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1 Introduction

In Monte-Carlo Planning in Large POMDPs by Silver et al. [1] Lemma 1 intends to show that
given a POMDP, the value function Ṽ π(h) of the derived MDP, which uses every history as a
state, is equal to the value function V π(h) of the POMDP for all policies π. We find the claim
is true, but that the proof requires a correction.

1.1 Notation

Silver et al. define the set of states as S, set of actions as A, transition probabilities as Pas,s′ ,
return/reward as Ra

s , and observation probabilities as Za
s′,o.

1.2 Verbatim Proof

Given a POMDP M = (S,A,P,R,Z), consider the derived MDP with histories as states,
M̃ = (H,A, P̃, R̃) where

P̃ah,hao =
∑
s∈S

∑
s′∈S

B(s, h)Pas,s′Za
s′,o

R̃a
h =

∑
s∈S

B(s, h)Ra
s

Then the value function Ṽ π(h) of the derived MDP is equal to the value function V π(h) of the
POMDP, ∀π Ṽ π(h) = V π(h).

Proof. By backward induction on the Bellman equation, starting from the horizon,

V π(h) =
∑
s∈S

∑
a∈A

∑
s′∈S

∑
o∈O

B(s, h)π(h, a)(Ra
s + γPas,s′Za

s′,oV
π(hao))

=
∑
a∈A

∑
o∈O

π(h, a)(R̃a
h + γP̃ah,haoṼ π(hao))

= Ṽ π(h)
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1.3 An Attempt at Verification

Again, consider a POMDP M = (S,A,P,R,Z), consider the derived MDP with histories as
states, M̃ = (H,A, P̃, R̃). We compute:

Proof.

V π(h) =
∑
s∈S

∑
a∈A

∑
s′∈S

∑
o∈O

B(s, h)π(h, a)(Ra
s + γPas,s′Za

s′,oV
π(hao)) (by definition)

=
∑
a∈A

∑
o∈O

∑
s∈S

∑
s′∈S

B(s, h)π(h, a)(Ra
s + γPas,s′Za

s′,oV
π(hao)) (rearrange sums)

=
∑
a∈A

∑
o∈O

∑
s∈S

∑
s′∈S

(B(s, h)π(h, a)Ra
s + B(s, h)π(h, a)γPas,s′Za

s′,oV
π(hao)) (distribute)

=
∑
a∈A

∑
o∈O

(
∑
s∈S

∑
s′∈S

B(s, h)π(h, a)Ra
s +

∑
s∈S

∑
s′∈S

B(s, h)π(h, a)γPas,s′Za
s′,oV

π(hao)) (distribute sums)

=
∑
a∈A

∑
o∈O

(
∑
s∈S

∑
s′∈S

B(s, h)π(h, a)Ra
s + γV π(hao)π(h, a)

∑
s∈S

∑
s′∈S

B(s, h)Pas,s′Za
s′,o) (factor)

=
∑
a∈A

∑
o∈O

(
∑
s∈S

∑
s′∈S

B(s, h)π(h, a)Ra
s + γV π(hao)π(h, a)P̃ah,hao) (by definition)

=
∑
a∈A

∑
o∈O

(
∑
s′∈S

∑
s∈S

B(s, h)π(h, a)Ra
s + γV π(hao)π(h, a)P̃ah,hao) (rearrange sums)

=
∑
a∈A

∑
o∈O

(
∑
s′∈S

π(h, a)
∑
s∈S

B(s, h)Ra
s + γV π(hao)π(h, a)P̃ah,hao) (factor)

=
∑
a∈A

∑
o∈O

(
∑
s′∈S

π(h, a)R̃a
h + γV π(hao)π(h, a)P̃ah,hao) (by definition)

=
∑
a∈A

∑
o∈O

(π(h, a)R̃a
h

∑
s′∈S

1 + γV π(hao)π(h, a)P̃ah,hao) (factor)

=
∑
a∈A

∑
o∈O

(π(h, a)R̃a
h|S| + γV π(hao)π(h, a)P̃ah,hao) (simplify)

=
∑
a∈A

∑
o∈O

π(h, a)(R̃a
h|S| + γV π(hao)P̃ah,hao) (factor)

=
∑
a∈A

∑
o∈O

π(h, a)(R̃a
h|S| + γP̃ah,haoV π(hao)) (rearrange term)

which is not equal to ∑
a∈A

∑
o∈O

π(h, a)(R̃a
h + γP̃ah,haoṼ π(hao))

which would be the definition of Ṽ π(h). It’s a similar expression, but there is not a clear path
to removing the factor of |S|.

