calculates the joined entropy of two vectors.
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// create a new SignalSpace with M=10 intervals and spline order k=3

SignalSpace ss;

ss.setIntervals(10);

ss.setSplineWeight(3);

// initialise SignalSpace before adding new rows

ss.open();

// Read in the whole signale space from standard input

ss.read(std::cin)

// close the signalspace. This initialises

// the internal caching mechanisms

ss.close();

// create an array describing two dimensions in vector space

std:: vector<int> v(2);

// we ask for the indices 55 and 28 of the vector space, blindly

// assuming that they actually exist

v[0]=55;

v[1]=28;

// calculate the joined entropy of dimension 55 & 28

// and dump it

std::cout << "Joined Entropy of vector pair "

<< "(" << v[0] << "; " << v[1] << ") "

<< "is " << ss.entropy(v)

<< std::endl;

class SignalSpace::vector Signal vectors are implemented by the inner class

SignalSpace::vector which represents a specialised indirect offspring of the std ::

vector < C > template class found within the STL. Beside the methods inherited

from this super class (e.g. iteration, assignment, size management), SignalSpace::vector

supports the concept of undefined values (nil) and implements various mathematical
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and statistical functions. For the implementation and proper handling of nil values,

SignalSpace::vector holds the variables in an container object (SignalSpace::Signal)

which for most applications is opaque when accessing the SignalSpace::vector.

The SignalSpace::Signal object implements the basic arithmetic operations and other

function (e.g. output operators) one would like to apply to its contents (double)

representing the signals within the SignalSpace.

Example The example code creates two instances of SignalSpace::vector (sv1,sv2)
and fills them up with 0 or nil values. After this, we iterate through sv1 using an
index and assign random numbers to the Signal objects. Additional objects are
added via the push back method inherited from std :: vector < C >. We then
perform a vector multiplication and dump out the result, this time using an iterator
in order to traverse through the vector.

// create a new SignalSpace::vector holding 100 entries

// implicitely filled with 0 values.

SignalSpace::vector sv1(100);

// create a second SignalSpace::vector holding 100 entries

// explicitely filled with nil Signals

SignalSpace::vector sv2(100,SignalSpace::Signal::nil);

// iterate through vector #1 and fill it with random numbers

for(int i=0;i<sv1.size();i++) {

sv1[i] = (double)::rand() / (double)RAND_MAX;

}

// push a nil value on to the end of the vector

sv1.push_back(SignalSpace::Signal::nil);

// push a Signal of value 5 on sv2

sv2.push_back(5);

// ask if entry #99 is currently undefined

if(sv1[99].isNil()) {

std::cerr << "entry #99 is undefined" << std::endl;

}
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// Multiply each component of s1 with the corresponding component

// from s2. This throws an exception if the vectors do not have

// the same size.

// It could also be written s1 *= s2. Furthermore we

// provide + - / as well as /= += and -=.

s1 = s1*s2;

// using an iterator

SignalSpace::vector::iterator i;

for(i=sv1.begin();i!=sv1.end();i++) {

std::cerr << *i << std::endl;

}

}

class SignalSpace::Signal The container class SignalSpace::Signal holds a double

value and implements all necessary arithmetical operators one might want to apply

on its contents. It furthermore defines a special value nil which may also be assigned

to SignalSpace::Signal and invalidates the contents, flagging it as not computable.

Trying to compute with nil values always results in an SignalSpace::Signal object

representing nil. Comparison with such values or casting to the contents class is not

allowed and will result in an exception. To avoid such failures SignalSpace::Signal

provides the method isNil which enables applications to check the state of the vari-

able.

Example The following example code creates three different SignalSpace::Signal
objects initialising them with either nil or 0. Afterwards, we perform a direct as-
signment, multiplication and various comparisons.

// create a new Signal which is currently nil

SignalSpace::Signal s1;

// create a second signal with explicit value 0

SignalSpace::Signal s2=0;
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// create a third one with explicitely setting

// the value to nil (undefined)

SignalSpace::Signal s3=SignalSpace::Signal::nil;

// change value of s1 to 5;

s1=5;

// Multiply to Signal objects. This would trigger

// an exception if one operand would be nil

s1 = s1 * s2;

try {

// test s1 against s2

if(s1<s2) {

std::cerr << "s1 (" << s1 << ") is smaller than s2 (" << s2 << ")"

<< std::endl;

} else {

std::cerr << "s2 " << s2 << ") is smaller than s1 (" << s1 << ")"

<< std::endl;

}

// do the same for s1 and s3

// This will throw an exception since comparison with

// nil is not allowed

if(s1<s3) {

std::cerr << "s1 is smaller than s3" << endl;

