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Abstract

We1 present an extension incorporating Byzantine agents into the epistemic runs-and-systems
framework for modeling distributed systems introduced by Fagin et al. [FHMV95]. Our framework
relies on a careful separation of concerns for various actors involved in the evolution of a message-
passing distributed system: the agents’ protocols, the underlying computational model, and the
adversary controlling Byzantine faulty behavior, with each component adjustable individually.
This modularity will allow our framework to be eventually extended to most existing distributed
computing models. The main novelty of our framework is its ability to reason about knowledge of
Byzantine agents who need not follow their protocols and may or may not be aware of their own
faultiness.

We demonstrate the utility of this framework by first reproducing the standard results regard-
ing Lamport’s happened-before causal relation [Lam78] and then identifying its Byzantine analog
representing the necessary communication structure for attaining knowledge in asynchronous sys-
tems with Byzantine faulty agents.

1Roman Kuznets is supported by the Austrian Science Fund (FWF) project RiSE/SHiNE (S11405),
Krisztina Fruzsa is a PhD student in the FWF doctoral program LogiCS (W1255).
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Chapter 1

The Byzantine Message-Passing
Framework

1.1 Agents and States
We consider distributed multi-agent systems with agents viewed as abstract processes, which can
represent humans, computers, or more basic devices.

Definition 1.1.1 (Agents and nodes). We consider a non-empty finite set A of agents. Without
loss of generality, we assume that the agents are numbered: A = J1;nK for some integer n > 1.1
(The case of a distributed system of only one agent is considered degenerate as it does not exhibit
typical properties of a distributed system.) Local timestamps, or simply nodes, are identified
by pairs (i, t) ∈ A×N of an agent i and a timestamp t. For a set X ⊆ A×N of local timestamps,
we define the set

A (X) := {i | (∃t ∈ N)(i, t) ∈ X}

of involved agents

In our distributed model, non-negative integer timestamps 0, 1, 2, . . . are used exclusively for
snapshots of the system’s state. All actions are performed during the open intervals in between,
called rounds: ]0; 1[, ]1; 2[, ]2; 3[, . . . 2 We use the abbreviation t.5 to denote the round ]t; t+ 1[.
For instance, it is equivalent to discuss one agent initiating the sending of a message at timestamp t
and another agent receiving this message by timestamp t+ 1, on the one hand, or to discuss the
message sent and received during the round t.5, on the other hand.

The system begins with each agent in one of its initial states.

Definition 1.1.2 (Initial states). Each agent i ∈ A has a set Σi of local initial states. A joint
initial state, or global initial state, is a tuple of local initial states from

G (0) :=
∏
i∈A

Σi.

An agent’s state can be modified due to internal actions of the agent itself and/or external
events triggered by the environment, represented as a designated agent ε, which is not considered
a member of A. Since we do not assume agents to be of the same type, their sets of initial states,
available internal actions, and observable external events may differ. An example of a local internal
action is incrementing a local counter. An example of a local external event is receiving input
from a motion-detection sensor.

1We use the notation Jk;mK to denote the set of integers from k to m, i.e., {i ∈ N | k ≤ i ≤ m}.
2We use the notation ]k;m[ to denote the set of real numbers strictly between k andm, i.e., {x ∈ R | k < x < m}.
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Definition 1.1.3 (Local internal actions and events ). Inti denotes the set of all local internal
actions of agent i ∈ A. Exti denotes the set of all local external events it can observe. We
use

• a, a′, a′′, . . . , a1, a2, . . . , for local internal actions,

• e, e′, e′′, . . . , e1, e2, . . . , etc. for local external events, and

• o, o′, o′′, . . . , o1, o2, . . . , u, u
′, u′′, . . . , u1, u2, . . . as a generic notation for both events and ac-

tions.

We consider a message-passing system whereby agents communicate exclusively by messages.
Unlike other actions, which may be specific to an agent, messages should be understandable for
both the sender and receiver. Hence, we assume one uniform set of messages comprehensible for
all agents.

Definition 1.1.4 (Messages). We denote by Msgs the (possibly infinite) set of messages that
agents can send to each other. For any two agents i, j ∈ A, a message µ ∈ Msgs can be

• sent by agent i to agent j (possibly in multiple copies), which constitutes an internal action
of i and is recorded3 in agent i’s history as send(j, µk) for the kth copy of the message; we
consider send(j, µ0) to be the master copy and denote it simply by send(j, µ) in protocols
where multiple copies are not necessary;

• received by agent j from agent i, which constitutes an external event for j and is recorded
in agent j’s history as recv(i, µ) (note that j is not aware whether multiple copies of this
message have been sent by i to j and cannot tell which copy it has received).

Remark 1.1.5 (Channel implementation). We chose not to model communication channels explic-
itly. The way messages are delivered from one agent to another is governed by the environment ε
but this process remains a black box with certain postulated guaranteed properties, e.g., we will
present tools capable of ensuring that successfully delivered messages arrive in the same round
they have been sent. The most important property of our message-passing system is that it is
incorruptible. Agents do not have access to it. In particular, Byzantine agents cannot in any way
affect message delivery. The most they can do is to send false information, but cannot pretend
that this false information comes from a reliable source.

This might be viewed as a restriction on their Byzantine power. Fortunately, the model is
flexible enough to also implement agents impersonating other agents. The underlying assumption
of our model is that two communicating agents would necessarily recognize each other (this is
sometimes referred to as “oral messages”). Thus, in order to mask one’s identity, one simply needs
to transfer messages through a relay station. Thus, the unfalsifiable identity of the last sender
of the message will belong to such a relay station, whereas the identity of the originator of the
message would have to be part of the message content and, hence, malleable. In cases where there
is no obvious physical manifestation for such a relay station, e.g., for wireless communication,
we can still use a relay station to represent the medium that makes the communication possible.
Without going into the technical details, we also remark that relay stations can be implemented
without the increase in latency in message delivery.

Remark 1.1.6 (Global ids and global view). Allowing multiple copies of the same message serves
only one purpose: to enable sending several duplicates of the same message in the same round.
Generally, these copies need not be used and, conversely, their use does not have any effect on
the sender’s behavior. In particular, there is no obligation to use consecutive numbers for copies
nor to always use a fresh copy number in following rounds.4 Thus, despite having a possibility to
distinguish all sent messages, agents are under no obligation to do so.

3The exception is the case when sending of the message was a Byzantine action. Then the record of sending can
be missing or corrupted, in particular, it can look like another action.

4However, within one round each new copy requires a fresh number. Otherwise, it will be conflated with the
same-numbered copy because messages form a set.
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Thus, the same copy k of the same message µ can be sent from i and received by j multiple
times with the sent messages send(j, µk) and received messages recv(i, µ) all looking the same for
agents i and j respectively. The environment ε, which also plays the role of the delivery system,
must, however, be able to distinguish among identical copies of messages with identical contents
but sent/received at different times. This is modelled by a global message identifier id ∈ N, or
simply GMI, which can be compared to a tracking number used by the environment to uniquely
identify each message. Agents never observe this GMI.

Further, while agent i only observes messages sent by itself and its own actions and events, the
environment should distinguish between a message µ sent to j from i and a message with the same
content µ sent to j by another agent i′, between action a by i and the same action a by j, between
event e observed by i and the same event e observed by j. Thus, the environment represents

• copy k of a message µ sent from i to j and assigned GMI id in the format gsend(i, j, µ, id)
with the information of the copy number k transferred to the GMI id,

• the same copy of the same message when received by j in the format grecv(j, i, µ, id) ,

• action a by agent i in the format A = internal (i, a),

• event e observed by i in the format E = external (i, e).

We will refer to this as the global or environment’s view, as opposed to the local view send(j, µk)
and recv(i, µ) of the sending and receiving agents respectively, a of the acting agent, and e of the
observing agent. We denote

• globally presented actions by A,A′, A1, etc.,

• globally presented events by E,E′, E1, etc., and

• globally presented either by O,O′, O1, . . . , U, U
′, U1, . . . .

We assume that a′′ and A′′ or e13 and E13, etc. represent the same action/event presented locally
and globally respectively.

After we define protocols and the normative, by-the-protocol behavior for agents, we will
introduce agents with Byzantine behavior, i.e., behavior defying their protocols.

Remark 1.1.7 (Modelling asynchronous agents). Asynchronous agents do not have access to the
global clock of the system. In particular, they should not be able to count the rounds passed
from the beginning. This is implemented by letting agents skip one or more rounds completely.
For each round, the environment ε controls whether an agent is to be awoken to implement its
protocol and/or observe some external events or is to skip the round.

This choice for agent i is implemented by three system events: go(i), sleep (i), and hibernate (i).
None of these events are registered by the agents. The go(i) event, unless countermanded by
sleep (i) or hibernate (i) causes the agent to implement its protocol for this round. Even if the
protocol prescribes to stand by and do nothing, the agent would still record the passage of time.
Independently, the agent records the passage of time whenever it observes any event5 other than
a Byzantine event perceived as the special no-op action Â.

Events sleep (i) and hibernate (i) model situations when the agent fails to act due to a mal-
function. They differ in whether, despite not acting, the agent is supposed to notice the passing
round or not. Note that we are distinguishing between the agent actively doing nothing (observing
the round passing without any action) and passively not doing anything (not being aware of the
passing round at all). For either option, we present a possible malfunction resulting in it (in the
absence of any actions or events).

5It might seem that waking up agents to receive messages interferes with asynchronicity. However, just like
go(i), the delivery of messages is controlled by the environment. In particular, the environment can make the agent
skip rounds by postponing all message deliveries.
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Correct Byzantine
Observing the round go(i) sleep (i)
Not being aware of the round hibernate (i)

Table 1.1: Possibilities regarding agent’s actions in a round.

Remark 1.1.8 (Sufficient conditions for message transfer). As can be seen from the preceding
remark, it may happen that despite an agent’s protocol prescribing it to send a message, this action
is thwarted by the environment not waking up the agent. Additionally, a properly functioning
agent should not be able to receive a message that was not yet sent (i.e., sent no later than in the
same round). This causally motivated restriction on the model will be implemented by a special
filter (see Def. 1.2.19) that uses the GMI of the message to distinguish among multiple duplicate
messages if need be. This filter can be viewed as part of the environment.

Because of the active role agents play in actions, there are more ways to violate rules while
performing them. We discuss Byzantine events and actions separately.

Remark 1.1.9 (Modelling Byzantine events). In the spirit of the distributed paradigm, i.e., in
the absence of a global observer, we do not model global events. Even if one event is observed
by several agents, we model these observations independently and do not generally postulate the
event to be registered by all agents in the same round. In other words, the fact that one agent
failed to observe event e or observed it too late, despite another agent having observed it (earlier)
does not generally make the first agent’s behavior incorrect.6

Instead the faults are agent-centric. It is not an event itself that causes the fault, it is the agent’s
perception of the event (with the exception of system events). Consequently, the only difference
we model is between the agent recording an event e that happened to it vs. the agent recording e
even though e did not take place. Note that the two versions are incompatible. Consequently, they
never happen simultaneously. More precisely, the environment never attempts simultaneously a
correct and faulty event that leave the same trace in the agent’s local history.

Remark 1.1.10 (Modelling Byzantine actions). Unlike events, which are not controlled by the
agent, actions depend on its will. Accordingly, apart from recording its own actions incorrectly,
the agent can also perform wrong actions, i.e., a set of actions not envisioned by its protocol. It is
also clear that whether the action is correct and whether it is correctly recorded are independent
of each other. Accordingly, there are four possibilities:

• a correct action is correctly recorded;

• a correct action is mistaken for another action or possibly not recorded at all;

• an incorrect action is correctly recorded;

• an incorrect action is mistaken for another (possibly correct) action or possibly not recorded.

Clearly, all but the first case represent faulty agents. It is especially important to distinguish
which action took place and which action (if any) the agent thinks took place for the action of
sending a message. We assume that all messages actually sent, whether correctly or otherwise and
independent of whether the agent retains a record of sending it, are treated by the environment
in the same way. In particular, the environment always assigns a correct GMI for all messages
actually sent meaning that Byzantine agents are not able to deceive the environment as to the
identity of their messages or, indeed, as to the Byzantine nature of these messages. However,
agent i may, for instance, think that a message was sent to agent j, whereas in fact it was sent
to k. The GMI for such a message and all the delivery procedures will correspond to the true
state of affairs. In particular, the environment would not be allowed to deliver this message to j

6If it is absolutely necessary for correct agents to observe a particular event, it is still possible to model agents
guilty of not observing it by creating a special Byzantine event distracted.
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in a correct manner. Similarly, the agent sending a message without being aware of it is modeled
by the send action being mistaken for the special Byzantine no-op action Â. More generally,
any action may remain unregistered by the agent when mistaken for Â. Conversely, the agent
may believe to have acted despite not doing anything if Â is mistaken for this action. The latter
situation still falls under “actively doing nothing,” at least from the agent’s point of view. Thus,
Â is used as a Byzantine action that has no consequences and leaves no record. In particular, if Â
is the only action/event of agent i during a round (independently of which actions it erroneously
performed in reality), then the local history of the agent remains unchanged, unless sleep (i) forces
the agent to mark time.

Remark 1.1.11 (The culprit of Byzantaneity). Despite the Byzantine agents acting any way
they like, they should be able to reason about their actions the same way as uncorrupted agents.
This is especially crucial for agents who are corrupted due to malfunction rather than malfeasance.
This need is at the heart of our decision to shift the control of Byzantine behavior from corrupted
agents to the environment. Thus, formally, a Byzantine “action” of an agent, including sending a
Byzantine message, is not modelled as the agent’s action, but is instead an external event imposed
on the agent by the environment, an event specifying both which action took place and which
action the agent thinks took place. The agent is unable to distinguish between itself performing
some action a and the environment imposing some action that looks like a to the agent. In
particular, as will be shown later, the only way for the agent to learn that it is corrupted is by
observing the discrepancies between its actions and those demanded by its protocol, more precisely,
those discrepancies the agent is able to perceive.

Remark 1.1.12 (How environment communicates). Our model does not provide for message
passing between an agent and the environment because such messages would be redundant. On
the one hand, the environment is considered to be omniscient and already knows everything the
agents might want to communicate to it. As for the information flow in the opposite direction,
the environment is not viewed as a conscious entity trying to communicate (though, in principle,
information can be delivered to an agent from the environment by means of external events).

We now flesh out the formal definitions for the concepts just discussed:

Definition 1.1.13 (Global message identifier function). We fix a function for computing GMIs
to be any computable one-to-one total function id : A×A×Msgs × N× N→ N.7

Note that the two functions retrieving the arguments t and k from id(i, j, µ, k, t) respectively
would always be computable due to the injectivity and totality of id(·). However, it is beneficial
to choose id(·) so as to additionally make these two functions computable efficiently.

Definition 1.1.14 (Internal actions). From the point of view of agent i ∈ A, its correct internal
actions, which can be prescribed by its protocol, consist of the send actions from Def. 1.1.4 and
local internal actions a ∈ Inti (Def. 1.1.3):

Actionsi := {send(j, µk) | j ∈ A, µ ∈ Msgs , k ∈ N} t Inti. (1.1)

The same actions from the point of view of the environment look like

GActionsi := {gsend(i, j, µ, id) | j ∈ A, µ ∈ Msgs , id ∈ N} t {internal (i, a) | a ∈ Inti} (1.2)

We also define the sets of all (correct) internal actions that at least one of the agents can take:

Actions :=
⋃
i∈A

Actionsi (1.3)

GActions :=
⊔
i∈A

GActionsi (1.4)

7A simple though not necessarily the most efficient possibility is to use 2i ·3j ·5dµe ·7k ·11t, where dµe represents
the numerical code of the message µ according to some arbitrary but fixed coding scheme.
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Remark 1.1.15. Note that the union in (1.4) is disjoint because each action viewed globally
necessarily specifies the acting agent. Even if the same local internal action a ∈ Inti ∩ Intj can
be performed by several agents, the representations internal (i, a) 6= internal (j, a) of the action
for these agents i 6= j are distinct.

Definition 1.1.16 (External events). From the point of view of agent i ∈ A, correct external
events that it can observe consist of the recv actions from Def. 1.1.4 and local external events
e ∈ Exti (Def. 1.1.3):

Eventsi := {recv(j, µ) | j ∈ A, µ ∈ Msgs} t Exti (1.5)

The same events from the point of view of the environment look like

GEventsi := {grecv(i, j, µ, id) | j ∈ A, µ ∈ Msgs , id ∈ N} t {external (i, e) | e ∈ Exti} (1.6)

For each correct external event E ∈ GEventsi of agent i, there is a matching Byzantine
external event

fake (i, E)

representing the agent being mistaken about observing the (local version of the) event E. For
A,A′ ∈ {Â} t GActionsi, each of which is either a correct global action of agent i or no-op Â,
there is a matching Byzantine external event

fake (i, A 7→ A′)

representing the situation when the agent performs (the local version of) action A but thinks that
it performed (the local version of) action A′. When the agent faithfully records the performed
Byzantine action, we abbreviate

fake (i, A 7→ A) = fake (i, A).

Note that fake (i,Â) acts as a malfunction without any action or any trace in the local history.
Hence, we abbreviate it as

fake (i,Â) = fail (i).

Correct actions are always recorded faithfully. (It can, however, happen that one or several faulty
actions are merged with a correctly performed action in the local history.) We do not impose any
a priory restrictions on E, A, or A′, i.e., a Byzantine agent can mistakenly observe any event,
mistakenly perform any action, and mistake any performed action or inaction for any other action
or for inaction.

In particular, for received Byzantine messages, the environment creates the message “out of
thin air” as if it has been delivered. Such a message will be supplied with a GMI for uniformity’s
sake but such GMIs is not assumed to carry any information. Indeed, this GMI will play no role
whatsoever as it will be stripped from the message upon delivery. It can even violate the uniqueness
of GMIs. Similarly, a Byzantine sent message A is created already with a well-formed GMI, unlike
the correctly sent messages, which are supplied with a GMI in a separate step after creation.
However, the delivery of messages A with GMI does not depend on whether they originate as
Byzantine or correct ones. At the same time, if the agent is mistaken about having sent a message
A′, its GMI is again immaterial as the agent will not see it nor the environment will ever deliver
this “message.”

We use fake (i, U) to denote an arbitrary fake event fake (i, E) or action fake (i, A 7→ A′) and
denote the set of all such Byzantine events of agent i by

BEventsi :=
{

fake (i, E) | E ∈ GEventsi
}
t
{

fake (i, A 7→ A′) | A,A′ ∈ {Â} tGActionsi
}

(1.7)

In addition to correct and Byzantine events, the environment uses system events to determine
which agents can act in each round:
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• go(i) approves i’s actions prescribed by its protocol;

• sleep (i) instructs i to forfeit acting in this round but wakes it up anyways, marking it
Byzantine;

• hibernate (i) instructs i to forfeit acting in this round without waking it, marking it Byzan-
tine.

System events SysEventsi := {go(i), sleep (i), hibernate (i)} are not (directly8) observable by agents
and, hence, are not part of Eventsi.9

The complete set of events affecting agent i that the environment can trigger is

GEventsi := GEventsi t BEventsi t SysEventsi (1.8)

We also define the sets of external events affecting all agents as

Events :=
⋃
i∈A

Eventsi, GEvents :=
⊔
i∈A

GEventsi,

GEvents :=
⊔
i∈A

GEventsi, BEvents :=
⊔
i∈A

BEventsi,

SysEvents :=
⊔
i∈A

SysEventsi.

Remark 1.1.17. Since action A′ in fake (i, A 7→ A′) is a complete fiction only existing in i’s
imagination, we could have written it in the format fake (i, A 7→ a′) for the action a′ already
presented from i’s local point of view. The only reason we do not do that is to preserve uniformity
and avoid mixing local and global points of view.

Remark 1.1.18 (Modelling Byzantine inaction). As can be seen from Table 1.1, these three
events governing actions have the following meanings:

• the event hibernate (i) prevents the agent from acting or from waking up other than to
observe other events and makes the agent Byzantine;

• the event sleep (i) wakes the agent up but prevents it from acting and makes it Byzantine;

• the event go(i) wakes up the agent and prompts it to fulfill its protocol;

• finally, without any of the three events, the agent would not act, would not wake up unless
to observe other events and would not become Byzantine unless other events cause it.

Since hibernate (i), sleep (i), and go(i) are generally pairwise incompatible, the environment never
issues more than one event from SysEventsi, much like she never attempts both a correct event
E ∈ GEventsi and its fake version fake (i, E).

Note that {hibernate (i)} is similar in its effect to {fail (i)} in the absence of go(i): namely,
the Byzantine inaction when the agent does not act, does not mark time (unless because of other
events), and becomes Byzantine. However, the similarity is not perfect: fail (i) is a generic failure
due to the lack of some action, whereas hibernate (i) signifies the specific failure to act in the
round altogether. Accordingly, fail (i) is compatible with go(i), whereas hibernate (i) is not. Thus,
having this separation makes sense for diagnostic purposes. We generally intend to have a full
taxonomy of possible failures: failures based on events, based on actions, based on the absence of
actions, and based on failure to follow system instruction go(i).

Remark 1.1.19. It is possible to define the correct version internal (i,Â) of fake (i,Â) but, given
that Â is not recorded in the local history, this would be a wholly redundant operation.

8Events go(i) can, under certain circumstances, be detected by the acting agent based on the fact that it is
acting. However, mere acting does not generally imply go(i) by itself since the actions can also be Byzantine.

9Another group of events not observed by the agents are fake
(
i, A 7→Â

)
.
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Remark 1.1.20. There can be two main causes for Byzantine behavior:

• the agent may want to subvert the correct procedures and actively engages in sabotage;

• the agent is malfunctioning, which can result in incorrect sensor data being recorded, actions
performed in reaction to this erroneous data, and/or actions in response to correct data but
not correctly implemented.

Our formal model is attuned to the latter case, where the malfunctions are imposed by the en-
vironment. While the former case remains faithfully represented as the environment is free to
implement any malicious intent by the agent, the epistemic approach is primarily relevant in the
setting with malfunctioning agents. Indeed, if the agent has a complete freedom to misbehave
to achieve a goal different from the stated protocol, then its protocol need not contain any self-
diagnostic tools whereas for other agents its Byzantine actions are indistinguishable from random
actions. By contrast, a malfunctioning agent that is capable of detecting its own faultiness can
make necessary adjustments or shut down.

Remark 1.1.21 (Perfect recall). We consider agents capable of perfect recall. More precisely,
they do have perfect recall while acting correctly and their memory remains stable once recorded.
However, Byzantine agents may misremember some of their events/actions. In particular, Byzan-
tine agents may not remember any actions they performed. If perfect recall is desired for all
agents, then Byzantine actions of the type fake (i, A 7→ A′) with A 6= A′ should be prohibited.

Perfect recall imposes certain requirements on the memory available to the agent. The choice
between perfect recall and history-free agents is akin to the difference between Turing machines
and finite-state automata, i.e., the choice between expressivity and efficiency. In this report, we
concentrate on the formalism that is expressive. Hence, the state of an agent is defined as its local
history. In the string of following definitions as well as in the following statements and proofs, we
assume that a set A = J1;nK of agents, sets Σi of initial states, sets Inti of local internal actions
and sets Exti of local external events for each agent i ∈ A, as well as a set Msgs of messages are
arbitrary but fixed and we do not repeat this list every time.

Definition 1.1.22 (Agent’s history). A history hi of agent i ∈ A, or its local state, is a
non-empty sequence

hi = [λm, . . . , λ1, λ0]
for some m ≥ 0 such that λ0 ∈ Σi and ∀j ∈ J1;mK we have λj ⊂ Actionsi t Eventsi. In this case
m is called the length of history hi and denoted |hi|. We say that a set λ ⊂ Actionsi t Eventsi
is recorded in the history hi of agent i and write λ ⊂ hi iff λ = λj for some j ∈ J1;mK. We say
that o ∈ Actionsi t Eventsi is recorded in the history hi and write o ∈ hi iff o ∈ λ for some set
λ ⊂ hi.

Definition 1.1.23 (Environment’s history). A history h of the system with n agents, or the
global state, is a tuple

h := (hε, h1, . . . , hn)
where the history of the environment is a sequence

hε = [Λm, . . . ,Λ1]

for some m ≥ 0 such that ∀j ∈ J1;mK we have Λj ⊆ GActions tGEvents and hi is a local state of
each agent i ∈ J1;nK. In this case m is called the length of history h and denoted |h| := |hε|, i.e.,
the environment has the true global clock. We say that a set Λ ⊂ GActions tGEvents happens
in the environment’s history hε or in the system history h and write Λ ⊂ hε iff Λ = Λj for some
j ∈ J1;mK. We say that O ∈ GActions tGEvents happens in the environment’s history hε or in
the system history h and write O ∈ hε iff O ∈ Λ for some set Λ ⊂ hε.

Definition 1.1.24 (Sets of local and global states). Li is the set of local states of agent i, i.e.,
the set of all histories of agent i. Lε is the set of histories of the environment. L :=

∏
i∈ALi is

the set of joint local states. G is the set of global states.
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The global state of the system contains both the local states of all agents and the omniscient
view of the environment. It provides a complete snapshot of the system at a specific time, including
the real picture of events and how these events are perceived by agents.

The following is an exhaustive list of the notation we use to describe main stages in a lifecycle
of events and actions. For completeness purposes, this list also mentions protocols that will be
formally introduced later. In this list, i, j ∈ A are agents, µ ∈ Msgs is a message, and id ∈ N is a
GMI.

Correct internal actions and their Byzantine copies:

• a ∈ Inti represents the following:

– in i’s protocol, this prescribes agent i to perform the local internal action a if it is woken
up for the round; this command by itself does not affect whether the agent marks the
passage of time: that depends on whether the agent is woken up;

– in i’s local history, this means that agent i marked the passage of time and thinks it
performed a, but does not necessarily know whether it was really performed and, if so,
whether it was performed according to the protocol or in a Byzantine fashion.

• internal (i, a) for a ∈ Inti represents the following:

– in the environment’s history, this means that i performed a according to i’s protocol
and marked the passage of time.

• fake (i, internal (i, a) 7→ A′) for a ∈ Inti and A′ ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to perform a in a Byzantine fashion
(i.e., irrespective of both the protocol and whether the agent is woken up) but believe
that the local version of A′ was performed instead; if approved, this event causes the
agent to mark the passage of time;

– in the environment’s history, this means that i performed a in a Byzantine fashion but
believed that the local version of A′ was performed instead and marked the passage of
time.

• fake (i, internal (i, a) 7→ Â) for a ∈ Inti represents the following:

– in the environment’s protocol, this prescribes agent i to perform a in a Byzantine fashion
but forget about it; this command does not affect whether the agent marks the passage
of time;

– in the environment’s history, this means that i performed a in a Byzantine fashion
without recording it in its local history; whether i marked the passage of time depends
exclusively on other actions/events of the round.

• fake (i, A′ 7→ internal (i, a)) for a ∈ Inti and A′ ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to perform the local version of A′
but believe that a was performed instead while marking the passage of time;

– in the environment’s history, this means that i performed the local version of A′ in a
Byzantine fashion but believed that a was performed instead and marked the passage
of time.

• fake (i,Â 7→ internal (i, a)) for a ∈ Inti represents the following:

– in the environment’s protocol, this prescribes agent i to mistake inaction for perform-
ing a while marking the passage of time;

– in the environment’s history, this means that i did not do anything but believes to have
performed a and marked the passage of time.
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Sending messages, correctly or in a Byzantine way:

• send(j, µk) represents the following:

– in i’s protocol, this prescribes agent i to send kth copy of a message µ to j if it is
woken up for the round; in most cases, only one copy, the master copy is sent, which
is denoted µ0 or simply µ; this command by itself does not affect whether the agent
marks the passage of time: that depends on whether the agent is woken up;

– in i’s local history, this means that agent i marked the passage of time and thinks it
sent kth copy of a message µ to j, but does not necessarily know whether it was really
sent and, if so, whether it was sent according to the protocol or in a Byzantine fashion.

• gsend(i, j, µ, id) represents the following:

– in the environment’s history, this means that i marked the passage of time, sent a
message µ to j according to i’s protocol, and the message was assigned the GMI id
(which contains information about the copy number).

• fake (i, gsend(i, j, µ, id) 7→ A′) for A′ ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to send a message µ to j in a
Byzantine fashion and the environment to assign the GMI id (which contains informa-
tion about the copy number) to the message and is computed correctly with respect to
the current timestamp;, but i would believe that the local version of A′ was performed
instead; if approved, this event causes the agent to mark the passage of time;

– in the environment’s history, this means that i marked the passage of time, sent a
message µ to j in a Byzantine fashion and the message was assigned the GMI id, but i
believes that the local version of A′ was performed instead; notwithstanding this belief,
µ can be correctly received by j.

