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Joint peak detection is a central problem when comparing samples in epigenomic data anal-
ysis, but current algorithms for this task are unsupervised and limited to at most 2 sample
types. We propose PeakSegPipeline, a new genome-wide multi-sample peak calling pipeline
for epigenomic data sets. It performs peak detection using a constrained maximum likeli-
hood segmentation model with essentially only one free parameter that needs to be tuned:
the number of peaks. To select the number of peaks, we propose to learn a penalty function
based on user-provided labels that indicate genomic regions with or without peaks in specific
samples. In comparisons with state-of-the-art peak detection algorithms, PeakSegPipeline
achieves similar or better accuracy, and a more interpretable model with overlapping peaks
that occur in exactly the same positions across all samples. Our novel approach is able to
learn that predicted peak sizes vary by experiment type.
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1. Introduction: Joint supervised peak detection in ChIP-seq data

Chromatin immunoprecipitation sequencing (ChIP-seq) is an experimental technique used for
genome-wide profiling of histone modifications and transcription factor binding sites.1 Each
experiment yields a set of sequence reads which are aligned to a reference genome, and then
the number of aligned reads are counted at each genomic position. To compare samples at
a given genomic position, biologists visually examine coverage plots such as Figure 1 for
presence or absence of common “peaks.” In machine learning terms, a single sample over B
base positions is a vector of non-negative count data z ∈ Z+ = {0, 1, . . . }B and a peak detector
is a binary classifier c : ZB

+ → {0, 1}B. The positive class is peaks and the negative class
is background noise. Importantly, peaks and background occur in long contiguous segments
across the genome.

In this paper we use a supervised learning framework with labels from low-throughput
experiments12 or visual inspection of genome plots.4 Previous work has shown that a relatively
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small number of labeled regions/samples are required in order to learn accurate predictive
models.3,4 For each labeled genomic region i ∈ {1, . . . , n} there is a set of count data zi and
labels Li (“noPeaks,” “peaks,” etc. as in Figure 1). These labels define a non-convex label
error function

E[c(zi), Li] = FP[c(zi), Li] + FN[c(zi), Li] (1)

which counts the number of false positive (FP) and false negative (FN) regions, so it takes
values in the non-negative integers. In this framework the goal of learning is to find a peak
detection algorithm c that minimizes the number of incorrect labels (1) on a test set of data:

minimize
c

∑
i∈test

E[c(zi), Li]. (2)

In practical situations we have S > 1 samples, and a matrix Z ∈ ZB×S
+ of count data.

For example in Figure 1 we have S = 4 samples. In these data we are not only interested in
accurate peak detection in individual samples, but also in detecting the differences between
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Fig. 1. Labeled ChIP-seq coverage data for S = 4 samples (top 4 panels) with 3 peak models
(bottom 3 panels). Colored rectangles are labels which an expert genomic scientist has provided

to indicate presence/absence of significant peaks: noPeaks means there should be no overlapping

peaks, and peaks means there should be at least one; peakStart / peakEnd mean there should be

exactly 1 peak start/end somewhere in the region. An ideal peak model minimizes the number of
incorrect labels (false positives are too many peaks and false negatives are not enough peaks). The
“good” model achieves 0 errors but the “better” model is more interpretable since overlapping peaks
in different samples always occur in the exact same positions.
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samples. In particular, an ideal model of a multi-sample data set is a joint peak detector with
identical overlapping peak positions across samples (the “better” model in Figure 1).

1.1. Contributions and organization

The main contribution of this paper is PeakSegPipeline, a joint peak calling pipeline for epige-
nomic data sets which can be trained using supervised learning algorithms. Unlike previous
methods (Section 2), it is the first joint peak detector that explicitly models any number of
sample types (Section 3). A secondary contribution is the JointZoom heuristic segmentation
algorithm, which efficiently infers the most likely position of an overlapping common peak in
several samples (Section 4). We show results in several epigenomic data sets in Section 5 and
provide a discussion in Section 6.

2. Related work

2.1. Single-sample ChIP-seq peak detectors

There are many different unsupervised peak detection algorithms for epigenomic data analy-
sis.12–14 In this paper we propose a new pipeline based on a previously described constrained
maximum segmentation model which was shown to achieve state-of-the-art peak detection
accuracy.6

In the multi-sample setting of this paper, each single-sample peak detection algorithm
may be applied independently to each sample. The drawback of these single-sample methods
is that the predicted peaks do not occur in the same positions across each sample, so it is
not straightforward to interpret the model in terms of similarities and differences between
samples.

