Jato astrofísico
Um jato astrofísico é um fenômeno astronômico onde fluxos de matéria ionizada são emitidos como um feixe estendido ao longo do eixo de rotação.[1] Quando essa matéria muito acelerada no feixe se aproxima da velocidade da luz, os jatos astrofísicos tornam-se jatos relativísticos, pois mostram efeitos da relatividade especial.
A formação e alimentação de jatos astrofísicos são fenômenos altamente complexos que estão associados a muitos tipos de fontes astronômicas de alta energia. Eles provavelmente surgem de interações dinâmicas dentro de discos de acreção, cujos processos ativos são comumente conectados a objetos centrais compactos, como buracos negros, estrelas de nêutrons ou pulsares. Uma explicação é que os campos magnéticos emaranhados são organizados para direcionar dois feixes diametralmente opostos para longe da fonte central por ângulos de apenas alguns graus de largura (c. > 1%).[2] Os jatos também podem ser influenciados por um efeito de relatividade geral conhecido como arrasto de referenciais.[3]
A maioria dos jatos maiores e mais ativos são criados por buracos negros supermassivos no centro de galáxias ativas, como quasares e galáxias de rádio ou dentro de aglomerados de galáxias.[4] Outros objetos astronômicos que contêm jatos incluem estrelas variáveis cataclísmicas, binários de raios-X e explosões de raios gama. Jatos em uma escala muito menor (~parsecs) podem ser encontrados em regiões de formação de estrelas, incluindo estrelas T Tauri e objetos Herbig-Haro; esses objetos são parcialmente formados pela interação de jatos com o meio interestelar. Os fluxos bipolares também podem estar associados a protoestrelas,[5] ou a estrelas evoluídas pós-AGB, nebulosas planetárias e nebulosas bipolares.
Jatos relativísticos
[editar | editar código-fonte]
Jatos relativísticos são feixes de matéria ionizada acelerados perto da velocidade da luz. A maioria foi observacionalmente associada a buracos negros centrais de algumas galáxias ativas, galáxias de rádio ou quasares e também a buracos negros, estrelas de nêutrons ou pulsares. Os comprimentos dos feixes podem se estender entre vários milhares,[6] centenas de milhares[7] ou milhões de parsecs.[2] As velocidades dos jatos ao se aproximarem da velocidade da luz mostram efeitos significativos da teoria da relatividade especial; por exemplo, radiação relativística que altera o brilho aparente do feixe.[8]
Buracos negros centrais massivos em galáxias têm os jatos mais poderosos, mas sua estrutura e comportamento são semelhantes aos de estrelas de nêutrons menores e buracos negros. Esses sistemas de buracos negros supermassivos são frequentemente chamados de microquasares e mostram uma grande variedade de velocidades. O jato SS 433, por exemplo, tem velocidade média de 0.26c.[9] A formação de jatos relativísticos também pode explicar as explosões de raios gama observadas.
Os mecanismos por trás da composição dos jatos permanecem incertos,[10] embora alguns estudos favoreçam modelos em que os jatos são compostos de uma mistura eletricamente neutra de núcleos, elétrons e pósitrons, enquanto outros são consistentes com jatos compostos de plasma pósitron-elétron.[11][12][13] Espera-se que núcleos de traços varridos em um jato relativístico de pósitron-elétron tenham energia extremamente alta, pois esses núcleos mais pesados devem atingir velocidade igual à velocidade do pósitron e do elétron.
Rotação como possível fonte de energia
[editar | editar código-fonte]Por causa da enorme quantidade de energia necessária para lançar um jato relativístico, alguns jatos são possivelmente alimentados por buracos negros giratórios. No entanto, a frequência de fontes astrofísicas de alta energia com jatos sugere combinações de diferentes mecanismos indiretamente identificados com a energia dentro do disco de acreção associado e as emissões de raios-X da fonte geradora. Duas teorias iniciais foram usadas para explicar como a energia pode ser transferida de um buraco negro para um jato astrofísico:
- Processo Blandford-Znajek.[14] Essa teoria explica a extração de energia de campos magnéticos ao redor de um disco de acreção, que são arrastados e torcidos pelo giro do buraco negro. O material relativístico é então lançado de maneira viável pelo aperto das linhas de campo.