• fake (i, gsend(i, j, µ, id) 7→ Â) represents the following:

– in the environment’s protocol, this prescribes agent i to send a message µ to j in a
Byzantine fashion and the environment to assign the GMI id to the message and forget
about it; the GMI is computed correctly with respect to the current timestamp; this
command does not affect whether the agent marks the passage of time;

– in the environment’s history, this means that i sent a message µ to j in a Byzantine
fashion and the message was assigned the GMI id, but forgot about it; whether i
marked the passage of time depends exclusively on other actions/events of the round;
notwithstanding, µ can be correctly received by j.

• fake (i, A 7→ gsend(i, j, µ, id)) for A ∈ GActionsi represents the following:

– in the environment’s protocol, this prescribes agent i to perform the local version of A
but mistakenly believe that it is sending a message µ to j (GMI id does not play a
role); if approved, this event causes the agent to mark the passage of time;

– in the environment’s history, this means that i marked the passage of time and per-
formed the local version of A but mistakenly believes to have sent copy µ to j; despite
i’s belief, this event does not enable j to receive µ correctly.

• fake (i,Â 7→ gsend(i, j, µ, id)) represents the following:

– in the environment’s protocol, this prescribes agent i to mistakenly believe that it is
sending a message µ to j; if approved, this event causes the agent to mark the passage
of time;

– in the environment’s history, this means that i marked time and mistakenly believes to
have sent a message µ to j; despite i’s belief, this event does not enable j to receive µ
correctly.
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Byzantine inaction

• fake (i,Â) represents the following:

– in the environment’s protocol, this prescribes agent i to not do anything in a Byzantine
fashion; this command does not affect whether the agent marks the passage of time;

– in the environment’s history, this means that i became Byzantine if it wasn’t already;
whether i marked the passage of time depends exclusively on other actions/events of
the round.

Correct external events and their Byzantine copies:

• e ∈ Exti represents the following:

– in i’s local history, it means that i marked the passage of time and believes to have
observed e happened, but does not necessarily know whether it really happened;

• external (i, e) for e ∈ Exti represents the following:

– in the environment’s protocol, it prescribes the environment to impose e on agent i; it
is incompatible with fake (i, external (i, e)); if approved, this event causes the agent to
mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and observed e.

• fake (i, external (i, e)) for e ∈ Exti represents the following:

– in the environment’s protocol, it prescribes agent i to mistakenly believe to have ob-
served e; it is incompatible with external (i, e); if approved, this event causes the agent
to mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and mistakenly
believes to have observed e.

Receiving messages, correctly or in a Byzantine fashion:

• recv(j, µ) represents the following:

– in i’s local history, it means that i marked the passage of time and believes to have
received a message µ from agent j, but does not necessarily know whether the receipt
of the message really happened.

• grecv(i, j, µ, id) represents the following:

– in the environment’s protocol, it prescribes to deliver to i a message µ sent earlier with
GMI id by j; it is incompatible with fake (i, grecv(i, j, µ, id′)) even if the fake id′ is
different; if approved, this event causes the agent to mark the passage of time;

– in the environment’s history, it means that i marked the passage of time and received
a message µ sent earlier by j with GMI id.

• fake (i, grecv(i, j, µ, id)) represents the following:

– in the environment’s protocol, it prescribes agent i to falsely believe to have received a
message µ from j (GMI id does not play a role); it is incompatible with grecv(i, j, µ, id′)
even if the correct id′ is different; if approved, this event causes the agent to mark the
passage of time;

– in the environment’s history, it means that i marked the passage of time and falsely
believes to have received µ from j.
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Environment controlling agents’ actions:

• go(i) represents the following:

– in the environment’s protocol, it prescribes agent i to wake up and perform some set
of actions prescribed by i’s protocol; it is incompatible with sleep (i) and hibernate (i);
if approved, this event causes the agent to mark the passage of time (even if no actions
are prescribed by the protocol);

– in the environment’s history, it means that i was woken up, marked the passage of time,
and performed some set of actions prescribed by i’s protocol.

• sleep (i) represents the following:

– in the environment’s protocol, it prescribes agent i to malfunction by marking the pas-
sage of time but skipping whatever actions prescribed by i’s protocol; it is incompatible
with go(i) and hibernate (i); if approved, this event causes the agent to mark the passage
of time;

– in the environment’s history, it means that i malfunctioned, was woken up and marked
the passage of time but was not allowed to perform any actions prescribed by i’s pro-
tocol.

• hibernate (i) represents the following:

– in the environment’s protocol, it prescribes agent i to malfunction by skipping whatever
actions prescribed by i’s protocol; it is incompatible with go(i) and sleep (i); if approved,
this event prevents marking the passage of time due to actions; however, the passage
of time may be triggered by other events;

– in the environment’s history, it means that i malfunctioned, was not woken up and did
not perform any actions prescribed by i’s protocol; moreover, the passage of time was
not marked due to go(i) or sleep (i) but may have been marked due to other events.

1.2 Transition Function
There are multiple consistency restrictions to be imposed on the histories to ensure that informa-
tion from a local history hi, incomplete as it might be, does not contradict what is recorded by
the environment objectively and omnisciently in hε. We now start introducing these restrictions,
dividing them into several types according to the parts of the framework responsible for upholding
them.

Our general ideology is that (correct) agents act to achieve a particular goal, for which the
agent’s protocol takes the responsibility. The environment plays a triple role. Firstly, it is an
impartial physical medium enforcing the consistency of histories and the laws of causality. In
particular the environment increments all histories, local and global, in a coherent way and filters
out events that are considered “physically” impossible, such as a (non-Byzantine) delivery of
a message that was never sent. Secondly, the environment is the source of external unbiased
indeterminacy: it simply records all possibilities the future can have in store. “Unbiased” here
means that possibilities should not be omitted in the interests of short-term expedience, such as
achieving the worst-case scenario. The latter is done using the third part of the environment that
performs the non-deterministic choice and is designated the adversary. In other words, it should
not be possible to guarantee avoiding good (or any other possible) choices but it should be possible
to avoid them by chance.

Since agents are assumed not to have the complete overview of the system, agent i’s protocol Pi
can only rely on i’s local view, i.e., its local state at the moment. In particular, it is crucial for
implementing asynchronous agents that Pi cannot use timestamp t as a parameter.

Conversely, the protocol Pε of the omniscient environment can use timestamp t, in fact using t
is necessary to correctly forge GMIs for sent Byzantine messages. At the same time, Pε should
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not depend on the current (global) state to preserve the unbiased representation of the physical
laws and to facilitate proofs of properties of our framework.

For instance, a (synchronous-communication) receiver can be modeled by an environment pro-
tocol that “listens on all frequencies”, i.e., attempts to deliver all messages at all times. However,
all messages that have not been sent are filtered out and not delivered. Thus, the behavior of the
system does depend on the global state, but the environment’s protocol does not.

Definition 1.2.1 (Coherent events). Let t ∈ N be a timestamp. A set S ⊂ GEvents of events is
called t-coherent if it satisfies the following conditions:

1. for any fake (i, gsend(i, j, µ, id) 7→ A) ∈ S, the GMI id = id(i, j, µ, k, t) for some k ∈ N;

2. for any i ∈ A at most one of go(i), sleep (i), and hibernate (i) is present in S;

3. for any i ∈ A and any e ∈ Exti at most one of external (i, e) and fake (i, external (i, e)) is
present in S;

4. for any grecv(i, j, µ, id1) ∈ S, no event of the form fake (i, grecv(i, j, µ, id2)) belongs to S for
any id2 ∈ N;

5. for any fake (i, grecv(i, j, µ, id1)) ∈ S, no event of the form grecv(i, j, µ, id2) belongs to S for
any id2 ∈ N;

Remark 1.2.2. It is possible that two copies grecv(i, j, µ, id1) and grecv(i, j, µ, id2) of the same
message, possibly sent at different rounds, arrive simultaneously. While the receiving agent i
would only know that the message µ from j is received, without being aware of various copies or
their multiplicity, the ability to receive multiple copies is important, for instance, when message
delivery has to be reliable.

We also leave a possibility of fake (i, grecv(i, j, µ, id1)) and fake (i, grecv(i, j, µ, id2)) at the same
time making agent i falsely think that it received the message µ from j. While one such error
makes all further ones redundant, there is no material difference in the system’s behavior when
two or more of such errors are present. Hence, to avoid unnecessary technical work, we leave this
as a possibility. Needless to say, this possibility can always be precluded in specific protocols.

Lemma 1.2.3. Any subset of a t-coherent set is itself t-coherent.

Definition 1.2.4 (Protocol).

1. A (non-deterministic) protocol for agent i ∈ A is any function

Pi : Li → 22Actionsi \ {∅} (1.9)

For a local state hi ∈ Li of agent i, each member S ∈ Pi (hi) is a subset of Actionsi and
represents one of non-deterministic choices prescribing a set of actions for i in this local
state. Note that Pi (hi) 6= ∅ means that an agent always has at least one such choice S,
which might be to perform no actions if S = ∅.

2. Given individual agents’ protocols P1, . . . , Pn, their joint protocol is a function of global
states that returns a tuple of action sets computed according to agent’s protocols, one set
per agent: for a global state h = (hε, h1, . . . , hn),

P (h) :=
(
P1 (h1), . . . , Pn (hn)

)
(1.10)

3. A (non-deterministic) protocol for the environment is any function

Pε : N −→ 22GEvents
\ {∅} (1.11)
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such that every S ∈ Pε (t) is t-coherent. In other words, for each t ∈ N, each member
S ∈ Pε (t) is a t-coherent subset of GEvents , i.e.,

S ⊂ {grecv(i, j, µ, id) | i, j ∈ A, µ ∈ Msgs , id ∈ N} t {go(i) | i ∈ A} t
{external (i, e) | i ∈ A, e ∈ Exti} t {sleep (i) | i ∈ A} t

{fake (i, E) | i ∈ A, E ∈ GEventsi} t {hibernate (i) | i ∈ A} t{
fake (i, A 7→ A′) | i ∈ A, A,A′ ∈ {Â} tGActionsi

}
,

and represents one of the non-deterministic possibilities for what can happen in the system
at time t.5. The two conditions mean that no correct event can be accompanied by its faulty
version and any faulty send has a correctly computed GMI. Note that Pε (t) 6= ∅ means that
the environment always has at least one such choice S, which might be to impose no events
if S = ∅.

Definition 1.2.5. For σ ∈ {0, 1} and a set X we define

Xσ :=
{
X if σ = 1,
∅ if σ = 0.

Notation 1.2.6. We denote by C the set of all joint protocols.

Notation 1.2.7. We denote by Cε the set of all environment protocols.

Remark 1.2.8. All sets produced by protocols in Cε at time t are t-coherent.

Remark 1.2.9. Depending on the intended strength and type of Byzantine agents, we may further
restrict the set of functions allowed as protocols of the environment.

Remark 1.2.10 (Time sensitive actions). The dependence of the environment’s protocol on time
enables modelling of time-sensitive actions. For instance, such a protocol can implement a global
prohibition on message delivery during designated quiet time.

Remark 1.2.11 (Life must go on). Both the environment and each of the agents always has
at least one (possibly empty) set of actions/events at its disposal (no-apocalypse clause). The
situation when the agents crash and cannot proceed further can still be represented, e.g., by
designating a special crash action.

As we saw, Byzantine send and receive events, as well as correct receive events, are both
initiated and performed by the environment, which is why we chose to represent these events as
fully formed, i.e., supplied with a GMI, from the very beginning. In fact, correct receive events
must contain a GMI to determine whether a message with such a GMI was sent earlier, which is
part of the definition of its correctness. The situation with correct send actions is different: they
are initiated by an agent, who must remain unaware of a GMI, but the message is propagated to
the recipient by the environment. Thus, when an active agent sends a message, it must first be
transformed from the local to the global view. This task is performed by the labeling functions
labeli for each i ∈ A. Similarly, when the message, correct or fake, is delivered or a fake event
occurs for an agent, the event must be transformed into its local format before being recorded in
the local history. This is done by the “reverse” function label−1.

Definition 1.2.12 (Labeling functions). For an agent i ∈ A, we define a function

labeli : Actionsi × N −→ GActionsi

converting the local representation of actions to the global format as follows:

labeli (a, t) :=
{

gsend(i, j, µ, id(i, j, µ, k, t)) if a = send(j, µk)
internal (i, a) if a ∈ Inti
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We collect all these functions into one tuple label := (label1, . . . , labeln).
We also define a function converting actions and events from the global format into the local

ones. This function is applied after all fake events are already turned into their benign counterparts
and Â’s are removed by a separate function. Thus, this function does not deal with fake events
or no events.

label−1 : GActions tGEvents −→ Actions t Events

as follows:

label−1 (U) :=



send(j, µk) if U = gsend(i, j, µ, id(i, j, µ, k, t))
send(j, µ0) if U = gsend(i, j, µ,M) and M 6= id(i, j, µ, k, t) for any k, t ∈ N
recv(j, µ) if U = grecv(i, j, µ, id)
a if U = internal (i, a)
e if U = external (i, e)

Function label−1 extends to sets in the standard way: label−1(X) := {label−1(U) | U ∈ X}. For
the functions labeli, we distribute the timestamp parameter to all elements of the set: labeli (X, t) :=
{labeli (a, t) | a ∈ X}.

Remark 1.2.13. The injectivity of the function id used in labeli ensures that each message is
unique from the point of view of the environment.

Remark 1.2.14. The second clause in the definition of label−1 (U) is mostly cosmetic: we make
GMIs id unforgeable, and, hence, this clause will never be used. It is added solely to make
the function label−1 (U) total, thus, avoiding irrelevant complications stemming from the use of
potentially partial functions.

Definition 1.2.15 (Non-deterministic choice for protocols). Given a global history h = (hε, h1, . . . , hn) ∈
G and protocols Pε ∈ Cε for the environment and (P1, . . . , Pn) ∈ C for the agents, we obtain, for
agent i ∈ A and timestamp t ∈ N, the sets of global actions and events to be attempted at the
global state h at t, i.e., in the round t.5, as follows:

1. Events imposed by the environment are a t-coherent set

αtε = Xε (1.12)

for some set Xε ∈ Pε (t) non-deterministically chosen by the adversary.

2. Actions agent i ∈ A would perform if woken up are a set

αh,ti = labeli (Xi, t) (1.13)

for some set Xi ∈ Pi (hi) non-deterministically chosen by the adversary.

3. All these choices are combined in the joint attempted action

αh,t := (αtε , α
h,t
1 , . . . , αh,tn ).

Among the events αtε we distinguish the following subsets for each agent i ∈ A:

1. Regular events for i ∈ A

αtεi := αtε ∩GEventsi = {grecv(i, j, µ, id) ∈ αtε | j ∈ A, µ ∈ Msgs , id ∈ N}t
{external (i, e) ∈ αtε | e ∈ Exti} (1.14)

2. Instructions regarding waking up for i ∈ A

αtgi = αtε ∩ SysEventsi (1.15)
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3. Fake events for agent i ∈ A, including those mimicking the agent’s actions:

αtbi := αtε ∩ BEventsi ={
fake (i, A 7→ A′) ∈ αtε | A,A′ ∈ {Â} tGActionsi

}
t {fake (i, E) ∈ αtε | E ∈ GEventsi}

(1.16)

4. Instructions making agent i Byzantine:

αtfi := αtbi t
(
αtε ∩ {sleep (i), hibernate (i)}

)
(1.17)

Note that sleep (i) and hibernate (i) may be present in both αtgi and α
t
fi

Finally, we define

αtε :=
⊔
i∈A

αtεi αtg :=
⊔
i∈A

αtgi αtb :=
⊔
i∈A

αtbi αtf :=
⊔
i∈A

αtfi

Lemma 1.2.16. Given a global history h ∈ G and protocols Pε for the environment and P1, . . . , Pn
for the agents, for agent i ∈ A and for timestamp t ∈ N, we have that

αtε ⊂ GEvents and αh,ti ⊂ GActionsi.

The environment should not create impossible situations. Most of them are prohibited by the
definition of environment’s protocol. For instance, an event recorded by an agent cannot both
happen and not happen. Accordingly, the environment can only try one of these two possibilities
but not both at the same time.

There is, however, one common type of “causal” impossibility that is not restricted to en-
vironment alone or a particular moment in time: a message cannot be delivered without being
previously10 sent. Due to our necessity to make the environment’s protocol independent of the
global history, which is crucial for many proofs, the environment’s protocol cannot check whether
the message was actually sent in previous rounds (based on the global history) or in the current
round (based in part on the actions chosen by the adversary for the sending agent, the presence
of the go command for it, and other events imposed on this agent). But correctly receiving an
unsent message would break the laws of causality. Since these events cannot be handled by the
environment alone, we create a special filter that weeds them out.

To simplify notation we introduce the following abbreviation:

Definition 1.2.17 (Active/passive, aware/unaware). For a set X ⊆ GEvents we define

active(i,X) :=
{
t if X ∩ SysEventsi = {go(i)},
f otherwise.

(1.18)

aware(i,X) :=
{
t if ∅ 6= X ∩ SysEventsi ∈

{
{go(i)}, {sleep (i)}

}
,

f otherwise.
(1.19)

For readability’s sake we write active(i,X) instead of active(i,X) = t and passive(i,X) instead of
active(i,X) = f , as well as aware(i,X) instead of aware(i,X) = t and unaware(i,X) instead of
aware(i,X) = f .

Corollary 1.2.18. Given that for any S ∈ Pε (t), at most one of system actions can be present

passive(i, S) ⇐⇒ S ∩ SysEventsi ∈
{
∅, {sleep (i)}, {hibernate (i)}

}
, (1.20)

unaware(i, S) ⇐⇒ S ∩ SysEventsi ∈
{
∅, {hibernate (i)}

}
. (1.21)

active(i,X) =⇒ aware(i,X) (1.22)
unaware(i, S) =⇒ passive(i, S) (1.23)

10Here previously sent means sent in one of the preceding rounds or in the same round, whether correctly or in a
Byzantine fashion. On the other hand, when an agent mistakenly thinks the message was sent, it is not considered
sent previously.
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Definition 1.2.19 (Event and action filter functions). We define an event filter function for
Byzantine agents

filterBε : G × 2GEvents × 2GActions1 × · · · × 2GActionsn −→ 2GEvents

as follows. Given a global history h, a set Xε of events attempted by the environment (chosen
by the adversary) and sets Xi of actions to be performed by the agents (also chosen by the
adversary), the function returns the set of all attempted events that are “causally” possible as the
set of events to be actually performed by the environment. Formally, for a set Xε ⊂ GEvents , sets
Xi ⊂ GActionsi for each agent i ∈ A, and a global history h = (hε, h1, . . . , hn) ∈ G , we define

filterBε (h,Xε, X1, . . . , Xn) :=

Xε \
{

grecv(j, i, µ, id) | gsend(i, j, µ, id) /∈ hε ∧

(∀A ∈ {Â} tGActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ hε ∧
(gsend(i, j, µ, id) /∈ Xi ∨ passive(i,Xε)) ∧

(∀A ∈ {Â} tGActionsi) fake (i, gsend(i, j, µ, id) 7→ A) /∈ Xε

}
(1.24)

In addition, we define action filter functions for Byzantine agents i ∈ A

filterBi : 2GActions1 × · · · × 2GActionsn × 2GEvents −→ 2GActionsi

as follows. Given a set of actions Xj ⊂ GActionsj prescribed for each agent j ∈ A by its
protocol (as chosen by the adversary) and a set of events Xε ⊂ GEvents that are performed by
the environment, we define an all-or-nothing

filterBi (X1, . . . , Xn, Xε) =
{
Xi if active(i,Xε)
∅ otherwise

(1.25)

It is obvious from these definitions that these are indeed filter functions on Xε and Xi respec-
tively:

filterBε (h,Xε, X1, . . . , Xn) ⊂ Xε (1.26)
filterBi (X1, . . . , Xn, Xε) ⊂ Xi (1.27)

Thus, after protocols provided a range of possible event/action collections Pε (t) and Pi(hi) and
the adversary chose the collection αtε of events to be attempted by the environment and collections
αh,ti of actions to be performed by each agent if it is awoken, the filter functions determine which
of these events and actions are to actually happen during the round. For this second stage, the
resulting sets are called β-sets by analogy with α-sets.

Remark 1.2.20. While it is clear that an agent observing an event that actually happens cannot
be mistaken about it, the situation with actions is more complex because the agent may not be
certain about the exact action it performs. We chose to leave the agent with the widest variety of
possibilities:

• several faulty actions can be mistaken for one (including the no-op action Â or some action
that actually was performed): fake (i, A1 7→ A), ..., fake (i, Am 7→ A) are generally compati-
ble;

• one faulty action can be mistaken for several actions: fake (i, A 7→ A1), ..., fake (i, A 7→ Am)
are generally compatible (this can also happen when A was actually performed or when A
is the no-op action Â).
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In other words, agents can be confused not only regarding which actions they have performed but
also regarding how many have been performed. Further, the agent may think it has done a lot
without doing anything or vice versa may think it has done nothing despite frantic activity.

Remark 1.2.21. For the case of general Byzantine agents, we could directly define a local version
of the action filter function filterBi : 2GActionsi × 2GEvents −→ 2GActionsi because the choices
of other agents do not affect the filtering for general Byzantine agents. But we will need the
definition of other variants of filteri to be (n+ 1)-ary functions to refine the model to implement,
for example, rendez-vous communication.

Definition 1.2.22. For a global history h ∈ G , a timestamp t ∈ N, a tuple of requested actions
and events αh,t = (αtε , α

h,t
1 , . . . , αh,tn ), and agent i ∈ A,

1. βh,αh,tε := filterBε

(
h, αtε , αh,t1 , . . . , αh,tn

)
2. βh,α

h,t

i := filterBi

(
αh,t1 , . . . , αh,tn , βh,α

h,t

ε

)
3. βh,αh,t := (βh,αh,tε , βh,α

h,t

1 , . . . , βh,α
h,t

n )

As for αtε we also distinguish the following subsets of βh,αh,tε for each agent i ∈ A:

1. Regular events for agent i:

β
h,αh,t

εi
:= βh,α

h,t

ε ∩GEventsi =

{grecv(i, j, µ, id) ∈ βh,α
h,t

ε | j ∈ A, µ ∈ Msgs , id ∈ N}t

{external (i, e) ∈ βh,α
h,t

ε | e ∈ Exti} ⊂ αtεi (1.28)

2. Instructions regarding waking up agent i:

βh,α
h,t

gi
:= βh,α

h,t

ε ∩ SysEventsi ⊂ αtgi (1.29)

3. Fake events for agent i, including those mimicking the agent’s actions:

βh,α
h,t

bi
:= βh,α

h,t

ε ∩ BEventsi ={
fake (i, A 7→ A′) ∈ βh,α

h,t

ε | A,A′ ∈ {Â} tGActionsi
}
t

{fake (i, E) ∈ βh,α
h,t

ε | E ∈ GEventsi} ⊂ αtbi (1.30)

4. Instructions making agent i Byzantine:

βh,α
h,t

fi
:= βh,α

h,t

bi
t
(
βh,α

h,t

ε ∩ {sleep (i), hibernate (i)}
)
⊂ αtfi (1.31)

Finally, we define

β
h,αh,t

ε :=
⊔
i∈A

β
h,αh,t

εi ⊂ αtε βh,α
h,t

g :=
⊔
i∈A

βh,α
h,t

gi ⊂ αtg

βh,α
h,t

b :=
⊔
i∈A

βh,α
h,t

bi
⊂ αtb βh,α

h,t

f :=
⊔
i∈A

βh,α
h,t

fi
⊂ αtf

βh,α
h,t

εi
:= β

h,αh,t

εi t βh,α
h,t

gi t βh,α
h,t

bi
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Remark 1.2.23. The filtering is split into two steps: first filtering events βh,αh,tε and then filtering
actions based on the results of event filtering βh,α

h,t

i = filteri

(
αh,t1 , . . . , αh,tn , βh,α

h,t

ε

)
. Such two-

step filtering enables us to represent communication scenarios that rely on coordination among
agents by making it possible to filter out go events that violate the coordination requirements.
Remark 1.2.24. Consider a global history h ∈ G , a timestamp t ∈ N, and a tuple of requested
actions and events αh,t = (αtε , α

h,t
1 , . . . , αh,tn ). Then

βh,α
h,t

ε = β
h,αh,t

ε t βh,α
h,t

g t βh,α
h,t

b .

Proposition 1.2.25. Consider a global history h ∈ G , a timestamp t ∈ N, a tuple of requested
actions and events αh,t = (αtε , α

h,t
1 , . . . , αh,tn ), and an agent i ∈ A. Then action filter function

filteri for agent i ensures that

βh,α
h,t

i 6= ∅ =⇒ active(i, βh,α
h,t

ε );

βh,α
h,t

i 6= ∅ =⇒ aware(i, βh,α
h,t

ε ).

Proof. The first statement follows directly from Def. 1.2.22(2) and equation (1.25). The second
statement follows from the first and (1.22).

Once again, it is easy to see that
Lemma 1.2.26. Given a global history h ∈ G , a timestamp t ∈ N, a tuple of requested actions
and events αh,t = (αtε , α

h,t
1 , . . . , αh,tn ), and agent i ∈ A

βh,α
h,t

ε ⊂ GEvents and βh,α
h,t

i ⊂ GActionsi
It is important to separate the complete knowledge required of the environment to perform the

transition from state to state from the limited local view that the agents have. In particular, it is a
central assumption of distributed systems in general and of the proposed framework in particular
that agents should not be able to tell the difference between an external event they actually
observed and a fake external event their sensors mistakenly registered, nor between performing
action A′ and thinking they have performed A′ when A was the actual action performed, as
represented by fake (i, A 7→ A′). In this respect, the agents can be viewed as malfunctioning
drones rather than scheming moles: They always mean well but are sometimes prevented by the
environment from behaving correctly. In such cases, they can juxtapose their own intentions with
their perception of the resulting actions and events but cannot directly detect the environment’s
meddling.

Formally, this means that the local histories must be purged of
(1) fake modifiers,

(2) GMIs,

(3) controlling commands go(i), sleep (i), and hibernate (i).
These tasks are performed by the localization function σ: both on the action/event level and on
the set level:
Definition 1.2.27 (Localization function). The function

σ : 2GActionstGEvents −→ 2ActionstEvents

is defined as follows

σ
(
X
)

:= label−1
((
X ∩ (GActions tGEvents)

)
∪

{E | (∃i) fake (i, E) ∈ X}∪

{A′ 6= Â | (∃i)(∃A) fake (i, A 7→ A′) ∈ X}
)

(1.32)
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If U ∈ GActions t GEvents and σ
(
{U}

)
6= ∅, i.e., U is not one of go(i), sleep (i), hibernate (i),

nor is a fake (i, A 7→ Â) for some i and A, we also write σ
(
U
)
to denote the only element of the

set σ
(
{U}

)
, i.e., σ

(
{U}

)
= {σ(U)}.

The following lemma directly follows from the definitions of Pε (Def. 1.2.4(3) and of t-coherence
(Def. 1.2.1).

Lemma 1.2.28. Given a global history h ∈ G and protocols Pε ∈ Cε for the environment and
P1, . . . , Pn for the agents, for any agent i ∈ A and for timestamp t ∈ N,

σ
(
αtbi
)
∩ label−1 (αtεi) = ∅ (1.33)
|αtgi | ≤ 1 (1.34)

fake (i, gsend(i, j, µ, id) 7→ A) ∈ αtbi =⇒ (∃k ∈ N) id = id(i, j, µ, k, t) (1.35)

The following properties are inherited from the α-sets because filtering does not add new things.
The next lemma follows from Lemma 1.2.3.

Lemma 1.2.29. Given a global history h ∈ G and protocols Pε ∈ Cε for the environment and
P1, . . . , Pn for the agents, for any agent i ∈ A and for timestamp t ∈ N, the set βh,αh,tε is t-coherent,
in particular,

σ
(
βh,α

h,t

bi

)
∩ label−1

(
β
h,αh,t

εi

)
= ∅ (1.36)

|βh,α
h,t

gi | ≤ 1 (1.37)

fake (i, gsend(i, j, µ, id) 7→ A) ∈ βh,α
h,t

bi
=⇒ (∃k ∈ N) id = id(i, j, µ, k, t) (1.38)

Remark 1.2.30. Since
∣∣∣βh,αh,tgi

∣∣∣ ≤ 1 in all cases, we write go(i) ∈ βh,αh,tgi instead of the equivalent

statement βh,αh,tgi = {go(i)}.

The last piece of the puzzle is state update functions that record the events and actions
performed in a round into all the histories.

