
Integrated Variability Modeling Language:
Language Specification

Version 1.27

(corresponds to IVML bundle version 1.1.0)

H. Eichelberger, S. El-Sharkawy, C. Kröher, K. Schmid

Software Systems Engineering (SSE)

University of Hildesheim

31141 Hildesheim

Germany

Abstract

Creating domain-specific service platforms requires the capability of customizing and
configuring service platforms according to the specific needs of a domain. In this
document we address this demand from the perspective of variability modeling. We
focus on how to describe customization and configuration options in service
(platform) ecosystems using a variability modelling language.

In this document we specify the concepts of the Integrated Variability Modelling
Language (IVML) to describe customization and configuration options (in software
ecosystems).

Version

1.0

1.01

15. February 2012

29. February 2012

first version derived from D2.1

“v” as prefix in version number (technical reasons)

1.02 15. June 2012 all parenthesis follow after all “with” keywords, accessing
enum literals, camelcase for refTo and refBy

1.03 17. July 2012 DSL syntax corrected

1.04 19. July 2012 Constraint syntax, operation signatures and semantics,
grammar section (prepared), technical section, import
conventions, clarifications in using constraints

1.05 22. July 2012 grammar revised and added to document

1.06 06. August 2012 typeSelect, typeReject, side effects, undefined values

1.07 10. August 2012 examples testcased, enum access corrected in examples,
container type definition adjusted (syntax overlap with
variable declaration)

1.08 16. August 2012 Details for identifiers added, technical section deleted (see
IVML user guide)

1.09 28. November 2012 Operator precedence in grammar corrected, constraint
type added

1.10 12. December 2012 Mass assignment of annotation values

1.11 8. January 2013 Assignment operator clarifications (‘=’ vs. ‘==’)

1.12 17. January 2013 Eval clarified

1.13 11. February 2013 Compound / container initializers and annotations clarified

1.14 12. February 2013 Grammar cleanup, decision variable naming corrected

1.15 14. February 2013 Further clarifications on ‘=’

1.16 10. July 2013 Qualification clarification (reasoner dependent)

1.17 16. August 2013 Clarification on annotations, null values introduced

1.19 4. December 2013 Refined hierarchical import path.

1.20 21. April 2014 Implementation status

1.21 27. May 2014 Qualified names in interface exports.

1.22 03. July 2014 – 12.
September 2014

Clarification of assignments in implies, enum ordinal
operation. Type clarifications, hasDuplicates operation for
Sequence. Alignment of collection operation declaratory
syntax. Dynamic dispatch for user-defined operations.

1.23 13. September 2014
– 2. January 2015

Freeze for projects, removal of DSL inclusion. Versioned
import clarified. Version constraints for import / conflicts
and Internal version type. Abstract compounds. Reserved
keyword lists. Clarification of constraint variables and

freeze. Value-returning add function for container. self for

constraints in compounds and fixes in operation list
erroneously referring to self rather than operand.

1.24 12. January 2015 Implementation status for experimental SSE reasoner

1.25 24. March 2015 Clarification for multiple assignments in a project, change
of freeze-but syntax. Importing user-defined operations,
import sequence. Attribute renamed to annotation.

1.26 30. June 2015 Clarification on “Generics”, e.g. Set<Type> changed to
setOf(Type) in the text, clarification on [] operator.

IVML Language Specification

 3

1.27 30. September 2015 cleanup of multiple typedef constraints, flatten operations
for set and sequence, allowing cyclic imports, clarifying
collect. Eval in compounds, static user-defined operations.
Min and max for ordered enums.

Document Properties

The spell checking language for this document is set to UK English.

Acknowledgements

This work was partially funded by the

 European Commission in the 7
th

 framework programme through the INDENICA
project (grant 257483).

 European Commission in the 7
th

 framework programme through the QualiMaster
project (grant 619525).

 German Ministry of Economic Affairs and Energy through the ScaleLog project (grant
KF2912401SS).

We would like to thank Bartu Dernek (content assist) and Adam Krafczyk for their
contributions. We would also like to thank Stefan Krüger (TU Darmstadt) for his suggestion on
min/max of ordered enums.

Table of Contents

Table of Contents ... 4

Table of Figures .. 7

1 Introduction ... 8

2 The Integrated Variability Modelling Approach .. 9

2.1 Integrated Variability Modelling Core Language ... 10

2.1.1 Reserved keywords .. 10

2.1.2 Projects .. 11

2.1.3 Types .. 11

2.1.3.1 Basic Types ... 12

2.1.3.2 Enumerations ... 12

2.1.3.3 Container Types ... 12

2.1.3.4 Type Derivation and Restriction .. 14

2.1.3.5 Compounds .. 15

2.1.4 Decision Variables .. 15

2.1.5 Configurations .. 17

2.2 Advanced Concepts of the Integrated Variability Modelling Language 18

2.2.1 Reserved Keywords .. 18

2.2.2 Annotations .. 19

2.2.3 Advanced Compound Modelling ... 22

2.2.3.1 Extending Compounds ... 22

2.2.3.2 Referencing Elements .. 23

2.2.4 Advanced Project Modelling .. 24

2.2.4.1 Project Versioning .. 25

2.2.4.2 Project Composition... 25

2.2.4.3 Project Interfaces ... 28

2.2.5 Advanced Configuration .. 30

2.2.5.1 Partial Configurations .. 31

2.2.5.2 Freezing Configurations ... 32

2.2.5.3 Partial Evaluation ... 34

3 Constraints in IVML .. 37

3.1 IVML constraint language .. 37

IVML Language Specification

 5

3.1.1 Reserved Keywords .. 38

3.1.2 Prefix operators ... 39

3.1.3 Infix operators .. 39

3.1.4 Equality and assignment operators (default logic) 39

3.1.5 Precedence rules .. 40

3.1.6 Datatypes ... 41

3.1.7 Type conformance ... 41

3.1.8 Type operations ... 42

3.1.9 Side effects ... 42

3.1.10 Constraint variables ... 42

3.1.11 Undefined values ... 42

3.1.12 If-then-else-endif Expressions ... 42

3.1.13 Let Expressions ... 43

3.1.14 User-defined operations .. 43

3.1.15 Collection operations ... 44

3.2 Internal Types .. 46

3.2.1 AnyType ... 47

3.2.2 MetaType ... 47

3.2.3 Version ... 47

3.3 FreezeVariable ... 48

3.4 Basic Types ... 48

3.4.1 Real ... 48

3.4.2 Integer .. 49

3.4.3 Boolean .. 50

3.4.4 String .. 51

3.5 Enumeration Types .. 51

3.5.1 Enum .. 51

3.5.2 OrderedEnum ... 52

3.6 Constraint ... 52

3.7 Collection Types ... 52

3.7.1 Collection ... 52

3.7.2 Set .. 54

3.7.3 Sequence .. 55

IVML Language Specification

 6

3.8 Compound Types ... 56

4 Implementation Status .. 57

5 IVML Grammar ... 59

5.1 Basic modeling concepts .. 59

5.2 Basic types and values ... 61

5.3 Advanced modeling concepts .. 62

5.4 Basic constraints .. 63

5.5 Advanced constraints ... 66

5.6 Terminals .. 67

References ... 68

IVML Language Specification

 7

Table of Figures

Figure 1: IVML type hierarchy .. 17

Figure 2: IVML type hierarchy .. 41

file:///W:/offlineFiles/git/EASyProducer/EASyProducer/doc/IVML%20Language%20Spec.docx%23_Toc434832230
file:///W:/offlineFiles/git/EASyProducer/EASyProducer/doc/IVML%20Language%20Spec.docx%23_Toc434832231

IVML Language Specification

 8

1 Introduction

This document specifies the Integrated Variability Modelling Language (IVML) in
terms of a document containing the syntax and semantics of the language elements
of the current version.

This document encompasses:

 The Variability Modeling Approach in terms of the
o Core language,
o Advanced concepts,
o Constraint language
o Built-in operations and types.

 The implementation status.

 The IVML grammar.

IVML Language Specification

 9

2 The Integrated Variability Modelling Approach

In this section, we will describe the concepts of the Integrated Variability Modelling
Language (IVML). We distinguish between a core modelling language and an
advanced modelling language that extends the core language. This distinction
facilitates ease of use for the most standard issues in variability modelling as it does
not complicate the use of this language for users who do not need the more
advanced features.

The basic concepts of the IVML are related to approaches like the Text-based
Variability Language (TVL) [2], the Class Feature Relationships (Clafer) [1], the
Compositional Variability Management framework (CVM) [7], etc.

