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AbstractA conventional neural network approach to regression problems approximates the conditional meanof the output vector. For mappings which are multi-valued this approach breaks down, since theaverage of two solutions is not necessarily a valid solution. In this article mixture density networks,a principled method to model conditional probability density functions, are applied to retrievingCartesian wind vector components from satellite scatterometer data. A hybrid mixture densitynetwork is implemented to incorporate prior knowledge of the predominantly bimodal functionbranches. An advantage of a fully probabilistic model is that more sophisticated and principledmethods can be used to resolve ambiguities.
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modelFigure 1: A two dimensional sketch of the scatterometer measurement space. The two dimen-sional slice is taken through the measurement manifold at constant wind speed. Fora noisy observation there are at least two solutions in wind direction.

1 IntroductionScatterometers carried on board satellites allow the inference of wind vectors over the ocean (O�er,1994). There are two approaches to retrieving local wind vectors, (u; v), from local scatterometerobservations, �o, using either a local empirical forward or a local empirical inverse model (Nabneyet al., 1998, this issue). The forward model (Sto�elen and Anderson, 1997a) and (Ramage etal., 1998, this issue), which maps (u; v) ! �o, requires some local inversion to obtain the windvectors. The current operational method inverts the forward model by �nding an estimated �o onthe forward model manifold that is closest to the observed scatterometer measurement (Sto�elenand Anderson, 1997b). The alternative approach, addressed in this paper, is to directly infer windvectors from scatterometer data. Models of this form, mapping �o ! (u; v), are called inversemodels. Once the local wind vectors have been inferred, either by using the forward or inversemodels, a spatial prior model can be used to infer the wind �eld over the ocean surface (Nabneyet al., 1998).The scatterometer data is collected by the ERS-1 satellite launched in 1991 by the EuropeanSpace Agency. The satellite sweeps the ocean surface in swathes approximately 500 km wide,sampling nineteen cells across the swathe, where the position across the swathe is given by theantenna beam incidence angle. Each cell is approximately 50 km by 50 km, and so there is someoverlapping between cells. The scatterometer has three antennae, in the same plane, pointing indi�erent directions with respect to satellite propagation. The antennae sample each cell buildingup a measurement triplet, �o. It is possible to determine the local wind vector for each cell usingthe scatterometer observations and the incidence angles of the antennae beams (O�er, 1994).Previous work (Long and Mendel, 1991) has shown that there is a unique set of wind vectors calledthe noisy ambiguity set which is identi�able from a single scatterometer measurement, that is, theinverse mapping exists and is multi-valued. The multi-valued solution of the inverse mapping ariseslargely from noise on the observations. This is illustrated in Fig. 1, a sketch of a two dimensionalslice through the three dimensional measurement space. The position of the observation on themodel manifold is a function of wind speed and direction (Sto�elen and Anderson, 1997a). Anoisy observation is unlikely to lie on the model manifold making it uncertain from which of thetwo model branches the observation originates. Thus there are at least two solutions for winddirection from a single scatterometer observation. These two solutions are roughly 180� apart inwind direction, and are generally referred to as the ambiguous solutions (Sto�elen and Anderson,1997b).