Definition 1.2.31 (State update functions). Given a global history h = (hε, h1, . . . , hn) ∈ G , a
tuple of performed actions/events X = (Xε, X1, . . . , Xn) ∈ 2GEvents×2GActions1×· · ·×2GActionsn ,
we use the following abbreviation Xεi = Xε∩GEventsi for each i ∈ A. Agents i’s update function

updatei : Li × 2GActionsi × 2GEvents → Li

outputs a new local history from Li based on i’s actions Xi and environment-controlled events Xε

as follows:

updatei (hi, Xi, Xε) :=
{
hi if σ(Xεi) = ∅ and unaware(i,Xε)[
σ
(
Xεi tXi

)]
: hi otherwise

(1.39)

where : represents sequence concatenation. Similarly, the environment’s state update function

updateε : Lε ×
(

2GEvents × 2GActions1 × · · · × 2GActionsn
)
→ Lε

outputs a new state of the environment based on Xε:

updateε (hε, X) := (Xε tX1 t · · · tXn) : hε (1.40)

Thus, the global state is modified as follows:

update (h,X) :=
(
updateε (hε, X) , update1 (h1, X1, Xε) , . . . , updaten (hn, Xn, Xε)

)
(1.41)
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Remark 1.2.32. The first clause in (1.39) corresponds to the situation when the agent is not
woken up by actions or events. In particular, unaware(i,Xε) states that i is denied both actions in
the round and even awareness of the round itself. Virtually always function updatei will be applied
to Xε = βh,α

h,t

ε , which is a t-coherent set. Thus, the condition unaware(i, βh,αh,tε ) is equivalent to
βh,α

h,t

ε ∩ SysEventsi ∈
{
∅, {hibernate (i)}

}
, in other words,

unaware(i, βh,α
h,t

ε ) ⇐⇒ βh,α
h,t

ε ∩ SysEventsi ⊂ {hibernate (i)}. (1.42)

Following [FHMV95], we define transition functions as follows:

Definition 1.2.33 (Transition function). For agents’ protocols P = (P1, . . . , Pn) and a protocol Pε
of the environment, we define a Byzantine transition function

τBPε,P : 2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )

as a function that outputs a global state transformer function

τBPε,P (Y ) : G → G

from global states to global states given joint attempted actions/events

Y ∈ 2GEvents × 2GActions1 × · · · × 2GActionsn

defined as follows. For a global state h = (hε, h1, . . . , hn) ∈ G and such joint attempted ac-
tions/events Y we consider two possibilities:

• if Y = αh,|h| =
(
α
|h|
ε , α

h,|h|
1 , . . . , α

h,|h|
n

)
for some α|h|ε ∈ Pε (|h|) and some Xi ∈ Pi (hi) for

each i ∈ A such that αh,|h|i = labeli (Xi, |h|) then we define

τBPε,P (Y )(h) := update
(
h, βh,α

h,|h|
)

(1.43)

where the β-sets are computed from αh,|h| by Def. 1.2.22 and the update function is defined
in (1.41);

• otherwise, we define τBPε,P (Y )(h) = h.11

Remark 1.2.34. By a slight abuse of notation, we write h′ ∈ τBPε,P (h) to mean that there is a
protocol-conformant set of joint actions αh,|h| satisfying the first clause of the above definition
such that τBPε,P (αh,|h|)(h) = h′.

1.3 Runs and Contexts
As already mentioned, integer timestamps are used exclusively to take snapshots of the local and
global states. A sequence of such snapshots as the time progresses is called a run. Our goal is
to model systems that are, in general, asynchronous, meaning that the agents can neither know
the global time nor count the number of rounds since the beginning of the run. Without loss of
generality, we consider runs that encompass the whole infinite set N of timestamps.

Definition 1.3.1 (Run). A run is a function that assigns a global state to each integer timestamp.

r : N −→ G (1.44)

We denote the set of all runs by R. The part of the run that an agent i can see is called i’s local
view. It is a function that assigns i’s local state to each integer timestamp.

ri : N −→ Li (1.45)
11The latter case will never be used and is only provided to make the transition function total.
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It is clear that each local view ri is uniquely determined by the run r:

ri (t) := πi+1r (t)

where πj is the jth projection function for tuples/sequences. Similarly, we define the environment’s
history

rε : N −→ Lε

to be

rε (t) := π1r (t)

Definition 1.3.2. For a set X ⊂ A× N of nodes we define the upper time bound T (X) to be
the largest T ∈ N such that (i, T ) ∈ X for some agent i ∈ A if such a T exists. T (∅) is defined to
be 0. A set X is called bounded if it has a time bound or unbounded otherwise.

Each agent initially starts off in a correct state and may become Byzantine when its actions stop
being dictated by the protocol or its perception of events is compromised. Thus, it is more precise
to talk about Byzantine states of agents, i.e., about Byzantine nodes (i, t) ∈ A × N instead of
announcing the agents themselves to be universally Byzantine. Local timestamps (nodes) directly
resulting from a violation of the agent’s protocol or from a Byzantine event, including a Byzantine
system event, are called Bad. All nodes of an agent starting from the first Bad local timestamp
are called Failed. Recall that time in global histories h is represented by |h|.
Definition 1.3.3. Consider a global history h = (hε, h1, . . . , hn) ∈ G of length |h|, so that
hε = [Λ|h|, . . . ,Λ1]. We define the sets of Bad and Failed nodes

Bad (h) :=
{

(i, t) ∈ A× N | Λt ∩
(
BEventsi t {sleep (i), hibernate (i)}

)
6= ∅

}
Failed (h) := {(i, t) ∈ A× N | (∃t′ ≤ t) (i, t′) ∈ Bad (h)}

if |h| > 0 and Bad (h) = Failed (h) := ∅ otherwise.
Remark 1.3.4. For any global history h ∈ G , Bad (h) ⊂ Failed (h). Indeed, the former rep-
resents nodes that experienced a malfunction in the immediately preceding round, whereas the
latter is comprised of nodes with some malfunction possibly further in the past.
Definition 1.3.5. For a run r ∈ R, timestamp t ∈ N, and bounded set X ⊂ A× N of nodes, we
define

Bad (r, t) := Bad (r (t)) BadX (r) := X ∩Bad (r, T (X))
Failed (r, t) := Failed (r (t)) FailedX (r) := X ∩ Failed (r, T (X))

For an unbounded set X ⊂ A× N of nodes, we define

BadX (r) := X ∩

( ∞⋃
t=1

Bad (r, t)
)

FailedX (r) := X ∩

( ∞⋃
t=1

Failed (r, t)
)

Remark 1.3.6. The unions in the unbounded case begin from t = 1 because for any run r, we
have Bad (r, 0) = Failed (r, 0) = ∅.
Remark 1.3.7. The definition of BadX (r) and FailedX (r) for unbounded sets X is compatible
with that for bounded sets, when applied to bounded sets X. The benefit of the latter definition
is that it is efficiently computable.
Remark 1.3.8. For agents’ protocols P and the environment’s protocol Pε, we are mostly inter-
ested in runs r ∈ R that are built according to these protocols by some transition function. For
the time being, we use the Byzantine transition function τBPε,P , i.e., consider runs that begin from
a proper initial state and such that for each timestamp t ∈ N,

r (t+ 1) ∈ τBPε,P (r (t)) (1.46)

Sometimes we call such runs τBPε,P -transitional, or simply transitional. For such a transitional
run r, we denote its initial state by r (0) and the global state after round (t− 1).5 is r (t).
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It immediately follows from (1.43), (1.40), and Def. 1.3.2 that

Proposition 1.3.9. For any transitional run r,

Bad (r, t) ⊂ Bad (r, t+ 1) and Failed (r, t) ⊂ Failed (r, t+ 1).

In addition, for X ⊂ X ′,

BadX (r) ⊂ BadX′ (r) and FailedX (r) ⊂ FailedX′ (r),

independent of whether both sets are bounded, X is bounded while X ′ is not, or both sets are
unbounded.

Proof. The crucial observation is that, for transitional runs, r (t+ 1) is either equal to r (t) or
obtained by prepending it. In either case, r (t+ 1) contains r (t) without modifications.

Remark 1.3.10. In the interests of generality and modularity of concepts, we defined the tran-
sition function in terms of arbitrary histories. For the case of histories comprising a transitional
run, the notation can be simplified. We will now provide a concise digest of one step of transition
for transitional runs (see also Fig. 1.1) with the dual purpose: to give a compact summary of
the procedure and introduce a simpler notation mostly used in the rest of our work. This will
also form a crucial part of the notion of (weak) consistency with a context and a joint protocol in
Def. 1.3.27 after we introduce all parts comprising a context.

In Def. 1.2.33, we defined the basic Byzantine transition function τBPε,P based on protocols P
of the agents and Pε of the environment. As already mentioned, we will sometimes need to change
the filtering phase of the transition function. Hence, we leave the exact details of the transition
as a parameter τ that converts protocols into a transition function.

Definition 1.3.11 (Transition template). A transition template

τ : Cε × C →
(

2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )
)

(1.47)

is a two-place function that takes a protocol Pε ∈ Cε of the environment and a joint agents’
protocol P ∈ C and outputs a transition function τ(Pε, P ), which we denote by τPε,P

τPε,P : 2GEvents × 2GActions1 × · · · × 2GActionsn → (G → G )

Thus τBPε,P is only one possible transition function, the Byzantine transition function, obtained
from protocols Pε and P : namely, the one resulting from using the Byzantine filter functions
filterBi and filterBε .

Whichever filtering is used, one round of transition consists of the following phases:

One step of τPε,P -transition for runs One transition made according to a transition function
τPε,P consists of five consecutive phases, which are visually represented in Fig. 1.1:

1. Protocol phase (protocols are explicit arguments to the transition template τ)
First, the protocol Pi for each agent i lays out a range Pi (ri (t)) of possible sets of i’s actions
in the round based on the local state ri (t) of the agent. Similarly, the protocol Pε of the
environment lays out a range Pε (t) of possible t-coherent sets of events in the round based
on time t.

2. Adversary phase (this phase is stable: it does not change from template to template or from
protocol to protocol)
From these ranges, the adversary non-deterministically picks one set

Xi ∈ Pi (ri (t)) (1.48)
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Figure 1.1: The evolution of states in round t.5 (from timestamp t ∈ N to t + 1) inside a run r
constructed according to the transition function τPε,P . Different communication models require
changes to the filtering functions filterε and filteri.

of actions for each agent i and a set

Xε ∈ Pε (t) (1.49)

of events for the environment. These are actions the agents intend to perform and events the
environment intends to impose in the round. Note that Xi ⊂ Actionsi and Xε ⊂ GEvents .

3. Labeling phase (this phase is stable: it does not change from template to template or from
protocol to protocol)
The environment processes the intended actions Xi of each agent i converting them into
the global format, in particular, assigning GMIs to message send requests from agents. We
denote the resulting sets

αti (r) := labeli (Xi, t) . (1.50)

The set of environmental events Xε is already in the global format and requires no modifi-
cations:

αtε (r) := Xε. (1.51)

Note that αti (r) ⊂ GActionsi and αtε (r) ⊂ GEvents .

4. Filtering phase (this phase depends on the filtering functions filterε and filteri, which are
considered to be part of the template)
In this phase, intended actions and events that are deemed “causally impossible” in the
underlying communication model are filtered out: though they may be requested by the
agents/environment, they are not performed and not recorded in histories. Thus, the exact
nature of filtering depends on the intended model, and different filtering functions produce
different transition functions. The following requirements are imposed on filtering functions
that can be used in any template:

passive(i,Xε) =⇒ filteri (X1, . . . , Xn, Xε) = ∅ (1.52)
filteri (X1, . . . , Xn, Xε) ⊂ Xi (1.53)
filterε (h,Xε, X1, . . . , Xn) ⊂ Xε (1.54)

In other words, no actions by agent i are allowed by the environment unless go(i) is is-
sued and filtering is a non-increasing function with respect to the relevant argument. Note
that some environment’s events may also be “causally impossible”, such as, e.g., receiving a
message that was never sent. The filtering phase is further divided into two subphases:
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(a) first impossible environment events are filtered out by the function filterε based on the
intended environment’s events Xε and intended actions αti (r) of all agents, resulting in
the set βtε (r) of performed environment’s events:

βtε (r) := filterε
(
r (t) , αtε (r), αt1 (r), . . . , αtn (r)

)
, (1.55)

(b) then for each agent i, the filtering function filteri performs the same task on the agents’
actions, but taking into account the already filtered events βtε (r) and intended actions
αtj (r) of all agents j ∈ A. The resulting sets of actions actually performed by agents
are denoted βti (r):

βti (r) := filteri
(
αt1 (r), . . . , αtn (r), βtε (r)

)
(1.56)

Note that βti (r) ⊂ αti (r) ⊂ GActionsi and βtε (r) ⊂ αtε (r) ⊂ GEvents by (1.53) and (1.54)
and that the latter is always a t-coherent set.

5. Updating phase (this phase is stable: it does not change from template to template or from
protocol to protocol)
The events βtε (r) and actions βti (r) actually happening in the round are faithfully recorded
into the global history and are translated into the simplified local form for being recorded
into the local histories of each agent by the update functions. The crucial point of this
translation is stripping out the GMIs and any information that would allow an agent to
easily distinguish a correct event from a faulty one. Once again, the local history of each
agent i is only affected by the actions βti (r) it performs and environment’s events βtεi (r) it
observes, whereas the global history is modified based on the complete information about
all events and actions performed in the round.

ri (t+ 1) := updatei
(
ri (t) , βti (r), βtε (r)

)
(1.57)

βt (r) :=
(
βtε (r), βt1 (r), . . . , βtn (r)

)
, (1.58)

rε (t+ 1) := updateε
(
rε (t) , βt (r)

)
(1.59)

We will routinely use (1.48)–(1.59) to prove properties of transitional runs. However, it should
be noted that in this respect β sets have a different status from α sets and X sets. Indeed,
by (1.59), all β sets can be easily retrieved from a given transitional run. We do not even have to
assume the transitionality of a run to define the β sets, though this definition would make sense
mostly for transitional runs. In compliance with (1.40), for an arbitrary global history h, we define

βi (h) := π1hε ∩GActionsi (1.60)
βε (h) := π1hε ∩GEvents (1.61)

For the case of runs

βti (r) = βi (r (t+ 1)) = π1rε (t+ 1) ∩GActionsi (1.62)
βtε (r) = βε (r (t+ 1)) = π1rε (t+ 1) ∩GEvents (1.63)

The latter set we further partition (we only show the notation for the case of runs, the case of
histories is processed analogously):

• correct external events: βtε (r) observed by all agents and β
t

εi (r) observed specifically by
agent i;

• system events (go, sleep, and hibernate): βtg (r) imposed on all agents and βtgi (r) imposed
specifically on agent i;

• Byzantine events: βtb (r) observed by all agents and βtbi (r) observed specifically by agent i;
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• all external events that make the agent Byzantine until the end of the run, including faultily
skipped rounds sleep (i) and hibernate (i): βtf (r) imposed on all agents and βtfi (r) imposed
specifically on agent i.

On the other hand, parts of the X and α sets are filtered out and have no effect on the
transitions in the run. Hence, given a transitional run, it is not generally possible to retrieve the
exact X and α sets used in each transition. All that is required is that there exist a collection
of sets X1, . . . , Xn, Xε satisfying (1.48)–(1.49) that eventually generate βt1 (r), . . . , βtn (r), βtε (r)
from (1.62)–(1.63) according to (1.50)–(1.56). Despite this subtlety, we still use function-like
notation for α sets to keep the notation uniform with β sets. In particular, we use this uniformity
to identify the same parts of the α sets by the same subscripts, e.g., αtεi (r) represents the set of
correct internal events the environment is intending to impose on agent i, which will be filtered
and become βtεi (r), the set of correct external events actually imposed by the environment on
agent i during round t.5 of the run r.

If we write βt (r) , βtε (r), βt1 (r), . . . , βtn (r), etc., it means that we assume the run r to be
transitional and use αtε (r), αt1 (r), . . . , αtn (r), etc. for one possible choice of sets that could lead to
such sets β according to a transition function τPε,P .

Transitional runs have several useful properties:

Remark 1.3.12 (Global total recall). Not only βt (r) but also all βt′ (r) for t′ ≤ t can be extracted
from r(t+ 1), or even from rε(t+ 1) in a τPε,P -transitional run r: for instance,

βt
′

ε (r) = π1rε (t′ + 1) ∩GEvents = πt−t′+1rε (t+ 1) ∩GEvents

Lemma 1.3.13 (Objective global time). For any τPε,P -transitional run r and any timestamp t,

|r (t) | = t.

The following properties rely on the restrictions imposed on the environment’s protocol as well
as on the filtering functions implementing general Byzantine agents. In order to make this and
further results more general we define pointwise order on filtering functions and formulate many
of the statements for any filter up to the general Byzantine one.

Definition 1.3.14. We say that a filter filter1
ε is stricter than a filter filter2

ε or that filter2
ε is

more liberal than filter1
ε and we write filter1

ε ⊂ filter2
ε if the inclusion holds pointwise

filter1
ε (h,Xε, X1, . . . , Xn) ⊂ filter2

ε (h,Xε, X1, . . . , Xn)

for any global history h ∈ G , any Xε ⊂ GEvents , and arbitrary Xi ⊂ GActionsi for each i ∈ A.

Lemma 1.3.15 (GMIs are correct). For any τPε,P -transitional run r for some Pε ∈ Cε, for
i, j ∈ A, µ ∈ Msgs, t ∈ N, A ∈ GActionsi t {Â}, and id ∈ N

gsend(i, j, µ, id) ∈ βti (r) =⇒ id = id(i, j, µ, k, t) for some k ∈ N (1.64)
fake (i, gsend(i, j, µ, id) 7→ A) ∈ βtbi (r) =⇒ id = id(i, j, µ, k, t) for some k ∈ N (1.65)

In addition, for any transition template τ with a filterε ⊂ filterBε and for any τPε,P -transitional
run r

grecv(i, j, µ, id) ∈ βtεi (r) =⇒ id = id(j, i, µ, k, t′) for some k ∈ N and t′ ≤ t (1.66)

Proof. By (1.56), (1.53), (1.50), and Def. 1.2.12, the id for correct gsend instructions is supplied
by the function labeli, which guarantees the first statement.

Similarly, for the second statement, by (1.55), (1.51), Def. 1.2.4(3), the id’s for Byzantine gsend
instructions are created by the environment in a manner that guarantees the second statement.

Finally, for the third statement, by the same (1.55) and (1.24), if a grecv command was not
filtered out by filterε, it was not filtered by the more liberal filterBε , hence, the matching gsend
command or its Byzantine version must have occurred at the latest by the same round. In other
words, taking into account (1.55)–(1.56), there are four possibilities:

27



1. gsend(j, i, µ, id) ∈ rε (t) =⇒ gsend(j, i, µ, id) ∈ βt′j (r) for some t′ < t

2. gsend(j, i, µ, id) ∈ βtj (r)

3. fake (j, gsend(j, i, µ, id) 7→ A) ∈ rε (t) for some A ∈ {Â} tGActionsj =⇒
fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt′bj (r) for some t′ < t and A ∈ {Â} tGActionsj

4. fake (j, gsend(j, i, µ, id) 7→ A) ∈ βtbj (r) for some A ∈ {Â} tGActionsj

In other words,

gsend(j, i, µ, id) ∈ βt
′

j (r) or fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt
′

bj (r) for an A ∈ {Â} tGActionsj

for some t′ ≤ t. It remains to use the already proved (1.64) or (1.65) respectively.

Corollary 1.3.16. For any τPε,P -transitional run r with a filterε ⊂ filterBε , for i, j ∈ A,
µ ∈ Msgs, t ∈ N, and id ∈ N

grecv(i, j, µ, id) ∈ βtεi (r) =⇒ (∃t′ ≤ t)
(

gsend(j, i, µ, id) ∈ βt
′

j (r) or

(∃A ∈ {Â} tGActionsj) fake (j, gsend(j, i, µ, id) 7→ A) ∈ βt
′

bj (r)
)

(1.67)

Corollary 1.3.17 (GMIs are unique). For any transitional run r, for i, j, k, l ∈ A, µ, µ′ ∈ Msgs,
t, t′ ∈ N, id ∈ N, A ∈ {Â} tGActionsi, and A′ ∈ {Â} tGActionsk:

{
gsend(i, j, µ, id) ∈ βti (r)
gsend(k, l, µ′, id) ∈ βt′k (r)

=⇒


k = i

l = j

t′ = t

µ′ = µ

(1.68)

{
fake (i, gsend(i, j, µ, id) 7→ A) ∈ βtbi (r)
fake (k, gsend(k, l, µ′, id) 7→ A′) ∈ βt′bk (r)

=⇒


k = i

l = j

t′ = t

µ′ = µ

(1.69)

{
gsend(i, j, µ, id) ∈ βti (r)
fake (k, gsend(k, l, µ′, id) 7→ A′) ∈ βt′bk (r)

=⇒


k = i

l = j

t′ = t

µ′ = µ

(1.70)

In other words, the GMI id completely determines the sender, the recipient, the sent message
and the time of sending for both correct and Byzantine messages processed by the environment.

Proof. The statements follow from Lemma 1.3.15 (from (1.64) for the first statement, from (1.65)
for the second one, and from both (1.64) and (1.65) for the third one) and the injectivity of id(·)
from Def. 1.1.13.

Corollary 1.3.18 (Send–receive causality). For any τPε,P -transitional run r with a filterε ⊂
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filterBε , for i, j, k, l ∈ A, µ, µ′ ∈ Msgs, t, t′ ∈ N, A ∈ {Â} tGActionsi, and id ∈ N:

{
gsend(i, j, µ, id) ∈ βti (r)
grecv(k, l, µ′, id) ∈ βt

′

εk
(r)

=⇒


k = j

l = i

t′ ≥ t
µ′ = µ

(1.71)

{
fake (i, gsend(i, j, µ, id) 7→ A) ∈ βtbi (r)
grecv(k, l, µ′, id) ∈ βt

′

εk
(r)

=⇒


k = j

l = i

t′ ≥ t
µ′ = µ

(1.72)

In other words, whether a message is sent correctly or faultily, the receipt of the message cannot
happen before it was sent and the senders/recipients/content at the time of receipt must match
those at the time of sending.

Proof. The statements follow from Lemma 1.3.15 and the injectivity of id(·) from Def. 1.1.13.

Remark 1.3.19. While GMIs for sent messages are unforgeable for all transition templates, the
correctness of GMIs for correctly received messages relies on the filtering performed by the general
Byzantine environment filter and any stricter filters. It could be argued that Byzantine behavior
can be strengthened and/or reliability of the communication channel can be weakened to enable
Byzantine agents to forge GMIs, but this is outside the scope of this report, especially given that
the man in the middle attack can be represented without forged GMIs (see Remark 1.1.5 for
details).

In order to discuss what it means to behave the same way at a node (i, t) ∈ A× N in two
distinct runs r and r′ we define the notion of agreement:

Definition 1.3.20 (Agreement on a node). For two runs r and r′ from R, we say that r and r′
agree on a node (i, t) ∈ A× N iff

1. ri (t) = r′i (t)

2. βtεi (r) = βtεi (r′)

3. βti (r) = βti (r′)

We extend this notion to sets of nodes X ⊂ A× N: runs r and r′ agree on X iff(
∀(i, t) ∈ X

)
r and r′ agree on (i, t)

Remark 1.3.21. In the above definition, Requirement 1 states that the local states of i at t are
identical in both runs. Requirement 3 expresses that actions of i chosen by the adversary based on
the protocol for the upcoming round t.5 are identical in both runs. Requirement 2 ensures three
properties: correct external events imposed on i in round t.5 are identical, there is no difference
as to whether i is awoken for round t.5 or not, faulty behavior of i in round t.5 is identical.

Lemma 1.3.22. For two transitional runs r and r′ and a node (i, t) ∈ A× N

r and r′ agree on (i, t) implies ri (t+ 1) = r′i (t+ 1)

Proof. By (1.57) and (1.39).

Remark 1.3.23. For two transitional runs r and r′ and a node (i, t) ∈ A× N,

r and r′ agreeing on (i, t) is strictly stronger than
{
ri (t) = r′i (t)
ri (t+ 1) = r′i (t+ 1)
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The most important case when local states remain in sync between timestamps t and t+ 1 despite
different things happening during round t.5 is when a correct action/event in run r is replaced
with its Byzantine version in run r′.

While it is preferrable to directly build desired properties of runs into the transition functions,
in a manner of speech, to hardwire them, there are characteristics that cannot be implemented on a
round-by-round basis. The most familiar of them is the liveness condition that requires that certain
things happen eventually in a run. If no bound on the delay is given, this requirement cannot be
translated into local terms because this is the property of the whole infinite run. Therefore, to
enforce such properties we have to restrict the set of runs being considered.

Definition 1.3.24 (Admissibility condition). An admissibility condition Ψ is any subset of
the set R of all runs.

Now we have all the ingredients to define sets of runs for particular communication models. A
context is essentially an extended environment where a joint protocol is executed.

Definition 1.3.25 (Context). A context

γ = (Pε,G (0), τ ,Ψ) (1.73)

consists of an environment protocol Pε ∈ Cε, a set of global initial states G (0), a transition
template τ , and an admissibility condition Ψ.

Definition 1.3.26 (Agent-context). Given a context γ and joint protocol P , we can combine
them in an agent-context χ = (γ, P ).

Definition 1.3.27 (Consistency). For a context γ = (Pε,G (0), τ ,Ψ) and a joint protocol P , we
define the set of runs weakly consistent with P in γ (or weakly consistent with χ = (γ, P )),
denoted Rwχ = Rw(γ,P ), to be the set of τPε,P -transitional runs that start at some global initial
state from G (0):

Rw(γ,P ) := {r ∈ R | r (0) ∈ G (0) and (∀t ∈ N) r (t+ 1) ∈ τPε,P (r (t)) } (1.74)

A run r is called strongly consistent, or simply consistent, with P in γ (or with χ) if it is
weakly consistent with P in γ and, additionally, satisfies the admissibility condition: r ∈ Ψ. We
denote the system of all runs consistent with P in γ by

R(γ,P ) := Rw(γ,P ) ∩Ψ. (1.75)

We say that an agent-context χ = (γ, P ) is non-excluding if any prefix of a run weakly
consistent with P in γ can be extended to a run strongly consistent with P in γ.

Definition 1.3.28 (Non-excluding agent-context). For an agent-context χ, χ is non-excluding iff

Rχ 6= ∅ and (∀r ∈ Rwχ)(∀t ∈ N)(∃r′ ∈ Rχ)(∀t′ ≤ t) r′ (t′) = r (t′)

The full formalism will be introduced in Sect. 1.4.
A local state of a run is called coherent if the agent could have arrived at the same local state

without exhibiting any Byzantine behavior.

Definition 1.3.29 (Coherence). For an agent-context χ, a run r ∈ Rχ, and a node (i, t) ∈ A× N,
we say the local state ri (t) is χ-coherent with respect to i, or simply coherent with respect
to i, iff

(∃r′ ∈ Rχ)(∃t′ ∈ N)
(
r′i(t′) = ri(t) and i /∈ A (Failed (r′, t′))

)
.

Definition 1.3.30 (Failure free). For an agent-context χ, a run r ∈ Rχ, and a node (i, t) ∈ A× N,
we say the local state ri (t) is χ-failure free with respect to i, or simply failure free with
respect to i, iff

(∃r′ ∈ Rχ)(∃t′ ∈ N)
(
r′i(t′) = ri(t) and A (Failed (r′, t′)) = ∅

)
.
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1.4 Syntax and Semantics
We define a formal language and its semantics in order to express knowledge of an agent in
distributed systems. We will be using the standard adaptation of Kripke models to the run-
based environment. Kripke models are based on abstract worlds or states supplied with the
indistinguishability relations for the agents. For a collection of runs, it is quite natural to consider
states to be various global states achievable during these runs and define the indistinguishability
relation for an agent based on its knowledge of the local state: global states are indistinguishable
for agent i ∈ A if and only if i’s local state in these states is the same (i.e., the states are exactly
the same from the point of view of agent i).

For multiple reasons, we consider the general set up in the form of agent-context to be common
knowledge among agents. In other words, for an agent-context χ, the only possibilities agents
consider are global states from various runs from Rχ. For instance, a synchronous agent who
determined that it had skipped a round should conclude that it is compromised rather than
imagining itself in an asynchronous context. By the same token, the same local state should give
rise to different epistemic states depending on the type of distributed system. This is the reason
why the Consensus problem with Byzantine failures can be solved in the synchronous context but
not in the asynchronous one.

Definition 1.4.1 (Atomic propositions). We consider an infinitely countable set Π of atomic
propositions.