2.2. Methods for several data sets

This paper is concerned with models that predict peaks in several samples (perhaps of different
cell types) of the same experiment type. For example, Figure 1 shows two bcell samples, one
monocyte sample, and one tcell sample (all of the H3K4me3 experiment type). As far as we
know, there are no existing algorithms that can jointly model peaks in such data.

The most similar peak detectors in the bioinformatics literature model several samples of
the same cell type. For example, the JAMM algorithm of Ref. 9 can analyze several samples,
but is limited to a single cell type since it assumes that each sample is a replicate with the
exact same peak pattern. So to analyze the data of Figure 1 one would have to run JAMM
three times (once for each cell type), and the resulting peaks would not be the same across cell
types. Another example is the PePr algorithm of Ref. 16, which can model either one or two
cell types, but is unsuitable for analysis of three or more cell types. In contrast, we propose a
new model for several samples without limit on the number of cell types.

Although not the subject of this paper, there are several algorithms designed for the
analysis of data from several different ChIP-seq experiments.2,8,15 In these models, the input
is one sample (e.g. monocyte cells) with different experiments such as sharp H3K4me3 and
broad H3K36me3. Because different experiments have different peak sizes (see Section 5.2),

Pacific Symposium on Biocomputing 25:367-378(2020)

369



and our propopsed joint model assumes common peak positions across samples, it should be
used separately on data from each experiment. For example, our model takes as input several
samples (e.g. monocyte, tcell, bcell) for one experiment such as H3K4me3.

3. Models

We begin by summarizing the single-sample constrained optimal segmentation model,6 and
then introduce the multi-sample model.

3.1. Finding the most likely peaks in a single sample

This section describes the single-sample constrained optimal segmentation model of Ref. 6,
which was shown to provide state-of-the-art peak predictions in several broad H3K36me3 and
sharp H3K4me3 data sets.4

Given a single sample profile z = [z1 · · · zB ] ∈ ZB
+ of aligned read counts on B bases, and

a maximum number of peaks P , we define the constrained maximum likelihood segmentation
problem as follows. First, we assume that there are K = 2P + 1 distinct segments, with
odd numbered segments modeling background noise regions, and even numbered segments
modeling peaks. This assumption is reasonable for epigenomic data, in which peaks are not
expected on the boundaries of contigs.

Once a given model size K is fixed, the model parameters are the segment means and the
changepoint positions. For each data point i on a given segment k, we assume that the data
are independent and identically distributed zi ∼ Poisson(uk) with a segment-specific mean
uk ∈ R+. We use the Poisson distribution because it is a simple one-parameter model for
non-negative count data; other distributions such as Negative Binomial could be considered
in future work. We furthermore define integer-valued changepoint variables t0, t1, · · · , tK which
control where the segments begin/end. More precisely, for each segment k ∈ {1, . . . ,K} the
mean parameter uk is assigned to data points i ∈ {tk−1 + 1, · · · , tk}, with t0 = 0 and tK = B.

Formally, the optimal cost in K segments up to B data points, subject to the up-down
constraint on adjacent segment means, is defined as

minimize
u1,...,uK∈R

0=t0<t1<···<tK−1<tK=B

K∑
k=1

tk∑
i=tk−1

uk − zi log uk (3)

subject to uk−1 ≤ uk ∀k ∈ {2, 4, . . . }, (4)

uk−1 ≥ uk ∀k ∈ {3, 5, . . . }. (5)

Note that the optimization objective of minimizing the Poisson loss (3) is equivalent to maxi-
mizing the Poisson likelihood. The constraints force the mean to alternate between increasing
(4) and decreasing (5) at each changepoint. Thus the even numbered segments are interpreted
as peaks, and the odd numbered segments are interpreted as background noise.