- Mecanismo Penrose.[15] Aqui, a energia é extraída de um buraco negro giratório por arrasto de referenciais, que mais tarde foi teoricamente comprovado como capaz de extrair energia e momento relativísticos de partículas[16] e, posteriormente, mostrou ser um possível mecanismo para a formação de jatos.[17] Este efeito inclui o uso de gravitomagnetismo relativista geral.
Jatos relativísticos de estrelas de nêutrons
[editar | editar código-fonte]Jatos também podem ser observados a partir de estrelas de nêutrons giratórias. Um exemplo é o pulsar IGR J11014-6103, que possui o maior jato já observado na Via Láctea, e cuja velocidade é estimada em 80% da velocidade da luz (0.8c). Observações de raios-X foram obtidas, mas não há assinatura de rádio detectada nem disco de acreção.[18][19] Inicialmente, presumia-se que este pulsar girava rapidamente, mas medições posteriores indicam que a taxa de rotação é de apenas 15.9 Hz.[20][21] Uma taxa de rotação tão lenta e a falta de material de acreção sugerem que o jato não é movido por rotação nem por acreção, embora pareça alinhado com o eixo de rotação do pulsar e perpendicular ao movimento verdadeiro do pulsar.
Outras imagens
[editar | editar código-fonte]-
Centaurus A em raios-x mostrando o jato relativístico
-
O jato M87 visto pelo Very Large Array em radiofrequência (o campo de visão é maior e girado em relação à imagem acima)
-
Galáxia NGC 3862, um jato extragaláctico de material movendo-se quase à velocidade da luz
-
Alguns dos jatos em HH 24-26, que contém a maior concentração de jatos conhecidos em qualquer lugar no céu
Ver também
[editar | editar código-fonte]- Disco de acreção
- Fluxo bipolar
- Processo Blandford-Znajek
- CGCG 049-033 – Galáxia elíptica localizada a 600 milhões de anos-luz da Terra, conhecido por ter o jato galáctico mais longo descoberto.
- Lista de artigos de física de plasma
- ↑ Beall, J. H. (2015). «A Review of Astrophysical Jets» (PDF). Proceedings of Science: 58. Bibcode:2015mbhe.confE..58B. Consultado em 19 de fevereiro de 2017
- ↑ a b Kundt, W. (2014). «A Uniform Description of All the Astrophysical Jets» (PDF). Proceedings of Science: 58. Bibcode:2015mbhe.confE..58B. Consultado em 19 de fevereiro de 2017
- ↑ Miller-Jones, James (abril de 2019). «A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni» (PDF). Nature. 569 (7756): 374–377. Bibcode:2019Natur.569..374M. PMID 31036949. arXiv:1906.05400. doi:10.1038/s41586-019-1152-0
- ↑ Beall, J. H (2014). «A review of Astrophysical Jets». Acta Polytechnica CTU Proceedings. 1 (1): 259–264. Bibcode:2014mbhe.conf..259B. doi:10.14311/APP.2014.01.0259
- ↑ «Star sheds via reverse whirlpool». Astronomy.com. 27 de dezembro de 2007. Consultado em 26 de maio de 2015
- ↑ Biretta, J. (6 de janeiro de 1999). «Hubble Detects Faster-Than-Light Motion in Galaxy M87»
- ↑ «Evidence for Ultra-Energetic Particles in Jet from Black Hole». Yale University – Office of Public Affairs. 20 de junho de 2006. Cópia arquivada em 13 de maio de 2008
- ↑ Semenov, V.; Dyadechkin, S.; Punsly, B. (2004). «Simulations of Jets Driven by Black Hole Rotation». Science. 305 (5686): 978–980. Bibcode:2004Sci...305..978S. PMID 15310894. arXiv:astro-ph/0408371. doi:10.1126/science.1100638