Structured Neural Network Modelling of Multi-valued Functions for Wind Vector Retrieval from SatelliteScatterometer Measurements 31.1 BackgroundNovel neural network approaches have been applied to wind retrieval from scatterometer observa-tions. In (Thiria et al., 1993) neural networks were used to infer wind direction and speed directlyfrom simulated scatterometer data. For each incidence angle, the model consisted of two feedforward neural networks. One network uniquely modelled wind speed, the other, modelled winddirection by classifying the wind direction into thirty six bins representing ten degree intervals. Theinputs to the neural network took neighbourhood information from the surrounding cells givingspatial information. In addition to the scatterometer data the wind direction network also tookwind speed as an input. Simulated data was used because ERS-1 was not operational. The resultsshowed neural networks to be a promising avenue of investigation for a solution to this inverseproblem. In (Richaume et al., 1998) the models of (Thiria et al., 1993) are trained using datacollected from ERS-1. Performance of the models in (Richaume et al., 1998) is shown to improveupon results obtained by the operational wind retrieval system at the European Space Agency.In (Cornford et al., 1997) wind speed was modelled using a multi-layer perceptron while the winddirection was modelled by a mixture density network with circular normal kernel densities (Bishopand Nabney, 1996) to model the full conditional probability density of the wind direction giventhe scatterometer measurements. In addition to the scatterometer measurements, the incidenceangle of the mid beam antenna was included as an input to the networks. The wind speed modelperformed within the designed speci�cation of the instrument of 2 ms�1. For wind direction, themodels learned the inherent ambiguity in the problem, but did not perform as well as the modelsof (Richaume et al., 1998).In (Sto�elen, 1998) it is shown that it is preferable to analyse wind vector components in Cartesianco-ordinates rather than wind speed and direction (polar co-ordinates), as the noise distributionon the the predicted wind vector components is shown to be spherically Gaussian. In this paper weuse this information and directly model the Cartesian wind vector components from scatterometerobservations for the �rst time.2 Modelling multi-valued functions2.1 Theory of mixture density networksMixture Density Networks (MDNs) provide a framework for modelling conditional probabilitydensity functions, denoted P (tjx) (McLachlan and Bashford, 1988; Bishop, 1995). The distributionof the c-dimensional outputs, t 2 Rc, is described by a parametric model whose parameters aredetermined by the output of a neural network, which takes x as its inputs. The general model isdescribed by: P (tjx) = MXj=1 �j(x)�j (tjx) (1)and MXj=1 �j(x) = 1 (2)Where �j(x) represents the mixing coe�cients (which depend on x), �j(tjx) are the kernel dis-tributions of the mixture model (whose parameters also depend on x), and M is the number of



4 Structured Neural Network Modelling of Multi-valued Functions for Wind Vector Retrieval from SatelliteScatterometer Measurementskernels in the mixture model. Generally the kernels used are c-dimensional spherical Gaussians ofthe form: �j(tjx) = 1(2�) c2 �cj (x) exp��kt � �j(x)k22�2j (x) � (3)In principle a Gaussian mixture model with kernels of the type given by (3) can approximate anydensity function providing the parameters are chosen correctly (McLachlan and Bashford, 1988).It follows then that for any given value of x, the mixture model (1) can model the conditionaldensity function P (tjx). To achieve this the parameters of the mixture model1 are taken to begeneral continuous functions of x. These functions are modelled as the outputs of a conventionalneural network that takes x as its input. It is this combination of a Gaussian mixture model,whose parameters are dependent on the output of feed forward neural that takes x as its inputs,that is referred to as a Mixture Density Network and is represented schematically in Fig. 2.1.NeuralNetwork MixtureModelx Z P(tjx)
Figure 2: The structure of a Mixture Density Network. The inputs x are feed through a neuralnetwork. The outputs of the neural network, Z, de�ne the parameters of the Gaussianmixture modelBy choosing su�cient kernels in the mixture model and a neural network with su�cient hiddenunits the MDN can approximate as closely as desired any conditional density, P (tjx) (Bishop,1995). The neural network element of the MDN is implemented with a standard Multi-LayerPerceptron (MLP) with single hidden layer of tanh units and an output layer of linear units.2.2 Modelling the geophysical problemIn the context of this application each input pattern for the MDN, x, is the observed scatterometerdata, �o and the cosine of the incidence angle, �. Modelling the wind vector components directlyimplies that the targets of the MDN, t, are the wind vector components (u; v). The generaldescription of the MDN, (1), is then re-expressed using geophysical parameters as:P (u; v j �o; �) = MXj=1 �j(�o; �)�j(u; v j �o; �) (4)2.3 Modelling the inherent geophysical knowledgeThe MDN architecture is modi�ed to to model the known geophysical knowledge of the problem,the 180� ambiguity in wind direction. The hybrid MDN has two kernels. One kernel is free to1Choosing a spherical Gaussian kernel determines the parameters to be the mixing coe�cients and the variancesand centres (or means) of the kernel functions.