The original quadratic time algorithm that was proposed for the constrained optimal
changepoint model is a heuristic;6 it is not guaranteed to compute the optimal solution to (3).
The optimal solution can be computed using an algorithm which is linear in the number of
segments K and log-linear in the number of data B;7 an even faster algorithm which is only
O(N logN logK) has been recently proposed.5
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Note that since (3) is defined for a single sample, it may be independently applied to each
sample in data sets such as Figure 1. However, any overlapping peaks in different samples
will not necessarily occur in the same positions. In the next section we fix this problem by
proposing the more interpretable multi-sample model.

3.2. PeakSegJoint: finding the most likely common peak in 0, . . . , S samples

Recall that we have assumed that there are S samples to analyze for peaks. Let Zi,s ∈ Z+

be the observed count data at base i for sample s. The joint model we propose is similar to
the previous single-sample model in that it starts down, jumps up to a peak, and then jumps
back down to background. There are two new assumptions with respect to the single-sample
problem: (1) this region has at most one peak in each sample (e.g. Figure 2), and (2) any peaks
in this region have common start/end positions across samples. Although this assumption may
not be appropriate for all samples (e.g. mutations in histone or transcription factor binding
sites), we have observed common peak positions across samples in the vast majority of normal
epigenomic data (including in samples of different cell types).

More formally, we assume that each segment k ∈ {1, 2, 3} has a corresponding mean vector
Mk = [Mk,1 · · · Mk,S ] ∈ RS

+, with an element for each sample. There are two integer-valued
changepoint variables t1, t2 which determine the common peak start/end. The number of
samples with a common peak P ∈ {0, 1, . . . , S} must be fixed before solving the optimization
problem:

LP = min
M1,M2,M3∈RS

0=t0<t1<t2<t3=B

S∑
s=1

3∑
k=1

tk∑
i=tk−1

Mk,s − Zi,s logMk,s (6)

subject to
S∑

i=1

I[M1,s < M2,s > M3,s] = P (7)

S∑
i=1

I[M1,s = M2,s = M3,s] = S − P. (8)

The objective function (6) is the Poisson loss, same as the previous problem, but now summed
over all samples s. The first constraint (7) ensures there are exactly P samples which jump
up to (and down from) the common peak. The second constraint (8) ensures that the mean
of the other samples remain constant at the background noise level (no peak).

The proposed multi-sample peak detection problem (6) therefore results in a sequence of
models (Figure 2). At one extreme, when P = 0, there are no common peaks, and all samples
are predicted to be only background noise in this region. At the other extreme, when P = S,
each sample has a common peak in this region. The intermediate P values result in common
peaks in some samples but not others.

We propose to choose the number of samples with a common peak P by learning a penalty
function using the labels, as previously described.11 Briefly, we compute a simple feature vector
for every joint peak detection problem, which is used as the input an a supervised machine
learning problem. Features include several non-linear transformations of statistics such as
number of data points, variance estimates, quantiles, etc. The output is an interval of penalty
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values that results in minimal label errors. Large penalty values typically result in few peaks
and therefore false negatives; small penalty values result in many peaks and false positives
(Figure 2). Overall the learned function predicts a penalty value, and therefore P , the number
of samples with a common peak.

4. Algorithms

4.1. Heuristic discrete optimization for joint segmentation

The joint optimization problem has a convex objective function and non-convex constraints
(6). Explicitly computing the maximum likelihood and feasibility for all O(B2) possible peak
start/endpoints is guaranteed to find the global optimum, but would take too much time in
genomic regions with many bases B. Instead, we propose to find an approximate solution
using a new discrete optimization algorithm called JointZoom (Algorithm 1).

The main idea of the JointZoom algorithm is to first zoom out (downsample the data)
repeatedly by a factor of β, obtaining a new data matrix of size b× S, where b � B (line 1).
Then we solve the joint problem for S peaks via GridSearch (line 2), a sub-routine that
checks all O(b2) possible peak start and end positions. Then we zoom in by a factor of β
(line 4) and refine the peak positions in O(β2) time via SearchNearPeak (line 5). After
having zoomed back in to the BinSize=1 level we return the final Peak positions, and the best
Loss values that were found.

Fig. 2. A labeled data set with S = 3 samples (top 3 panels) and the proposed joint models for
p ∈ {0, 1, 2, 3} peaks (bottom 4 panels).
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Algorithm 1 JointZoom, available at https://github.com/tdhock/PeakSegJoint

Require: count data Z ∈ ZB×S
+ , zoom factor β ∈ {2, 3, . . . }.