We will introduce a textual specification to describe the IVML concepts. This will help
to give a precise representation of the modelling concepts. The syntax, we use in this
section was developed as a basis for representing the concepts. Our presentation of
the IVML-syntax draws upon typical concepts used in programming languages, in
particular Java, and other modelling languages such as TVL [2], Clafer [1], the Object
Constraint Language (OCL) [4], or the UML [5]. The dependency management
concepts of the IVML mostly rely on the concepts of the OCL. We will adapt these
concepts as needed to provide additional operations required by IVML-specific
modelling elements, e.g. match and substitute operations for decision variables of
type string.

We will use the following styles and elements throughout this section to illustrate
the concepts of the IVML:

 The syntax as well as the examples will be illustrated in Courier New.

 Keywords will be highlighted using bold font.

 Elements and expressions that will be substituted by concrete values,
identifiers, etc. will be highlighted using italics font.

 Identifiers will be used to define names for modelling elements that allow the
clear identification of these elements. We will define identifiers following the
conventions typically used in programming languages. Identifiers may consist
of any combination of letters and numbers, while the first character must not
be a number. We recommend that the identifiers of new types start with a
capital letter to easily distinguish them from variables.

 Expressions will be separated using semicolon “;”.

 Different types of brackets will be used to indicate lists “()”, sets “{}”, etc.
This is closely related to the Java programming language.

 We will indicate comments using “//” and “/* ... */” (cf. Java, C++).

We will use the following structure to describe the different concepts:

 Syntax: this is the syntax of a concept. We will use this syntax to illustrate the
valid definition of elements as well as their combination.

IVML Language Specification

 10

 Description of syntax: provides the description of the syntax and the
associated semantics. We will describe each element, the semantics and their
interaction with other elements in the model.

 Example: the concrete use of the abstract concepts is illustrated in a (simple)
example.

In Section 2.1, we will describe the core part of the Integrated Variability Modelling
Language. We will introduce the required elements and expressions to define a basic
configuration space including Boolean and non-Boolean variabilities. We will further
describe the dependency management capabilities of this language to restrict
configuration spaces. Finally, we will describe the definition of (product)
configurations based on configuration spaces.

In Section 2.2 we will describe the advanced concepts of the Integrated Variability
Modelling Language. We will introduce extensions that are required to satisfy the
specific requirements in particular drawn by in the FP7 INDENICA project like the
support for service-ecosystems, for service technology and meta-variability.

2.1 Integrated Variability Modelling Core Language

This section describes the core language of the IVML. In this language, a project is
the top-level element that identifies the configuration space of a certain (software)
project. In terms of a product line, this may either be an infrastructure as a basis for
deriving products or a final product. In a project the relevant modelling elements will
be defined. We describe this in the first part of this section. In the second part, we
introduce the type system supported by the IVML. These types can be used to
declare different types of decision variables. The dependency management
capabilities to restrict the configuration space of a project will be described next.
Finally, we will introduce the configuration concept of the IVML, which enables the
definition of specific (product) configurations based on the configuration space
defined in a project.

2.1.1 Reserved keywords

The following keywords are reserved and must not be used as identifiers. Please
note that this set of keywords is complemented by the keywords of the advanced
modeling language concepts in Section 2.2.1 and the constraint language in Section
3.1.1.

 abstract

 Boolean

 compound

 Constraint

 enum

 false

 Integer

 project

 refine

 Real

 refto

IVML Language Specification

 11

 sequenceOf

 setOf

 String

 true

 typedef

 with

2.1.2 Projects

In the IVML a project (project) is the top-level element in each model. This
element is mandatory as it identifies the configuration space of a certain software
project and, thus, scopes all variabilities of that software project. The definition of a
project requires a name, which simultaneously defines a namespace for all elements
of this project.

Syntax:

project name {

/* Definition of the configuration space and

configurations. */

}

Description of syntax: the definition of a new project consists of the following

elements:

 The keyword project defines that the identifier name is defined as a new

project or, to be more precise, as a new configuration space.

 name is an identifier that defines the name of the new project and, thus,

the namespace of all elements within this project.

 The elements surrounded by curly brackets define the configuration space

of the new project.

Example:

project contentSharing {

/* This will define a new project for a content-sharing

project. */

}

2.1.3 Types

In a project (cf. Section 2.1.1) different kinds of core modelling elements may be
used to both represent the variabilities and define a configuration space
appropriately. We will express these kinds as formal types in IVML, thus defining a
(strongly) typed language. We distinguish between basic types, enumerations,
container types, derived and restricted types and compound types. These types can
be used to declare or define concrete decision variables. Basically, all decision

IVML Language Specification

 12

variables can be unset using the null keyword, i.e., explicitly assigning no value to a
variable.

2.1.3.1 Basic Types

IVML supports as basic types Boolean (Boolean), integer (Integer), real (Real)
and string (String) with their usual meaning. The names of the basic types are
aligned to OCL [4]. These types support the definition of basic variabilities, e.g. the
Boolean type may be used for modelling optional variabilities. In addition, types like
Integer or Real provide a basis for defining advanced variabilities, e.g. using an
Integer to define a quantitative property, IVML provides the basic type

Constraint which allows declaring constraints themselves as variables.

2.1.3.2 Enumerations

Enumerations allow the definition of sets of named values. This is used to describe a
set of possible resolutions of a decision.

Syntax:

enum Name1 {value1, ..., valuen};

enum Name2 {value1=n1, ..., valuen=nn};

Description of syntax: the definition of a new enumeration type consists of the

following elements:

 The keyword enum defines that the identifier Name is defined as a new

enumeration.

 Name is an identifier and defines the name of the new type.

 The identifiers surrounded by curly brackets are the concrete elements of

the enumeration. A specific element of an enumeration can be accessed

using the “.”-notation, e.g. Name1.value1.

 Specifying concrete numeric values for elements of an enumeration

(valuei=ni) turns the enumeration into an ordered enumeration. This

enables relations like greater than (>) or less than (<) and operations like

next (next) or previous (previous) on the values to be used.

Example:

enum Colors {green, yellow, black, white};

enum BindingTimes {configuration=0, compile=1,

runtime=2};

2.1.3.3 Container Types

The IVML provides two container types, sequences and sets. Sequences can contain
an arbitrary number of elements of a given content type (including duplicates), while
sets are similar to sequences, but do not support duplicate elements. These types

IVML Language Specification

 13

can be used to describe a number of possible options out of which several can be
selected at the same time. Elements in a container (both sequences and sets) can be
accessed by their position in the container using an index ([index]). The allowed
number of elements in a container, i.e., its cardinality, can be restricted by
constraints.

The IVML supports a set of operations specific for container types, e.g. adding or
appending elements to a container, deleting elements of a container, selecting
specific elements, etc. We will introduce the full set of operations in Section 1.1.1.

Syntax:

// Declaration of a new sequence and a new set.

sequenceOf(Type) variableName1;

setOf(Type) variableName2;

/* Access to elements of a sequence. Sets do not have

index-based access. We will discuss variables in Section

2.1.4. */

variableName1[index] = value;

Description of Syntax: the definition of a container type consists of the following

elements:

 The sequenceOf and setOf keywords refer to a container of the

respective type followed by the Type of the elements contained in

brackets.

 The identifiers variableName1 and variableName2 are the names of

the new containers.

 Accessing a specific element of a sequence container type (variable)

requires the specification of an index ([index]). An index is either “0” or

a positive integer value specifying the position of an element in a

container. Accessing a specific position is only a valid operation, if this

position has previously been set by different means like the add function

(the set of operations is introduced in Section 1.1.1).

Example:

/* Definition of a new enumeration. "blob" means "binary

(large) objects". */

enum ContentType {text, video, audio, threeD, blob};

IVML Language Specification

 14

/* Denotes types of contents supported by a system */

sequenceOf(ContentType) basicContents =

 {ContentType.text, ContentType.audio};

2.1.3.4 Type Derivation and Restriction

The IVML allows the derivation of new types based on existing types. This supports
extensibility and adaptability as users may define their own types based on basic
types, enumerations or container types as well as on previously derived types. The
derivation may also include restrictions to the existing type, e.g. to restrict the
possible values of the new type to a subset of the values of the existing type. The
optional restrictions are defined by a constraint in OCL style (we will discuss
constraints in detail in Section 3).

Syntax:

typedef Name1 Type;

typedef Name2 Type with (constraint);

Description of Syntax: the definition of a derived type consists of the following

elements:

 The typedef keyword indicates the derivation of a new type based on an

existing type.

 The identifiers Name1 and Name2 are the names of the new types.