Definition 1.4.2 (Interpretation function). An interpretation function π : G → {⊥,>}Π as-
signs, for a given global state h ∈ G , a propositional valuation function π(h) : Π→ {⊥,>}.

Hence, for a global state h ∈ G the truth value π (h) (p) of an atomic proposition p ∈ Π is
either ⊥ (false) or > (true).

Definition 1.4.3 (Interpreted system). A set R′ ⊂ R of runs and an interpretation function π
yield an interpreted system I = (R′, π). For an agent-context χ = (γ, P ), an interpreted system
(R′, π) is called weakly χ-based if R′ = Rw(χ) and χ-based if R′ = Rχ.

Definition 1.4.4 (Indistinguishability relation). For agent i ∈ A = J1;nK, the indistinguisha-
bility relation ∼i⊂ G 2 is formally defined as follows:

∼i:= { (h, h′) | πi+1h = πi+1h
′} (1.76)

In other words, agent i cannot distinguish between global histories h = (hε, h1, . . . , hn) and
h′ = (h′ε, h′1, . . . , h′n) iff hi = h′i, i.e., i sees exactly the same local history at h and h′.

Remark 1.4.5. Generally, for a particular R′, the interpretation functions π and the indistin-
guishability relation ∼i are also defined for global states only appearing in the runs from R \ R′.
This creates no problems but makes the formalism simpler.

We define a language L to deal with the expression of knowledge in a system. For this we
extend the propositional logic with the following operators:

1. three modal operators:

• Ki for each agent i ∈ A. For a global state h = (hε, h1, . . . , hn) ∈ G , the formula Kiϕ
can be read as “agent i knows ϕ (based on its local state hi)”: this means that, in every
global state indistinguishable from h for i, the proposition ϕ holds;

• EG for each group G ⊂ A of agents. It means that “everyone in the group G of agents
knows ϕ (based on their respective local states).” EG is naturally defined to be the
conjunction of all operators Ki over i ∈ G. We generally assume G 6= ∅ unless stated
otherwise;
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• CG for each group G ⊂ A of agents. It means that “ϕ is common knowledge among
the agents of G,” i.e., everyone in G knows that everyone in G knows . . . that everyone
in G knows ϕ. We generally assume G 6= ∅ unless stated otherwise;

2. one temporal operator:

• � is the “always in the future” operator. It expresses statements like “the sender will
never forget that he has sent Hello.”12

Definition 1.4.6. For an agent i ∈ A, a group of agents ∅ 6= G ⊂ A and an atomic proposition
p ∈ Π, the language L is generated by the following BNF specification

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | CGϕ | �ϕ

We define the remaining Boolean connectives such as ∨,→, and↔ in the standard way.13 Mutual
knowledge EG and iterated mutual knowledge EmG are defined by

EGϕ :=
∧
i∈G

Kiϕ E0
Gϕ := ϕ En+1

G ϕ := EGE
n
Gϕ

In addition, each modal operator ♥ has its dual ¬♥¬. The duals of epistemic operators are
denoted by puttingˆover the operator, e.g., K̂iϕ = ¬Ki¬ϕ. The dual of � is traditionally denoted
by ♦.14 Note that E1

Gϕ = EGϕ is syntactically the same formula.

To simplify the definition of truth, we define the following binary relations on the set of global
states, using the standard notion of relation composition for binary relations ? and ∗:

? ◦ ∗ :=
{

(x, z) | (∃y)
(
x ? y ∧ y ∗ z

)}
Definition 1.4.7. Other binary relations on G are defined as follows:

∼G :=
⋃
i∈G
∼i, ∼0

G := {(h, h) | h ∈ G },

∼mG := ∼G ◦ · · · ◦ ∼G︸ ︷︷ ︸
m

(for m > 1), ∼CG :=
∞⋃
m=1
∼mG

With the language L we can express statements about the knowledge of an agent (or of a
group of agents) or about the temporal properties of a formula. The semantics with respect to
interpreted systems is as follows:

Definition 1.4.8. For an interpreted system I = (R′, π) with the set R′ ⊂ R of runs and the
interpretation function π, for an agent i ∈ A, a group of agents ∅ 6= G ⊂ A, a run r ∈ R′, and a
timestamp t ∈ N:

(I, r, t) |= p iff π(r(t))(p) = >
(I, r, t) |= ¬ϕ iff (I, r, t) 6|= ϕ

(I, r, t) |= ϕ ∧ ϕ′ iff (I, r, t) |= ϕ and (I, r, t) |= ϕ′

(I, r, t) |= Kiϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)
(
r′(t′) ∼i r(t) ⇒ (I, r′, t′) |= ϕ

)
(I, r, t) |= CGϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)

(
r′(t′) ∼CG r(t) ⇒ (I, r′, t′) |= ϕ

)
(I, r, t) |= �ϕ iff (∀t′ ≥ t) (I, r, t′) |= ϕ

(I, r, t) |= Y ϕ iff (t > 0) and (I, r, t− 1) |= ϕ

12In temporal logic, this operator is usually denoted G.
13We also use the common ranking of binding strength: ¬ is the strongest, then ∨ and ∧ which bind equally

strong, then →, and the weakest is ↔.
14In temporal logic, it is usually denoted F .
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Note that the “yesterday” modality satisfies (I, r, 0) 6|= Y ϕ for any ϕ.
It immediately follows from the definition, based on the meaning of the secondary connectives,

that

(I, r, t) |= ϕ ∨ ϕ′ iff (I, r, t) |= ϕ or (I, r, t) |= ϕ′

(I, r, t) |= ϕ→ ϕ′ iff (I, r, t) 6|= ϕ or (I, r, t) |= ϕ′

(I, r, t) |= EGϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)
(
r′(t′) ∼G r(t) ⇒ (I, r′, t′) |= ϕ

)
iff (∀r′ ∈ R′)(∀t′ ∈ N)(∀i ∈ G)

(
r′(t′) ∼i r(t) ⇒ (I, r′, t′) |= ϕ

)
(I, r, t) |= E0

Gϕ iff (I, r, t) |= ϕ

(I, r, t) |= EmGϕ iff (∀r′ ∈ R′)(∀t′ ∈ N)
(
r′(t′) ∼mG r(t) ⇒ (I, r′, t′) |= ϕ

)
iff (∀r0, . . . , rm ∈ R′)(∀t0, . . . , tm ∈ N)

(
r0 = r ∧ t0 = t∧

(∀k < m)(∃ik ∈ G)rk(tk) ∼ik r
k+1(tk+1) ⇒ (I, rm, tm) |= ϕ

)
(I, r, t) |= CGϕ iff (∀m ∈ N \ {0})(I, r, t) |= EmGϕ

iff (∀m ∈ N \ {0})(∀r0, . . . , rm ∈ R′)(∀t0, . . . , tm ∈ N)
(
r0 = r ∧ t0 = t∧

(∀k < m)(∃ik ∈ G)rk(tk) ∼ik r
k+1(tk+1) ⇒ (I, rm, tm) |= ϕ

)
(I, r, t) |= ♦ϕ iff (∃t′ ≥ t) (I, r, t′) |= ϕ

It is also easy to see that truth is defined with respect to global histories rather than points in
a run, i.e., for any formula ϕ, we have

r(t) = r′(t) ⇒ (∀ϕ ∈ L)
(

(I, r, t) |= ϕ ⇔ (I, r′, t′) |= ϕ
)

even though r(t+ 1) may differ from r′(t+ 1). (Note that r(t) 6= r′(t′) for any t 6= t′ because the
length of the environment’s history is a function of time.)

1.5 Atomic Propositions
We have defined the language L as the syntax and the associated semantics to tell the truth value
of a formula for a given interpreted system I, run r ∈ R and timestamp t′ ∈ N. We now designate
some of the atomic propositions from Π as special and consider their truth values to be fully
determined by r(t′) rather than arbitrary. In other words, we will restrict interpretations π so as
to adhere to the following intended meanings for a given r(t′) with t ≤ t′ and i ∈ A. We also
introduce useful abbreviations for negations of some atomic propositions.

• correct(i,t) states that by timestamp t ∈ N, i.e., in rounds 0.5, 1.5, . . . , (t− 1).5, agent i ∈ A
did not violate its protocol through improper action or improper inaction, i.e., did not
exhibit any Byzantine actions or events and was not marked with sleep (i) or hibernate (i)
from timestamp 0 to timestamp t.

• correcti states that by the time of evaluation (t′ ∈ N, i.e., in rounds 0.5, 1.5, . . . , (t′ − 1).5)
agent i ∈ A did not violate its protocol through improper action or improper inaction.

• faulty(i,t) := ¬correct(i,t) states that by timestamp t ∈ N agent i ∈ A violated its protocol
through improper action or improper inaction.

• faultyi := ¬correcti states that by the time of evaluation agent i ∈ A violated its protocol
through improper action or improper inaction.
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• fake(i,t) (o) states that agent i ∈ A thinks that o ∈ Actions t Events occurred in round
(t− 1).5 but thinks so for a wrong reason, i.e., o ∈ σ

(
βt−1
bi

(r)
)
. Note that in the Byzantine

setting, if o is an action, it is still possible that agent i did perform o in round (t− 1).5 but
mistook it for another action o′′, while at the same time mistaking some third action o′ for o,
e.g., when fake (i, O′ 7→ O), fake (i, O 7→ O′′) ∈ βt−1

bi
(r). It is also possible that action o was

performed according to the protocol, e.g., when fake (i, O′ 7→ O) ∈ βt−1
bi

(r) and O ∈ βt−1
i (r).

• occurred(i,t)(o) states that agent i thinks that o ∈ ActionstEvents occurred in round (t−1).5
for a right reason, i.e., o ∈ label−1

(
βt−1
i (r) t βt−1

εi (r)
)
. Note that in the Byzantine setting,

if o is an action, it is possible that agent i has both a right and a wrong reason to believe it
performed o in round (t−1).5, e.g., when both O ∈ βt−1

i (r) and fake (i, O′ 7→ O) ∈ βt−1
bi

(r).
In this case, agent i unwittingly piggybacks O′ onto the action O. For instance, one might
accidentally throw away a postcard with an unwanted catalog, or a ticket-vending machine
might accidentally print two tickets instead of one.

• occurredi(o) states that by the time t′ of evaluation, agent i correctly registered o ∈ Actionst
Events occurring in some previous round, i.e., (∃t < t′) o ∈ label−1

(
βti (r) t βtεi (r)

)
.

• occurredi(o) states that by the time of evaluation agent i believes that o ∈ Actions tEvents
occurred.

We now give formal definitions and discuss properties of these atomic propositions.

Definition 1.5.1. A (weakly) χ-based interpreted system I = (R′, π) and its interpretation π are
called proper if, for any run r ∈ R′, any agent i ∈ A, arbitrary two timestamps t ≤ t′, and any
o ∈ Actions t Events , the interpretation π satisfies the following properties:

π (r (t′))
(
correct(i,t)

)
= > iff (i, t) /∈ Failed (r, t′) (1.77)

π (r (t′)) (correcti) = > iff (i, t′) /∈ Failed (r, t′) (1.78)

π (r (t′))
(

fake(i,t) (o)
)

= > iff t ≥ 1 and o ∈ σ
(
βt−1
bi

(r)
)

(1.79)

π (r (t′))
(
occurred(i,t)(o)

)
= > iff t ≥ 1 and o ∈ label−1

(
βt−1
i (r) t βt−1

εi (r)
)

(1.80)

π (r (t′))
(
occurredi(o)

)
= > iff (∃t < t′) o ∈ label−1

(
βti (r) t βtεi (r)

)
(1.81)

π (r (t′)) (occurredi(o)) = > iff o ∈ ri (t′) (1.82)

Proposition 1.5.2. The following truth values coincide in all weakly (strongly) χ-interpreted
systems:15

π (r (t′)) (correcti) = π (r (t′))
(
correct(i,t′)

)
(I, r, t′) |= faultyi ⇔ (I, r, t′) |= faulty(i,t′)

(I, r, t′) |= faulty(i,t) ⇔ (i, t) ∈ Failed (r, t′)
(I, r, t′) |= faultyi ⇔ (i, t′) ∈ Failed (r, t′)

π (r (t′))
(
occurredi(o)

)
=

t′∨
t=1

π (r (t′))
(
occurred(i,t)(o)

)
π (r (t′)) (occurredi(o)) =

t′∨
t=1

(
π (r (t′))

(
occurred(i,t)(o)

)
∨ π (r (t′))

(
fake(i,t) (o)

))
Remark 1.5.3. Although these atomic propositions are objective properties, which are typically
imperceptible for agents, some of them are formulated for locally representated actions/events o
because they represent objective properties of agents’ subjective views.

15> ∨> = > ∨⊥ = ⊥ ∨> = > and ⊥ ∨⊥ = ⊥.
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Note that no conditions are postulated for such atomic propositions if t > t′. This is due
to the fact that π is defined on finite global histories rather than on infinite runs. The global
history r (t′) at timestamp t′ contains no information about later timestamps t > t′. Indeed,
there generally exist multiple τPε,P -transitional runs extending the global history r (t′), due to
the non-deterministic capabilities of the adversary. Since the run r cannot be singled out based
on r (t′) only, only the features of r already present in r (t′) can be relied upon.

Note also that, using (1.60)–(1.63), we could have easily given the same definitions in terms of
global histories h rather than considering them as prefixes r (t′) of a transitional run r. The latter
is simply what we are interested in.

Remark 1.5.4. Agents can only record their own actions and events: if an agent believes some-
thing happened, it could happen to this agent in principle.

π (r (t′))
(

fake(i,t) (o)
)

= > implies o ∈ Actionsi t Eventsi

π (r (t′))
(
occurred(i,t)(o)

)
= > implies o ∈ Actionsi t Eventsi

π (r (t′))
(
occurredi(o)

)
= > implies o ∈ Actionsi t Eventsi

π (r (t′)) (occurredi(o)) = > implies o ∈ Actionsi t Eventsi

The omniscient environment does not forget. Note that this is independent of whether agents
have perfect recall because βi (h) is defined in (1.60) based on the environment’s history.

Lemma 1.5.5. Consider an agent-context χ, a proper (weakly) χ-based interpreted system I =
(R′, π), some o ∈ Actions tEvents, a run r ∈ R′, a node θ = (i, t) ∈ A× N, a timestamp t′ ≥ t,
and:

(I , r, t′) |= correctθ ↔ �correctθ
(I , r, t′) |= faultyθ ↔ �faultyθ
(I , r, t′) |= fakeθ (o) ↔ �fakeθ (o)
(I , r, t′) |= occurredθ(o) ↔ �occurredθ(o)
(I , r, t′) |= faultyi ↔ �faultyi

(I , r, t′) |= occurredi(o) ↔ �occurredi(o)
(I , r, t′) |= occurredi(o) ↔ �occurredi(o)

Proof. The direction from right to left is trivial in all cases because t′ ≥ t′, hence being true at t′
is part of being true in all futures of t′.

From left to right, for the first four statements, the truth is based on a particular event/action,
correct or Byzantine, occurring in the global run at round (t−1).5, at a specific past of t′, whereas
for the remaining three equivalences something must have happened at an unspecified past of t′.
Since all futures of t′ lie to the future of this event/action and the round enumeration remains
stable, the requisite event remains in the global run.

Remark 1.5.6. Note that, unlike the atomic propositions from Lemma 1.5.5, atoms correcti are
based on certain kinds of events/actions not having occurred yet. Thus, they may not be preserved
temporally.

Further, the first four equivalences from Lemma 1.5.5 are not universal validities as they rely
on t′ ≥ t. Indeed, for t > t′ the truth value of these atoms is not restricted, in particular, it does
not depend on the run and can change arbitrarily with time.

Agents cannot both observe an event and be mistaken about observing it. More formally,

Lemma 1.5.7. Consider a context γ = (Pε,G (0), τ ,Ψ), a proper weakly (strongly) χ-based inter-
preted system I = (R′, π), an agent-context χ = (γ, P ), an event e ∈ Events, a run r ∈ R′, a
node θ = (i, t) ∈ A× N, and a timestamp t′ ≥ t:
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• (I , r, t′) |= occurredθ(e)→ ¬fakeθ (e)

• (I , r, t′) |= fakeθ (e)→ ¬occurredθ(e)

Proof. To prove the first implication, assume (I , r, t′) |= occurredθ(e). By the definition of proper-
ness, this means that e ∈ label−1

(
βt−1
i (r) t βt−1

εi (r)
)
. Since e is an event, the only option is

e ∈ label−1
(
β
t−1
εi (r)

)
, i.e., there must exist E ∈ βt−1

εi (r) ⊂ βt−1
ε (r) such that e = label−1 (E).

Our goal is to show that e /∈ σ
(
βt−1
bi

(r)
)
. The situation splits into two cases:

Case I: e ∈ Exti is an external event. Then E = external (i, e). By the (t−1)-coherence of βt−1
ε (r) ⊃

βt−1
bi

(r) we have fake (i, external (i, e)) /∈ βt−1
bi

(r). Hence, e /∈ σ
(
βt−1
bi

(r)
)
.

Case II: e = recv(j, µ) is a message delivery. Then E = grecv(i, j, µ, id) for some id ∈ N (this id
cannot be entirely arbitrary but this is irrelevant for the proof). By the (t − 1)-coherence of
βt−1
ε (r) ⊃ βt−1

bi
(r) we have fake (i, grecv(i, j, µ, id′)) /∈ βt−1

bi
(r) for any id′ ∈ N. Hence, e /∈

σ
(
βt−1
bi

(r)
)
.

We have demonstrated that (I , r, t′) |= occurredθ(e) → ¬fakeθ (e). Now the second implication
(I , r, t′) |= fakeθ (e)→ ¬occurredθ(e) follows by contraposition.

Remark 1.5.8. Needless to say, the absence of a correct (Byzantine) occurrence does not mean
that there was a Byzantine (correct) one.

Remark 1.5.9. The same statement does not apply to actions a. For instance, the correct internal
action internal (i, a) is generally compatible with a Byzantine action fake (i, A′ 7→ internal (i, a))
the agent mistakes for a.

Using these atomic propositions with fixed evaluations, we can define derived concepts with
similarly fixed meanings. For instance, the absolute occurrence represents information about
local actions and events accessible only for the environment.

Definition 1.5.10 (Absolute occurrence). Consider any integer k ≥ 1 and any o ∈ Actions t
Events ,

occurred(k)(o) :=
∨
S ⊂ A
|S| = k

∧
i∈S

occurredi(o) (1.83)

occurred (o) := occurred(1)(o) (1.84)

We now define several notions related to relative occurrence occurred(i,t)(o) that represents
agents’ information about the same events:

Definition 1.5.11 (Relative occurrence). Consider any agent i ∈ A, any timestamp t ∈ N, and
any integer k ≥ 1. For any o ∈ Actions t Events ,

occurred(i,t)(o) := occurred(i,t)(o) ∨ fake(i,t) (o) (1.85)

occurred(k)(o) :=
∨
S ⊂ A
|S| = k

∧
i∈S

occurredi(o) (1.86)

occurred (o) := occurred(1)(o) (1.87)

Informally speaking,

• occurred (o) says that some non-Byzantine version of o happened for at least one agent;

• occurred(k)(o) says that some non-Byzantine versions of o happened for at least k distinct
agents.
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• occurred(i,t)(o) says that some version of event/action o was entered into agent i’s history
at local timestamp (i, t), i.e., during round (t− 1).5;

• occurred (o) says that at least one agent believes some version of o happened;

• occurred(k)(o) says that at least k distinct agents believe some versions of o happened.

In all the three last cases agents are not aware of whether o was correct or Byzantine, and whether
it really happened or they imagine it did; in the case of k agents, a mixture of correct and Byzantine
entries also satisfies the conditions.

Remark 1.5.12. Note that occurred(k)(o) (resp occurred(k)(o)) requires the existence of some k
distinct agents. In particular, in order to fulfill Kioccurred(k)(o) (resp. Kioccurred(k)(o)), it is not
necessary that the same k agents observe o in all global states i considers possible. It is sufficient
that in each such possible state, there be a group of k agents who have observed o.

The following is a direct corollary of Lemma 1.5.5.

Remark 1.5.13. Consider an agent-context χ, a proper weakly (strongly) χ-based interpreted
system I = (R′, π), some o ∈ Actions t Events , a run r ∈ R′, a node θ = (i, t) ∈ A× N, and a
timestamp t′ ≥ t,

(I , r, t′) |= occurred (o) ↔ �occurred (o)

(I , r, t′) |= occurred(k)(o) ↔ �occurred(k)(o)
(I , r, t′) |= occurred(i,t)(o) ↔ �occurred(i,t)(o)
(I , r, t′) |= occurred (o) ↔ �occurred (o)

(I , r, t′) |= occurred(k)(o) ↔ �occurred(k)(o)

Lemma 1.5.14. Consider a context γ = (Pε,G (0), τ ,Ψ), an agent-context χ = (γ, P ), a proper
weakly (strongly) χ-based interpreted system I = (R′, π), some o ∈ ActionstEvents, a run r ∈ R′,
a node (i, t) ∈ A× N, and a timestamp t′ ≥ t.

(I , r, t′) |= occurred(i,t)(o) iff t ≥ 1 and (∃λ)
(
ri (t) = λ : ri (t− 1) and o ∈ λ

)
Proof. First we prove the direction from left to right. Assume (I , r, t′) |= occurred(i,t)(o), i.e.,

(I , r, t′) |= occurred(i,t)(o) ∨ fake(i,t) (o)

It is clear that t ≥ 1.

Case I: (I , r, t′) |= occurred(i,t)(o). Then o ∈ label−1
(
βt−1
i (r) t βt−1

εi (r)
)
. Thus, o = label−1 (O)

for some O ∈ βt−1
i (r) t βt−1

εi (r) ⊂
(
βt−1
i (r) t βt−1

εi (r)
)
∩
(
GActions tGEvents

)
. Additionally,

by Prop. 1.2.25, if O is an action from βt−1
i (r), then by Prop. 1.2.25,

aware(i, βt−1
ε (r)). (1.88)

So by (1.57), definition (1.39) of updatei, and definition (1.32) of σ we conclude that ri(t) = λ :
ri(t− 1) and o = label−1 (O) ∈ λ.
Case II: (I , r, t′) |= fake(i,t) (o). Then o ∈ σ

(
βt−1
bi

(r)
)
. It remains to note that σ

(
βt−1
bi

(r)
)
6= ∅

implies that
σ
(
βt−1
εi (r)

)
6= ∅ (1.89)

and ri(t) = λ : ri(t− 1). Once again, the definition (1.39) of updatei implies o ∈ λ.

We proved that in either case ri (t) = λ : ri (t− 1) and o ∈ λ.
Now we demonstrate the opposite direction from right to left. Assume ri (t) = λ : ri (t− 1)

and o ∈ λ. By definition (1.39) of updatei it means that either (1.88) or (1.89) holds.
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Case I: o ∈ label−1
(
βt−1
i (r) t βt−1

εi (r)
)
. We have (I , r, t′) |= occurred(i,t)(o), and, hence, (I , r, t′) |=

occurred(i,t)(o).

Case II: o ∈ σ
(
βt−1
bi

(r)
)
. We have (I , r, t′) |= fake(i,t) (o), and, hence, (I , r, t′) |= occurred(i,t)(o)

We proved that in either case (I , r, t′) |= occurred(i,t)(o).

Lemma 1.5.15. Consider a context γ = (Pε,G (0), τ ,Ψ), an agent-context χ = (γ, P ), a proper
weakly (strongly) χ-based interpreted system I = (R′, π), some o ∈ ActionstEvents, a run r ∈ R′,
an agent i ∈ A, and a timestamp t ∈ N.

(I , r, t) |= occurredi(o) ↔ Kioccurredi(o)
(I , r, t) |= ¬occurredi(o) ↔ Ki¬occurredi(o)

Proof. The directions from right to left are trivial because the indistinguishability relation ∼i is
reflexive. We prove the direction from left to right for the case of (I , r, t) |= occurredi(o) as the
other statement is completely analogous. For any (r′, t′) ∈ R′ × N such that r (t) ∼i r′ (t′), i.e.,
ri(t) = r′i (t′), we have

(I , r, t) |= occurredi(o) ⇐⇒ o ∈ ri (t) ⇐⇒ o ∈ r′i (t′) ⇐⇒ (I , r′, t′) |= occurredi(o)

Formulas occurredi(o) and occurredi(o) represent events occurring in the system. As shown in
Lemma 1.5.15, the former event is detectable by agent i and, hence, can be used by its protocol,
whereas the latter may not be detectable by any agents but is fully determined by the global
state, i.e., “detectable” by the environment. Following [FHMV99], we define conditions under
which formulas can be treated as events:

Definition 1.5.16. A formula ϕ is called an i-internal event (within an agent-context χ)
iff

ri(t) = r′i(t′) =⇒
(
(I , r, t) |= ϕ ⇐⇒ (I , r′, t′) |= ϕ

)
for all χ-based interpreted systems I = (R′, π), arbitrary runs r, r′ ∈ R′, and arbitrary timestamps
t, t′ ∈ N.

A formula ϕ is called a state event (within an agent-context χ) iff

r(t) = r′(t) =⇒
(
(I , r, t) |= ϕ ⇐⇒ (I , r′, t) |= ϕ

)
for all χ-based interpreted systems I = (R′, π), arbitrary runs r, r′ ∈ R′, and any timestamp t ∈ N.

Lemma 1.5.17. For any i-internal event within an agent context χ and any χ-based interpreted
system I = (R′, π), any run r ∈ R′, and any timestamp t ∈ N.,

(I , r, t) |= ϕ↔ Kiϕ,

(I , r, t) |= ¬ϕ↔ Ki¬ϕ,

1.6 Past and Causality Relationship
For a run r the related causal graph represents all the causality dependencies of nodes in r. We say
that there is a causality dependence between two nodes (i, t) and (j, t′) iff the state of j at time t′
in r can, in principle, depend on the state of i at time t. For instance when during round 0.5
agent i sends a message to j, which it receives during the same round 0.5, then all the future
states of j after timestamp 1 contain the receipt of the message at node (j, 1) in the history and,
hence, are directly affected by it and through it can be influenced by the node (i, 0).
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Definition 1.6.1 (Causal graph). For a run r ∈ R and a timestamp t ∈ N, we define the causal
graph of r at t as

G (r, t) :=
(
V (t) , E (r, t)

)
such that

V (t) := A× J0; tK (1.90)
Eloc (t) :=

{(
(i, t′), (i, t′ + 1)

)
| (i, t′) ∈ A× J0; t− 1K

}
(1.91)

Emsg (r, t) :=
{(

(i, t′), (j, t′′)
)
| t′′ ≤ t and

(∃µ ∈ Msgs)(∃id ∈ N)
(

grecv(j, i, µ, id) ∈ βt
′′−1
εj (r) and(

gsend(i, j, µ, id) ∈ βt
′

i (r) or (∃A ∈ {Â}tGActionsi) fake (i, gsend(i, j, µ, id) 7→ A) ∈ βt
′

bi (r)
))}
(1.92)

E (r, t) := Eloc (t) ∪ Emsg (r, t) (1.93)
(strictly speaking, these two sets need not be disjoint because agents are not prohibited to send
messages to themselves).

Remark 1.6.2. If
(
(i, t′), (j, t′′)

)
∈ E (r, t), then t′ < t′′ ≤ t.

Remark 1.6.3. The causal graph can be naturally defined from a Byzantine extension of Lam-
port’s Happened Before relation and vice versa.

Definition 1.6.4 (Path). For a run r ∈ R and two nodes β = (i, t1) and θ = (j, t2) from A× N,
we define the following notations for paths in the causal graph G (r, t) of r at t ≥ max(t1, t2).

We denote by →r,t an edge of the causal graph G (r, t):

β →r,t θ iff (β, θ) ∈ E (r, t) , (1.94)

and by  r,t
ξ a finite path ξ in the causal graph G (r, t):

β  r,t
ξ θ iff ξ = β : η1 : · · · : ηk : θ and β →r,t η1 →r,t . . .→r,t ηk = θ, (1.95)

where k ≥ 0 is the length of the path. In particular, every node β is connected to itself via the
trivial path β (path of lengh 0)

We sometimes apply notions defined for sets of nodes to a path ξ to mean the application to
the set of nodes of ξ. For instance,

A ((i1, t1) : . . . : (ik, tk)) := {i1, . . . , ik} = A ({(i1, t1), . . . , (ik, tk)}) .