1: BinSize←MaxBinSize(B, β).
2: Peak,Loss←GridSearch(Z,BinSize).
3: while 1 < BinSize do
4: BinSize← BinSize/β.
5: Peak,Loss← SearchNearPeak(Z,BinSize,Peak,Loss)

6: end while
7: return Peak ∈ Z2

+.

For example if we fix the zoom factor at β = 2, a demonstration of the algorithm on a small
data set with B = 24 points is shown in Figure 3. MaxBinSize returns 4, so GridSearch
considers 15 models of b = 7 data points at bin size 4, and then SearchNearPeak considers
16 models each at bin sizes 2 and 1. In the real data set of Figure 2, there are B = 85846 data
points, MaxBinSize returns 16384, GridSearch considers 10 models of b = 6 data points,
and then SearchNearPeak considers 16 models each at bin sizes 8192, 4096, ..., 4, 2, 1.

Overall JointZoom with zoom factor β searches a total of O(β2 logB) models, and com-
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puting the likelihood and feasibility for each model is an O(SB) operation. JointZoom there-
fore returns the estimated common Peak position in worst case O(β2SB logB) time. We then
compute loss values for each sample with/without that Peak in O(SB) time, and sort the
sample-specific loss decrease values in O(S logS) time to obtain an approximate solution path
L0,L1, . . . ,LS.

In experiments on real biological data we have observed that JointZoom can return peaks
that are clearly sub-optimal if the bin factor parameter is fixed, e.g. β = 2. In practice we
therefore run the algorithm with several values, by default β ∈ {2, . . . , 7}, and for each model
size we only keep the model with minimum loss.

4.2. Overall pipeline

We propose a practical implementation of the models and algorithms we describe in the Peak-
SegPipeline R package, which is available on http://github.com/tdhock/PeakSegPipeline.
It provides a multi-step joint peak calling pipeline that can be easily run using a computer clus-
ter to analyze epigenomic data sets. Inputs are a set of bigWig coverage data files, optionally
with corresponding label files for supervised parameter learning. We suggest creating labels
via visual inspection of bigWig coverage data in a genome browser, as previously described.4

The pipeline first runs the single-sample model on each bigWig file/contig independently,
and then runs the joint model on each genomic region where the single-sample model detected
at least one peak (Figure 4). In detail, the pipeline is divided into six steps:

• In parallel on each labeled data subset, determine which penalty values result in min-
imal label errors.

• Combine the results of the previous step, and use a supervised learning algorithm to
compute a penalty function that can predict the number of peaks in each sample and
genomic region.

• In parallel on each sample and genomic region, use the previously learned penalty
function to predict the single-sample peaks.

• Combine the results of the previous step in order to determine which genomic regions
have at least one overlapping peak.

• In each region with at least one overlapping peak, run the multi-sample joint peak
detection algorithm, including supervised learning for predicting the optimal penalty
/ number of samples with a common peak.

• Finally combine the results of joint peak detection in each genomic region into a
genome-wide joint peak prediction matrix (samples x genomic regions).

Overall the pipeline differs substantially from previous work in two respects. First, the pipeline
assumes there are labels that can be used with supervised learning algorithms to choose
optimal model parameters; there are no p-value thresholds or bin size parameters that need
to be manually chosen by the end-user. Second, the final peak predictions are the result of
the joint peak detection algorithm, which is easily interpretable in terms of similarities and
differences between samples. It is thus trivial to make queries such as, “in which genomic
regions do all samples have a peak except for Monocytes?”
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5. Results

5.1. Accuracy of PeakSegPipeline in labeled data sets

We created labeled data sets in order to train and test the accuracy of our peak detection
pipeline. The labels were created using visual inspection, as previously described.4 Briefly, we
created labels only in areas with clear presence/absence of significant peaks, relative to nearby
genomic regions, and other samples. It is important to label a set of peak signatures that is
representative of all samples and genomic regions for which predictions are desired; previous
work has shown that only a few dozen labeled regions is necessary for optimal peak prediction
accuracy.4