 The identifier Type denotes the basic type from which the new type

(Name1or Name2) will be derived.

 The optional keyword with defines a constraint (cf. Section 1.1.1),

surrounded by brackets, which must hold for Name2 (Name2 can be used

as identifier in constraint), e.g., if deriving Name2 from String the

constraints may define regular expressions based on Name2.

Example:

/* Definition of a type "AllowedBitrates" which is a set

of Integers, i.e. a kind of alias for a complex type

definition. */

typedef AllowedBitrates setOf(Integer);

/* A new modelling type of the basic type integer that is

restricted to assume values between "128" and "256". */

typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

IVML Language Specification

 15

2.1.3.5 Compounds

A compound type groups multiple types into a single named unit (similar to structs
or records in programming languages or groups / features with attributes in feature
modelling). This allows combining semantically related decisions from which each
element has to be configured individually.

Syntax:

compound Name {

Type name1;

...

}

Description of Syntax: the definition of a compound type consists of the following

elements:

 The optional keyword abstract indicates that this specific compound

cannot be instantiated. Anyway, it can be refined, e.g., serve as a root of

compound types.

 The compound keyword indicates the definition of a new compound type.

 The identifier Name defines the name of the new compound type.

 The set of elements surrounded by curly brackets defines the types of the

compound type. Each declaration of a typed element is separated by a

semicolon.

Example:

/* A new compound type for the configuration of different

(web) content. The content may vary in terms of name and

bitrate. "Content.bitrate" is the integer within the

compound content. */

compound Content {

String name;

Integer bitrate;

}

2.1.4 Decision Variables

The types introduced in Section 2.1.3 can be used to declare (decision) variables
representing a concrete variability. A decision variable is an element of a project
(configuration space) that basically accepts any value of its type. Constraints may
further restrict the possible values by removing certain combinations of values from
the allowed configuration space. The value given to a decision variable defines the
variant of the represented variability.

IVML Language Specification

 16

In IVML a decision variable may either be declared with or without a default value
(this is an optional parameter). Decision variables with a default value can be further
configured by overwriting their (default) value at a later point in time. However,
overwriting the default value is not necessary.

Syntax:

// Declaration of a decision variable.

Type name1;

/* Declaration of a decision variable with a default

value. The "valueAssignment"-expression will be described

in detail below. */

Type name2 = valueAssignment;

Description of Syntax: the basic declaration of a new decision variable (excluding the

declaration of an optional default value) consists of the desired type (one of the

basic types, an enumeration, a container type, a derived or a restricted type, or a

compound type) followed by an identifier (name1) that states the name of the

variable.

Optionally, a default value can be assigned to a decision variable appending “=”

followed by a “valueAssignment”-expression after the name (name2) of the

decision variable. The form of the “valueAssignment”-expression depends on

the specific type of the declared decision variable:

 Basic types and Enumerations: an expression that yields a value of the

corresponding type and can be actually calculated, i.e., it either consists of

constants or the values of the variables are known.

 Container types: either an expression of the type of the container, which

can be statically evaluated, or a set of values separated by commas in curly

brackets after the name of the decision variable. Expressions may be used

but must be stated in parenthesis due to technical reasons. The allowed

values within the curly brackets are determined based on the base type of

the container.

 Compounds: either an expression of the type of the compound, which can

be statically evaluated, or a set of individual assignments, given in curly

brackets. Each assignment explicitly gives the field in the compound that

the assignment is made to, followed by a “=” and an expression of the

corresponding element type. Again this expression needs to be statically

evaluated.

 Derived type: the assignment follows the rules of the base type.

IVML Language Specification

 17

Example:

/* Declaration of a new variable of type integer with a

default value. */

Integer bitrate = 128;

/* Declaration of a new variable of type enumeration with

a default value (cf. Section 2.1.3.2). */

Colors backgroundColor = Colors.black;

/* Declaration of a new variable of type container

(sequence) with default values (cf. Section 2.1.3.3). */

sequenceOf(ContentType) baseContent =

 {ContentType.text, ContentType.audio};

/* Declaration of a new variable of type compound with

default values (cf. Section 2.1.3.5). */

Content complexContent = {name = "Text",

bitrate = 128};

2.1.5 Configurations

The IVML does not differentiate between a configuration space and specific
(product) configurations. Instead, a project can simultaneously describe or extend a
configuration space and define a configuration. However, typically a project will
provide a configuration space, while a different project may extend it, while
providing configurations information for the initially specified configuration space.
The set of decision variables and constraints of a project represent the set of all
possible configurations. In addition, default values of decision variables as described
in Section 2.1.4 define basic configurations and, thus, do not need to be further
configured, but can be overwritten later as well. In addition, some values of decision
variables can be derived using constraints. Any configuration, independent of where
the values come from, must comply with the relevant constraints.

Configurations in the IVML do not require any specific or additional keyword. They
are simply given by variable assignments. We illustrate this concept by a simple
example.

Example:

/* A project that represents both a configuration space

and a configuration. The constraint implies a valid

configuration with a bitrate value between "128" and "256"

IVML Language Specification

 18

and "content == text" (if no further configuration is

done). */

project contentSharing {

enum ContentType {text, video, audio, threeD, blob};

typedef Bitrate Integer with (Bitrate >= 128 and

Bitrate <= 256);

ContentType content;

Bitrate contentBitrate = 128;

contentBitrate == 128 implies

content == ContentType.text;

}

2.2 Advanced Concepts of the Integrated Variability Modelling
Language

This section describes advanced concepts of the IVML. We will describe how to
assign additional annotations to modelling elements. This allows describing certain
modelling elements in more detail, e.g. assigning meta-variability information. We
then augment the compound types introduced in Section 2.1.3.5 by extension and
referencing concepts. Extension concepts will also be introduced for projects (cf.
Section 2.1.1), which cover modularization aspects as well as facilitating project
composition. Finally, we will describe advanced configuration concepts including
partial configurations as well as “freezing” configurations.

2.2.1 Reserved Keywords

The following keywords are reserved and must not be used as identifiers. Please
note that this set of keywords is complemented by the keywords of the basic
modeling language concepts in Section 2.1.1 and the constraint language in Section
3.1.1.

 assign

 annotate

 but

 conflicts

 eval

 export

 freeze

 import

 interface

 static

 to

 version

IVML Language Specification

 19

2.2.2 Annotations

In the IVML modelling elements can be annotated by further (orthogonal)
configuration capabilities, e.g. to express meta-variability such as binding times. An
annotation in IVML is basically a decision variable that is attached to another
modelling element describing this element in more detail. Thus, an annotation may
also have a default value and may be restricted by constraints (cf. Section 31.1.1).
The impact of an annotation depends on the element it is attached to. In the IVML
the following modelling elements can be annotated:

 Decision variable: Annotations that are attached to a decision variable only

describe this variable further. Depending on the type of the decision variable,

the annotations of the variable also describe its elements, e.g. the various

fields of a compound variable. These fields may have additional annotations.

Changing the value of a decision variable annotation will not cause any

modification to elements outside the scope of the specific variable (as far as

they are not connected by constraints).

 Project: Annotations that are attached to a project will affect all variables of

this project.

As the different elements may be nested, different values can be given for the same

annotation on the outer and the inner scope.

Syntax:

annotate Type name1 to name2;

annotate Type name3 = value to name4;

Description of Syntax: the definition of an annotation consists of the following

elements:

 The annotate keyword3 indicates the definition of a new annotation.

 The expressions Type name1 and Type name3 correspond to the

definition of a decision variable described in Section 2.1.4 while name1 and

name3 are the identifiers of the new annotations4.

 The to keyword indicates the attachment of the new annotation on the

left side to the element (name4) denoted on the right side. Multiple names

may be given separated by commas

 name4 may be one of the elements described above to which the

annotation is attached.

3 The keyword attribute is deprecated, but still recognized by the implementation. However, it may be

removed completely in one of the future versions.
4 Due to technical reasons, currently annotations must not start with ‘v’ or ‘e’.

IVML Language Specification

 20

 Optionally, a default value (value) can be assigned to the annotation by

appending a value expression after name3.

Example:

project contentSharing {

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an annotation to the entire project.

annotate BindingTimes binding = BindingTimes.compile

to contentSharing;

}

Annotations can also be used in initializing expressions for containers and

compounds. This is demonstrated in the fragment below:

compound Content {

String name;

Integer bitrate;

}

Content content;

annotate BindingTimes binding = BindingTimes.compile

 to content;

content = {name=”Video”, bitrate=128,

 name.binding=BindingTimes.compile,

 bitrate.binding=BindingTimes.runtime};

However, assigning the same value for a certain annotation for a given set of

decision variables may increase the perceived complexity of the model as similar

assignments are repeated.