Other notions, when applied to a path, require minor modifications. For instance, intuitively,
agents being correct along a path means that all the actions/events forming the path, notably
all sends and receives, are necessarily correct. However, all nodes of the path being correct is a
weaker requirement because an agent correct at a node on the path may turn Byzantine in exactly
the next round when it sends the path-forming message, which may, in this case, be a Byzantine
send. To account for sends as well are receives being necessarily correct along a correct path we
present the following definition:

Failed(i1,t1) : ... : (ik−1,tk−1) : (ik,tk) (r(t)) := Failed{(i1,t1+1),...,(ik−1,tk−1+1),(ik,tk)} (r(t)).

In particular, for a trivial path of length 0 connecting β to itself, Failedβ (r(t)) = Failed{β} (r(t)).
In other words, for the path to be correct, we require agents to be correct up to one round after
each node on the path (except the last node need only be correct itself as no more sends are issued
along the path).
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Remark 1.6.5. We could have imposed a weaker condition that the path-forming sends be
correct, leaving open the possibility of agents becoming Byzantine in the same round as sending
these path-forming messages. However, it makes little sense to trust an agent’s correct send if its
other actions in the same round are provably faulty.

The set of all paths of G (r, t) is denoted by Ξ (r, t). We write β  r,t θ if there exists a path
ξ ∈ Ξ (r, t) such that β  r,t

ξ θ. Thus, in particular, β  r,t β for any node β ∈ G (r, t) because it is
reachable from itself via the trivial path β of length 0. We say that an edge e ∈ (A× N)2 is part
of a path ξ = η0 : η1 : · · · : ηk+1 and write e ∈ ξ iff e = (ηi, ηi+1) for some 0 ≤ i ≤ k. When talking
about graphs on subsets of A× N independent of any particular run, we use  ξ to describe a
path ξ,  to postulate the existence of a path, and → to describe an edge.

Remark 1.6.6. If (i, t′) r,t (j, t′′), then t′ ≤ t′′ ≤ t.

The causal cone of a node θ ∈ A× N in a run r ∈ R is the set of nodes that are part of the
past of θ, i.e, nodes that can impact the state of θ.

Definition 1.6.7 (Past). For a run r ∈ R, a node θ = (i, t) ∈ A× N, we define the causal cone
of θ in r as follows:

V(i,t) (r) := {β ∈ V (t) | β  r,t (i, t)} (1.96)
Hence, we define the related edges as follows:

E(i,t) (r) :=
{
e ∈ E (r, t)

∣∣∣(∃β ∈ V (t)
)(
∃ξ ∈ Ξ (r, t)

) (
β  r,t

ξ (i, t) and e ∈ ξ
)}
. (1.97)

Finally, the causal cone, or past, of θ in r is denoted by Pastθ (r) and formally defined as

Pastθ (r) :=
(
Vθ (r) , Eθ (r)

)
(1.98)

Lemma 1.6.8 (Correctness). The causal cone Past(i,t) (r) is the restriction of the causal graph
G (r, t) to the set V(i,t) (r) of all vertices that have a path to (i, t) (including (i, t) itself).

Proof. We will sometimes use the abbreviation θ = (i, t).
V(i,t) (r) is the set of those vertices of the causal graph G (r, t) that have a path to (i, t) by

definition, cf. (1.96). In particular, (i, t) ∈ V(i,t) (r).
We show that

(η, η′) ∈ E(i,t) (r) ⇐⇒ (η, η′) ∈ E (r, t) and η, η′ ∈ Vθ (r) .

By definition, cf. (1.97), each edge e = (η, η′) ∈ E(i,t) (r) belongs to E (r, t) and lies on some path
of the form

γ  r,t η →r,t η′  r,t
ξ (i, t) ∈ Ξ (r, t) .

Clearly, the paths ξ and
η →r,t η′  r,t

ξ (i, t) ∈ Ξ (r, t) (1.99)
connect the ends η′ and η of edge e to (i, t). Thus, η, η′ ∈ V(i,t) (r). This completes the proof from
left to right. In particular, it shows that each edge of Past(i,t) (r) connects two of its vertices,
making it a graph.

For the direction from right to left. If η′ ∈ Vθ (r), then there must exist some path ξ from η′ to
(i, t). Prepending it with the edge (η, η′) ∈ E (r, t) yields a path (1.99) from η to (i, t). It remains
to note that (η, η′) is an edge on this latter path.

The intuition tells us that if a node β is in the past of a node θ in some run r, then any past
of β is also a past of θ. The next lemma states this property.

Lemma 1.6.9. For a run r ∈ R and a node θ ∈ A× N

β ∈ Vθ (r) =⇒ Pastβ (r) is a subgraph of Pastθ (r),

i.e., Vβ (r) ⊂ Vθ (r) and Eβ (r) ⊂ Eθ (r).
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Proof. Let θ = (i, t) and β = (j, t′). First, let us prove that Vβ (r) ⊂ Vθ (r). For any node (k, t′′) ∈
Vβ (r) there must exist a path (k, t′′) r,t′

ξ1
(j, t′) that consists of edges from E (r, t′) ⊂ E (r, t).

Similarly, there exists a path (j, t′) r,t
ξ2

(i, t) that consists of edges from E (r, t). In particular, it
means that t′′ ≤ t′ ≤ t. It remains to note that the concatenation of these two paths

(k, t′′) ξ1
(j, t′) ξ2

(i, t)

leads from (k, t′′) to (i, t) and consists of edges from E (r, t). Thus, it is a path from Ξ (r, t) that
witnesses (k, t′′) ∈ V(i,t) (r).

By a similar reasoning, Eβ (r) ⊂ Eθ (r).

Lemma 1.6.10. Consider a context γ = (Pε,G (0), τ ,Ψ) with a transition template τ such that
filterε ⊂ filterBε , an agent-context χ = (γ, P ), two runs r, r′ ∈ Rw(χ) and a node (i, t) ∈ A× N
such that r and r′ agree on V(i,t) (r) \ {(i, t)}. Then

Past(i,t) (r) = Past(i,t) (r′).

Proof. Let us denote θ = (i, t). By Lemma 1.6.8, the graphs Past(i,t) (r) and Past(i,t) (r′) are
restrictions of the graphs G (r, t) and G (r′, t) respectively onto the sets V(i,t) (r) and V(i,t) (r′)
respectively. Note that G (r, t) and G (r′, t) have the same set V (t) of vertices and may differ only
in edges.

We show by induction on the length of ξ that

β  r,t
ξ (i, t) ⇐⇒ β  r′,t

ξ (i, t). (1.100)

Induction base. If ξ = (i, t) is a path of length zero and one of the two statements holds, then
β = (i, t). Accordingly, both statements (i, t) r,t

(i,t) (i, t) and (i, t) r′,t
(i,t) (i, t) in (1.100) hold.

Induction step. Suppose (1.100) holds for any path ξ of length k. Consider a path κ of length
k + 1. Then κ has the form

ν1 → ν2  ξ (i, t)

for some path ξ of length k. Assume that κ is a path in one of G (r, t) or G (r′, t). Then so is ξ
and, by the induction hypothesis, ξ is also a path in the other of the two. Thus, all we need to
show is that

ν1 →r,t ν2 ⇐⇒ ν1 →r′,t ν2 (1.101)

provided ν2  
r,t
ξ (i, t) and ν2  

r′,t
ξ (i, t) (these two statements are equivalent by the induction

hypothesis). If the edge (ν1, ν2) ∈ Eloc (t) is a simple time edge, which are the same in G (r, t) and
G (r′, t), then (1.101) is trivial. Thus, assume first that (ν1, ν2) ∈ Emsg (r, t) is a message edge in
the first graph. Since ν1 ∈ V(i,t) (r) by virtue of κ, runs r and r′ agree on ν1 by assumption. Let
ν1 = (l′, t′) and ν2 = (l′′, t′′). Note that t′′ > 0 due to an incoming edge from ν1 and t′′ ≤ t. Then,
βt
′

εl′
(r) = βt

′

εl′
(r′) and βt′l′ (r) = βt

′

l′ (r′). Therefore,

gsend(l′, l′′, µ, id) ∈ βt
′

l′ (r) or

(∃A ∈ {Â} tGActionsl′) fake (l′, gsend(l′, l′′, µ, id) 7→ A) ∈ βt
′

bl′
(r) ⊂ βt

′

εl′
(r) (1.102)

implies

gsend(l′, l′′, µ, id) ∈ βt
′

l′ (r′) or

(∃A ∈ {Â} tGActionsl′) fake (l′, gsend(l′, l′′, µ, id) 7→ A) ∈ βt
′

bl′
(r′) ⊂ βt

′

εl′
(r′). (1.103)

Similarly, (l′′, t′′ − 1) ∈ V(i,t) (r) by virtue of the path

(l′′, t′′ − 1)→r,t (l′′, t′′) r,t
ξ (i, t), (1.104)
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and (l′′, t′′−1) 6= (i, t). Hence, r and r′ also agree on (l′′, t′′−1), meaning, in particular, βt′′−1
εl′′

(r) =
βt
′′−1
εl′′

(r′). Thus,

grecv(l′′, l′, µ, id) ∈ βt
′′−1
εl′′

(r) ⊂ βt
′′−1
εl′′

(r) (1.105)
implies

grecv(l′′, l′, µ, id) ∈ βt
′′−1
εl′′

(r′) ⊂ βt
′′−1
εl′′

(r′). (1.106)
We conclude that (ν1, ν2) ∈ Emsg (r′, t), which completes the proof of the left-to-right direction
of (1.101).
Let us now assume that (ν1, ν2) ∈ Emsg (r′, t) is a message edge in the second graph, i.e., assume
that (1.103) and (1.106). Since ξ is a path in the second graph, it is also a path in the first graph
by the induction hypothesis, making (1.104) a witness that (l′′, t′′−1) ∈ V(i,t) (r) and that r agrees
with r′ on (l′′, t′′− 1) because (l′′, t′′− 1) 6= (i, t). Consequently, (1.106) implies (1.105), which, in
turn, by (1.67), implies

gsend(l′, l′′, µ, id) ∈ βt
′′′

l′ (r) or

(∃A ∈ {Â} tGActionsl′) fake (l′, gsend(l′, l′′, µ, id) 7→ A) ∈ βt
′′′

bl′
(r) (1.107)

for some t′′′ ≤ t′′ − 1. From (1.105) and (1.107), it follows that

(l′, t′′′)→r,t (l′′, t′′) r,t
ξ (i, t)

witnesses (l′, t′′′) ∈ V(i,t) (r). Therefore, r agrees with r′ on (l′, t′′′) because (l′, t′′′) 6= (i, t) and

gsend(l′, l′′, µ, id) ∈ βt
′′′

l′ (r′) or

(∃A ∈ {Â} tGActionsl′) fake (l′, gsend(l′, l′′, µ, id) 7→ A) ∈ βt
′′′

bl′
(r′). (1.108)

Thus, (1.103) in combination with (1.108) yields t′ = t′′′ by Corollary 1.3.17. Thus, ν1 = (l′, t′) ∈
V(i,t) (r), and (ν1, ν2) is an edge of G (r, t), completing the proof of (1.101) from right to left.

It easily follows that

• V(i,t) (r) = V(i,t) (r′), i.e., that β  r,t (i, t) iff β  r′,t (i, t);

• ν1 →r,t ν2 iff ν1 →r′,t ν2 for any ν1, ν2 ∈ V(i,t) (r).

Hence, the two causal cones are, indeed identical.

Definition 1.6.11 (Source nodes). For an agent-context χ =
(
(Pε,G (0), τ ,Ψ), P

)
, a χ-based

interpreted system I = (Rχ, π), a run r ∈ Rχ, a node θ = (i, t) ∈ A× N such that t > 0 and a
local event or action o ∈ Actions t Events , we define the non-Byzantine source nodes of o
within the causal cone of θ in the run r to be all nodes in the causal cone of θ where o occurred
correctly:

Θo
θ (r) := {η ∈ Vθ (r) |(I , r, t) |= occurredη(o)}. (1.109)

Similarly, we define the source nodes of o within the causal cone of θ in the run r as all
nodes in the causal cone where o occurred, whether correctly or in a Byzantine way:

Θo
θ (r) := {η ∈ Vθ (r) |(I , r, t) |= occurredθ(o)}. (1.110)

Definition 1.6.12. For a set of nodes Sources ⊂ A× N

ΞSourcesθ (r) := {ξ ∈ Ξ (r, t) | (∃η ∈ Sources) η  ξ θ} (1.111)

ΞSourcesθ (r) := {ξ ∈ Ξ (r, t) | (∃η ∈ Sources) η  ξ θ ∧ Failedξ (r(t)) = ∅} (1.112)

We denote information flows from correct sources of o to θ as

Ξoθ (r) := ΞΘo
θ
(r)

θ (r) , (1.113)

Ξoθ (r) := ΞΘo
θ
(r)

θ (r) . (1.114)
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Definition 1.6.13 (Resiliency). Let Ξ ⊂ Ξ (r, t) be a set of paths for some run r and timestamp
t, let k ∈ N be a number, and let D,R ⊂ A be sets of agents:

1. D disconnects Ξ iff (∀ξ ∈ Ξ) A (ξ) ∩D 6= ∅.

2. Ξ is k-agent-resilient around R, or simply k-resilient around R, iff no set B ⊂ A \ R
of size |B| ≤ k can disconnect Ξ. Formally stated,

(∀B ⊂ A \R)
(
|B| ≤ k =⇒ ¬(∀ξ ∈ Ξ) A (ξ) ∩B 6= ∅

)
⇐⇒

(∀B ⊂ A \R)
(
|B| ≤ k =⇒ (∃ξ ∈ Ξ) A (ξ) ∩B = ∅

)
(1.115)

Remark 1.6.14 (Inapplicability of Menger’s theorem). Note carefully that Menger’s theorem
cannot be applied in our setting, as the past graph consists of process-time nodes that are not
independent of each other: Both (i, t) and (i, t′) are affected if i is removed. Taking out a set of
k agents may hence disconnect more than k agent-disjoint paths.

1.7 Fully Byzantine Asynchronous Agents
In the previous sections, we defined the general framework using transition templates and intro-
duced the Byzantine transition template. It covers a wide range of settings, from crash failures
to fully Byzantine agents and represents asynchronous agents with no additional requirements on
communication.

However, no task can be guaranteed if agents are never allowed to act. Thus, it is standard to
impose the Fair Schedule (FS) admissibility condition, which ensures that each correct agent
will eventually be given a possibility to follow its protocol.

Definition 1.7.1 (Fair schedule).

FS =
{
r ∈ R |

(
∀(i, t) ∈ A× N

)
(∃t′ ≥ t) βt

′

gi (r) 6= ∅
}
.

Remark 1.7.2. The condition βt
′

gi (r) 6= ∅ is equivalent to demanding that eventually go(i),
sleep (i), or hibernate (i) be present in βt

′

εi (r). In other words, the FS admissibility condition
demands that the environment either provide CPU time or wrongfully deny CPU time for every
processor infinitely many times. This means that correct processes will be treated fairly, i.e., would
always be given an opportunity to act, whereas faulty processes can stop their by-the-protocol
actions from some point onward. Note, however, that for this to happen, the environment still has
to deal with this agent acting infinitely often, via sleep (i) and/or hibernate (i) commands. In other
words, an agent malfunctioning only due to wrong actions/events would still be regularly fulfilling
its protocol.16 Avoiding the protocol altogether constitutes a separate type of malfunction.

Thus, allowing all agents to go rogue may also result in the complete crash failure of the whole
system, which would preclude any guarantees of fulfilling the goal(s) of the joint protocol. It is,
therefore, common to restrict the maximal number f of agents that can become Byzantine.

In preventing the environment from failing too many agents within a round, several options
are a priori possible. The most general manifestation of this problem is when f − k agents are
already faulty and the environment’s protocol attempts to fail k + l + 1 more agents for some
k, l ≥ 0. In the situation when k is positive, i.e., some but not all agents can still be failed, the
choices are

1. to fail as many agents as possible, i.e., to fail some k of the proposed k + l + 1 agents but
filter out Byzantine events for the other l + 1 agents;

16This might appear to be a restriction artificially making agents perform actions. However, an agent that can
stay in standby indefinitely would simply have the empty set of actions as an option in its protocol.
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2. to fail nobody, i.e., to filter all Byzantine events while keeping all correct events intact;

3. to filter all events, Byzantine or correct alike.

We find that the first option is too arbitrary as it requires to randomly choose which l+ 1 agents
from k + l + 1 are to stay correct. The third option, on the contrary, is too invasive. Given
the general postulate that, unlike agents, the environment is not acting according to any plan,
it is more natural to consider each event attempted by the environment in isolation, much like
the inability to receive an unsent message does not preclude the environment from implementing
other events.

Thus, we choose the second option and implement it by adding an additional function filter≤fε
for the environment.

Definition 1.7.3 (Filtering for at most f Byzantine agents). For a set Xε ⊂ GEvents and agent
i ∈ A, we abbreviate

XB
εi

:= Xε ∩
(
BEventsi t {sleep (i), hibernate (i)}

)
(1.116)

and define

filter≤fε (h, Xε, X1, . . . , Xn) :=

Xε if
∣∣A(Failed (h)) ∪

{
i | XB

εi 6= ∅
}∣∣ ≤ f

Xε \
⋃
i∈A

XB
εi otherwise,

(1.117)
which removes all Byzantine commands from Xε whenever they would have led to creating more
than f faulty agents.

Remark 1.7.4. It might seem that the filters filter≤fε and filterBε are completely independent,
i.e., they can be applied in any order. After all, by (1.117) one of them only removes Byzantine
events, while by (1.24) the other only removes grecv events, which are correct. Unfortunately, this
is not entirely accurate. It is possible that a grecv command is not filtered by filterBε based on a
Byzantine send from the same round. If filter≤fε is applied after that and happens to filter this
fake send out, the receipt of the message becomes causally problematic. Thus, the only correct
order of applying these two filters is

filterBε
(
h, filter≤fε (h, Xε, X1, . . . , Xn) , X1, . . . , Xn

)
.

Definition 1.7.5. Given filters filterZ1
ε and filterZ2

ε we write

filterZ2◦Z1
ε (h,Xε, X1, . . . , Xn) := filterZ2

ε

(
h, filterZ1

ε (h,Xε, X1, . . . , Xn) , X1, . . . , Xn

)
.

(1.118)

We also simplify this notation for the combination of the Byzantine and at most f faults filters

filter
Bf
ε (h, Xε, X1, . . . , Xn) := filterB◦≤fε (h, Xε, X1, . . . , Xn) . (1.119)

Remark 1.7.6. Unlike FS, the upper bound on Byzantine agents cannot be formulated as an
admissibility condition if agent-contexts are to be non-excluding. Indeed, a run without such an
admissibility condition imposed may incur > f Byzantine agents already in a finite prefix, in which
case it would be impossible to extend such a prefix to a run satisfying the upper bound.

This is a typical example of separation between properties determined by a finite prefix of a
run (safety properties) on the one hand and properties of the run as a whole (liveness properties)
on the other hand. The non-exclusion requirement precludes the former from being imposed via
admissibility conditions, which are non-constructive and, hence, should only be used as the last
resort.

Definition 1.7.7 (f -Byzantine transition template). For a bound f ≥ 0, the f-Byzantine
transition template τBf is obtained by replacing filterBε in the definition of τB with filterBfε .
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Definition 1.7.8 (f -Byzantine agent-context). For a bound f ≥ 0, we call an agent-context

χ =
(

(Pε,G (0), τBf ,FS), P
)

(1.120)

f-Byzantine when it is based on the transition template τBf and has the admissibility condi-
tion FS .

Remark 1.7.9. It is easy to see that for f ≥ |A|, we have filterBfε = filterBε . Indeed, if all
agents can become Byzantine simultaneously, the need to restrict their number never materializes.
Hence, we generally assume that f ≤ |A|. The case of f = |A| is useful for uniform statements
about both filterBfε and filterBε .

Lemma 1.7.10. If the set
{t | (∃Xε ∈ Pε (t)) go(i) ∈ Xε} (1.121)

is infinite for each i ∈ A, then the f -Byzantine agent-context (1.120) is non-excluding.

Proof. In order to extend a given finite prefix of a weakly χ-consistent run to a consistent one, it is
sufficient to make βtgi (r) non-empty infinitely many times. Since the filter function filterBfε never
removes go(i), it is sufficient that αtgi (r) contain it infinitely many times, which can be achieved in
the rest of the run by the adversary if (∃Xε ∈ Pε (t)) go(i) ∈ Xε holds for infinitely many t’s.

Remark 1.7.11. Note that, despite its name, a non-excluding f -Byzantine agent-context χ pro-
vides neither a guarantee that Byzantine events will happen in a particular run nor, indeed, that
they can happen in a transitional run at all. Thus, our model can represent both correct runs
and infallible systems. Indeed, Byzantine events will not occur in a run if the adversary part of
the environment never chooses them. But it chooses them out of the possibilities afforded by the
environment’s protocol Pε. If Pε contains no Byzantine events, the adversary is powerless to effect
them.

Lemma 1.7.12. filterBfε ⊂ filterBε .

Proof. If E ∈ GEvents is any event other than a correct receive, then

E ∈ filterBfε (h, Xε, X1, . . . , Xn) ⇒ E ∈ Xε ⇒
E ∈ filterBε (h, Xε, X1, . . . , Xn) .

by (1.54) and the fact that filterBε only removes correct receives. If

E = grecv(i, j, µ, id) ∈ filterBfε (h, Xε, X1, . . . , Xn) =
filterBε

(
h, filter≤fε (h, Xε, X1, . . . , Xn) , X1, . . . , Xn

)
then grecv(i, j, µ, id) ∈ filter≤fε (h, Xε, X1, . . . , Xn) ⊂ Xε and for it to remain, one of the follow-
ing options must be fulfilled

• gsend(j, i, µ, id) ∈ hε or fake (j, gsend(j, i, µ, id) 7→ A) ∈ hε for some A ∈ {Â} tGActionsj .

• gsend(j, i, µ, id) ∈ Xj and go(j) ∈ filter≤fε (h, Xε, X1, . . . , Xn) ⊂ Xε.

• fake (j, gsend(j, i, µ, id) 7→ A) ∈ filter≤fε (h, Xε, X1, . . . , Xn) = Xε for some A ∈ {Â} t
GActionsj (the equality in this case follows from the fact that there are Byzantine events
left after the filtering).

In each of the options, the same reasoning applies to filterBε (h, Xε, X1, . . . , Xn) equally well
because the same h and Xj are used whereas Xε can only become larger.

Corollary 1.7.13. All statements from Lemma 1.3.15, Cor. 1.3.16, Cor. 1.3.18, and Lemma 1.6.10
hold also for contexts γ = (Pε,G (0), τBf ,Ψ).
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So far we have not postulated that Byzantine events must be present in Pε. We will now define
several types of protocols that ensure the possibility of particular types of errors, up to the case
of fully Byzantine agents, i.e., agents that are in principle capable of any malfunction imaginable.

Definition 1.7.14 (Types of agents). Given an agent-context(
(Pε,G (0), τ ,FS), P

)
, (1.122)

an agent i ∈ A in this agent-context is called

• fallible if for any X ∈ Pε (t),

X ∪ {fail (i)} ∈ Pε (t) . (1.123)

In other words, an agent is fallible if it can be branded Byzantine at any moment;

• infallible if for any X ∈ Pε (t),

X ∩
(
BEventsi t {sleep (i), hibernate (i)}

)
= ∅. (1.124)

An infallible agent cannot become Byzantine;

• degradable if for any Y ⊂ BEventsi and any X ∈ Pε (t),

X ∪ Y ∈ Pε (t) whenever it is t-coherent; (1.125)
(X \ SysEventsi) ∪ Y t {sleep (i)} ∈ Pε (t) whenever it is t-coherent; (1.126)

(X \ SysEventsi) ∪ Y t {hibernate (i)} ∈ Pε (t) whenever it is t-coherent. (1.127)

In other words, an agent is degradable if it can always make more mistakes;

• correctable if for any X ∈ Pε (t),

X \
(
BEventsi t {sleep (i), hibernate (i)}

)
∈ Pε (t) . (1.128)

In other words, an agent is correctable if it can always refrain from all mistakes;

• error-prone if for any Y ⊂ BEventsi and any X ∈ Pε (t),(
X \ (BEventsi t {sleep (i), hibernate (i)})

)
t Y ∈ Pε (t) whenever it is t-coherent;

(1.129)(
X \ (BEventsi t SysEventsi)

)
t Y t {sleep (i)} ∈ Pε (t) whenever it is t-coherent;

(1.130)(
X \ (BEventsi t SysEventsi)

)
t Y t {hibernate (i)} ∈ Pε (t) whenever it is t-coherent.

(1.131)

In other words, an agent is error-prone if it can commit any combination of Byzantine
actions/events in any round;

• delayable if for any X ∈ Pε (t),

X \GEventsi ∈ Pε (t) . (1.132)

In other words, an agent is delayable if all its activities can be correctly postponed in any
round, forcing its local state to remain unchanged after such a round (note that the absence
of go(i) also prevents the agent from acting on its own);
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• gullible if for any Y ⊂ BEventsi and any X ∈ Pε (t),

(X \GEventsi) t Y ∈ Pε (t) whenever it is t-coherent; (1.133)
(X \GEventsi) t Y t {sleep (i)} ∈ Pε (t) whenever it is t-coherent; (1.134)

(X \GEventsi) t Y t {hibernate (i)} ∈ Pε (t) whenever it is t-coherent. (1.135)

In other words, an agent is gullible if all its activities during a round can be replaced with
an arbitrary set of Byzantine events;

• isolatable if for any X ∈ Pε (t),

X \ {grecv(i, j, µ, id) | j ∈ A, µ ∈ Msgs , id ∈ N} ∈ Pε (t) . (1.136)

In other words, an agent is isolatable if all correct message deliveries to it can be postponed
at any round;

• distractible if for any X ∈ Pε (t),

X \GEventsi ∈ Pε (t) . (1.137)

In other words, an agent is distractible if it can miss all external events, including all incoming
messages;

• impotent if for any X ∈ Pε (t),

X \ {go(i)} ∈ Pε (t) . (1.138)

In other words, an agent is impotent if it is always possible it does not try to act;

• fully Byzantine if it is error-prone and gullible. In other words, whatever combination of
correct and faulty events can happen to i, the same correct events are compatible with any
other collection of faulty events (error-proneness) and, at the same time, any such collection
of faulty events could happen without any correct events whatsoever (gullibility).

In all cases where the new set is not explicitly required to be t-coherent, it can be shown to be
t-coherent whenever X is.

Remark 1.7.15. Note that error-proneness, degradability, gullibility, and full Byzanteneity means
that the agent can become Byzantine in some runs (for instance, adding fail (i) never violates t-
coherency); hence, such agents are not infallible. On the other hand, delayability, isolatability,
distractibility, and impotence do not necessarily imply any wrongdoing.

Corollary 1.7.16.

• Any agent that is degradable, error-prone, or gullible is fallible.

• Any agent that is error-prone is degradable and correctable.

• An agent that is both error-prone and delayable is also gullible.

• An agent that is gullible is delayable.

• An agent that is fallible, degradable, error-prone, or gullible cannot be infallible.

• A fully Byzantine agent is gullible, error-prone, fallible, degradable, correctable, and de-
layable.

Definition 1.7.17. For an upper bound f ≥ 0, an agent-context (1.120) is called fully f-
Byzantine, or simply fully Byzantine, if all agents are fully Byzantine.

Lemma 1.7.18. All fully f -Byzantine agent-contexts are non-excluding.

Proof. It is sufficient to issue sleep (i) in every round.
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Chapter 2

The Byzantine Asynchronous
Extension

2.1 Run Modifications
Definition 2.1.1. An intervention for an agent i ∈ A, or i-intervention is a function

ρ : R −→ GActionsi ×GEventsi.

The set of all i-interventions is denoted by

Intervs (i) :=
{
ρ | ρ : R −→ GActionsi ×GEventsi

}
.

One intervention ρ(r) is intended to modify the behavior of one agent in one round of a given
run r in a desired way. Whether this modification relies on the agent’s original behavior in r or is
a complete departure from it, can be encoded in the function ρ. The output

(Xi, Xεi) = ρ(r)

is intended to represent a pair of sets βti (r′) = Xi of actions by i and βtεi (r′) = Xεi of events
imposed on i in the same round of a modified run r′. For ease of notation we also define

aρ(r) := π1ρ(r);
eρ(r) := π2ρ(r).

In other words, if ρ(r) = (Xi, Xεi), then aρ(r) = Xi and eρ(r) = Xεi .

