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ABSTRACT

On the way to answer the controversial question “What is

a cluster?”, we introduce a novel cluster tracking mecha-

nism which is based on the multi-path component distance

(MCD). We perform a temporal tracking of cluster cen-

troids in the multidimensional parameter domain, starting

from cluster estimates obtained by a recently introduced

framework which automatically clusters parametric MIMO

channel data.

To validate our algorithm, we use both synthetic and

measured MIMO channels. We generate the synthetic chan-

nel using the IlmProp simulation tool. For the real-world

channels we use data from an outdoor measurement cam-

paign in a rural area.

Simulation results with synthetic channels validate the

tracking algorithm, whereas its application on measurement

data shows the occurrence of several clusters with different

lifetimes.

I. INTRODUCTION

The problem of identifying clusters is currently the per-

haps most controversial topic in channel characterisation.

Discussions start right at the definition of a cluster itself.

The only common agreement seems to be that a cluster

should show some kind of similar parameters, which evolve

smoothly over time.

In many papers visual inspection of measurement data

from single snapshots was used [1, 2], which becomes

impractical for large amounts of measurement data. Re-

cently, an automatic algorithm was introduced in [3], which

is based on clustering windowed parametric estimates and

tracking the cluster centroids. The window-based clus-

tering algorithm was subsequently improved by using the

multi-path component distance (MCD) as the distance func-

tion in [4]. This algorithm was further improved by includ-

ing the paths’ power into the cluster identification and ex-

tended to a whole framework. The framework clusters the

environment, decides on the correct number of clusters and

prunes outliers. This is done for every single data window

[5].

We also adopt the definition of “cluster” from this paper:

For a given number of clusters, clusters are cho-

sen such that they minimize the total distance

from their centroids. This implies that the cluster

angular and cluster delay spreads are minimized.

This work was conducted within the EC funded network of excellence

NEWCOM. We thank Elektrobit Testing Ltd. for providing their parameter
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The last step is to subsequently track the obtained clus-

ters. By cluster tracking we are able to extract the time-

evolution of the parameters. The algorithm is validated by

tracking MIMO channel parameters of a synthetic time-

variant environment generated by the IlmProp channel

model [6].

II. PROBLEM

The starting point is a large number of paths estimated from

time-varying multi-dimensional parametric MIMO channel

data. Each path is characterized by its delay, angles-of-

arrival (AoA) and angles-of-departure (AoD). It has been

investigated in several studies that these parameters tend to

appear in clusters, i.e. in groups of multi-path components

(MPCs) with similar angles and delays. The problem is to

find an automatic procedure to identify and track these clus-

ters.

For cluster identification, we use a novel framework in-

troduced recently [5, 7], which clusters the environment,

decides on the correct number of clusters, and prunes out-

liers. The input data to the clustering algorithm is an K×L

matrix, where K is the number of estimated multipaths, and

L is the number of channel parameters. Typically, the di-

mensions of L are power (P ), delay (τ ), azimuth and ele-

vation AoA (ϕAoA, θAoA) and azimuth and elevation AoD

(ϕAoD, θAoD). The output of the clustering algorithm is a

set of cluster centroids in parameter space together with the

allocated MPCs for each clustered scenario. In this paper

we neglect the elevation domains, as clusters are insuffi-

ciently separated there.

To identify the time-variant behaviour of clusters, we

need to track the cluster centroids over several time win-

dows. The tracking algorithm must be able to decide on

cluster birth, death, or movement.

III. TRACKING ALGORITHM

The cluster tracking mechanism is able to capture the move-

ment of clusters with very low complexity. The idea is

based on the distance between the clusters’ centroids. As

the centroids are given in the multi-dimensional parameter

space, i.e. angles and delay, we chose the MCD [8] as suit-

able distance metric to cope with angular periodicity as well

as data scaling.

Two subsequent sets of a number of Nold old and Nnew

new cluster centroids c
(old)
i and c

(new)
j , are considered, where

i = 1 . . . Nold and j = 1 . . . Nnew. The algorithm is given

in Alg 1. In the following we describe the parts of the algo-

rithm.
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Tracking algorithm:

1. Calculate the distance between any old and any new

centroid using the MCD.

2. For each new centroid:

a. Calculate the distance and index of the closest

old centroid.

b. IF smallest distance > threshold, treat centroid

as new cluster

3. For each old centroid:

a. Check number of close new centroids within dis-

tance threshold

b. IF number = 1, old cluster moved.

c. IF number > 1, cluster split:

– closest new cluster is treated as old cluster

moved

– other close ones are treated as new clusters

Alg. 1: Tracking Algorithm

Ad 1) The distances between the centroids are arranged

in the distance matrix D with dimension Nold×Nnew, where

each element is calcualted as

[D]ij = MCD(c(old)
i , c

(new)
j ),

i.e. the distance between the ith old and jth new centroid.