1.4 Correction Explanation

It seems like the original expression for V π(h) presented in the POMCP paper is incorrect. The
Bellman equation for evaluating a state s ∈ S, given policy π, action set A, transition function
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T , and reward function R is

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV π(s′))

Now, let’s adapt this equation to work for histories and partially-observable domains (by using
our observation probabilities). First, we know T (s, a, s′) = Pr(s′|s, a) = P as,s′ and R(s, a, s′) =
Ras . In our partially observable setting, we don’t know the true state, but we do have a belief
state B(s, h) and so we can use this distribution to compute an expectation over s. Finally,
because we are using histories which include observations, we change π(a|s) to π(h, a) and we
need to perform an expectation over observations for the term being multiplied by γ. Thus, we
now have:

V π(h) =
∑
s∈S

∑
a∈A

B(s, h)π(h, a)
∑
s′∈S

Pas,s′(Ra
s + γ

∑
o∈O

Za
s′,oV

π(hao))

=
∑
s∈S

∑
a∈A

B(s, h)π(h, a)(Ra
s

∑
s′∈S

Pas,s′ + γ
∑
s′∈S

Pas,s′
∑
o∈O

Za
s′,oV

π(hao))

=
∑
s∈S

∑
a∈A

B(s, h)π(h, a)(Ra
s + γ

∑
s′∈S

∑
o∈O

Pas,s′Za
s′,oV

π(hao))

We can make this expression more similar to what’s written in the publication by the series of
steps below:

=
∑
s∈S

∑
a∈A

B(s, h)π(h, a)(
∑
s′∈S

∑
o∈O

Pas,s′Za
s′,oRa

s + γ
∑
s′∈S

∑
o∈O

Pas,s′Za
s′,oV

π(hao)) (multiply by 1)

=
∑
s∈S

∑
a∈A

B(s, h)π(h, a)
∑
s′∈S

∑
o∈O

(Pas,s′Za
s′,oRa

s + γPas,s′Za
s′,oV

π(hao)) (rearrange sums)

=
∑
s∈S

∑
a∈A

B(s, h)π(h, a)Pas,s′Za
s′,o

∑
s′∈S

∑
o∈O

(Ra
s + γV π(hao)) (factor)

=
∑
s∈S

∑
a∈A

∑
s′∈S

∑
o∈O

B(s, h)π(h, a)Pas,s′Za
s′,o(Ra

s + γV π(hao)) (rearrange sums)

which looks more similar to the expression that begins the proof of Lemma 1 in the current
instance of the paper.

Similarly, the expression for Ṽ π(h) in the paper should change. We need to move in expectation
over o as follows:

Ṽ π(h) =
∑
a∈A

π(h, a)(R̃a
h + γ

∑
o∈O

P̃ah,haoṼ π(hao))

1.5 Corrected Proof of Lemma 1

Given a POMDP M = (S,A,P,R,Z), consider the derived MDP with histories as states,
M̃ = (H,A, P̃, R̃) where
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P̃ah,hao =
∑
s∈S

∑
s′∈S

B(s, h)Pas,s′Za
s′,o

R̃a
h =

∑
s∈S

B(s, h)Ra
s

Then the value function Ṽ π(h) of the derived MDP is equal to the value function V π(h) of the
POMDP, ∀π Ṽ π(h) = V π(h).

Proof. By backward induction on the Bellman equation, starting from the horizon,

+V π(h) =
∑
s∈S

∑
a∈A

∑
s′∈S

∑
o∈O

B(s, h)π(h, a)Pas,s′Za
s′,o(Ra

s + γV π(hao))

=
∑
a∈A

∑
o∈O

π(h, a)
∑
s∈S

∑
s′∈S

(B(s, h)Pas,s′Za
s′,oRa

s + γB(s, h)Pas,s′Za
s′,oV

π(hao)) (factor)

=
∑
a∈A

∑
o∈O

π(h, a)((
∑
s∈S

∑
s′∈S

B(s, h)Pas,s′Za
s′,oRa

s) + γ(
∑
s∈S

∑
s′∈S

B(s, h)Pas,s′Za
s′,oV

π(hao))) (distribute)

=
∑
a∈A

∑
o∈O

π(h, a)((
∑
s′∈S

∑
s∈S

B(s, h)Pas,s′Za
s′,oRa

s) + γV π(hao)(
∑
s∈S

∑
s′∈S

B(s, h)Pas,s′Za
s′,o)) (factor)

=
∑
a∈A

∑
o∈O

π(h, a)((
∑
s′∈S

∑
s∈S

B(s, h)Pas,s′Za
s′,oRa

s) + γV π(hao)P̃ah,hao) (by definition)

=
∑
a∈A

π(h, a)((
∑
s′∈S

∑
s∈S

∑
o∈O

B(s, h)Pas,s′Za
s′,oRa

s) + γ(
∑
o∈O

V π(hao)P̃ah,hao)) (factor)

=
∑
a∈A

π(h, a)((
∑
s∈S

B(s, h)Ra
s

∑
s′∈S

Pas,s′
∑
o∈O

Za
s′,o) + γ(

∑
o∈O

V π(hao)P̃ah,hao)) (factor)

=
∑
a∈A

π(h, a)((
∑
s∈S

B(s, h)Ra
s

∑
s′∈S

Pas,s′) + γ(
∑
o∈O

V π(hao)P̃ah,hao)) (sum of distribution)

=
∑
a∈A

π(h, a)((
∑
s∈S

B(s, h)Ra
s) + γ(

∑
o∈O

V π(hao)P̃ah,hao)) (sum of distribution)

=
∑
a∈A

π(h, a)(R̃a
h + γ

∑
o∈O

V π(hao)P̃ah,hao) (by definition)

+ =
∑
a∈A

π(h, a)(R̃a
h + γ

∑
o∈O

P̃ah,haoṼ π(hao)) (inductive hypothesis)

+ = Ṽ π(h)

as desired. Thus, the suggested changes to the paper are the highlighted first and final lines of
this proof. The original claim still stands.
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