Example:

project contentSharing {

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an annotation to the entire project.

IVML Language Specification

 21

annotate BindingTimes binding = BindingTimes.compile

to contentSharing;

enum Colors {black, white};

Bitrate contentBitrate = 128;

contentBitrate.binding = BindingTimes.configuration;

Colors backgroundColor = Colors.black;

backgroundColor.binding = BindingTimes.configuration;

// go on with several variables and different binding

// times

}

IVML provides the assign construct as syntactic sugar to simplify the mass-

assignment of values to annotations and to visually group the model elements with

same (initial) annotation assignment. However, the variables “declared” in the assign

block actually are part of the containing element, in the example below the project

contentSharing. An assign block can also be used within compounds, it may even

be nested in other assign blocks if needed or multiple annotations may be given in

comma-separated fashion in the parenthesis of an assign block. As an assign block is

technically translated into individual assignment constraints (‘=’) as stated as a

generic constraint in the parenthesis of an assign block.

Example:

project contentSharing {

enum BindingTimes {configuration=0, compile=1,

 runtime=2};

// Attaching an annotation to the entire project.

annotate BindingTimes binding = BindingTimes.compile

to contentSharing;

enum Colors {black, white};

assign (binding = BindingTimes.configuration) to {

Bitrate contentBitrate = 128;

Colors backgroundColor = Colors.black;

// go on with the variables of the same binding time

 }

IVML Language Specification

 22

 }

2.2.3 Advanced Compound Modelling

In Section 2.1.3.5 we introduced the compound types to group multiple types into a
single named unit. In this section, we will extend the modelling of compound types
by refinement and referencing concepts. Refinement allows extending existing
compound types by additional elements, yielding a new (extended) compound type.
Referencing enables the definition of references to other elements like other
compounds.

2.2.3.1 Extending Compounds

In the IVML a compound may extend the definition of a previously defined (parent)
compound. This is indicated by the refines keyword. Extending compound types is
similar to subclassing in object-oriented languages, i.e. parentType becomes a
subtype of compoundType and compoundType may define further decision
variables.

Syntax:

compound Name1 refines Name2 {

// Define additional elements.

}

Description of Syntax: the definition of an extended compound type consists of the

following elements:

 The compound keyword indicates the definition of a new compound type.

 The identifier Name1 defines the name of the new compound type.

 The refines keyword indicates that the new compound type (Name1) is

an extension of a previously defined compound type (Name2).

 The set of elements surrounded by curly brackets defines the additional

elements that make up the extensions to the inherited elements of

compound Name2.

Example:

/* A compound type for the configuration of different

(web) content. */

compound Content {

String name;

Integer bitrate;

}

IVML Language Specification

 23

/* A new compound type that refines the previous compound

type. "ExternalContent" will subsume all elements of

"Content" and all additional elements defined below. */

compound ExternalContent refines Content {

String contentPath;

String accessPassword;

}

2.2.3.2 Referencing Elements

The IVML supports referencing of (other) elements, for example, other compounds
within a compound type. A reference allows the definition of individual
configurations of an (external) element for the referencing element without
including the external element as part of the referencing element explicitly. This is
indicated by the refTo keyword used for the definition of a reference and the
refBy keyword that indicates the configuration of a referenced element.

Syntax:

project name1 {

compound Name2 {

Type name3;

...

}

// Declaration of a new reference.

refTo(Name2) Name4;

// Configuration of a referenced element.

refBy(Name4).name3 = value;

}

Description of Syntax: the definition and the configuration of a reference consist of

the following elements:

 The refTo keyword indicates the definition of a new reference.

 Name2 defines the referenced element (type).

 Name4 is an identifier and defines the name of the new reference.

 The refBy keyword indicates the configuration of a reference (the

configuration of the referenced element respectively).

IVML Language Specification

 24

 Name4 is an identifier that defines the reference to be configured.

Example:

/* A compound type for the configuration of different web

containers being responsible for serving web content. */

compound Container {

String name;

...

}

/* Another compound type for the configuration of

different (web) content referencing the "Container" type

to configure its individual web container. */

compound Content {

String name;

Integer bitrate;

// Declaration of a reference to the Container compound.

refTo(Container) myContainer;

// Configuration of the above reference.

refBy(myContainer).name = “ContentContainer”;

}

2.2.4 Advanced Project Modelling

In Section 2.1.1, we introduced the concept of projects (project) as the top-level
element in each IVML-model. In this section, we extend the modelling capabilities of
the IVML regarding projects in three ways: first, we describe versioning of projects
that enables the definition of the current state of evolution of a project. This concept
correlates with the second concept: project composition. This introduces the
capability of deriving new projects based on definitions in other projects and
explicitly excluding certain projects from the composition. As part of this version
information can be used. The third concept is project interface. The concepts of
project composition and project interfaces support effective modularization and
reuse of projects and, thus, configuration spaces.

IVML Language Specification

 25

2.2.4.1 Project Versioning

In IVML, projects can be versioned to define the current state of evolution of a
project (and the represented product line infrastructure). Evolution of software may
yield updates to projects. This can be described by a version. For defining a version,
the version keyword is followed by a version number. This must be the very first
element of the respective project. The version number consists of integer values
separated by “.” assuming that the first value defines the major version, while
following numbers indicate minor versions. The level of detail of version numbers is
determined by the domain engineer.

Syntax:

project name {

// Definition of a version for this project

version vNumber.Number;

...

}

Description of Syntax: the attachment of a version to a project consists of the

following elements:

 The version keyword indicates the definition of a new version for the

project name.

 vNumber.Number defines the actual version of the project (here only two

parts prefixed by a “v”). At least one number must be given and no

restriction holds on the amount of sub-version numbers.

Example:

project contentSharing {

version v1.0;

...

}

2.2.4.2 Project Composition

The IVML supports the composition of different projects. This is closely related to
multi software product lines [8] and product populations [9]. Project composition
allows to effectively reusing existing projects by using these projects within other
projects. This also supports the decomposition of large variability models as
semantically related parts can be defined in individual projects. The complete project
then uses these (sub-) projects to define the combined project. In the IVML the
following keywords are introduced for project composition:

IVML Language Specification

 26

 import: this keyword indicates the use of a project. An imported project is
evaluated before import, thus an import acts as an implicit eval. Multiple
import statements are processed in the given sequence, i.e., while resolving
imported model elements, the first matching along the import takes
precedence. Multiple, but inconsistent definitions shall lead to an ambiguity
error. Except for self-imports, cyclic imports shall be processed and imported
model elements shall be resolved wherever possible unless elements cause
themselves resolution cycles. Self-imports and model elements with
resolution cycles shall cause error messages. This keyword allows using
certain elements of a project by reference. If a project contains explicit
interfaces (see below), the specific interface, which is used, must be given.
However, multiple projects with identical names and versions may exist in a
file system5, in particular in hierarchical product lines. Thus, project imports
are determined according to the following hierarchical import convention,
i.e. starting at the (file) location of the importing project (giving precedence
to imports in the same file) the following locations are considered in the
given sequence: The same directory, then contained directories (closest
directories are preferred) and finally containing directories (also here closest
directories are preferred). In addition, sibling folders of the folder containing
the importing model and predecessor projects are considered6. Similar to
Java class paths, additional model paths7 may be considered in addition to
the immediate file hierarchy.

 conflicts: this keyword indicates incompatibility among projects. All
projects (names) followed by this keyword cannot be used in combination
with the project that defines this conflict expression. This is also checked for
indirectly used projects (and uses of the declaring project). Also project
names in conflicts are resolved according to the hierarchical import
convention defined above.

The keywords import and conflicts, introduced above, can be combined with
expressions using the with keyword8, e.g., limiting the version information of a
project (see Section 2.2.4.1). The version of the import can be referred by the
keyword version or using the name of the import project followed by “.version”. The
internal version type (cf. Section 3.2.3) defines relational operators such as ‘<’, ‘>’,
‘<=’, ‘>=’,‘==’, ‘<>’ or ‘!=’. More complex expressions can, e.g., be composed using
Boolean operations. In case of multiple matching versions, the model with the
highest version number is selected by default. Please note that constant version
numbers start with “v” (cf. Section 2.2.4.1).