All further evaluations can now easily be done by searching

in the distance matrix.

Ad 2a) For each column of D, search for the smallest

entry in the distance matrix. The indices i∗j∗ of this value

identifies the closest old cluster.

Ad 2b) If the distance [D]i∗j∗ between a new cluster and

the closest old cluster exceeds a specified threshold ε, the

cluster is treated as a new cluster.

Ad 3) We now check for each old cluster, if it has moved.

Ad 3a) For each row in D count the number of elements

smaller than ε.

Ad 3b) If only one new cluster is in the vicinity of the old

cluster, the old cluster has moved.

Ad 3c) If many new clusters are in the vicinity of the old

cluster, the old cluster moved towards the closest new one.

The other close ones are treated as new.

To every new cluster a unique cluster-ID (CLID) is as-

signed. If a movement is identified, the moved cluster in-

herits the CLID from its predecessor.

IV. SCENARIOS

We used both synthetic and measured channels to validate

our tracking algorithm.

A. Synthetic validation scenario

To validate the clustering framework and the tracking al-

gorithm, we use a synthetic time-variant scenario obtained

by the IlmProp channel model [6]. The IlmProp is a flex-

ible geometry-based Multi-User MIMO channel modelling

tool, capable of dealing with time variant frequency selec-

tive scenarios. The BS and mobile terminals can employ

any number of antennas arranged in an array with an arbi-

trary geometry. The channel is computed as a sum of the

Line Of Sight (LOS) and of a number of rays which rep-

resent the multi-path components. The latter are obtained

by point-like scatterers, which can be placed at will. The

model supports both single- and multiple-reflections. The

information about where the scatterers are, and how the

paths are linked to them can be set arbitrarily, or it can be

derived by parameter estimations from channel measure-

ments. The information about the scenario is stored in form

of Cartesian coordinates and their evolution in time. The

scenario may include obstacles (such as buildings), which

can obstruct the propagation paths.

Figure 1 shows the scenario we use to validate the au-

tomatic cluster tracking algorithm. A single mobile (MS)

is moving on a linear trajectory (along the x-axis) towards

the Base Station (BS). The LOS path was artificially sup-

pressed. We consider the uplink phase, so that the BS acts

as the receiver.

The scenario exhibits 8 separate clusters. The cluster

numbering corresponds to the automatic cluster identifica-

tion (see Section V.). All propagations paths are character-

ized by single bounce reflections with the exception of the

ones named 6a and 6b, which realize double bounce paths.

Solid black lines indicate the interconnections between MS,

clusters and the BS. The path towards the cluster number 10
is obstructed by a building during most of the mobile’s tra-

jectory. For this reason it is marked by a dashed line.

The clustering algorithm is meant to identify clusters

from the geometrical parameters extracted from channel

measurements by a parameter estimation technique. The

idea is to extract these parameters, i.e. delay time, direction

of arrival and departure, and path-strength, directly from the

IlmProp, and feed them to the cluster identification frame-

work. Subsequently, the clusters are tracked. In the next

section we consider the issue of the variance introduced by

the parameter estimator, showing that for the aims of our

investigation it can be neglected.

B. Measured environment

In this paper we use data from a rural outdoor MIMO mea-

surement campaign [9]1. The center frequency was 2 GHz

with a bandwidth of 120 MHz.

The measurements were performed by the MIMO ca-

pable wideband vector channel sounder RUSK-ATM [10].

The sounder was specifically adapted to operate at a cen-

ter frequency of 2 GHz with an output power of 2 Watt.

The transmitted signal is generated in frequency domain to

ensure a pre-defined spectrum over 120 MHz bandwidth,

and approximately a constant envelope over time. At the

1Selected data sets from urban, suburban, and indoor environments are

available for download at http://measurements.ftw.at/.
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Figure 1: Scenario used to validate the automatic cluster tracking algorithm; cluster numbers correspond to the output of

the tracking algorithm

receiver the input signal is correlated with the transmit-

ted pulse-shape in the frequency domain resulting in the

specific transfer functions. Back-to-back calibration before

each measurement ensured an unbiased estimate. Further-

more, transmitter and receiver were synchronized via ru-

bidium clocks at either end for accurate frequency synchro-

nism and a defined time-reference. For studies on MIMO

systems, the double-directional nature of the channel must

be exploited. Therefore two simultaneously multiplexed

antenna arrays have been used at transmitter and receiver.

At the transmitter a uniform circular array consisting of

15 monopoles mounted on a trolley was used. The receiver

was connected to an 8-element uniform linear patch array.

Two dummy elements on each side of the array ensure equal

element characteristics for all elements. For the measure-

ments the transmitter was placed on a trolley and moved

through streets at speeds of about 3 to 6 km/h.

We chose a suburban scenario, the village of Weikendorf.