Structured Neural Network Modelling of Multi-valued Functions for Wind Vector Retrieval from SatelliteScatterometer Measurements 5MDN architecture Vector RMS PercentageKernels Hidden Units errors within 20�2 (Hybrid) 35 4.33 73.382 (Hybrid) 50 4.18 70.322 35 4.02 72.762 50 4.03 74.104 20 3.82 76.764 25 3.69 76.824 30 3.90 76.644 35 3.89 76.944 50 3.73 77.124 90 4.29 76.6412 35 4.58 76.7412 50 4.24 77.16Table 1: Results of the fourteen MDN con�gurations. These results are generated from a testdata set of 5000 examples.move, the other is positioned diametrically opposite the �rst in (u; v) space, by taking the negativemean of the free moving kernel. The simpli�ed model becomes:P (tjx) = �(x)�(tjx) + (1� �(x)) (tjx) (5)where the kernels are de�ned by diametrically opposed spherical Gaussians with common variances:�(tjx) = 12��2(x) exp��kt� �(x)k22�2(x) � (6) (tjx) = 12��2(x) exp��kt+ �(x)k22�2(x) � (7)3 ResultsIn total twelve networks were trained2 taking inputs (�o; �). The performance of the networksis evaluated using the vector Root Mean Square (RMS) error between the predicted and targetvalues on a test data set and the percentage of predicted directions from the two most probablemodes that fall within twenty degrees of the target wind direction. The results are summarised inTable 1.The results suggest that model performance is more sensitive to the number of kernels in the MDNcon�guration than the number of hidden units in the MLP.3.1 DiscussionThe complexity of the mapping, (�o; �) ! (u; v), is modelled by the MLP part of the MDN. Thefocus of the investigation is on MDNs with four kernels. Here the di�erence in the performance ofpercentage within 20� between the best and worst model is less than 0:5%, and for vector RMSerror is 0:6 ms�1. It seems possible these di�erences are due to di�erent initial positions on theerror surface. The model with ninety hidden units does not perform as well for vector RMS error,2When training the MDNs, the inputs are assumed to be noiseless in comparison to the noise on the targets.
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(b) Bimodal, but one mode dominating.Figure 3: The conditional probability distribution of the wind vectors (u; v) given the scat-terometer data for a MDN with 4 kernels, 20 hidden unitsand it is suggested that this is due to the model over-�tting. The model with twenty hidden unitsgives a good indication of the complexity of the mapping, (�o; �)! (u; v).Comparing the hybrid MDNs with the MDNs with two kernels it is interesting to note that thedirectional performance is similar, and the vector RMS di�ers by less than 0:3 ms�1 between bestand worst case. This gives strong evidence to suggest the solution is dominantly bimodal (see Fig.3) with these models being approximately 180� apart in direction. However the models with fourkernels out-perform those models with two. The complexity of the density model in the MDN isrelated to the number of kernels in the Gaussian mixture model. The improved performance ofthe MDNs with four kernels is attributed to two factors. Firstly, although the results suggest thatthe modes of the conditional distribution are dominantly bimodal, they are not always Gaussianor spherically symmetric, suggesting that the noise on the targets is heavier tailed than originallyassumed. Four kernels in the MDN are able to model the non-Gaussian, non-spherical modes inthe conditional probability distribution more e�ciently than those with two kernels. Secondly,the increased exibility of four kernels permits the MDN to place kernels into four quadrants of(u; v) when appropriate, exibility which is not available to the models with two kernels. Twofurther experiments obtained results for MDNs with twelve kernels. The results show that thereis an increase in the vector RMS error. This is due to the model over-�tting, since it has su�cientexibility to model both the underlying data generator and the noise on the training data set, andhence yields poor results for the test set.Bench marking against previous work is di�cult because of the di�erent data sets used whentraining and testing the models. However, bearing this in mind, it is useful to compare these resultswith other work. Previous work by (Cornford et al., 1997), which model each cell independently,achieved a correct solution within 20� roughly 73% of the time when considering the two mostprobable solutions. The results reported in (Richaume et al., 1998), achieve a correct solutionmore than 85% of the time in wind direction when considering the two most probable solutions.However in (Richaume et al., 1998) it must be noted that spatial information is also provided atthe inputs to the networks, which is believed to provide additional disambiguation skill (Cornfordet al., 1997).The results of this study improved on the results of the local models in (Cornford et al., 1997).When the local models trained in this study are applied using the methods proposed in (Nabneyet al., 1998, this issue) it is hoped that we can further improve performance. Models of theform (Richaume et al., 1998) which use a spatial context at their inputs cannot be used with priorwind-�eld models (Nabney et al., 1998)
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