5 The implementation of the tool support decides whether the entire file system or a subtree is considered. In

EasY-Producer, currently the entire active workspace is considered.
6 Actually, EasY-Producer stores the imported parent product line models in individual subfolders (starting with a

“.”), i.e. possibly sibling folders of a model.
7 The actual implementation is already prepared for model paths. Depending on the actual use we will include

model paths into the user-level of the tool support.
8 Before version 1.23, IVML required parenthesis around a version restriction and supported a limited form of

expressions. Since version 1.23, IVML supports complex expressions similar to constraints. Further versions will
extend these capabilities.

IVML Language Specification

 27

Syntax:

project name1 {

/* This introduces the project name2. Optionally, a

version may restrict name2 to a specific version as it

is shown below. */

import name2;

// Accessing elements of a project.

name2::element;

/* This introduces incompatibility of project name1 with

project name3 of version complying with expression. */

conflicts name3 with expression;

}

Description of syntax: the definition of a new project composition consists of the

following elements:

 The keyword import indicates that the entities, which are made available

by the project or interface name2 will be available within the current

project.

 For disambiguation the elements of name2 can be accessed using the “::”-

notation to express qualified names. If there is no ambiguity, they can be

used directly.

 The keyword conflicts indicates incompatibility of project name1 with

project name3.

 Optionally, version-expressions can be combined with the keywords

import and conflicts using the with keyword. This defines specific

versions of other projects to be imported into the current project or

conflicting with the current project.

 A version expression includes the version-information of a project (cf.

Section 2.2.4.1), in particular the relation operations defined by the

internal version type (cf. Section 3.2.3) and version constants (starting with

a “v” as defined in Section 2.2.4.1) and a version number or a version-

information of another project. In addition, logical operators can be used

to concatenate simple version-expressions to define ranges of versions.

Example:

project application {

IVML Language Specification

 28

/* This will define a new project for content-sharing

applications. */

String name;

}

project targetPlatform {

// This will define a new project for target platforms.

version v1.5;

String name;

}

project contentSharing {

/* This will define a new project for a content-sharing

project importing two sub-projects "application" and

"targetPlatform". The latter sub-project must be of

version "1.3" or higher. */

import application;

import targetPlatform

with (targetPlatform.version >= v1.3);

// Accessing the elements of the sub-projects.

application::name = "myApp";

targetPlatform::name = "myPlatform";

}

2.2.4.3 Project Interfaces

By default, all elements defined in a project are visible when they are imported into
another project. In order to support effective modularization and reuse of variability
models, we introduce interfaces to projects. Interfaces reduce the complexity in
large-scale projects and provide means to automate the configuration of lower-level
decisions based on high-level decisions.

Interfaces in a project define all elements of a project, not part of the interface, as
private and, thus, make them invisible to the outside. This is indicated by the
interface keyword within a project. In order to access any elements they need to
be declared as parameters of the interface. This can be done by exporting existing

IVML Language Specification

 29

variables (using the export keyword) or by declaring new parameter variables. As a
special characteristic of the IVML, it is also possible to define multiple interfaces for
the same project. This is different from other variability modelling languages like the
CVL [6].

Importing a project (cf. Section 2.2.4.2) that includes interfaces allows the importing
project to access only the parameters defined in the interface. All other elements of
the project are not visible to the importing project.

Syntax:

project name1 {

// Definition of a new interface.

interface Name2 {

/* Denotes the export of an existing decision variable

of the project name1. */

export name3;

...

}

/* Declaration of a (private) decision variable. This

variable is exported by the interface Name2. */

Type name3;

}

Description of syntax: the definition of a new project interface consists of the

following elements:

 The keyword interface indicates the definition of a new interface of the

project name1. Interfaces must occur at the beginning of a project before

decision variable or type definitions.

 The keyword export indicates the export of the following decision

variable name3.

Example:

project application {

// This will define an interface for this project.

interface MyInterface {

export name, appType;

}

IVML Language Specification

 30

// Declaration of (private) decision variables.

String name;

String appType;

Integer bitrate;

// Definition of a constraint.

appType == "Video" implies bitrate == 256;}

project contentSharing {

/* This will import the interface "MyInterface" of

project "application". */

import application::MyInterface;

/* Only the parameters of the interfaces are accessible.

"application::bitrate" yields an error. As long as the

variable names are unambiguous, the fully qualified must

not be used. */

name = "myApp";

appType = "Video";

}

2.2.5 Advanced Configuration

In Section 2.1.5, we introduced the configuration concept of the IVML. In this
section, we will extend this concept to partial configuration. Partial configuration
allows the configuration of a project in terms of multiple configuration steps, each
configuring only parts of the project. The set of all configuration steps typically yield
a full configuration of the entire project. We will further introduce the concept of
persistent (parts of) configurations. We call this “freezing”. Freezing (parts of)
configurations defines these parts to be persistent. Persistent parts cannot be
changed anymore in further configuration steps. Finally, we will describe how (parts
of) configurations can be evaluated independently from other parts of the
configuration. This allows deriving additional configuration values based on existing
configurations using the constraints and value propagation.

IVML Language Specification

 31

2.2.5.1 Partial Configurations

The IVML supports partial configurations. Partial configuration allows the
configuration of a project in terms of multiple configuration steps, each configuring
only parts of the project. The set of all configuration steps typically yields a full
configuration of the entire project. The configuration of a part of a project may also
be reconfigured by the next configuration step (cf. the concept of default values,
which we introduced in Section 2.1.4). For example, a service provider may define a
(pre-) configuration of the provided service, while a service consumer may
reconfigure his service to satisfy his specific needs.

Partial configuration in the IVML is a straight-forward consequence of the concepts
introduced so far. We illustrate this concept by a simple example.

Example:

project application {

/* This defines a new project for content-sharing

applications including the (pre-) configuration of the

configuration element. This is also the first

configuration step.*/

String name = "Application";

}

project targetPlatform {

/* This defines a new project for target platforms

without any configuration. */

String name;

}

project contentSharing {

/* This defines a new project for a content-sharing

project and imports two sub-projects "application" and

"targetPlatform". */

import application;

import targetPlatform;

/* This is the second configuration step, including the

re-configuration of the name-element of the sub-project

IVML Language Specification

 32

"application" and a configuration of the name-element of

the sub-project "targetPlatform". */

application::name = "myApp";

targetPlatform::name = "myPlatform";

}

2.2.5.2 Freezing Configurations

In the previous section we described the concept of partial configuration. This
included the possibility to re-configure existing (pre-) configurations. Although re-
configuration is reasonable in some cases, e.g. to modify a given configuration to
satisfy an individual need, at the end we desire a persistent configuration to define a
specific product. This is particularly needed in the context of variability
implementation techniques that remove parts that are not needed. For them, the
freeze signals that some parts can be removed.

We introduce the concept of “freezing” configurations. This is indicated by the
keyword freeze. Freezing configurations define the current (partial) configuration
to be persistent. Persistent configurations cannot be changed anymore in the course
of the configuration. Excluding elements of a configuration from being frozen, e.g.
freezing only some elements of imported projects or a compound type, the but
keyword can be attached after a freeze-expression. The but keyword is then
followed by a selector expression in the style of the collection operations shown in
Section 1.1.1, i.e., an iterator variable visiting all identifiers given in the freeze block
and a Boolean expression using that iterator variable. By default, the iterator
variable is of the internal type FreezeVariable see Section 3.3 for details and provides
access to some variable information such as the name as well as the annotations of
all elements defined within the freeze block (in case of type conflicts of annotations
with the same name, the first annotation definition in sequence of the elements in
the freeze block counts). The iterator variable is resolved locally, i.e., no other
variable is visible. All elements matching that expression will not be frozen, however
if the expression remains undefined during evaluation a freeze will happen anyway.
Freezing always happens at the end of a scope evaluation, multiple freezes in a scope
happen in unspecified sequence.

Freezing an undefined variable v leaves v undefined so that v does not have an
effect. In particular, v may be changed afterwards and v may be part of a
configuration implicitly disabling some instantiation.

Syntax:

project name1 {

// Definition of new compound type

compound Name2 {

Type name3;

Type name4;

IVML Language Specification

 33

}

/* Declaration of a new decision variable of the above

type */

Name2 name6;

/* Freezing the configuration of the decision variable

except element name4. */

name6.name3 = value1;

freeze {

name6;

} but (name7|expression)

}

Description of syntax: the definition of persistent (parts of) configurations consists

of the following elements:

 The keyword freeze indicates that all elements with their current values

within the following curly brackets are persistent. Elements may be

variables, qualified variables or projects.

 Optionally, the keyword but indicates that some elements shall be

excluded from being persistent through freezing. This is expressed in terms

of an iterator variable (name7) of type FreezeVariable (see Section 3.3 for

details and operations) and a Boolean selector expression using the

freeze variable determining those elements that shall not be frozen.