Definition 2.1.2. A joint intervention is a collection of i-interventions for all agents i ∈ A.
We denote the set of all joint interventions

Intervs :=
∏
i∈A

Intervs (i). (2.1)

Now, let us define an adjustment of a run as a timewise list of joint interventions. Each joint
intervention is to be performed at the corresponding timestamp. It is defined as follows

Definition 2.1.3. An adjustment
[Bt; . . . ;B0]

is a sequence of joint interventions B0 . . . , Bt ∈ Intervs to be performed at successive timestamps
from 0 to some t ∈ N, which is called the extent of the adjustment. We denote the set of
adjustments

Adjusts :=
⋃
t∈N
{[Bt; . . . ;B0] | B0 . . . , Bt ∈ Intervs} . (2.2)
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Definition 2.1.4. Let adj ∈ Adjusts be an adjustment

adj = [Bt; . . . ;B0] (2.3)

of extent t ∈ N where
Bm = (ρm1 , . . . , ρmn ) (2.4)

for each 0 ≤ m ≤ t (recall that A = {1, . . . , n}), where each ρmi is an i-intervention. Let a run r
be a τPε,P -transitional run. We say that a run r′ is obtained from r by adjustment adj, or
simply is adj-adjusted variant of r iff

r′ (0) = r (0) , (2.5)

(∀i ∈ A)(∀t′ ≤ t)
(
βt
′

i (r′), βt
′

εi (r′)
)

= ρt
′

i (r), (2.6)

(∀i ∈ A)(∀t′ ≤ t) r′i (t′ + 1) = updatei

(
r′i (t′) , βt

′

i (r′),
⋃
i∈A

βt
′

εi (r′)
)
, (2.7)

(∀t′ ≤ t) r′ε (t′ + 1) = updateε

(
r′ε (t′) ,

(⋃
i∈A

βt
′

εi (r′), βt
′

1 (r′), . . . , βt
′

n (r′)
))

, (2.8)

(∀t′ > t) r′ (t′ + 1) ∈ τPε,P (r′ (t′)) . (2.9)

We denote by R (τPε,P , r, adj) the set of all adj-adjusted variants of the run r, computed under
the transition function τPε,P .

Remark 2.1.5. The first property ensures that both runs start from the same initial state. The
second one means that the β-sets of the new run for each agent i, i.e., the actions and events
affecting i in rounds 0.5 through t.5, are fully determined by the adjustment. In the absence
of global events, this means that everything happening during these rounds is controlled by adj.
The third and fourth ones faithfully implement the updating phase of the round (see Figure 1.1)
for local and environment states respectively for the extent of the adjustment. Finally, the last
property ensures that beyond the adjusted segment, the new run extends in a τPε,P -transitional
manner.

Remark 2.1.6. Though r is assumed to be τPε,P -transitional, a priori its adjusted variants
need not be. Indeed, as noted above, the local and global histories are always updated in a
consistent manner, i.e., in accordance with (1.57) and (1.59), but the artificial β-sets imposed by
the adjustment adj may not follow the rules of the protocol, adversary, labelling, and filtering
phases (see Figure 1.1).

Lemma 2.1.7. For any run r, any transition function τPε,P , and any adjustment adj

R (τPε,P , r, adj) 6= ∅.

Proof. The initial t-prefix of the desired adjusted run, more precisely the behavior up till and
including the round t.5, is fully determined by adj and properties (2.5)–(2.8) and exists due to the
totality of all the functions involved. The intended behavior starting from the round (t + 1).5 is
governed by (2.9). Since both Pε and P satisfy the no-apocalypse clause (see Remark 1.2.11), there
is always at least one option for continuing the run in every round. Once again, the existence of
adjusted runs does not generally imply that they are strongly consistent or even transitional.

The primary method we use to show that an agent does not/cannot know some fact ϕ is
taking a(n) existing/arbitrary run and adjusting it in a way that is imperceptible for this agent
but makes ϕ false. Note that it is generally not sufficient to intervene with the behavior of only
this agent because its local state might be affected by correct messages received from other agents.
Thus, the behavior of other agents generally needs to be modified too. There are several types of
interventions useful to achieve the needed adjustments.
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The interventions needed for the agent who should not distinguish the original and adjusted
runs replace each correct action or event it experienced in the original run with a Byzantine event
that looks the same to the agent. Given that the agent’s perception can deviate from the real
actions/events, there is a range of choices regarding what really happens in the adjusted run.
We present two straightforward options representing passive and active interventions PFakei and
AFakei for agent i respectively.

Definition 2.1.8. For an agent i ∈ A and a run r ∈ R, we define i-interventions

PFaketi ,AFaketi : R→ GActionsi ×GEventsi

as follows:

PFaketi (r) :=
(
∅,

βtbi (r) ∪
{

fake (i, E) | E ∈ βtεi (r)
}
∪

{
fake (i,Â 7→ A) | A ∈ βti (r)

}
t

{sleep (i) | aware(i, βtεi (r))} t {hibernate (i) | unaware(i, βtεi (r))}
)

(2.10)

AFaketi (r) :=
(
∅,

βtbi (r) ∪
{

fake (i, E) | E ∈ βtεi (r)
}
∪

{
fake (i, A 7→ A) | A ∈ βti (r)

}
t

{sleep (i) | aware(i, βtεi (r))} t {hibernate (i) | unaware(i, βtεi (r))}
)

(2.11)

Remark 2.1.9. The only difference between these two i-interventions lies in what the agent
actually does while erroneously thinking that it did an action A. In case of the passive version
PFakei, agent i does not do anything, whereas in the active version AFakei, agent i does perform
action A, albeit in a Byzantine fashion. The two i-interventions coincide on Byzantine events.

Lemma 2.1.10. Let ρ ∈ {PFaketi,AFaketi | t ∈ N} be an intervention and r and r′ be arbitrary
runs. Then

1. aρ(r) = ∅, i.e., these interventions always produce the empty set of actions.

2. go(i) /∈ eρ(r), i.e., these interventions never let agent i act.

3. |eρ(r)∩ {sleep (i), hibernate (i)}| = 1, i.e., these interventions always intend to make agent i
Byzantine by means of exactly one of commands sleep (i) or hibernate (i).

4. σ
(
aρ(r) ∪ eρ(r)

)
= σ

(
eρ(r)

)
= σ

(
βti (r) ∪ βtεi (r)

)
, where ρ ∈ {PFaketi,AFaketi}, i.e., events

and actions intended to be appended to the local history of agent i as a result of round t.5
after the intervention PFaketi or AFaketi are the same as before the intervention in the same
round of the original run r.1

5. aware(i, eρ(r)) = aware(i, βtεi (r)), where ρ ∈ {PFaketi,AFaketi}, i.e., the awareness of agent i
of the passing of round t.5 is not changed by PFaketi or AFaketi.2

Proof. The only properties that do not directly follow from the definition are the last three.
Property 3 follows from the fact that unaware(i, Z) is defined to be the negation of aware(i, Z)

(see Def. 1.2.17). Hence, exactly one of them always holds.
1In some cases, the local history remains unaffected by these sets: namely, if there is no events/actions to add

and the agent is unaware of the passing round, but the statement is true in this case too.
2In some cases, the local history does not depend on such awareness: namely, if there are events/actions to add,

but the statement is true in this case too.
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Property 4 follows from

σ({fake (i, E)}) = σ({E}) and σ({fake (i,Â 7→ A)}) = σ({fake (i, A 7→ A)}) = σ({A})

which are a direct consequence of (1.32). Note that in the latter case A ∈ βti (r) ⊂ GActionsi.
For Property 5, note that |eρ(r) ∩ {go(i), sleep (i), hibernate (i)}| = 1 by Properties 2 and 3.

Hence, there are exactly two possibilities: either unaware(i, eρ(r)) due to the presence of hibernate (i)
or awareieρ(r) due to the presence of sleep (i), equivalently, due to the absence of hibernate (i).
More precisely,

aware(i, eρ(r)) = t ⇐⇒ hibernate (i) /∈ eρ(r) ⇐⇒
sleep (i) ∈ eρ(r) ⇐⇒ aware(i, βtεi (r)) = t.

Another common construction is freezing an agent, i.e., allowing no actions or events update
its local history. Such a behavior is captured by an i-intervention CFreeze if the agent is to remain
correct or by BFreezei if the agent is to become Byzantine. It is defined as follows.

Definition 2.1.11. For a run r ∈ R, we define

CFreeze (r) := (∅,∅). (2.12)

It can serve as an i-intervention for any agent i.

Definition 2.1.12. For an agent i ∈ A and a run r ∈ R, we define

BFreezei (r) := (∅, {fail (i)}). (2.13)

Note that interventions CFreeze and BFreezei are constant, in other words, the modifications
they initiate are run-independent.

Sometimes we want an intervention that preserves the exact behavior of an agent i ∈ A during
round t.5.

Definition 2.1.13. For an agent i ∈ A, a run r ∈ R, and a timestamp t ∈ N,

Copyti (r) := (βti (r), βtεi (r)). (2.14)

Sometimes we want an agent i ∈ A during round t.5 to concentrate on important messages
originating from a specific setX of nodes ignoring the chatter from outside of this set but otherwise
to carry on as without the intervention. We will often use a causal cone as X.

Definition 2.1.14. For an agent i ∈ A, a run r ∈ R, a timestamp t ∈ N, and a set X ⊂ A× N
of nodes,

X-Focusti (r) :=
(
βti (r), βtεi (r) \ {grecv(i, j, µ, id(j, i, µ, k,m)) | (j,m) /∈ X, k ∈ N}

)
. (2.15)

Finally, sometimes we do not care about agent i itself but only need it to produce the same
communication as in a given round.

Definition 2.1.15. For an agent i ∈ A, a run r ∈ R, and a timestamp t ∈ N,

FakeEchoti (r) :=
(
∅,

{fail (i)} t {fake (i, gsend(i, j, µ, id) 7→ Â) |

gsend(i, j, µ, id) ∈ βti (r) or (∃A ∈ GActionsi t {Â}) fake (i, gsend(i, j, µ, id) 7→ A) ∈ βtbi (r)}
)
.

(2.16)
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Using some of the assumptions on agents defined at the end of Chapter 1, we can prove the
following lemma.

Lemma 2.1.16 (Brain-in-the-Vat Lemma). Let A = J1;nK be the set of agents with protocols
P = (P1, . . . , Pn), let Pε be the protocol of the environment, let r be a τBPε,P -transitional run, let
i be an agent, let t > 0 be a timestamp, and let adj = [Bt−1; . . . ;B0] be an adjustment of extent t−1
satisfying (2.4) for all 0 ≤ m ≤ t− 1 with

ρmi = PFakemi and for all j 6= i ρmj ∈ {CFreeze,BFreezej}.

If the protocol Pε makes

• agent i gullible,

• every agent j 6= i delayable and fallible if ρmj = BFreezej for some m,

• all remaining agents delayable,

then each run r′ ∈ R
(
τBPε,P , r, adj

)
satisfies the following properties:

1. r′ is τBPε,P -transitional;

2. (∀m ≤ t) r′i (m) = ri (m);

3. (∀m ≤ t) (∀j 6= i) r′j (m) = r′j (0).

4. (i, 1) ∈ Bad (r′, 1) and, consequently, (i,m) ∈ Failed (r′,m′) for all m′ ≥ m > 0;

5. A (Failed (r′ (t))) = {i} ∪ {j 6= i | (∃m ≤ t− 1) ρmj = BFreezej}.

Proof. We prove all these statements alongside the following properties:

6. (∀m < t) (∀j 6= i) βmεj (r′) ⊂ {fail (j)}.
More precisely, βmεj (r′) = ∅ iff ρmj = CFreeze and βmεj (r′) = {fail (j)} iff ρmj = BFreezej ;

7. (∀m < t)βmεi (r′) \ βmfi (r′) = ∅;

8. (∀m < t)(∀j ∈ A)βmj (r′) = ∅.

Consider an arbitrary r′ ∈ R
(
τBPε,P , r, adj

)
.

Property 4 follows from Lemma 2.1.10(3).
Property 5 follows from Property 4 and the fact that the only event assigned other agents

j 6= i is fail (j) and it is only assigned by BFreezej , making all agents with BFreezej interventions
Byzantine while leaving all agents without BFreezej interventions correct.

Property 6 follows from (2.12) and (2.13).
Property 7 follows from (2.10).
Property 8 follows from Lemma 2.1.10(1) for i and from (2.12) and (2.13) for j 6= i.
The remaining three properties except for the first depend solely on the first t rounds of r′ and

the first property starting from round t.5 directly follows from (2.9). Thus, it remains to show
Properties 1–3 for m ≤ t by induction on m.
Base: m = 0. Properties 1 and 3 are trivial, whereas Property 2 follows from (2.5).
Step from m to m + 1. We prove Property 1 based on the gullibility of i and delayability
(and fallibility) of all other j 6= i. In order to show that r′ (m+ 1) ∈ τBPε,P (r′ (m)), we need
to demonstrate that the β-sets prescribed by adj can be obtained in a regular round. Since the
adversary’s choice of actions αmj (r) is immaterial due to the absence of go(j) by Lemma 2.1.10(2)
for i and by (2.12)/(2.13) for other j 6= i, we concentrate on showing which α-sets of events
the adversary needs to choose. Consider αmε (r) ∈ Pε (m) from the original run r. It must be
m-coherent because r is transitional. By the delayability of all j 6= i,

αmε (r) \
⊔
j 6=i

GEventsj = αmεi (r) ∈ Pε (m) .
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Note that for any Z ⊂ BEventsi t {sleep (i), hibernate (i)},(
αmεi (r) \GEventsi

)
t Z = ∅ t Z = Z

because αmεi (r) ⊂ GEventsi. Thus, by the gullibility of i,

Y0 := (βmεi (r) ∩ BEventsi) ∪{
fake(i, E) | E ∈ βmεi (r) ∩GEventsi

}
∪ {fake (i,Â 7→ A) | A ∈ βmi (r)} t

{sleep (i) | aware(i, βmεi (r))} t {hibernate (i) | unaware(i, βmεi (r))} ∈ Pε (m)

if it is m-coherent. Note that exactly one of sleep (i) and hibernate (i) is added to Y0 meaning
that condition 2 of m-coherency is fulfilled (see Def. 1.2.1). Conditions 3–5 of m-coherency are
trivially fulfilled because Y0 contains no correct events. Finally, condition 1 is fulfilled because all
fake actions in Y0 either have Â actually performed or originate from βmεi (r) ⊂ αmεi (r) ⊂ αmε (r),
the latter being an m-coherent set. Thus, Y0 ∈ Pε (m). Finally, by the fallibility of all agents j 6= i
with ρmj = BFreezej ,

Y := Y0 ∪ {fail (j) | ρmj = BFreezej} ∈ Pε (m) .

This Y is m-coherent and unaffected by filtering there are no correct events in Y to be filtered
out. We conclude that these choices by the adversary result, after the filtering phase, in

βmε (r) = Y,

βmj (r) = ∅ for all j ∈ A.

The latter is due to go(j) /∈ Y for any j ∈ A. It remains to note that

βmεi (r) = βmε (r) ∩GEventsi = Y0,

βmεj (r) = βmε (r) ∩GEventsj =
{
∅ if ρmj = CFreeze,
{fail (j)} if ρmj = BFreezej

for other j 6= i.

This completes the induction step for Property 1.
For Property 2, the induction step follows from Lemma 2.1.10(4)–(5). More precisely, given

that σ(Y ) = σ(Y0), we have the following cases:

• if σ
(
βmεi (r)

)
6= ∅, then

ri (m+ 1) = σ
(
βmi (r) t βmεi (r)

)
: ri (m) = σ

(
βmi (r) t βmεi (r)

)
: r′i (m)

by the induction hypothesis. It remains to use Lemma 2.1.10(4) to see that it is the same as

σ(Y ) : r′i (m) = σ(∅ t Y0) : r′i (m) = σ
(
βmi (r′) t βmεi (r′)

)
: r′i (m) = r′i (m+ 1) (2.17)

because σ
(
βmεi (r′)

)
= σ(Y0) = σ

(
βmi (r) t βmεi (r)

)
⊃ σ

(
βmεi (r)

)
6= ∅.

• if σ
(
βmεi (r)

)
= ∅ but aware(i, βmε (r)) = t, then

ri (m+ 1) = σ
(
βmi (r) t βmεi (r)

)
: ri (m) = σ(βmi (r)) : ri (m) = σ(βmi (r)) : r′i (m) (2.18)

by the induction hypothesis. By Lemma 2.1.10(5), also

aware(i, βmε (r′)) = aware(i, βmεi (r′)) = aware(i, Y ) = aware(i, βmεi (r)) = aware(i, βmε (r)) = t.

Thus, the last expression of (2.18) is equal to the first expression of (2.17) and this case can
be concluded by continuing the series of equalities the same way as it was done in (2.17) in
the preceding case.
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• if σ
(
βmεi (r)

)
= ∅ and unaware(i, βmε (r)) = t, then unaware(i, βmε (r′)) = t by the same

reasoning we just applied to aware(i, βmε (r′)). In addition, by (1.23), passive(i, βmε (r)),
meaning that βmi (r) = ∅ by (1.25). Finally,

σ
(
βmεi (r′)

)
= σ(Y ) = σ

(
βmi (r) t βmεi (r)

)
= σ

(
βmεi (r)

)
= ∅.

Thus, in this case,
r′i (m+ 1) = r′i (m) = ri (m) = ri (m+ 1) .

This completes the proof of the induction step for Property 2.
For Property 3, the induction step is even simpler. Since βmj (r′) = ∅ and βmεj (r′) ⊂ {fail (j)}

for any j 6= i, it follows that σ(βmεj (r′)) = ∅ and unaware(j, βmε (r′)) = unaware(j, βmεj (r′)) = t, it
follows that

r′j (m+ 1) = r′j (m) = r′j (0)

by the induction hypothesis.

Remark 2.1.17. The previous lemma states that for a designated agent i ∈ A at some local
state ri (t) there is always an i-indistinguishable local state r′i (t) in an alternative transitional
run r′ such that all other agents are yet to leave their initial local states, with i definitely Byzantine
while other agents can be made Byzantine or correct at will. We call this the Brain-in-the-Vat
Lemma because agent i attains this indistinguishable local state by imagining that all actions and
events from the original run happened to it without any participation of other agents.

Definition 2.1.18. For an adjustment adj = [Bt; . . . ;B0] of extent t satisfying (2.4), we denote

Failed (adj) :=
{
j | (∃m ≤ t) eρmj ∩ (BEventsj t {sleep (j), hibernate (j)}) 6= ∅

}
the set of agents who are assigned Byzantine events, including sleep (i) or hibernate (i) instructions
by this adjustment.

Corollary 2.1.19. For the adjustment adj used in Lemma 2.1.16,

Failed (adj) = {i} ∪ {j 6= i | (∃m ≤ t− 1) ρmj = BFreezej}.

Hence, the number |Failed (adj)| ≥ 1 of agents necessarily failed by this adjustment is always
positive.

Corollary 2.1.20. Lemma 2.1.16 also holds if r is a τBfPε,P -transitional run for any

f ≥ |Failed (adj)|

(in particular, if all ρmj = CFreeze for j 6= i, it is sufficient to have f ≥ 1). Moreover, in this case
Property 1 can be replaced by

1′. r′ is τBfPε,P -transitional.

Proof. The construction is exactly the same. The additional filtering of too many Byzantine agents
introduced in a round will not be used (until timestamp t) because the constructed part of the
new run only fails allowable number of agents, including agent i.

Corollary 2.1.21. For an agent i ∈ A, for a set BD ⊂ A \ {i} of agents, for a non-excluding
agent-context χ =

(
(Pε,G (0), τBf ,Ψ), P

)
such that f ≥ 1+ |BD| and Pε makes i gullible, all other

agents j 6= i delayable, and additionally all agents from BD fallible, for a χ-based interpreted
system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp t > 0, there is a run r′ ∈ Rχ that
satisfies Properties 2–8 from Lemma 2.1.16 and such that A (Failed (r′ (t))) = {i} ∪BD.
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Proof. Consider an tadjustment adj = [Bt−1; . . . ;B0] with (2.4) such that for all m < t,

ρmi = PFakei,

ρmj =
{

BFreezej if j ∈ BD,
CFreeze if j ∈ A \ ({i} tBD).

Clearly, |Failed (adj)| = 1+ |BD|. By Cor. 2.1.20, there exists a τBf -transitional run r′′ satisfying
all the required conditions. Clearly, r′′ ∈ Rwχ because, by (2.5) we have r′′(0) = r(0) ∈ G (0). It
remains to note that the the initial prefix of r′′ up to timestamp t can be extended to a run r′ ∈ Rχ
because χ is non-excluding. Since all required properties depend only on this initial prefix, they
are also satisfied for r′.

Corollary 2.1.22. For an agent i ∈ A, a set BD ⊂ A\ {i} of agents, a fully f -Byzantine agent-
context χ =

(
(Pε,G (0), τBf ,FS), P

)
with f ≥ 1 + |BD|, a χ-based interpreted system I = (Rχ, π),

a run r ∈ Rχ, and a timestamp t > 0, there is a run r′ ∈ Rχ that satisfies Properties 2–8 from
Lemma 2.1.16.

Proof. f -fully Byzantine agent-contexts are non-excluding by Lemma 1.7.18. Since all agents
in such agent-contexts are fully Byzantine, they are gullible by definition. In addition to i being
gullible, it follows from Cor. 1.7.16 that all other j 6= i are delayable. Finally, since fully Byzantine
agents are error-prone by definition, it follows from the same Cor. 1.7.16 that all j ∈ BD are
fallible.

Corollary 2.1.23. For the χ-based interpreted system I = (Rχ, π) and run r′ from Cor. 2.1.21
or Cor. 2.1.22 with BD = ∅ and, accordingly, with f ≥ 1, for any timestamp t ∈ N,

(∀o ∈ Actions t Events) (∀t′ ≤ t) (I , r′, t′) 6|= occurred (o). (2.19)

Proof. Recall that by (1.84) and (1.83)

occurred (o) =
∨
j∈A

occurredj(o).

Thus, we need to show that
(I , r′, t′) 6|= occurredj(o)

for each j ∈ A, each t′ ≤ t, and each o ∈ Actions t Events . By (1.81), we need to show that

(∀t′′ < t′) o /∈ label−1
(
βt
′′

j (r′) t βt
′′

εj (r′)
)
.

Since all such t′′ < t, it is sufficient to show

(∀t′′ < t) o /∈ label−1
(
βt
′′

j (r′) t βt
′′

εj (r′)
)
.

For t = 0, this is vacuously true. For t > 0, we can use Cor. 2.1.21 or Cor. 2.1.22 respectively.
Then this statement follows from the fact that for all agents j ∈ A,

βt
′′

j (r′) = β
t′′

εj (r′) = ∅.

Regarding βt′′j (r′), this follows from Lemma 2.1.16(8). Regarding βt
′′

εj (r′) for j 6= i, it follows

from Lemma 2.1.16(6). Finally, regarding βt
′′

εi (r′) for agent i it follows from Lemma 2.1.16(7) and
β
t′′

εi (r′) ⊂ βt′′εi (r′) \ βt′′fi (r′).
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2.2 Introspection
By introspection we understand the ability of agents to reason about their own state and their
own knowledge. The agent is primarily interested in its own correctness and the reliability of data
it receives.

2.2.1 Local Introspection
We will now use the brain-in-the-vat construction to show that fully Byzantine agents can never
be sure that a particular action/event definitively took place or, barring the initial state, that they
are correct.

Lemma 2.2.1. For an agent i ∈ A, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such that f ≥ 1 and Pε makes i gullible and all other agents j 6= i delayable, for a χ-based
interpreted system I = (Rχ, π), for a run r ∈ Rχ, for a timestamp t ∈ N, and for an action or
event o ∈ Actions t Events,

(I , r, t) 6|= Kioccurred (o).

In particular, this statement holds for fully f -Byzantine agent-contexts.

Proof. For t = 0, the statement is obvious. For t > 0, the statement follows directly from (2.19)
of Cor. 2.1.23 and Lemma 2.1.16(2).

Lemma 2.2.2. For an agent i ∈ A, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such that f ≥ 1 and Pε makes i gullible and all other agents j 6= i delayable, for a χ-based
interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp t > 0,

(I , r, t) 6|= Kicorrecti.

In particular, this statement holds for fully f -Byzantine agent-contexts.

Proof. Consider the run r′ constructed in Cor. 2.1.21 (respectively, Cor. 2.1.22) for BD = ∅.
Recall that by (1.78)

(I , r′, t) |= correcti ⇐⇒ (i, t) /∈ Failed (r′, t).

Thus, the statement follows directly from Properties 2 and 4 of Lemma 2.1.16.

Remark 2.2.3. It is clear that within any agent-context based on a transition template τB0 , i.e.,
for f = 0, all agents always know that they are correct and they can learn about real actions/events
from observation because no Byzantine events can ever happen in such runs. Conversely, such
agents can never learn that they are faulty because it will never be true.

Unlike the knowledge of own correctness, it is in principle possible for a fully Byzantine agent
to learn of its own defectiveness (provided, as just noted, that mistakes are, in fact, allowed).

Lemma 2.2.4. For some agent i ∈ A, an agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such that

f ≥ 1, it is possible that for some (weakly) χ-based interpreted system I, some (weakly) χ-consistent
run r, and some timestamp t > 0,

(I , r, t) |= Kifaultyi.

Proof. This happens whenever there is a mismatch between actions recorded in the agent’s local
history and actions prescribed by the agent’s protocol for the preceding local state.
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2.2.2 Global Introspection
Similarly to the virtual impossibility for the agent to ascertain its own correctness, it is similarly
almost impossible for an agent to learn the Byzantine status of another agent.

Lemma 2.2.5. For some agents i 6= j, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such that f ≥ 1 and Pε makes agent i gullible and all other agents delayable, for a χ-based inter-
preted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp t ∈ N,

(I , r, t) 6|= Kifaultyj .

In particular, this statement holds for fully f -Byzantine agent-contexts.

Proof. For t = 0, the statement is obvious because no agent can be faulty in the initial state.
For t > 0, the statement follows directly from Properties 2 and 6 of Lemma 2.1.16 applied to
ρmj = CFreeze for all j 6= i.

Lemma 2.2.6. For agents i 6= j, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such that f ≥ 2 and Pε makes agent i gullible, agent j delayable and fallible, and all other agents
delayable, for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ, and for a timestamp
t > 0,

(I , r, t) 6|= Kicorrectj .

In particular, this statement holds for fully f -Byzantine agent-contexts.

Proof. The statement follows directly from Properties 2 and 5 of Lemma 2.1.16 applied to

ρmk =
{

CFreeze if k /∈ {i, j}
BFreezej if k = j.

It is also sufficient to set ρ0
j = BFreezej and all other ρmk = CFreeze for k 6= i.

In this proof, BD = {j} and Failed (adj) = {i, j}, which is why it was necessary to allow at
least two agents to become Byzantine.

Given that typical Byzantine agents can never be sure that they are correct, or that another
agent is correct (faulty), or that a particular action/event happened, their behavior cannot rely on
knowledge but should be governed by a weaker epistemic state. We define the following operators:

Biϕ := Ki(correcti → ϕ) (2.20)
Hiϕ := correcti → Biϕ = correcti → Ki(correcti → ϕ). (2.21)

Thus, a belief in ϕ means that ϕ follows from the local state of the agent provided the agent is
correct, whereas hope that ϕ states that this belief need only hold if the agent is correct.

Lemma 2.2.7 (Properties of belief and hope). For any formula ϕ, any agent i, the following
formulas are propositional tautologies and, hence, are valid in every interpreted system.

• |= Biϕ→ Hiϕ

• |= correcti → (Biϕ↔ Hiϕ)

• |= faultyi → Hiϕ

Proof. The first two statements are obvious. The last statement follows from the definition of
faultyi as ¬correcti.
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As can be seen from the preceding lemma, belief is stronger than hope in general, but equivalent
to it for correct agents. Hope provides no information for faulty agents, whereas belief can, which
can be used for designing algorithms for malfunctioning agents. In fact, given that

|= (correcti → faultyi)↔ faultyi

is also a propositional tautology, it is the case that

|= Bifaultyi ↔ Kifaultyi

due to the normality of the Ki modality. In other words, in order to react to its own faults, the
agent should know of them, which can be formulated in terms of the belief modality. On the other
hand, 6|= Hifaultyi → Kifaultyi because a faulty agent always hopes to be faulty but may not
know it is.

On the other hand, the hope modality will be technically convenient in future proofs by af-
fording more elegant formulations for iterated modalities.

2.3 The Role of the Causal Cone
In the preceding two sections, we constructed a minimal run that is subjectively identical to a
given run at a given node. In this section, we construct a similarly minimal run that is identical
objectively as far as this node is concerned. In doing so, we reaffirm the intuitive view of the causal
cone as the minimal causal foundations of the node.