} else {

std::cerr << "s3 is smaller than s1" << endl;

}

} catch (logic_error & le) {

std::cerr << "got an exception " << le.what() << std::endl;

}

class Spline The Spline class serves as a helper for the SignalSpace and provides

the B-Spline weight function in the form of the Weight method. The standard

creator of Spline takes the two arguments M and k representing the number of

intervals and spline weight order. After instantiation, a call to Weight(int n,double
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t) might be used to retrieve the value of the B-Spline weight function for interval

M and parametric value t, which in our case represents a single Signal within a

SignalSpace::vector remapped into the interval 0 ≤ t ≤ n− k + 1.

class MiFactory With the SignalSpace class, one already is able to perform MI

calculation on a set of signal vectors. In a minimal implementation, a SignalSpace

can be filled up with data, as shown in the previous example. Afterwards, we only

need to address the unique vector pairs within the SignalSpace, i.e. the upper right

triangle of a l × l matrix, where l denotes the number of SignalSpace::vectors held

within the SignalSpace, and call the mi method in order to obtain MI values for the

whole SignalSpace. This could be implemented in the form of two simple iterations:

SignalSpace ss;

// Fill up the SignalSpace as shown in the previous example

....

// Iterate through all rows

for(int i=0;i<ss.Rows()-1;i++) {

// Iterator through all rows > i

for(int j=i+1;i<ss.Rows();i++) {

std::cout << "MI (" << ss.getRowName(i) << "," << ss.getRowName(j)

<< " happens to be " << ss.mi(i,j) << std::endl:

}

}

However, since the calculation of each MI value is numerically independent of all

the others and very time consuming, it is desirable to implement a multi-threaded

version of mis calc which takes advantage of a multi processor environment. For this

purpose, we implemented the class MiFactory which as an offspring of SignalSpace

provides all the previously described functionality and adds methods for resource

locking and distributed computing.

The standard constructorMiFactory(int w=1) takes a single argument which defines

the maximal number of threads assigned to the computation. After using methods
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inherited from SignalSpace to fill up the matrix, one has to call the run method

in order to calculate MI values for all vector pairs. Progress and error states can

afterwards be monitored with the getState method. If the MiFactory turns idle,

results might be retrieved with the getMi function.

The run method divides the upper triangle of the resulting matrix into w por-

tions of equal size and feeds these subsets of SignalSpaces as parameters to Mi-

Factory::Thread objects which implement code that can be executed concurrently

within the POSIX threads3 environment.

Example A multi-threaded version of the previous example might look like:

// create a new factory with a maximum of 8

// threads running in parallel

MiFactory mf(8);

// Define intervals and spline order

mf.setIntervals(10);

mf.setSplineWeight(3);

// Stuff in data from file ’./bla’

mf.open():

ifstream ifi("/bla");

mf.read(ifi);

ifi.close()

mf.close();

// start the job; We select calculation of the

// pearson correlation coeff. and the mutual information

mf.start(MiFactory::calc_pearson|MiFactory::calc_mi);

// periodically check if the factory came to a hold

for(;;) {

// do something usefull in between

....

3http://www.iso.org
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if(mf.getStatus()==MiFactory::finished ||

mf.getStatus()==MiFactory::error) {

break;

}

// sleep 5 seconds waiting for the next iteration

::sleep(5);

}

if(mf.getState()==MiFactory::error) {

std::cerr << "Something fishy happened here" << std::endl;

::exit(1);

}

// retrieve the desired results

for(int i=0;i<mf.Rows();i++) {

for(int j=i+1;mf.Rows();j++) {

std::cout << "MI(" << mf.getRowName(i) << "," << mf.getRowName(j)

<< ") " << " happens to be " << mf.mi(i,j) << std::endl;

}

}

class MiFarm Another concept of distributed computing is the usage of a number

of independent computers (i.e. clusters) working on the solution. This architecture

is also very interesting for the given problem since after an initial distribution of

the input set, no further communication except minimal progress and status reports

and the final result set is needed. Although the result sets might be rather huge,

this still represents only a moderate overhead in terms of network communication.

We therefore implemented a preliminary third version which uses the CORBA API

in order to implement distributed computing across the network.

The object representation is implemented in the class MiFarm, which is a subclass

of MiFactory. Just as MiFactory, the MiFarm object has to be started with the run

method in order to calculate the MI values for the underlying SignalSpace. MiFarm

also divides the solution space into equally sized portions and distributes the problem

to a set of slave threads running on the same machine. Instead of computing the

MI, however, each thread takes a set of slave computers and transmits the involved
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SignalSpace::vector objects via the CORBA communication protocol. After starting

the mis calc algorithm on the remote machines, each slave thread tracks progress

and error states and reports back to the MiFarm object.