Example:

project application {

/* Definition of a new compound type for the

configuration of the content type of an application. */

compound ContentType {

String contentName;

Integer bitrate;

}

// Declaration of a decision variable of the above type.

IVML Language Specification

 34

ContentType appContent;

/* Definition of the content name to be persistent. The

required bitrate for this content may be configured as

part of the configuration of the container type for this

content. */

appContent.contentName = "Text";

freeze {

appContent;

} but (f|f.name() == "bitrate")

}

Following the example from Section 2.2.2, freezing a project without runtime

variables declared through a binding time annotation may looks like:

freeze {

contentSharing;

} but (v|v.binding == BindingTimes.runtime)

2.2.5.3 Partial Evaluation

Basically, constraints in IVML do not imply a certain evaluation sequence. However,
in some situations the domain engineer wants to indicate a certain priority, e.g., that
some form of type dependent initialization of (compound slot) variables must always
be done before evaluating other constraints in the same containing scope. Thus,
IVML provides a concept for enforcing the evaluation of configurations. This is
indicated by the keyword eval followed by a block either containing further evals or
constraint statements. The explicit declaration of nested eval structures can be

used to structure the definition of the evaluation and, thus, reduces the search-
space during constraint-evaluation. By default, the top-level eval structure is the
containing project, i.e., at the end of a project definition an implicit eval over all
constraints defined in the project occurs. eval structures can be given in scopes
where constraints can be defined, i.e., in projects or compounds. While nested eval

structures enforce an inside-out evaluation, eval structures on the same nesting

level do not imply a sequence of evaluation as this is the case for constraints in a
project.

Currently, an eval block may only contain constraints, i.e., variables belong to the
containing scope (project or compound) and no variables can be defined in an eval

(this may change in future, then variables would be propagated from inside the
eval the outside eval or project). Further, currently assign blocks cannot contain
eval blocks, but also this may change in future.

IVML Language Specification

 35

Syntax:

/* Evaluate a constraint that defines the relation between

two variables of the same type. This leads to the

assignment of the variable values to the unassigned

variable upon exit of the scope of the eval-statement.

Note that this eval is evaluated before any other

constraint in the project is evaluated.*/

eval {

name1 = name2;

}

Description of syntax: the evaluation of a configuration requires an eval-statement

using the keyword eval followed by curly brackets.

Example:

project application {

/* Definition of a new compound type for the

configuration of the content type of an application. */

compound ContentType {

String contentName;

Integer bitrate;

}

// Declaration of a decision variable of the above type.

ContentType appContent;

/* Definition of the content name and bitrate. This

configuration is evaluated explicitly to minimize the

search space. */

eval {

appContent.contentName == "Text" implies

appContent.bitrate = 128;

}

}

IVML Language Specification

 36

project targetPlatform {

/* Define a new project for target platforms without any

configuration.*/

String name;

Integer bitrate;

}

project contentSharing {

/* Define a new project for a content-sharing project

importing two sub-projects "application" and

"targetPlatform".*/

import application;

import targetPlatform;

/* This constraint restricts the bitrate of the target

platform to be equal or greater than the bitrate of the

application content. The bitrate of the target platform

can be derived from the bitrate of the application

content: "targetPlatform::bitrate == 128". At the end of

a project definition an implicit evaluation for the

whole project is done. */

targetPlatform::bitrate

>= application::appContent.bitrate;

}

IVML Language Specification

 37

3 Constraints in IVML

In this section we will describe syntax and semantics of the IVML constraint
sublanguage. In Section 3.1 we will describe the constraint language and in Section 0
the built-in operation which can be used within constraint expressions.

3.1 IVML constraint language

In this section we will define the syntax and the semantics of the IVML constraint
language. As constraints in IVML heavily rely on OCL, most of the content in this
section is taken from OCL [4] and adjusted to the notational conventions and the
semantics of IVML.

Constraints are used to define validity rules for a variability model, e.g. by specifying
dependencies among decision variables. The syntax of constraints in the IVML
basically follows the structure of expressions in propositional logic and, thus, is
composed of:

 Simple sentences, which represent constants, decision variables and types
which can be named by (qualified) identifiers.

 Compound sentences created by applying the operations to simple sentences
and, in turn, to compound sentences. A correct compound sentence requires
that the arguments passed to operations match the arity of the operation
and the types of the parameters or operations, respectively.

The operations available in IVML as well as the type compliance rules will be
discussed in the remainder of this section.

The constraints in IVML will mostly rely on the relevant part of the syntax as well as
on a large subset of the operations defined in OCL (cf. Section 3 for a description of
all operations). In IVML we use the constraint expression syntax of OCL, but omit the
OCL contexts used to relate constraints to UML modelling elements. Similar to OCL,
all elements defined in an IVML model will be accessible to constraints. Two
examples for constraints are given below, one propositional and one first-order logic
example using a quantifier:

 (10 <= a and a <= 20) implies b == a;
If a is in the range (10; 20) this implies that b must have the same value as
a.

 1 <= mySet.size() and mySet.size() <= 100;

Cardinality restriction of mySet containing arbitrary decision variables.

 mySet->forAll(x|x > 100);
All elements in mySet must be larger than 100

Constraints may be used in two distinct ways in IVML:

 Standalone constraints: Constraints are given as statements in a project or
within a compound so that compound fields are directly accessible without
qualification. As standalone constraints are used like statements, they end
with a semicolon (as shown in the two examples above).

IVML Language Specification

 38

 Embedded constraints: One or more constraints are used as part of a
statement, for example a typedef. Here the constraint is endorsed in
parenthesis and not ended by a semicolon.

Both, standalone constraints and embedded constraints may refer to individual
variables as well as to types. In the first case, the constraint applies to the specific
variable only. The second case occurs if a constraint is specified within a compound,
i.e., it applies to the slots of all compound instances of that type. Further, this case
may occur in a standalone constraint if the compound is referenced by its type
name. During constraint evaluation, implicit “static” access to a compound slot or a
type is basically unbound and needs constraint rewriting, i.e., the unbound variables
are instantiated for all instances of that type. Thereby, compound slot accesses are
grouped in order to reduce the number of introduced quantors, i.e., all accesses to
the same type of compound are handled by the same instance. In case that other
constraint semantics are intended, collecting all instances in the model and explicitly
quantifying the expression is required.

In addition, IVML allows defining constraint variables, i.e., variables of type
Constraint that can hold a variable. This allows to change and disable certain
constraints at evaluation time, in particular in importing projects. When evaluating
the constraints of a scope, the constraints in the constraint variables of the scope are
evaluated as if they are defined as usual constraints.

Below we will discuss individual elements of constraints in IVML and, in particular,
the difference (in particular regarding an adapted notation) to the related elements
in OCL. Large parts of the remainder of this section are directly taken over from the
OCL specification [4] and adapted to the IVML context.

3.1.1 Reserved Keywords

Keywords in IVML constraint expressions are reserved words. That means that the
keywords cannot occur anywhere in an expression as the name of a decision variable
or a compound. The list of keywords for the constraint language is shown below:

 and

 def

 else

 endif

 if

 iff

 implies

 in

 let

 not

 or

 self

 then

 xor

IVML Language Specification

 39

Please note that this list is complemented by the reserved keywords for the basic
modeling concepts in Section 2.1.1 and the keywords for the advanced modeling
concepts in Section 2.2.1.

3.1.2 Prefix operators

IVML defines two prefix operators, the unary

 Boolean negation ‘not’.

 Numerical negation ‘-‘ which changes the sign of a Real or an Integer.

3.1.3 Infix operators

Similar to OCL, in IVML the use of infix operators is allowed. The operators ‘+,’ ‘-,’
‘*.’ ‘/,’ ‘<,’ ‘>,’ ‘<>’ ‘<=’ ‘>=’ are used as infix operators. If a type defines one of
those operators with the correct signature, they will be used as infix operators. The
expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the “+” operation on a (the operand) through the dot- access
notation with b as the parameter to the operation. The infix operators defined for a
type must have exactly one parameter. For the infix operators ‘<,’ ‘>,’ ‘<=,’ ‘>=,’ ‘<>,’
‘and,’ ‘or,’ ‘xor’, ‘implies’, ‘iff’ the return type must be Boolean.

Please note that, while using infix operators, in IVML integer is a subclass of real.
Thus, for each parameter of type real, you can use integer as the actual parameter.
However, the return type will always be real. We will detail the operations on basic
types in Section 3.3.

Further, please note that expressions on the left side of implications (implies) and
two-sided implications (iff) must not be assignments (‘=’).