Before formulating this statement, we prove a technical auxiliary lemma to the effect that using
filter≤fε the second time to make sure the maximum of f Byzantine agents is respected—doing
it the second time has no effect even if some events (not necessarily Byzantine) are removed in
between. Let us denote

Xf
εk

:= Xε ∩ (BEventsk t {sleep (k), hibernate (k)}), (2.22)
Failed (Xε) := {k | Xf

εk
6= ∅}. (2.23)

Lemma 2.3.1. For arbitrary Xε, Yε, Zε ⊂ GEvents, arbitrary Xi, X
′
i ⊂ GActionsi for each i ∈ A,

any f ∈ N, and arbitrary global histories h and h′ such that

| A (Failed (h)) | ≤ f
A (Failed (h′)) ⊂ A (Failed (h)) ,

Failed (Zε) ⊂ A (Failed (h)) ∪ Failed
(
filter≤fε (h, Xε, X1, . . . , Xn)

)
,

we have

filter≤fε
(
h′,

(
filter≤fε (h, Xε, X1, . . . , Xn) \ Yε

)
∪ Zε, X ′1, . . . , X ′n

)
=(

filter≤fε (h, Xε, X1, . . . , Xn) \ Yε
)
∪ Zε. (2.24)

Proof. There are two possibilities:

filter≤fε (h, Xε, X1, . . . , Xn) =

Xε if | A (Failed (h)) ∪ Failed (Xε)| ≤ f,
Xε \

⊔
k∈A

Xf
εk

if | A (Failed (h)) ∪ Failed (Xε)| > f.

Case 1. filter≤fε (h, Xε, X1, . . . , Xn) = Xε because | A (Failed (h)) ∪ Failed (Xε)| ≤ f . Clearly,

Failed
((
filter≤fε (h, Xε, X1, . . . , Xn) \ Yε

)
∪ Zε

)
= Failed ((Xε \ Yε) ∪ Zε) ⊂

Failed (Xε) ∪ Failed (Zε) ⊂

Failed (Xε) ∪
(
A (Failed (h)) ∪ Failed

(
filter≤fε (h, Xε, X1, . . . , Xn)

))
=

A (Failed (h)) ∪ Failed (Xε).
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Thus,∣∣A (Failed (h′)) ∪ Failed
((
filter≤fε (h, Xε, X1, . . . , Xn) \ Yε

)
∪ Zε

)∣∣ ≤
|A (Failed (h)) ∪ Failed (Xε)| ≤ f,

and (2.24) is fulfilled.
Case 2. filter≤fε (h, Xε, X1, . . . , Xn) = Xε \

⊔
k∈A

Xf
εk

because | A (Failed (h))∪Failed (Xε)| > f .

In this case,
Failed

(
filter≤fε (h, Xε, X1, . . . , Xn)

)
= ∅,

meaning that
Failed (Zε) ⊂ A (Failed (h)) .

Let us denote
Uε :=

(
filter≤fε (h, Xε, X1, . . . , Xn) \ Yε

)
∪ Zε.

Then

Ufεk = Uε ∩
(

BEventsk t {sleep (k), hibernate (k)}
)

=(((
Xε \

⊔
k∈A

Xf
εk

)
\ Yε

)
∪ Zε

)
∩
(

BEventsk t {sleep (k), hibernate (k)}
)

=(((
Xε \

⊔
k∈A

Xf
εk

)
\ Yε

)
∩
(

BEventsk t {sleep (k), hibernate (k)}
))

∪(
Zε ∩

(
BEventsk t {sleep (k), hibernate (k)}

))
=

∅ ∪ Zfεk = Zfεk .

Since Ufεk = Zfεk for all agents k ∈ A, it immediately follows that

Failed (Uε) = Failed (Zε) ⊂ A (Failed (h)) .

and, consequently

| A (Failed (h′)) ∪ Failed (Uε)| ≤
|A (Failed (h)) ∪ A (Failed (h)) | = | A (Failed (h)) | ≤ f.

Consequently, (2.24) is fulfilled again.
Thus, we have demonstrated (2.24) in both cases.

Definition 2.3.2. Let X ⊂ A× N be a set of nodes. We define

Xc := X ∪ {(i, t+ 1) | (i, t) ∈ X}

to contain X along with all immediate futures of nodes in X. Applying this to a causal cone we
define

Vc
(j,t′) (r) :=

(
V(j,t′) (r)

)
c \ {(j, t′ + 1)}

excluding only the immediate future of the tip of the cone.

Lemma 2.3.3. For a node θ = (i, t) ∈ A× N with t > 0, for a non-excluding agent-context
χ =

(
(Pε,G (0), τBf ,Ψ), P

)
such that Pε makes all agents j both delayable and correctable,3 for

3Strictly speaking, it is sufficient to demand delayability only for all agents j such that (j, t−1) /∈ Vθ (r), whereas
correctability is only necessary for all agents j such that (j, 0) ∈ Vθ (r). Additionally, the condition of correctability
can be dropped altogether if f ≥ n.
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a χ-based interpreted system I = (Rχ, π), and for a run r ∈ Rχ, consider an adjustment adj =
[Bt−1; . . . ;B0] satisfying (2.4) for all 0 ≤ m ≤ t− 1 with

ρmj =
{
Vθ (r)-Focusmj if (j,m) ∈ Vθ (r) ,
CFreeze if (j,m) /∈ Vθ (r).

Each run r′ ∈ R
(
τ
Bf
Pε,P

, r, adj
)
satisfies the following properties:

1. For any agent j ∈ A and for any timestamp m ≤ t− 1

βmεj (r′) ⊂ βmεj (r) (2.25)
βmεj (r′) = βmεj (r) if (j,m+ 1) ∈ Vθ (r), (2.26)
βmεj (r′) = ∅ if (j,m) /∈ Vθ (r); (2.27)
βmfj (r′) = βmfj (r) if (j,m) ∈ Vθ (r), (2.28)
βmgj (r′) = βmgj (r) if (j,m) ∈ Vθ (r), (2.29)

2. (∀j ∈ A) (∀m ≤ t− 1) βmj (r′) =
{
βmj (r) if (j,m) ∈ Vθ (r),
∅ if (j,m) /∈ Vθ (r);

3. r and r′ agree on {(j,m) | (j,m+ 1) ∈ Vθ (r)};

4. rj (m) = r′j (m) whenever (j,m) ∈ Vθ (r). In particular, ri (t) = r′i (t);

5. BadVc
θ

(r) (r′) = BadVc
θ

(r) (r);

6. Failed (r′(t)) = FailedVc
θ

(r) (r′) = FailedVc
θ

(r) (r);

7. (∀m ≤ t) Failed (r′(m)) ⊂ Failed (r(m));

8. for any node β ∈ Vc
θ (r) and any action/event o ∈ Actions t Events that is not a receive

event,

(I , r, t) |= occurredβ(o) ⇐⇒ (I , r′, t) |= occurredβ(o),
(I , r, t) |= fakeβ (o) ⇐⇒ (I , r′, t) |= fakeβ (o) ;

in addition, if β ∈ Vθ (r) proper, then the equivalences hold also for receive events;

9. r′ is τBfPε,P -transitional.

In particular, this statement holds for fully f -Byzantine agent-contexts.

Proof. Let r′ ∈ R
(
τ
Bf
Pε,P

, r, adj
)
. Most parts of Properties 1 and 2 directly follow from the

definitions of Vθ (r)-Focusmj in (2.15), and CFreeze in (2.12). The only point we elaborate on is
(2.26). Given (2.25), it is sufficient to prove that βmεj (r) ⊂ βmεj (r′) whenever (j,m + 1) ∈ Vθ (r).
Any non-receive event from βmεj (r) is automatically present in βmεj (r′) because Vθ (r)-Focusmj only
removes receive-events. If grecv(j, k, µ, id) ∈ βmεj (r), then, by Corollaries 1.7.13 and 1.3.16 and
Lemma 1.3.15, we have id = id(k, j, µ, s, t′) for some s ∈ N such that (k, t′) →r,t (j,m+ 1).
Thus, (j,m+ 1) ∈ Vθ (r) is sufficient to put (k, t′) ∈ Vθ (r), which ensures that grecv(j, k, µ, id) ∈
βmεj (r′) = eVθ (r)-Focusmj (r).

According to Def. 1.3.20, Property 3 states that

(a) rj (m) = r′j (m),

(b) βmj (r) = βmj (r′), and
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(c) βmεj (r) = βmεj (r′)

whenever (j,m + 1) ∈ Vθ (r). Thus, both (b) and (c) for all such nodes (j,m) follow directly
from (2.26) part of Property 1 and from Property 2, in the latter case because (j,m) ∈ Vθ (r)
whenever (j,m + 1) ∈ Vθ (r). We now prove (a) by induction on timestamp m ≤ t − 1. For the
base case m = 0, statement (a) follows from r′(0) = r(0) by (2.5). For the induction step from m
to m+ 1, consider (j,m+ 2) ∈ Vθ (r). Since (j,m+ 1) must also be in the causal cone Vθ (r), by
induction hypothesis, rj (m) = r′j (m). Given (b) and (c) for (j,m), we have that r and r′ agree
on (j,m). Hence, by Lemma 1.3.22, rj (m+ 1) = r′j (m+ 1), which completes the induction step,
the induction proof of (a), and the proof of Property 3.

Property 4 now follows easily. Indeed, either m = 0 and rj (0) = r′j (0) by (2.5). Otherwise,
m > 0 and r and r′ agree on (j,m − 1) by Property 3. The desired statement now follows by
Lemma 1.3.22. It remains to note that (i, t) ∈ V(i,t) (r).

To prove Property 5, recall that by the definition of transitional runs for r and adjusted runs
for r′, the global histories in r and r′ up till timestamp t are constructed from the β-sets according
to the updating phase. By (2.28) part of Property 1, for every (j,m) ∈ Vθ (r) with m < t

βmfj (r) = βmfj (r′).

This can be reformulated as for every (j,m) ∈ Vc
θ (r) with m > 0

βm−1
fj

(r) = βm−1
fj

(r′).

It remains to note, by unfolding Definitions 1.3.3 and 1.3.5, that

(j,m) ∈ BadVc
θ

(r) (r) ⇐⇒ (j,m) ∈ Vc
θ (r) ∧ (j,m) ∈ Bad

(
r, T (Vc

θ (r))
)
⇐⇒

(j,m) ∈ Vc
θ (r) ∧ (j,m) ∈ Bad (r, t) ⇐⇒ (j,m) ∈ Vc

θ (r) ∧ (j,m) ∈ Bad (r (t)) ⇐⇒
(j,m) ∈ Vc

θ (r) ∧ m > 0 ∧ βm−1
fj

(r) 6= ∅ ⇐⇒

(j,m) ∈ Vc
θ (r) ∧ m > 0 ∧ βm−1

fj
(r′) 6= ∅ ⇐⇒

(j,m) ∈ Vc
θ (r) ∧ (j,m) ∈ Bad (r′ (t)) ⇐⇒ (j,m) ∈ Vc

θ (r) ∧ (j,m) ∈ Bad (r′, t) ⇐⇒
(j,m) ∈ Vc

θ (r) ∧ (j,m) ∈ Bad
(
r′, T (Vc

θ (r))
)
⇐⇒ (j,m) ∈ BadVc

θ
(r) (r′)

Given that no (Byzantine) events happen outside Vc
θ (r), Property 6 is a direct consequence

of Property 5 since FailedVc
θ

(r) (r) is fully determined by BadVc
θ

(r) (r), as also FailedVc
θ

(r) (r′) by
BadVc

θ
(r) (r′) (see Definitions 1.3.3 and 1.3.5).

To show Property 7, consider any (l,m′) ∈ Failed (r′(m)). Then 0 < m′ ≤ m ≤ t and
(l,m′′) ∈ Bad (r′(m)) for some 0 < m′′ ≤ m′ ≤ m ≤ t, i.e., that βm

′′−1
fl

(r′) 6= ∅, meaning
that βm′′−1

εl
(r′) 6= ∅, where m′′ − 1 ≤ t − 1. By (2.27) part of Property 1, this implies that

(l,m′′ − 1) ∈ Vθ (r). Hence, by (2.28) part of Property 1, βm
′′−1

fl
(r) = βm

′′−1
fl

(r′) 6= ∅ and,
consequently, (l,m′′) ∈ Bad (r(m)), meaning that (l,m′) ∈ Failed (r(m)).

Property 8 follows either from Property 3 or directly from part (2.26) of Property 1 and from
Property 2. Indeed, for β = (j,m) with m ≤ t, according to (1.79) and (1.80), the truth values of
both occurred(j,m)(o) and fake(j,m) (o) are fully determined by the βm−1

εj and βm−1
j sets, which are

identical for r and r′ within the causal cone Vθ (r) by part (2.26) of Property 1 and by Property 2
(note that m− 1 ≤ t− 1 and that for m = 0 the atomic propositions are trivially false). Similarly,
these sets are identical modulo receive events in rounds immediately following the latest node in
the causal cone.

It remains to prove Property 9, i.e., the transitionality of the run r′. As already discussed in
the proof of Lemma 2.1.16(1), it is sufficient to show that all the β-sets produced by the adjustment
adj can be obtained in a regular manner from appropriately chosen α-sets allowed by the protocol.

First, we define the requisite α-sets explaining why they can be issued by the relevant protocols.
Consider any m ≤ t− 1. For each agent j such that (j,m) ∈ Vθ (r) we have

rj(m) = r′j(m) for all (j,m) ∈ Vθ (r) (2.30)
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by the already proven Property 4. Hence, the set

αmj (r) ∈ Pj (rj(m)) = Pj
(
r′j(m)

)
can be chosen by the adversary to be αmj (r′). For (j,m) /∈ Vθ (r), it does not matter what
the adversary chooses as αmj (r′) (recall that there is always at least one choice available by the
no-apocalypse clause). For the environment, by the correctability of all agents

filter≤fε
(
r(m), αmε (r), αm1 (r), . . . , αmn (r)

)
∈ Pε (m)

because αmε (r) ∈ Pε (m). Further, by the delayability of all agents, the set

filter≤fε
(
r(m), αmε (r), αm1 (r), . . . , αmn (r)

)
\

⊔
(l,m)/∈Vθ(r)

GEventsl ∈ Pε (m) .

Thus,

αmε (r′) := filter≤fε
(
r(m), αmε (r), αm1 (r), . . . , αmn (r)

)
\

⊔
(l,m)/∈Vθ(r)

GEventsl (2.31)

can be chosen by the adversary. Note that

αmε (r′) ⊂ αmε (r).

It remains to show that the filtering employed by the transition function τBfPε,P turns these sets
αmε (r′), αm1 (r′), . . . , αmn (r′) into the exact β-sets prescribed by the adjustment adj. Given that
βmε (r′) is partitioned into βmεj (r′) for each j ∈ A, we can verify the correctness for each node
(j,m) separately. Let us abbreviate

Υ := filter
Bf
ε

(
r′(m), αmε (r′), αm1 (r′), . . . , αmn (r′)

)
,

Υj := Υ ∩ GEventsj
Ξj := filterBj (αm1 (r′), . . . , αmn (r′), Υ)

Our goal is to show that Υj = βmεj (r′) and Ξj = βmj (r′) for each j ∈ A.

• We start with nodes (j,m) /∈ Vθ (r)

Υj = Υ ∩GEventsj ⊂ αmε (r′) ∩GEventsj = ∅ = eCFreeze (r) = βmεj (r′).

In particular, go(j) /∈ Υ, resulting in

Ξj = ∅ = aCFreeze (r) = βmj (r′).

• We now turn to (j,m) ∈ Vθ (r). We abbreviate

Yε :=
⊔

(l,m)/∈Vθ(r)

GEventsl, (2.32)

αm (r) := αm1 (r), . . . , αmn (r), (2.33)
αm (r′) := αm1 (r′), . . . , αmn (r′). (2.34)

By (1.119)

Υ = filter
Bf
ε

(
r′(m), filter≤fε

(
r(m), αmε (r), αm (r)

)
\ Yε, αm (r′)

)
=

filterBε

(
r′(m), filter≤fε

(
r′(m), filter≤fε

(
r(m), αmε (r), αm (r)

)
\ Yε, αm (r′)

)
, αm (r′)

)
.

62



By the already proven Property 7, Failed (r′(m)) ⊂ Failed (r(m)) (recall that m ≤ t− 1).
Hence, by Lemma 2.3.1 with

Xε = αmε (r), Zε = ∅, h = r(m), h′ = r′(m), Xi = αmi (r), X ′i = αmi (r′),

given that | A (Failed (r(m))) | ≤ f for the original run, we have

Υ = filterBε

(
r′(m), filter≤fε

(
r(m), αmε (r), αm (r)

)
\ Yε, αm (r′)

)
. (2.35)

At the same time,

βmε (r) = filter
Bf
ε

(
r(m), αmε (r), αm (r)

)
=

filterBε

(
r(m), filter≤fε

(
r(m), αmε (r), αm (r)

)
, αm (r)

)
. (2.36)

Let us further abbreviate

Ω := filter≤fε

(
r(m), αmε (r), αm (r)

)
, Ω′ := Ω \ Yε,

Ωj := Ω ∩GEventsj , Ω′j := Ω′ ∩GEventsj

making

Υ = filterBε

(
r′(m), Ω′, αm (r′)

)
, (2.37)

βmε (r) = filterBε

(
r(m), Ω, αm (r)

)
. (2.38)

Given that (j,m) ∈ Vθ (r), by (2.32) we have GEventsj ∩ Yε = ∅. In other words,

Ωj = Ω′j . (2.39)

This, in particular, means that

active(j,Ω) ⇐⇒ active(j,Ω′), passive(j,Ω) ⇐⇒ passive(j,Ω′) (2.40)
aware(j,Ω) ⇐⇒ aware(j,Ω′), unaware(j,Ω) ⇐⇒ unaware(j,Ω′) (2.41)

Let us first prove that Ξj = βmj (r′) whenever (j,m) ∈ Vθ (r).

– If passive(j,Ω′), then passive(j,Ω) and, hence, by the already proven Property 2,

Ξj = ∅ = βmj (r) = βmj (r′).

– If active(j,Ω′), then active(j,Ω), and we have, again using Property 2,

Ξj = αmj (r′) = αmj (r) = βmj (r) = βmj (r′).

It remains to show that Υj = βmεj (r′) whenever (j,m) ∈ Vθ (r),

– If U does not have the form grecv(j, k, µ, id), then Vθ (r)-Focusmj and (2.39) ensure that

U ∈ βmεj (r′) ⇔ U ∈ eVθ (r)-Focusmj (r) ⇔
U ∈ βmεj (r) ⇔ U ∈ Ωj ⇔ U ∈ Ω′j ⇔ U ∈ Υj .

– Let now assume U = grecv(j, k, µ, id) and denote

V := gsend(k, j, µ, id) and WA := fake (k, gsend(k, j, µ, id) 7→ A).
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Then

U ∈ βmεj (r′) ⇔ U ∈ eVθ (r)-Focusmj (r) ⇔
U ∈ βmεj (r) and (∃t′ ≤ m) ((∃s)id = id(k, j, µ, s, t′) and (k, t′) ∈ Vθ (r)) ⇔

U ∈ Ωj and
(

(∃t′ < m)
((
V ∈ βt

′

k (r) or (∃A)WA ∈ βt
′

fk
(r)
)

and (k, t′) ∈ Vθ (r)
)

or(
((V ∈ αmk (r)&active(Ω, k)) or (∃A)WA ∈ Ωk) and (k,m) ∈ Vθ (r)

))
⇔

U ∈ Ω′j and
(

(∃t′ < m)
((
V ∈ βt

′

k (r′) or (∃A)WA ∈ βt
′

fk
(r′)
)

and (k, t′) ∈ Vθ (r)
)

or(
((V ∈ αmk (r′)&active(Ω′, k)) or (∃A)WA ∈ Ω′k) and (k,m) ∈ Vθ (r)

))
⇔

U ∈ Υj

Corollary 2.3.4. Property 8 implies that(
∀β ∈ Vθ (r)) (∀o ∈ Actions t Events

)
(I , r, t) |= occurredβ(o)⇔ (I , r′, t) |= occurredβ(o).

Corollary 2.3.5. Lemma 2.3.3 also implies that for any node η ∈ A× N and any path ξ,

η  r,t
ξ θ ⇐⇒ η  r′,t

ξ θ.

In particular,
Vθ (r) = Vθ (r′) . (2.42)

Proof. From left to right, if ξ connects η to θ in r, then all the nodes along ξ are in the causal
cone, as are their immediate pasts. Thus all sends, correct or Byzantine, from these nodes are
preserved in the new run r′. All receives forming the path are also preserved because they match
sends originating from the causal cone. Therefore, the whole causal path ξ is preserved in r′.

From right to left, the argument is even simpler since all sends and receives in r′ are present
in the original run r.

Lemma 2.3.6. For a node θ = (i, t) ∈ A× N, agent j ∈ A, timestamp t′ ≥ t > 0, for a
non-excluding agent-context χ =

(
(Pε,G (0), τBf ,Ψ), P

)
such that Pε makes all agents gullible,

correctable, and delayable, for a χ-based interpreted system I = (Rχ, π), and for a run r ∈ Rχ,
and the local action or event o ∈ Actions t Events,

(I , r, t′) |= correctj ∧Kj(correctj → occurred(i,t)(o)) =⇒ (i, t− 1) r,t′ (j, t′)

Proof. Let
(I , r, t′) |= correctj ∧Kj(correctj → occurred(i,t)(o))

By Lemma 2.3.3 applied to the node (j, t′), there is an alternative run r′ ∈ Rχ such that
βmεi (r′) = βmi (r′) = ∅ for all (i,m) /∈ V(j,t′) (r) with m < t′, and r′j (t′) = rj (t′), and

(I , r, t′) |= correctj ⇐⇒ (j, t′) /∈ Failed (r, t′) ⇐⇒
(j, t′) /∈ Failed (r′, t′) ⇐⇒ (I , r′, t′) |= correctj .

From r′j (t′) = rj (t′) and (I , r, t′) |= Kj(correctj → occurred(i,t)(o)), it follows that

(I , r′, t′) |= correctj → occurred(i,t)(o)

and, given (I , r′, t′) |= correctj , also

(I , r′, t′) |= occurred(i,t)(o).

Therefore, at least one of βt−1
εi (r′) and βt−1

i (r′) must not be empty. Given that t − 1 < t′, this
means that (i, t− 1) ∈ V(j,t′) (r), i.e., that (i, t− 1) r,t′ (j, t′).
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Remark 2.3.7. Note that the requirement that (I , r, t′) |= correctj is essential. Otherwise, the
construction from the Brain-in-the-Vat Lemma 2.1.16 with an extra protocol-violating Byzantine
action by j results in a situation where no causal links lead to j despite the fact that (I , r, t′) |=
Kj(correctj → occurred(i,t)(o)) simply by virtue of knowing its faultiness, (I , r, t′) |= Kj¬correctj .

2.4 The Byzantine Version of the Causal Cone
Before formulating the statement about the Byzantine causal cone, we reformulate Lemma 2.3.1
slightly:

Corollary 2.4.1. For arbitrary Xε, Yε, Zε ⊂ GEvents, arbitrary Xi, X
′
i ⊂ GActionsi for each

i ∈ A, any f ∈ N, and arbitrary global histories h and h′ such that

| A (Failed (h)) | ≤ f
A (Failed (h′)) ⊂ A (Failed (h)) ,

Failed (Zε) ⊂ A (Failed (h)) ∪ Failed
(
filter

Bf
ε (h, Xε, X1, . . . , Xn)

)
,

we have

filter≤fε
(
h′,

(
filter≤fε (h, Xε, X1, . . . , Xn) \ Yε

)
∪ Zε, X ′1, . . . , X ′n

)
=(

filter≤fε (h, Xε, X1, . . . , Xn) \ Yε
)
∪ Zε. (2.43)

Proof. The only change in formulation compared to Lemma 2.3.1 is the replacement of the ≤ f
filter with the Bf filter in the assumed properties of Zε. Fortunately, the Bf filter is defined by
applying the B filter on top of the ≤ f filter. Moreover, the B filter does not remove any Byzantine
events. Thus, as far as the number of agents being made faulty is concerned, the two filters have
the same effect.

Lemma 2.4.2. For f ∈ N, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such

that all agents are gullible, correctable, and delayable, for a χ-based interpreted system I = (Rχ, π),
for a run r ∈ Rχ, for a node θ = (i, t) ∈ A× N such that (i, t) /∈ Failed (r, t), let us partition the
causal cone of θ into the following types of nodes depending on their causal relationship to θ:

WellConnected :=
{

(j,m) ∈ Vθ (r) | Ξ{(j,m)}
θ (r) 6= ∅

}
(2.44)

FaultBuffer := {(j,m) ∈ Vθ (r) | (j,m+ 1) ∈ Failed (r, t)} (2.45)
SilentMasses := Vθ (r) \ (FaultBuffer tWellConnected) (2.46)

We define an adjustment adj = [Bt−1; . . . ;B0] satisfying (2.4) such that for each m ≤ t− 1:

ρmj :=


(Vθ (r) \ SilentMasses)-Focusmj if (j,m) ∈WellConnected,
FakeEchomj if (j,m) ∈ FaultBuffer ,
CFreeze if (j,m) ∈

(
(A× N) \ Vθ (r)

)
t SilentMasses.

(2.47)

Then each run r′ ∈ R
(
τ
Bf
Pε,P

, r, adj
)
, satisfies the following properties:

A.
(
∀(j,m) ∈WellConnected

)
r′j (m) = rj (m);

B. (∀m ≤ t) r′i(m) = ri(m);

C. Bad (r′, t) = BadVc
θ

(r) (r′) = FailedVc
θ

(r) (r);
in particular, (i, t′) /∈ Bad (r′, t) for any t′ ≤ t and (i, t) /∈ Failed (r′, t);

D. Failed (r′,m) ⊂ Failed (r,m) for all m ≤ t;
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E. r′ is τBfPε,P -transitional.

Corollary 2.4.3. It immediately follows from Statement C. that

F. |A(Failed (r′, t))| = |A(Failed
(
FailedVc

θ
(r) (r)

)
)| ≤ |A(Failed (r, t))| ≤ f ;

Proof. We start by stating several simple properties of these types of nodes.

• WellConnected ∩ FaultBuffer = ∅. To prove this, it is sufficient to note that no correct
path can lead from a node whose immediate future node is faulty, except, potentially, for
the trivial path from the tip (i, t) of the causal cone Vθ (r) to itself. However, even if the
immediate future (i, t + 1) of the tip is faulty, it cannot belong to Failed (r, t), making it
impossible for (i, t) ∈ FaultBuffer .

• If (k, t′)→r,t (j,m) and the node (j,m) ∈WellConnected, then

(k, t′) ∈WellConnected t FaultBuffer . (2.48)

Indeed, for (j,m) to be in WellConnected, there must exist a correct path ξ such that
(j,m) r,t

ξ (i, t). First thing to note is that the path

(k, t′)→r,t (j,m) r,t
ξ (i, t) (2.49)

places (k, t′) ∈ Vθ (r). Thus, if (k, t′ + 1) ∈ Failed (r, t), then (k, t′) ∈ FaultBuffer . Other-
wise, (2.49) is a correct path, meaning that (k, t′) ∈WellConnected.

• (i, t) ∈ WellConnected. This follows from the assumption (i, t) /∈ Failed (r, t), making the
trivial path (i, t) a correct path from (i, t) to itself.

• If (j,m) ∈ WellConnected, then (j,m′) ∈ WellConnected for all m′ ≤ m. Indeed, for
a correct path ξ from (j,m) to (i, t) that must exist for the WellConnected node (j,m),
consider the path

(j,m′)→r,t (j,m′ + 1)→r,t . . . (j,m) r,t
ξ (i, t).

If j = i and m = t, then this path is correct because (i, t) /∈ Failed (r, t). Otherwise, this
path is correct because (j,m+ 1) /∈ Failed (r, t) due to the correctness of ξ.

• (i,m) ∈WellConnected for all m ≤ t. This is a direct corollary of the last two items. It also
means that Statement B. follows from Statement A.

These considerations are sufficient to to prove Statement A. by induction on m. The base case
m = 0 follows by (2.5). Assuming the statement holds for m, let us prove it for m+ 1. As we just
proved,

(j,m+ 1) ∈WellConnected =⇒ (j,m) ∈WellConnected.

Thus, rj(m) = r′j(m) by IH. It is easy to see that

e(Vθ (r) \ SilentMasses)-Focusmj = βmεj (r).