From an applications point of view the API did not change at all. The fact that

the program is running on different computers is totally hidden from the program.

And the MI calculation might be implemented in the very same way as shown in

the previous example with the only exception that one has to instantiate an object

of type MiFarm instead of MiFactory.

class MisCorba::Factory, MisCorba::Client and MisCorba::Server Within

MiFarm, the details of cluster communication are implemented in three classes

MisCorba::Client, MisCorba::Factory and MisCorba::Server which are only used

from within methods of the MisFarm object in order to hide the CORBA inter-

face from higher level functions.

MisCorba::Factory implements the stubs of a CORBA interface as defined in the

CORBA specific IDL language. In principle this represents a collection of methods

mirroring the methods of MiFactory where the arguments have to be transformed

to satisfy the needs of a CORBA compliant application. MisCorba::Client also

mirrors methods of the MiFactory object on the client side encapsulating the trans-

port layer of the CORBA API. Each program that likes to interface with a remote

MisCorba::Factory should use an instantiation ofMisCorba::Client which almost can

be used like a local MiFactory object. The MisCorba::Client tries to make connec-

tion to the remote MisCorba::Factory and translates arguments and results in a way

that hides the middle-ware layer of CORBA.

Finally, the MisCorba::Server is dispatching MisCorba::Factory instances to clients,

trying to start a job on a remote machine. Each computer, that is intended as a

slave node within the cluster, needs one instance of the mis client-server program

running which mainly implements the MisCorba::Server object and advertises the

existence of such a service via the CORBA name service.
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MetaGeneAlyse

Implementation details

MetaGeneAlyse runs on a multiprocessor Linux server4 under the web-server Apache5

with mod-perl enabled. It primarily consists of a compilation of Perl6 scripts for the

interaction with the user. The interaction of the Perl scripts with the web-server is

mainly realised with the perl CGI module7. The methods of the CGI module handle

actions such as the HTML-forms for the data uploads and the passing of arguments

to other Perl scripts. For some analysis and visualisation steps, the statistics soft-

ware package R8 is internally used. Fast analysis steps are processed on-the-fly,

whereas computationally expensive steps, like the calculation of a large distance

matrix, are handled by a job queuing system. For this, run-time optimised C++

programs are utilised. Several log files inform about all user actions, error messages

send to users, and the status of the job queue.

Freely available tools for data exploration which run under Java on the user-side have

been reported [75, 76]. An advantage of MetaGeneAlyse is the calculation of large

distance matrices that gets computationally expensive and requires a large work-

ing memory for larger datasets, such datasets could not be analyzed with software

running on client-side workstations.

4Fujitsu Siemens N800, 8 processors, 6 GB RAM
5http://httpd.apache.org
6http://www.perl.org
7http://stein.cshl.org/WWW/software/CGI
8http://www.r-project.org
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Data examples

Yeast gene expression dataset by Hughes et al.

The first dataset used in the global comparison of the Pearson correlation to the

mutual information (section 2.4.1) was obtained from the supplemental material

of the publication [80]. A two-color cDNA hybridisation assay was used to gener-

ate 300 gene expression profiles for Saccharomyces cerevisiae. Transcript levels of a

mutant or compound-treated culture where compared to that of a wild-type or mock-

treated culture. The 300 profilings contain 276 deletition mutants, 11 tetracycline-

regulatable alleles of essential genes, and treatments with 13 well-characterised com-

pounds.

All experiments were performed under a single condition to allow for direct compar-

ison of the behaviour of all genes in response to all mutations and treatments.

Our analyses were carried out on the basis of the logarithms of ratios between the

treated probes and the wild-type or mock-treated cultures.

Human cancer dataset by He et al.

A dataset containing large-scale gene expression data from human cancer tissues

[78] was used as the second dataset in the global comparison of the Pearson cor-

relation to the mutual information (section 2.4.1). Hybridisations on 204 in-situ

synthesised oligonucleotide (60mers) arrays were performed with two-color cDNA

samples derived from 20 different human tissues and cell lines. The design of the ∼

24k oligonucleotides reports ∼ 2500 known genes.
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Arabidopsis thaliana sulfur depletion dataset by Nikiforova

et al.

Total RNA and hydrophilic metabolites from the same samples were obtained from

transcript profiles by array hybridisations on nylon membranes [83] and metabolite

profiles by gas chromatography - mass spectrometry (GC-MS). The dataset contains

relative transcript amounts for 6454 non-redundant genes and relative concentrations

for 81 non-redundant chemical compounds. For conditions of constitutive and in-

duced sulfur starvation, data for 8 experimental time points was measured referring

to a time course of 6 to 13 days.