3.1.4 Equality and assignment operators (default logic)

In contrast to OCL, IVML provides two operators which are related to the equality of
elements with different semantics, namely the default assignment ‘=’ and the
equality constraint operator ‘==’. We explain the difference in this section.

Basically, a decision variable in IVML is considered as undefined, i.e., the variable
does not have an effect on the instantiation. Constraints may explicitly refer to the
undefined state via the operation “isDefined”. Please note that for instantiation all
(relevant) decision variables must be frozen (cf. Section 2.2.5.2) and that also
undefined decision variables can be frozen.

A default value can be assigned to a variable. Default values can be used to define a
basic configuration (a kind of basic profile) which applies to all products in the
product line. A default value can be defined as part of the variable declaration9 (using

9 A decision variable declaration which defines a default value is semantically equivalent to a decision variable

declaration without default value and a subsequent default assignment (somewhere) in the same model.

IVML Language Specification

 40

the ‘=’, cf. Section 2.1.4) or in terms of an individual default assignment using the ‘=’
operator. Default values may be changed by partial configuration (cf. Section
2.2.5.1), i.e. on the import path of a (hierarchical) variability model the default value
of certain decision variables may be modified in order to adjust the basic profile, e.g.,
to a certain application setting or domain. However, the value of a variable can be
modified only once in a given model (assigned or changed). This restriction is
required due to the fact that IVML does not provide support to define the sequence
of evaluations (except for imports and eval blocks, cf. Section 2.2.5.3). As a default
value is treated as a shortcut of an assignment, further assignments or changes of
the default value must not be done in the same model, i.e., if a default value is
assigned to variable x in project P, x may be changed in projects importing P unless
frozen, but not directly in P.

As the ‘=’ operator defines a default value which may be overridden, it is not possible
to use that operator to express that a decision variable must have a certain value
(under some conditions). This can be achieved using the equality operator ‘==’.
Basically, the equality operator checks whether the left hand and the right hand
operand have equal values. In two distinct cases, the equality operator enforces the
value specified by the right hand operand. The cases are the

 Unconditional value constraint, e.g., a == 5.

 Conditional value constraint given as the right side of an implication, e.g.,

c < 5 implies a == 5.

In these two cases, the equality operator expresses that the left hand operand (an
expression denoting a decision variable) must have the same value as the right hand
operand. If the left hand operand contains a default value, then the default value will
be overridden. However, if two expressions aim at enforcing different values for the
same decision variable, the model becomes unsatisfiable.

3.1.5 Precedence rules

The precedence order for the operations, starting with highest precedence, in IVML

is:

 dot and arrow operations: ‘.’ (for element and operation access) and ‘->’ (to

access collection operations such as forAll or exists).

 unary ‘not’ and unary minus ‘-‘

 ‘*’ and ‘/’

 ‘+’ and binary ‘-‘

 ‘if-then-else-endif’

 ‘<’, ‘>’, ‘<=’, ‘>=’

 ‘==’ (equality), ‘<>’, ‘!=’ (alias for ‘<>’)

 ‘and’, ‘or’ and ‘xor’

 Default assignment ‘=’

‘implies’, ‘iff’Parentheses ‘(‘ and ‘)’ can be used to change precedence.

IVML Language Specification

 41

3.1.6 Datatypes

All datatypes defined in IVML including the user-defined ones such as compounds,
restricted types or annotations are available to the constraint language and may be
used in constraint expressions. Below, we give some specific notes on the use of
datatypes, in particular in relation to OCL.

 In addition to the string operations defined for OCL, we added two
operations based on regular expressions, namely matches and substitutes.

 Enumerations literals are used just like qualified names, i.e. using a dot. For a
certain enumeration type only the enumeration literals may be used with
assignment (‘=’), equality (‘==’) or inequality (‘!=’, ‘<>’) operators. In case
that ordinals are explicitly specified for enumeration literals, also relational
operators (‘<’, ‘>’, ‘<=’, ‘>=’) may be used.

 Decision variable declarations defined within a compound can be accessed
using the dot operator ‘.’. self refers to the value of a compound and can
be used in (implicitly all-quantized) constraints within compounds.

 In addition to the string operations defined for OCL, we added two
operations based on regular expressions, namely matches and substitutes.

3.1.7 Type conformance

Type conformance in IVML constraints is inspired by OCL (cf. OCL section 7.4.5):

 AnyType is the common superclass of all types. All types comply with

AnyType. AnyType is typically used for defining the built-in operations. The

only value of AnyType is null, which explicitly makes a decision variable

undefined.

 Each type conforms to its (transitive) supertypes. Figure 1 depicts the IVML

type hierarchy.

 Type conformance is transitive.

 The basic types do not comply with each other, i.e. they cannot be compared,

except for Integer and Real (actually the type Integer is considered as a

subclass of Real).

 Containers are parameterized types regarding the contained element type.

Containers comply only if they are of the same container type and the type of

the contained elements complies.

 The refines keyword induces a hierarchy of compounds where the

Figure 2: IVML type hierarchy

AnyType

MetaType String Real

Integer

Boolean Enum

OrderedEnum User defined
compounds

Container<T>

Set<T> Sequence<T>

Compound

IVML Language Specification

 42

subtypes are compliant to their parent types, i.e. the parent type may be

replaced by each subtype.

 Derived types are compliant to their base type.

 MetaType is a specific type denoting types, e.g. to constrain types of

elements within a collection.

3.1.8 Type operations

IVML provides the following type-specific operations: isTypeOf(), isKindOf() and

typeOf(). The first two operations are similar to the related operations in OCL. The

latter one returns the actual type (MetaType) of a decision variable, compound field

or container element. MetaType allows equality and unequality comparisons. In

addition, the collections provide the operations typeSelect and typeReject which

select elements from a collection according to their actual type based on the

isTypeOf operation. Currently, IVML neither supports re-typing nor casting, but

implicit casting though dynamic dispatch of user-defined operations (see Section

3.1.14).

3.1.9 Side effects

IVML is designed as a modelling and configuration language for Software Product
Lines. As a configuration language, an assignment of values to decision variables is
mandatory. Thus, in contrast to OCL, some constraint expressions in IVML may lead
to side effects in terms of value assignments (‘=’). Please note that all operations
except for assignments are free of side effects (similar to OCL).

3.1.10 Constraint variables

IVML allows defining constraint variables, i.e., variables of type Constraint that can
hold a variable. This allows to change and disable certain constraints at evaluation
time, in particular in importing projects. When evaluating the constraints of a scope,
the constraints in the constraint variables of the scope are evaluated as if they are
defined as usual constraints.

3.1.11 Undefined values

Basically, variables are undefined in order to enable partial configuration. Unless a
default value (‘=’) or a value (via ‘=’ or ‘==’) is assigned. Due to undefined variables,
some expressions will, when evaluated, have an undefined value. During evaluation,
undefined (sub-) expressions are ignored.

3.1.12 If-then-else-endif Expressions

The if-then-else-endif construct supports determining a value depending on a
Boolean expression, similar to distinction of cases in mathematics. Exactly one
expression must be used within the then and else parts, both yielding the same
type. The else part is not optional. Akin to implies, the condition of an if-then-else
expression is not subject to value propagation.

if contents[0].type == “video”

IVML Language Specification

 43

then contents[0].bitrate

else contents[0].highBitrate

endif;

3.1.13 Let Expressions

Sometimes a sub-expression is used more than once in a constraint. The let
expression allows one to define a variable that can be used in the constraint. We
adjusted the notation to the IVML convention so that the type is stated before the
name.

let Integer sumBitrate = bitrates.sum()

in sumBitrate <= 256;

A let expression may be included in any kind of OCL expression. It is only known
within this specific expression.

3.1.14 User-defined operations

To enable the named reuse of (complex) constraint expressions, user-defined
operations can be defined. The syntax of the operation definitions is similar to the
Let expression, but each annotation and operation definition is prefixed with the
keyword def as shown below. We adjusted the notation as IVML does not have OCL
contexts (no colon after def) and that the type is stated before the name of the
operation or parameter.

def Integer actualBitrate(Contents c) =

if c.type == “video”

then c.bitrate

else c.highBitrate

 endif;

The name of an operation may not conflict with keywords, types, decision variables,
etc. An user-defined operation may be used similar to build-in operations. User-
defined operations in imported projects are available as long as the imported project
does not define interfaces. The import sequence is relevant as the first model
containing the right signature will take precedence. Please note that prefix or infix
use of user-defined operations is not supported.

actualBitrate(c) > 1024 implies highQuality == true;

User-defined operations can be overridden, i.e., operations of same name with the
same number of parameters of refined parameter types and refined result type may
be specified. Overridden operations are subject to dynamic dispatch during
constraint evaluation, i.e., the operation with the best fitting signature to the actual
parameters is selected for execution at runtime.