- ↑ Blundell, Katherine (dezembro de 2008). «Jet Velocity in SS 433: Its Anticorrelation with Precession-Cone Angle and Dependence on Orbital Phase». The Astrophysical Journal. 622 (2): 129. arXiv:astro-ph/0410457. doi:10.1086/429663. Consultado em 15 de janeiro de 2021
- ↑ Georganopoulos, M.; Kazanas, D.; Perlman, E.; Stecker, F. W. (2005). «Bulk Comptonization of the Cosmic Microwave Background by Extragalactic Jets as a Probe of Their Matter Content». The Astrophysical Journal. 625 (2): 656–666. Bibcode:2005ApJ...625..656G. arXiv:astro-ph/0502201. doi:10.1086/429558
- ↑ Hirotani, K.; Iguchi, S.; Kimura, M.; Wajima, K. (2000). «Pair Plasma Dominance in the Parsec‐Scale Relativistic Jet of 3C 345». The Astrophysical Journal. 545 (1): 100–106. Bibcode:2000ApJ...545..100H. arXiv:astro-ph/0005394. doi:10.1086/317769
- ↑ Electron–positron Jets Associated with Quasar 3C 279
- ↑ Naeye, R.; Gutro, R. (9 de janeiro de 2008). «Vast Cloud of Antimatter Traced to Binary Stars». NASA
- ↑ Blandford, R. D.; Znajek, R. L. (1977). «Electromagnetic extraction of energy from Kerr black holes». Monthly Notices of the Royal Astronomical Society. 179 (3): 433. Bibcode:1977MNRAS.179..433B. arXiv:astro-ph/0506302. doi:10.1093/mnras/179.3.433
- ↑ Penrose, R. (1969). «Gravitational Collapse: The Role of General Relativity». Rivista del Nuovo Cimento. 1: 252–276. Bibcode:1969NCimR...1..252P Reimpresso em: Penrose, R. (2002). «"Golden Oldie": Gravitational Collapse: The Role of General Relativity». General Relativity and Gravitation. 34 (7): 1141–1165. Bibcode:2002GReGr..34.1141P. doi:10.1023/A:1016578408204
- ↑ Williams, R. K. (1995). «Extracting X-rays, Ύ-rays, and relativistic e−e+ pairs from supermassive Kerr black holes using the Penrose mechanism». Physical Review. 51 (10): 5387–5427. Bibcode:1995PhRvD..51.5387W. PMID 10018300. doi:10.1103/PhysRevD.51.5387
- ↑ Williams, R. K. (2004). «Collimated Escaping Vortical Polar e−e+Jets Intrinsically Produced by Rotating Black Holes and Penrose Processes». The Astrophysical Journal. 611 (2): 952–963. Bibcode:2004ApJ...611..952W. arXiv:astro-ph/0404135. doi:10.1086/422304
- ↑ «Chandra :: Photo Album :: IGR J11014-6103 :: June 28, 2012»
- ↑ Pavan, L.; et al. (2015). «A closer view of the IGR J11014-6103 outflows». Astronomy & Astrophysics. 591: A91. Bibcode:2016A&A...591A..91P. arXiv:1511.01944. doi:10.1051/0004-6361/201527703
- ↑ Pavan, L.; et al. (2014). «The long helical jet of the Lighthouse nebula, IGR J11014-6103» (PDF). Astronomy & Astrophysics. 562 (562): A122. Bibcode:2014A&A...562A.122P. arXiv:1309.6792. doi:10.1051/0004-6361/201322588 Long helical jet of Lighthouse nebula page 7
- ↑ Halpern, J. P.; et al. (2014). «Discovery of X-ray Pulsations from the INTEGRAL Source IGR J11014-6103». The Astrophysical Journal. 795 (2): L27. Bibcode:2014ApJ...795L..27H. arXiv:1410.2332. doi:10.1088/2041-8205/795/2/L27
Ligações externas
[editar | editar código-fonte]- NASA – Ask an Astrophysicist: Black Hole Bipolar Jets
- SPACE.com – Twisted Physics: How Black Holes Spout Off
- Blandford, Roger; Agol, Eric; Broderick, Avery; Heyl, Jeremy; Koopmans, Leon; Lee, Hee-Won (2001). «Compact Objects and Accretion Disks». arXiv:astro-ph/0107228v1
- Hubble Video Shows Shock Collision inside Black Hole Jet (Article)