The measurement area covers one-family houses with pri-

vate gardens around them. The houses are typically one

floor high. Such an area is common for small villages

around Vienna. In addition there is also a rail track in this

area which breaks the structure of single placed houses. The

receiver was at a height of about 20m which is much higher

than anything in the surroundings. Therefore the transmit-

ter operated ofter in the LOS regime. The most interesting

measurement run within this area includes a walk through

a small pedestrian tunnel below the railway. A photograph

of the scenario is given in Figure 2. We use 485 equidistant

snapshots of the MIMO channel, which are spaced 0.26 m

corresponding to 1.7 wavelengths.

V. RESULTS

We assessed the performance of this cluster tracking algo-

rithm with both synthetic and real-world measurement data.

A. Simulation results

Figure 1 shows the simulated scenario, details are provided

in Section IV. The channel model provided 80 subsequent

equidistant snapshots in time of the smoothly time-varying

channel, while the MS moved towards the BS.

For clustering the synthetic scenario, we collected 3 sub-

sequent time snapshots in a sliding window. The clustering

Rx

T
x
 ro

u
te

Figure 2: Map of measurement environment (Copyright:

Google Earth, http://earth.google.com/)

algorithm identified between 6 and 7 clusters in each time

window. Subsequently, the tracking algorithm was applied.

The results are shown in Figure 3, where the evolution of

the clusters over time are shown in ascending order (a)-(f).

Clusters are indicated by coloured spheres, paths are shown

as crosses in the spheres. The number next to the sphere

indicates the unique CLID.

Figure 3a shows the first time window, where seven clus-

ters were identified. Clusters 1 and 2 are quite close to each

other, but can still be clearly distinguished by the algorithm.

Cluster 7 describes the propagation paths, which will be

shadowed in the following windows. In the next time win-

dows (b)-(d) cluster 4 is split into 2 clusters, because some

of the components in cluster 4 are quite separated. The

missing cluster 8 was also a short-living appearance of clus-

ter 9. Moreover, all clusters move in the parameter space,

most prominently, clusters 1 and 2 start to separate. In the

last time windows (e)-(f) the previously shadowed cluster

appears again and gets a new CLID 10. Both, the identifi-

cation and tracking were achieved fully automatic without

any user interaction.

B. Results from measurements

We estimated propagation paths out of the impulse re-

sponses using the ISIS (Initialization-and-Search-Improved

SAGE) algorithm [11] and subsequently clustered them us-

ing the automatic clustering algorithm presented in [5]. The
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(d) (e) (f)

Figure 3: Results from cluster tracking performed on the synthetic scenario shown in Figure 1: (a)-(f) represent different

time windows in ascending order
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Figure 4: Results from tracking measurement data: (a)-(f) represent different time windows in ascending order. Paths

from the tracked cluster (CLID = 366) are indicated by black circles, other paths are indicated by crosses colour-coded

by their CLID.
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Figure 5: Cluster lifetimes for a selected time window
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Figure 6: Histogram of cluster lifetimes over all snapshots

cluster centroids were tracked using the presented algo-

rithm with a tracking range of ε = 0.5.

Figure 5 shows the results for a window of 50 selected

consecutive snapshots where the clusters were tracked. We

plotted the snapshot number (abscissa) vs. the CLID (ordi-

nate). The lengths of the horizontal lines indicate the life-

time of the respective clusters.

We observed that many clusters exist for only one snap-

shot and could not be tracked. Furthermore, there were

outlier clusters with lifetimes larger than 50 wavelengths.

We follow the strategy of truncating these clusters from our

evaluations, as we cannot be sure if these clusters really ex-

ist or are just artefacts of the algorithm.

We provide a histogram of the observed cluster lifetimes

for this scenario in Figure 6. The (truncated) mean cluster

lifetime was found to be 7.9 wavelengths (corresponding to

1.2 m distance)2.

To visualize the tracking results in the parameter space,

we selected one demonstrative cluster and plot its evolu-

tion over time (see Figure 4a–f). One can observe that the

cluster parameters change slightly over time, but the cluster

centroid seems to be constant.

2In our idealised cluster model, clusters never re-appear after they have

vanished: When a cluster vanishes, it’s lifetime ends.

VI. CONCLUSIONS

We demonstrated the performance of a novel cluster identi-

fication and tracking algorithm by clustering both synthetic

and measured environments.

The synthetic environment was obtained from the Ilm-

Prop channel model where we were able to validate the

performance of the tracking algorithm. The algorithm was

able to correctly identify clusters and track their movement

in the parameter space.

For tracking clusters from measurements, we used real-

world data from an outdoor MIMO measurement campaign

in a rural area. We found that the algorithm identifies many

clusters which exist just for one snapshot. For our evalu-

ations, we excluded them as we cannot be sure if they are

true or an artefact of the algorithm. In this scenario we find

a mean cluster lifetime of 4.9 snapshots.
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