Indeed, the only βmεj (r) events that might be excluded are receive events grecv(j, k, µ, id) such that
id = id(k, j, µ, s, t′) for some s, t′ ∈ N such that (k, t′) /∈ Vθ (r) or (k, t′) ∈ SilentMasses. However,
if grecv(j, k, µ, id) ∈ βmεj (r), then t′ ≤ m and there must be a causal link from (k, t′) to (j,m+ 1).
Coupled with

(j,m+ 1) ∈WellConnected ⊂ Vθ (r) ,

this places (k, t′) ∈ Vθ (r). Further, (2.48) means that were (k, t′) /∈ SilentMasses. This guarantees
the preservation of grecv(j, k, µ, id) in e(Vθ (r) \ SilentMasses)-Focusmj .

a(Vθ (r) \ SilentMasses)-Focusmj = βmj (r)
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always holds. Thus, runs r and r′ agree on (j,m). It follows from Lemma 1.3.22 that rj(m+ 1) =
r′j(m+ 1). This completes the proof of Statement A.

Statement A. implies Statement B. because (i,m) ∈WellConnected for all m ≤ t.
To prove Statement C., observe that by the definition of adj

• CFreeze, which is applied to SilentMasses and outside the causal cone, produces neither
actions nor events, in particular, no Byzantine events; in particular, no node outside Vc

θ (r)
can be bad;

• (Vθ (r) \ SilentMasses)-Focusmj , which is applied to WellConnected, produces no Byzan-
tine events, exactly as in the original run, because for WellConnected nodes (j,m + 1) /∈
Failed (r, t); and

• FakeEchomj , which is applied to FaultBuffer , makes the next node Bad due, at the very least,
to the fail (j) event. In other words

BadVc
θ

(r) (r′) = {(j,m) ∈ Vc
θ (r) | (j,m− 1) ∈ FaultBuffer} =

{(j,m) ∈ Vc
θ (r) | (j,m− 1) ∈ Vθ (r) &(j,m) ∈ Failed (r, t)} =

{(j,m) ∈ Vc
θ (r) | (j,m) ∈ Failed (r, t)} = FailedVc

θ
(r) (r).

To show Statement D., we use the following chain of inclusions:

(j,m) ∈ Failed (r′, t) =⇒ (∃m′ ≤ m ≤ t) (j,m′) ∈ Bad (r′, t) =⇒

(∃m′ ≤ m ≤ t)
(

(j,m′ − 1) ∈ FaultBuffer
)

=⇒

(∃m′ ≤ m ≤ t)
(

(j,m′) ∈ Failed (r, t)
)

=⇒ (j,m) ∈ Failed (r, t)

which completes the proof of Statement D.
Thus, it remains only to show Statement E., i.e., the transitionality of the newly constructed

run r′. As already discussed several times before, it is sufficient to show that all the β-sets
produced by the adjustment adj can be obtained in a regular manner from appropriately chosen
α-sets allowed by the protocols, we only need to check rounds from 0.5 to (t− 1).5 by induction,
and we can check each node (j,m) separately relying on the partition of βmε (r′) into subsets
βmεj (r′)’s.

Consider any m ≤ t− 1. We have

rj(m) = r′j(m) for all (j,m) ∈WellConnected (2.50)

by Statement A. Hence, for (j,m) ∈WellConnected the set

αmj (r) ∈ Pj (rj(m)) = Pj
(
r′j(m)

)
can be chosen by the adversary to be αmj (r′). The adversary can choose anything as αmj (r′)
for (j,m) /∈ WellConnected (recall that there is always at least one choice available by the no-
apocalypse clause).

By the correctability of all agents

filter≤fε
(
r(m), αmε (r), αm1 (r), . . . , αmn (r)

)
∈ Pε (m)

because αmε (r) ∈ Pε (m). Further, by the delayability of all agents, the set

filter≤fε
(
r(m), αmε (r), αm1 (r), . . . , αmn (r)

)
\

⊔
(l,m)∈SilentMasses∨(l,m)/∈Vθ(r)

GEventsl ∈ Pε (m) .
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Finally, by the gullibility of all agents,filter≤fε (
r(m), αmε (r), αm1 (r), . . . , αmn (r)

)
\

⊔
(l,m)∈SilentMassestFaultBuffer∨(l,m)/∈Vθ(r)

GEventsl

 t

{fail (l) | (l,m) ∈ FaultBuffer} t
{

fake (l, gsend(l, j, µ, id) 7→ Â)
∣∣∣ (l,m) ∈ FaultBuffer &(

gsend(l, j, µ, id) ∈ βml (r) ∨ (∃A ∈ GEventslt{Â}) fake (l, gsend(l, j, µ, id) 7→ A) ∈ βmbl (r)
)}

∈

Pε (m) . (2.51)

Thus, the adversary can choose αmε (r′) to be the set from (2.51). It remains to show that the
filtering employed by the transition function τ

Bf
Pε,P

turns these sets αmε (r′), αm1 (r′), . . . , αmn (r′)
into the exact β-sets prescribed by the adjustment adj. Given that βmε (r′) is partitioned into
βmεj (r′) for each j ∈ A, we can verify the correctness for each node (j,m) separately. Let us
abbreviate

Υ := filter
Bf
ε

(
r′(m), αmε (r′), αm1 (r′), . . . , αmn (r′)

)
, (2.52)

Υj := Υ ∩ GEventsj (2.53)
Ξj := filterBj (αm1 (r′), . . . , αmn (r′), Υ) (2.54)

To finish the step of induction, our goal is to show that for each j ∈ A

Υj = βmεj (r′), (2.55)
Ξj = βmj (r′). (2.56)

• We start with nodes (j,m) /∈ Vθ (r) and (j,m) ∈ SilentMasses.

Υj
(2.53)= Υ ∩GEventsj

(2.52)
⊂ αmε (r′) ∩GEventsj

(2.51)= ∅ (2.12)= eCFreeze (r) (2.47)= βmεj (r′)

yiedling (2.55). In particular, go(j) /∈ Υ, resulting in

Ξj
(2.54)= ∅ (2.12)= aCFreeze (r) (2.47)= βmj (r′) (2.57)

yielding (2.55) and completing the case of (j,m) /∈ Vθ (r) and (j,m) ∈ SilentMasses.

We now turn to the more complex case (j,m) ∈ Vθ (r) \ SilentMasses, which requires some
preparation. We abbreviate

Yε :=
⊔

(l,m)/∈Vθ(r)

GEventsl t
⊔

(l,m)∈SilentMassestFaultBuffer

GEventsl, (2.58)

αm (r) := αm1 (r), . . . , αmn (r), (2.59)
αm (r′) := αm1 (r′), . . . , αmn (r′). (2.60)

In addition, we let

Zε := {fail (l) | (l,m) ∈ FaultBuffer} t{
fake (l, gsend(l, j, µ, id) 7→ Â)

∣∣∣ (l,m) ∈ FaultBuffer &(
gsend(l, j, µ, id) ∈ βml (r) ∨ (∃A ∈ GEventslt{Â}) fake (l, gsend(l, j, µ, id) 7→ A) ∈ βmbl (r)

)}
.

(2.61)
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Note that
Zε

(2.61)
⊂

⊔
(l,m)∈FaultBuffer

BEventsl
(2.45)
⊂

⊔
(l,m+1)∈Failed(r,t)

BEventsl. (2.62)

Thus,

Failed (Zε)
(2.62)
⊂ {l | (l,m+ 1) ∈ Failed (r, t)} =

A (Failed (r(m))) ∪ {l | βmfl (r) 6= ∅} (1.55)=
A (Failed (r(m))) ∪{

l | filterBfε
(
r(m), αmε (r), αm (r)

)
∩ (BEventsl t {sleep (l), hibernate (l)}) 6= ∅

} (2.22),(2.23)=

A (Failed (r(m))) ∪ Failed
(
filter

Bf
ε

(
r(m), αmε (r), αm (r)

))
(2.63)

Further,

Υ (2.52)= filter
Bf
ε

(
r′(m),

(
filter≤fε

(
r(m), αmε (r), αm (r)

)
\ Yε

)
t Zε, αm (r′)

) (1.119)=

filterBε

(
r′(m), filter≤fε

(
r′(m),

(
filter≤fε

(
r(m), αmε (r), αm (r)

)
\ Yε

)
t Zε, αm (r′)

)
, αm (r′)

)
.

By the already proven Statement D., Failed (r′(m)) ⊂ Failed (r(m)) (recall that m ≤ t − 1).
Hence, by Cor. 2.4.1 with

Xε = αmε (r), h = r(m), h′ = r′(m), Xl = αml (r), X ′l = αml (r′),

given (2.63) and the fact that | A (Failed (r(m))) | ≤ f for the original run, we have

Υ = filterBε

(
r′(m),

(
filter≤fε

(
r(m), αmε (r), αm (r)

)
\ Yε

)
t Zε, αm (r′)

)
.

(2.64)
At the same time,

βmε (r) (1.55)= filter
Bf
ε

(
r(m), αmε (r), αm (r)

) (1.119)=

filterBε

(
r(m), filter≤fε

(
r(m), αmε (r), αm (r)

)
, αm (r)

)
. (2.65)

Let us further abbreviate

Ω := filter≤fε

(
r(m), αmε (r), αm (r)

)
, (2.66)

Ω′ := (Ω \ Yε) t Zε, (2.67)
Ωj := Ω ∩GEventsj , (2.68)
Ω′j := Ω′ ∩GEventsj (2.69)

making

Υ = filterBε

(
r′(m), Ω′, αm (r′)

)
, (2.70)

βmε (r) = filterBε

(
r(m), Ω, αm (r)

)
. (2.71)

As we know, Vθ (r)\SilentMasses = WellConnectedtFaultBuffer . We consider these two cases
separately
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• For (j,m) ∈ WellConnected, by (2.58) we have GEventsj ∩ Yε = ∅ and by (2.61) also
GEventsj ∩ Zε = ∅. In other words, by (2.67), for all (j,m) ∈WellConnected

Ωj = Ω′j . (2.72)

By (1.24) and (2.70) or (1.24) and (2.71) respectively, for all (j,m) ∈WellConnected,

active(j,Ω′) ⇐⇒ active(j,Υ), (2.73)
active(j,Ω) ⇐⇒ active(j, βmε (r)). (2.74)

Consequently,
active(j,Ω) ⇐⇒ active(j,Ω′). (2.75)

Thus, given (2.72) and (1.18), for all (j,m) ∈WellConnected,

active(j,Υ) ⇐⇒ active(j, βmε (r)). (2.76)

Let us first prove (2.56) whenever (j,m) ∈WellConnected.

– If passive(j,Υ), then passive(j, βmε (r)) by (2.76) and, hence,

Ξj
(1.25),(2.54)= ∅ (1.25),(1.56)= βmj (r)

– If active(j,Υ), then active(j, βmε (r)), and we have

Ξj
(1.25),(2.54)= αmj (r′) def= αmj (r) (1.25),(1.56)= βmj (r).

In either case,

Ξj = βmj (r) (2.15)= a(Vθ (r) \ SilentMasses)-Focusmj (r) (2.47)= βmj (r′),

which completes the proof of (2.56) for (j,m) ∈WellConnected.
We now show (2.55) whenever (j,m) ∈ WellConnected by case analysis on the type of
events U .

U ∈ βmεj (r′) (2.47)⇐⇒ U ∈ e(Vθ (r) \ SilentMasses)-Focusmj (r) (2.77)

– If U does not have the form grecv(j, k, µ, id), then

U ∈ e(Vθ (r) \ SilentMasses)-Focusmj (r) (2.15)⇐⇒

U ∈ βmεj (r) (1.24),(2.71)⇐⇒ U ∈ Ωj
(2.72)⇐⇒ U ∈ Ω′j

(1.24),(2.70)⇐⇒ U ∈ Υj ,

which together with (2.77) guarantees the intended result for non-receive events.
– Let us now assume U = grecv(j, k, µ, id).
∗ If id 6= id(k, j, µ, s, t′) for some s ∈ N and t′ ≤ m, then

U /∈ βmεj (r) and U /∈ Υj by (1.66),

(in case of Υj , the run upto timestamp m+ 1 can be considered transitional by IH
(upto m) and by the assumed transitionality for the last round that produced Υj).
It follows from the former statement by (2.15) that

U /∈ e(Vθ (r) \ SilentMasses)-Focusmj (r) ,

which together with (2.77) guarantees the intended result for receives with incor-
rect id.
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∗ Let us now assume that id = id(k, j, µ, s, t′) and t′ ≤ m (recall that s and t′ are
unique in this case) and denote

V := gsend(k, j, µ, id) and WA := fake (k, gsend(k, j, µ, id) 7→ A).

For the newly constructed run, we have

U ∈ e(Vθ (r) \ SilentMasses)-Focusmj (r) and t′ ≤ m (2.15)⇐⇒

U ∈ βmεj (r) and (k, t′) ∈ Vθ (r) \ SilentMasses and t′ ≤ m (2.46)⇐⇒
U ∈ βmεj (r) and (k, t′) ∈WellConnected t FaultBuffer and t′ ≤ m. (2.78)

Now we break the situation into further four subcases depending on whether t′ < m
or t′ = m and separating (k, t′) nodes in WellConnected from FaultBuffer .
· If (k, t′) ∈WellConnected and t′ < m, then

U ∈ βmεj (r) and (k, t′) ∈WellConnected and t′ < m
(1.24),(2.71)⇐⇒

U ∈ Ωj and (k, t′) ∈WellConnected and t′ < m and(
V ∈ βt

′

k (r) or (∃A)WA ∈ βt
′

bk
(r)
) (2.15),(2.47),(2.72)⇐⇒

U ∈ Ω′j and (k, t′) ∈WellConnected and t′ < m and(
V ∈ βt

′

k (r′) or (∃A)WA ∈ βt
′

bk
(r′)
)

(2.79)

· If (k, t′) ∈WellConnected and t′ = m, then

U ∈ βmεj (r) and (k, t′) ∈WellConnected and t′ = m
(1.24),(2.71)⇐⇒

U ∈ Ωj and (k,m) ∈WellConnected and t′ = m and

((V ∈ αmk (r)&active(k,Ω)) or (∃A)WA ∈ Ωk) (2.15),(2.47),(2.72),(2.75)⇐⇒

U ∈ Ω′j and (k,m) ∈WellConnected and t′ = m and
((V ∈ αmk (r′)&active(k,Ω′)) or (∃A)WA ∈ Ω′k) (2.80)

· If (k, t′) ∈ FaultBuffer , and t′ < m, then

U ∈ βmεj (r) and (k, t′) ∈ FaultBuffer and t′ < m
(1.24),(2.71)⇐⇒

U ∈ Ωj and (k, t′) ∈ FaultBuffer and t′ < m and(
V ∈ βt

′

k (r) or (∃A)WA ∈ βt
′

bk
(r)
) (2.16),(2.47),(2.72)⇐⇒

U ∈ Ω′j and (k, t′) ∈ FaultBuffer and t′ < m and WÂ ∈ β
t′

bk
(r′) (2.16),(2.47)⇐⇒

U ∈ Ω′j and (k, t′) ∈ FaultBuffer and t′ < m and(
V ∈ βt

′

k (r′) or (∃A)WA ∈ βt
′

bk
(r′)
)

(2.81)

71



· If (k, t′) ∈ FaultBuffer and t′ = m, then

U ∈ βmεj (r) and (k, t′) ∈ FaultBuffer and t′ = m
(1.24),(2.71)⇐⇒

U ∈ Ωj and (k,m) ∈ FaultBuffer and t′ = m and

((V ∈ αmk (r)&active(k,Ω)) or (∃A)WA ∈ Ωk) (1.24),(1.25),(2.71)⇐⇒

U ∈ Ωj and (k,m) ∈ FaultBuffer and t′ = m and(
V ∈ βmk (r) or (∃A)WA ∈ βmbk (r)

) (2.58),(2.61),(2.67)⇐⇒

U ∈ Ω′j and (k,m) ∈ FaultBuffer and t′ = m and WÂ ∈ Ω′k
(2.58),(2.61),(2.67)⇐⇒

U ∈ Ω′j and (k,m) ∈ FaultBuffer and t′ = m and
((V ∈ αmk (r′)&active(k,Ω′)) or (∃A)WA ∈ Ω′k) (2.82)

Combining the cases (2.79) and (2.81) when t′ < m we can see that

U ∈ Ω′j and (k, t′) ∈WellConnected t FaultBuffer and t′ < m and(
V ∈ βt

′

k (r′) or (∃A)WA ∈ βt
′

bk
(r′)
) (2.46)⇐⇒

U ∈ Ω′j and (k, t′) ∈ Vθ (r) \ SilentMasses and t′ < m and(
V ∈ βt

′

k (r′) or (∃A)WA ∈ βt
′

bk
(r′)
) (2.12)(2.47)⇐⇒

U ∈ Ω′j and t′ < m and
(
V ∈ βt

′

k (r′) or (∃A)WA ∈ βt
′

bk
(r′)
) (1.24),(2.70)⇐⇒

U ∈ Υj and t′ < m. (2.83)

Similarly, combining the cases (2.80) and (2.82) when t′ = m,

U ∈ Ω′j and (k, t′) ∈WellConnected t FaultBuffer and t′ = m and

((V ∈ αmk (r′)&active(k,Ω′)) or (∃A)WA ∈ Ω′k) (2.46)⇐⇒

U ∈ Ω′j and (k, t′) ∈ Vθ (r) \ SilentMasses and t′ = m and

((V ∈ αmk (r′)&active(k,Ω′)) or (∃A)WA ∈ Ω′k) (2.58),(2.61),(2.67)⇐⇒

U ∈ Ω′j and t′ = m and ((V ∈ αmk (r′)&active(k,Ω′)) or (∃A)WA ∈ Ω′k) (1.24),(2.70)⇐⇒
U ∈ Υj and t′ = m. (2.84)

We can now continue the equivalences in (2.78) for t′ ≤ m as follows:

U ∈ βmεj (r) and (k, t′) ∈WellConnected t FaultBuffer and t′ ≤ m (2.79)–(2.84)⇐⇒
U ∈ Υj and t′ ≤ m (2.85)

This together with (2.77) guarantees the intended result for receives with correct
id with t′ ≤ m.

Thus, we have proved (2.55) for the case (j,m) ∈WellConnected.

• The final case to consider is (j,m) ∈ FaultBuffer . Note that, in fact,

Ω′j
(2.69)= Ω′∩GEventsj

(2.67)= ((Ω\Yε)tZε)∩GEventsj = ((Ω\Yε)∩GEventsj)t(Zε∩GEventsj)
(2.58)=

∅ t (Zε ∩GEventsj) = Zε ∩GEventsj . (2.86)
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meaning that by (2.62)

Ω′j ⊂ BEvents ∩GEventsj = BEventsj . (2.87)

In particular,
go(j) /∈ Υj ⊂ Ω′j

by (1.54) and (2.70), i.e.,
passive(j,Υ)

ensuring that
Ξj

(1.25),(2.54)= ∅ (2.16)= aFakeEchomj (r) (2.47)= βmj (r′), (2.88)

which completes the proof of (2.56) for (j,m) ∈ FaultBuffer .
Finally, the only thing outstanding is (2.55) for (j,m) ∈ FaultBuffer .

U ∈ Υj
(1.24),(2.52),(2.87)⇐⇒ U ∈ Ω′j

(2.86)⇐⇒

U ∈ Zε ∩GEventsj
(2.16),(2.61)⇐⇒ U ∈ eFakeEchomj (r) (2.47)= βmεj (r′). (2.89)

This completes the case of (j,m) ∈ FaultBuffer .

Thus, (2.55) and (2.56) hold for all (j,m). This completes the proof of Statement E. by induction
and, with it, the proof of the whole lemma.

Corollary 2.4.4. Lemma 2.4.2 implies that(
∀β ∈WellConnected) (∀o ∈ Actions t Events

)
(I , r, t) |= occurredβ(o)⇔ (I , r′, t) |= occurredβ(o).

Proof. The reasoning from right to left is trivial because the new run r′ does not introduce any
new correct actions or events.

From left to right, note that if β is WellConnected, then so is its immediate past and both are
correct nodes. This immediately guarantees that all correct actions and events other than correct
receives are preserved in the new run r′. If β correctly receives a message in r, by (2.48), this
message originates from Vθ (r) \ SilentMasses, and, thus, the receive is also preserved in r′

Corollary 2.4.5. Lemma 2.4.2 also implies that for any node η ∈ A× N and any path ξ,

ξ ∈ Ξ{η}θ (r) ⇐⇒ ξ ∈ Ξ{η}θ (r′)

Proof. First, note that causal links along correct paths do not contain Byzantine sends. Thus, all
send actions and receive events forming such paths are correct.

From left to right, if ξ is a correct path connecting η to θ in r, then all the nodes along ξ
are WellConnected, as are their immediate pasts. Thus all correct sends from these nodes are
preserved in the new run r′. All receives forming the path are also preserved by the preceding
corollary. Therefore, the whole causal path ξ is preserved in r′.

From right to left, the argument is even simpler since all correct sends and receives in r′ are
present in the original run r.

The Byzantine causal cone lemma shows how to modify a given run without changing the local
state of agent i and without introducing any new Byzantine nodes (see Lemma 2.4.2(C.)). More
precisely, any Byzantine behavior of an agent in the new run happens only when the agent became
Byzantine in the original run. From the point of view agent i at t, this still leaves the possibility
that additional agents are faulty, which affects i’s level of certainty about the run.

Before exploring this in more detail, we formulate the following auxiliary lemma
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Lemma 2.4.6. For f ∈ N, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such

that all agents are correctable, for a χ-based interpreted system I = (Rχ, π), for a run r ∈ Rχ, one
can assume w.l.o.g. that this run was produced with all applications of the Byzantine threshold filter
filter≤fε being benign, i.e., with this filter never removing any (Byzantine) events. In other words,
in case of correctable agents, one can, without loss of generality assume that the environment filter
is the causal filter filterBε .

Proof. In order to achieve this, it is sufficient, for each round to choose a different set of events
in each round, namely, the result of applying filter≤fε to the originally chosen set of events. For
rounds where filter≤fε was benign and affected no changes, the same set of events is chosen. For all
remaining rounds where filter≤fε removed all Byzantine events, the alternative choice is possible
due to all agents being correctable. It is trivial to see that such choices produce the same run.

Remark 2.4.7. The preceding lemma does not mean that the Byzantine threshold filter is re-
dundant. Whenever a run is constructed by specifying α-sets, filter≤fε must be applied to make
sure the number of Byzantine agents does not exceed f . However, in case of correctable agents,
any run that that is assumed to satisfy the Byzantine threshold f can be obtained without using
this filter by a clever choice of α-sets to match the given β-sets.

Lemma 2.4.8. For f ∈ N, for a non-excluding agent-context χ =
(
(Pε,G (0), τBf ,Ψ), P

)
such

that all agents are fallible and correctable for a χ-based interpreted system I = (Rχ, π), for a run
r ∈ Rχ, for a timestamp t ∈ N, and for

B ⊂ A \ A (Failed (r, t)) such that |B t A (Failed (r, t)) | ≤ f,

there exists a run r′ ∈ Rχ such that

• βmj (r′) = βmj (r) for all (j,m) ∈ A× J0; t− 1K;

• βmεj (r′) = βmεj (r′) t {fail (j)} for all (j,m) ∈ B × J0; t− 1K;

• βmεj (r′) = βmεj (r′) for all (j,m) ∈ (A \B)× J0; t− 1K.

In particular, for this run r′, we have

r′j(m) = rj(m) for all (j,m) ∈ A× J0; tK,
Bad (r′, t) = Bad (r, t) ∪ (B × J1; tK),

Failed (r′, t) = Failed (r, t) ∪ (B × J1; tK),

Proof. By Lemma 2.4.6 for our correctable agents, we assume w.l.o.g. that filter≤fε was always
benign. Thus, it is sufficient to add fail (j) for agents in B in all rounds. After more complex
transformations have been described in full detail, it should be clear that the only thing potentially
affected by these additions is the Byzantine threshold filter filter≤fε . However, we know that it
was always benign in the original run and we know that adding all agents from B to those agents
made Byzantine in the original run does not violate the Byzantine threshold f . Thus, filter≤fε
remains benign in the modified run too.

Given the minimal changes to the run introduced in this lemma, the following corollary is
almost immediate:

Corollary 2.4.9. For the run r′ constructed in the preceding lemma from a given run r, for any
node η ∈ A× N and any path ξ,

η  r,t
ξ θ ⇐⇒ η  r′,t

ξ θ.

Moreover, such a path ξ is a correct path in r′ iff it is correct in r and A (ξ) ∩B = ∅.
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Lemma 2.4.10. For a node θ = (i, t) ∈ A× N, agent j ∈ A, timestamp t′ ≥ t > 0, for a
non-excluding agent-context χ =

(
(Pε,G (0), τBf ,Ψ), P

)
such that Pε makes all agents gullible,

correctable, and delayable, for a χ-based interpreted system I = (Rχ, π), and for a run r ∈ Rχ,
and the local action or event o ∈ Actions t Events, if

(I , r, t′) |= correctj ∧Kj(correctj → occurred(i,t)(o))

then, for any

B ⊂ A \ A
(
FailedVc

(j,t′)(r) (r)
)

such that |B t A
(
FailedVc

(j,t′)(r) (r)
)
| ≤ f, (2.90)

there exists a correct path ξ ∈ Ξ{(i,t−1)}
(j,t′) (r) from (i, t− 1) to (j, t′) such that A (ξ) ∩B = ∅.

Proof. Let
(I , r, t′) |= correctj ∧Kj(correctj → occurred(i,t)(o))

By Lemma 2.3.3 for run r and node (j, t′), there is an alternative run r′ ∈ Rχ such that
βmεa (r′) = βma (r′) = ∅ for all (a,m) /∈ V(j,t′) (r) with m < t′, and r′j (t′) = rj (t′), and

Failed (r′, t′) = FailedVc
(j,t′)(r) (r). (2.91)

Consider any set B satisfying (2.90). It follows from (2.91) that

B ⊂ A \ A (Failed (r′, t′)) and |B t A (Failed (r′, t′)) | ≤ f.

Thus, by Lemma 2.4.8 for run r′, timestamp t′, and set B, there exists a run r′′ ∈ Rχ such that

r′′j (t′) = r′j(t′) = rj(t′)

and
Failed (r′′, t′) = Failed (r′, t′) ∪ (B × J1; t′K) = FailedVc

(j,t′)(r) (r) ∪ (B × J1; t′K).

Since

(I , r, t′) |= correctj ⇐⇒ (j, t′) /∈ Failed (r, t′) ⇐⇒ (j, t′) /∈ FailedVc
(j,t′)(r) (r) ⇐⇒

(j, t′) /∈ Failed (r′, t′) ⇐⇒ (j, t′) /∈ Failed (r′, t′)&j /∈ B ⇐⇒ (j, t′) /∈ Failed (r′′, t′),

we can apply Lemma 2.4.2 for run r′′ and node (j, t′) to obtain r′′′ ∈ Rχ such that

r′′′j (t′) = r′′j (t′) = rj(t′),

and
(j, t′) /∈ Failed (r′′′, t′),

and
βma (r′′′) = β

m

εa (r′′′) = ∅ (2.92)
for all (a,m) /∈ WellConnected ′′ with m < t′ where WellConnected ′′ is determined w.r.t. node
(j, t′) in run r′′.

From r′′′j (t′) = rj (t′) and (I , r, t′) |= Kj(correctj → occurred(i,t)(o)), it follows that

(I , r′′′, t′) |= correctj → occurred(i,t)(o)

Further, (j, t′) /∈ Failed (r′′′, t′) means that (I , r′′′, t′) |= correctj , therefore,

(I , r′, t′) |= occurred(i,t)(o).

Therefore, at least one of βt−1
εi (r′) and βt−1

i (r′) must not be empty. Given that t − 1 < t′, this
means that (i, t − 1) ∈ WellConnected ′′, i.e., there exists a correct path ξ ∈ Ξ{(i,t−1)}

(j,t′) (r′′). By

Corollary 2.4.9, ξ ∈ Ξ{(i,t−1)}
(j,t′) (r′) and A (ξ)∩B = ∅. Finally, by Corollary 2.3.5 and Statement 6

of Lemma 2.3.3, ξ ∈ Ξ{(i,t−1)}
(j,t′) (r).
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Chapter 3

Conclusion

In this first installment of our report, we introduced a formal framework to study epistemic states of
agents that may be Byzantine. We considered the resulting causality conditions for asynchronous
agents and developed a Byzantine analog of the causal cone. The results provide a nice parallel to
the well-known results for correct agents, with correct causal paths in the Byzantine case playing
the role of causal paths in the traditional case.

In the next installment of this report, we plan to show how the framework can be extended to
distributed scenarios other than asynchronous systems, including but not limited to synchronous
agents, synchronous communication, broadcast, multicast, coordinated agents, etc.

Acknowledgements The authors would like to thank Yoram Moses for many fruitful discus-
sions.
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