In previous work we have estimated peak prediction accuracy using computational cross-
validation experiments in H3K36me3 and H3K4me3 data.6 These previous experiments show
that our previous constrained changepoint model provides accurate peak predictions with
train/test splits over genomic regions on the same samples (e.g. train on some regions in
H3K36me3 immune cell samples, predict/test on other regions on same samples). In this paper
we would like to demonstrate the prediction accuracy on un-labeled test samples, possibly of
other cell types. We therefore divided the data sets into two cross-validation folds: immune
cell types (B cells, T cells, Monocytes) and other cell types (Skeletal muscle, Kidney, etc). We
trained PeakSegPipeline on labels from one of the folds, then quantified the peak prediction
accuracy using the labels in the other fold as a test set. We also ran the following baseline
peak prediction algorithms, with default settings:

MACS2 is an unsupervised single-sample algorithm for sharp histone marks.17

DFilter is another unsupervised single-sample algorithm for broad histone marks.10

JAMM is a multi-sample algorithm which assumes all samples are replicates.

We observed that PeakSegPipeline is always as accurate as the baseline algorithms, and
is often more accurate (Figure 5). Overall this suggests that PeakSegPipeline provides state-
of-the-art peak detection accuracy in both sharp H3K4me3 and broad H3K36me3 data.

Fig. 4. PeakSegPipeline first predicts preliminary peaks for each sample/contig (left), then predicts
presence/absence of a peak in each sample/group, for each genomic region with a preliminary peak
(right). Colors are different cell types and peak predictions are in black.
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H3K36me3 data; parameters of PeakSegPipeline were learned using the train samples, and error
rates were computed using the test samples. It is clear that the error rate of PeakSegPipeline is
competitive with the other tools, and sometimes significantly lower.

5.2. Predicted peak sizes vary with experiment type

We also used predicted peak sizes to compare the outputs of PeakSegPipeline with the baseline
MACS2 algorithm. We observed that PeakSegPipeline peak sizes depend on the experiment
type (as expected), but MACS2 peak sizes depend on the parameter settings (Figure 6).
This observation can be explained because MACS2 reports many small false positive peaks
using default parameter settings; in contrast, PeakSegPipeline uses labels to learn experiment-
specific model parameters that result in much fewer false positive peaks.

We furthermore used PeakSegPipeline to characterize the peak sizes of eight different
epigenomic experiments. In each experiment we used a labeled subset of samples and genomic
regions to learn a peak model. We did not manually specify any experiment-specific bin size or
expected peak size parameters; rather, the peak size distribution was learned from the data and
the labels. We observed that there are three distinct classes of peak size (Figure 7). The largest
peaks of on average 30–50 kilobases occured in H3K36m3 data, which are known for broad peak
patterns. Several histone marks (H3K9me3, H3K27me3, H3K4me1, H3K27ac, and H3K4me3)
had intermediate peak sizes (1–5 kb on average). ATAC-seq and CTCF transcription factor
ChIP-seq had the smallest peaks, 200–400 bases on average.

6. Discussion and Conclusions

The proposed joint model is explicitly designed for supervised, multi-sample peak detection
problems such as the data sets that we considered. We observed that our proposed algorithm
provides more accurate peak detection than several baselines, including the multi-sample
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JAMM algorithm. Whereas JAMM was designed for replicate samples of a single cell type,
PeakSegPipeline can handle any number of samples and cell types. This was advantageous
in data sets such as Figure 1, which contains 3 cell types: tcell, bcell, and monocyte. The
proposed joint model can be run once on all cell types, and the resulting model can be easily
interpreted to find similarities and differences across samples and cell types.

Our current model is limited to separately predicting peaks in each experiment type (e.g.
H3K36me3 peaks predicted separately from H3K4me3). For future work we would be inter-
ested in adapting our supervised peak learning methods for jointly analyzing several experi-
ment types simultaneously. Our current benchmark data sets include labels that are all the
same for each sample in a cell type (e.g. all T cell samples have a peak in a certain genomic
region), so for future work we will be interested to create new labels in heterogeneous samples
which may contain peak differences within a cell type.

Fig. 6. Using the supervised PeakSegPipeline algorithm (trained on either immune or other sam-
ples), H3K4me3 peaks are smaller than H3K36me3 peaks, as expected. In contrast, there is little
difference between H3K4me3 and H3K36me3 peak size using the unsupervised MACS2 algorithm
with default parameters. MACS2 with broad parameters predicts larger peaks for both H3K4me3
and H3K36me3 data.
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