Software used

The following software packages were used for the analyses reported in this work.

• Apache web-server (Version1.3.26 under Unix with mod perl/1.27): Open

source web-server program. In the context of the MetaGeneAlyse analysis

tool, which is described in this work, the Apache web-server processes Perl

scripts to dynamically generate HTML web pages. It is publicly available9.

• Matlab (Version 6.5.0): Interpreted numerical programming environment. The

MathWorks, Inc., MA, USA

• MetaGeneAlyse (Version 1.3): Web-based tool for the analysis of gene expres-

sion and/or metabolite data10. This tool was developed by Carsten O. Daub

and described in detail in this thesis.

• mis calc (Version 0.63): Software package for the calculation of mutual infor-

mation. It was developed by Sebastian Kloska in cooperation with Carsten O.

Daub.

9http://httpd.apache.org
10http://metagenealyse.mpimp-golm.mpg.de
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• Octave (Version 2.1.44): Interpreted numerical programming environment,

similar to Matlab. It is publicly available11.

• Pajek (Version): Software for analysis and visualisation of large networks. It

is publicly available12.

• Perl (Version 5.6.1 to 5.8.0, Practical Extraction and Report Language): Perl

is a language optimised for scanning arbitrary text files, extracting information

from those text files, and printing reports based on that information. Perl was

initially developed by Larry Wall and is publicly available13.

• R (Version 1.5.1 to 1.8.1): Language and environment for statistical computing

and graphics. It is publicly available14.

11http://www.octave.org
12http://vlado.fmf.uni-lj.si/pub/networks/pajek
13http://www.perl.com
14http://www.r-project.org
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[68] M. S. Roulston (1999) Estimating the error on measured entropy and mutual

information. Physica D 125, 285-294

[69] B. W. Silverman (1986) Density estimation for statistics and data analysis.

Chapman and Hall, London

[70] C. DeBoor (1978) A practical guide to splines. Springer, New York



BIBLIOGRAPHY 109

[71] H. Herzel and I. Grosse (1997) Correlations in DNA sequences: The role of

protein coding segments. Phy. Rev. E 55, 800-810

[72] T. Schreiber, and A. Schmitz (2000) Surrogate time series. Phyica D 142, 346-

382

[73] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer (1992)

Testing for nonlinearity in time series: the method of surrogate data. Phyica D

58, 77-94

[74] C. O. Daub, S. Kloska, and J. Selbig (2003) MetaGeneAlyse: analysis of inte-

grated transcriptional and metabolite data. Bioinformatics 19, 2332-2333

[75] B. Dysvik, and I. Jonassen (2001) J-express: exploring gene expression data

using Java. Bioinformatics 17, 369-370

[76] A. Sturn, J. Quackenbush, and Z. Trajanowski (2002) Genesis: cluster analysis

of microarray data. Bioinformatics 18, 207-208

[77] G. T. Klus, A. Song, A. Schick, M. Wahde, and Z. Szallasi (2001) Mutual Infor-

mation Analysis as a Tool to Assess the Role of Aneuploidy in the Generation

of Cancer-Associated Differential Gene Expression Patterns. Pac. Symp. Bio-

comp. 6, 42-51

[78] Y. D. He, H. Dai, E. E. Schadt, G. Cavet, S. W. Edwards, S. B. Stepaniants,

S. Duenwald, R. Kleinhanz, A. R. Jones, D. D. Shoemaker, and R. B. Stoughton

(2003) Microarray standard data set and figures of merit for comparing data

processing methods and experiment design. Bioinformatics 19, 956-965

[79] R. Steuer, C. O. Daub, J. Selbig, and J. Kurths (2003) Measuring distances be-

tween variables by mutual information. accepted by Proceedings of 27th Annual

Conference of GfKl

[80] T. R. Hughes, M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, C. D. Ar-

mour, H. A. Bennett, E. Coffey, H. Dai, Y. D. He, M. J. Kidd, A. M. King,

M. R. Meyer, D. Slade, P. Y. Lum, S. B. Stepaniants, D. D. Shoemaker, D. Ga-

chotte, K. Chakraburtty, J. Simon, M. Bard, and S. H. Friend (2000) Functional

Discovery via a Compendium of Expression Profiles. Pac. Symp. Biocomp. 6,

42-51



110 BIBLIOGRAPHY

[81] A. Brazma, J. Vilo (2000) Gene expression data analysis. FEBS Lett. 480,

17-24

[82] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
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