IVML Language Specification

 44

Typically, dynamic dispatch is rather runtime consumptive as candidate operations
are also searched in imported projects and several type comparisons have to be
done to find the best matching operation. As dynamic dispatch is not needed for all
user-defined operations, a user-defined operation can be declared as static,
which, akin to existing programming languages, leading to a static rather than a
dynamic binding effectively disabling dynamic dispatch for the respective operation.
The static variant of the actualBitrate operation shown above looks like

def static Integer actualBitrate(Contents c) =

if c.type == “video”

then c.bitrate

else c.highBitrate

 endif;

3.1.15 Collection operations

IVML defines many operations on the collection types. These operations are
specifically meant to enable a flexible and powerful way of constraining the contents
of collections or projecting new collections from existing ones. However, we support
only a relevant subset of the various notations in OCL. The different constructs are
described in the following paragraphs. All collection operations (and only those) are
accessed using the arrow-operator ‘->’.

In the first versions of OCL, all collection operations returned flattened collections,
i.e. the entries of nested collections instead of the collections were taken over into
the results. However, this was considered as an issue in OCL and does not fit to the
explicit hierarchical nesting in IVML. Thus, collection operations in IVML do not apply
flattening.

Sometimes an expression using operations results in a collection, while we are
interested only in a special subset of the collection. The select operation specifies
a subset of a collection:

collection->select(t|boolean-expression-with-t)

collection->select(ElementType t|

boolean-expression-with-t)

Both expressions result in a collection that contains all the elements from
collection for which the boolean-expression-with-t evaluates to true.
Thereby, t is an iterator which will successively receive all values stored in
collection. In the second form the type of the elements is explicitly specified.
Note that the type of the iterator must comply with the element type of the
collection. To find the result of this expression, for each element in collection the
expression boolean-expression-with-t is evaluated. If this evaluates to true,
the element is included in the result collection, otherwise not.

IVML Language Specification

 45

Example:

/* Get all elements of the set “contents” with a

“highBitrate” of less than 128 */

contents->select(t|t.highBitrate < 128);

The reject operation is identical to the select operation, but with reject we get the
subset of all the elements of the collection for which the expression evaluates to
False. The reject syntax is identical to the select syntax.

As shown in the previous section, the select and reject operations always result in a
sub-collection of the original collection. When we want to specify a collection which
is derived from some other collection, but which contains different objects from the
original collection (i.e., it is not a sub-collection), we can use a collect operation.
The collect operation uses the same syntax as the select and reject and is written
as one of:

collection->collect(t|expression-with-t)

collection->collect(ElementType t|expression-with-t)

Many times a constraint is needed on all elements of a collection. The forAll
operation in IVML allows specifying a Boolean expression, which must hold for all
objects in a collection:

collection->forAll(t|boolean-expression-with-t)

collection->forAll(ElementType t|

boolean-expression-with-t)

Example:

/* None of the elements of the set “contents” must have a

”highBitrate” of greater than 512 */

contents->forAll(t|t.highBitrate <= 512);

The forAll operation has an extended variant in which more than one iterator is
used. Both iterators will iterate over the complete collection. Effectively this is a
forAll on the Cartesian product of the collection with itself.

collection->forAll(t1, t2|

boolean-expression-with-t1-and-t2)

collection->forAll(ElementType t1, t2|

boolean-expression-with-t1-and-t2)

Many times one needs to know whether there is at least one element in a collection
for which a constraint holds. The exists operation in IVML allows you to specify a
Boolean expression that must hold for at least one object in a collection:

IVML Language Specification

 46

collection->exists(t|boolean-expression-with-t)

collection->exists(ElementType t|

boolean-expression-with-t)

Depending on the type of the collection further related operation may be defined
such as isUnique. Details on the operations of the individual types will be given in
Section 0.

One special case of collection operation is to aggregate one value over all values in a
collection by applying a certain expression or function. However, this comes close to
the iterate operation in OCL. As we specifically target value aggregations define the
apply operation while reusing the already known syntax:

collection->apply(t, ResultType r = initial|

r = expression-with-t)

collection->apply(ElementType t, ResultType r = initial|

r = expression-with-t)

This operation initializes the result “iterator” r with the initial expression and
applies the expression-with-t to each element in the collection. The result of
expression-with-t is used to update successively the result “iterator”. Finally,
the operation returns the value of r after processing the last element in
collection. Please note that the result “iterator” is always defined using a specific
type which, in turn, defines the result type of the apply operation.

Example:

/* Return the sum of all (default) bitrates of the

elements of the set “contents” */

contents->apply(t, Integer r| r = r + t.bitrate);

3.2 Internal Types

Similar to OCL, in the IVML constraint language all operations are defined on
individual IVML types and can be accessed using the “.” operator, such as
set.size(). However, this is also true for the equality, relational and
mathematical operators but they are typically given in alternative infix notation, i.e.
1 + 1 instead of 1.+(1). Further, the unary negation is typically stated as prefix
operator. Iterative collection operations such as forAll are the only11 operations in
IVML which are accessed by “->”. However, IVML also defines some specific
operations which are also listed with their defining type below.

11 This is due to technical restrictions realizing IVML with Xtext.

IVML Language Specification

 47

In this section, we denote the actual type on which an individual operation is defined
as the operand of the operation (called self in OCL). The parameters of an operation
are given in parenthesis. Further, similar to the declaration of decision variables in
IVML, we use in this section the Type-first notation to describe the signatures of the
operation.

3.2.1 AnyType

AnyType is the most common type in the IVML type system. All types in IVML are
subclasses of AnyType, i.e. they are type compliant and inherit the operations listed
below.

 Boolean == (AnyType a)
True if the operand is the same as a. This operation is interpreted as a value
assertion if it is used standalone (empty implication) or on the right side of an
implication. It is interpreted as an equality test if used on the left side of an
implication.

 Boolean <> (AnyType a)
True if the operand is different from a.

 Boolean != (AnyType a)
True if the operand is a different object from a. Alias for <>.

 MetaType typeOf ()
The type information of the actual type.

 Boolean isTypeOf (MetaType type)
True if the type and the actual type of operand are the same. This operation
can be seen as an alias for typeOf() == type.

 Boolean isKindOf (MetaType type)
True if type is either the direct type or one of the supertypes of the actual
type of the operand.

3.2.2 MetaType

MetaType represents the actual type of an object such as a specific user-defined
container. Currently, MetaType inherits all operations from AnyType except for the
typeOf, isTypeOf and isKindOf operations.

3.2.3 Version

The version type is an internal type (actually not supported as a regular type for
variables) for defining version constraints12. Using the type name “Version” is
discouraged. Thus, the version type supports only the following operations, in
particular not the type operations provided by AnyType:

 Boolean == (Version v)
Evaluates to true if operand and v denote the same version.

 Boolean < (Version v)
True if the operand is less than v.

 Boolean > (Version v)

12 Actually, this is in preparation.

IVML Language Specification

 48

True if the operand is greater than v.

 Boolean <= (Version v)
True if the operand is less than or equal to v.

 Boolean >= (Version v)
True if the operand is greater than or equal to v.

 Boolean == (AnyType a)
True if the operand is the same as a. This operation is interpreted as a value
assertion if it is used standalone (empty implication) or on the right side of an
implication. It is interpreted as an equality test if used on the left side of an
implication.

 Boolean <> (AnyType a)
True if the operand is different from a.

 Boolean != (AnyType a)
True if the operand is a different object from a. Alias for <>.

3.3 FreezeVariable

The FreezeVariable type is an internal type just used within the but-part of a freeze
block. This type supports only the following operations, in particular not the type
operations defined by AnyType:

 String name()
Evaluates to the simple name of the operand.

 String getName()
Evaluates to the simple name of the operand. Alias for name().

 String qualifiedName()
Evaluates to the qualified name of the operand.

 String getQualifiedName()
Evaluates to the qualified name of the operand. Alias for qualifiedName().

Further, a FreezeVariable provides access to all annotations defined by all elements
mentioned within the freeze block. In case that different types of annotations for the
same name are defined, just the first annotation definition in sequence of the
elements of the freeze block is considered.

3.4 Basic Types

3.4.1 Real

The basic type Real represents the mathematical concept of real following the Java
range restrictions for double values. Note that Integer is a subclass of Real, so for
each parameter of type Real, you can use an integer as the actual parameter.

 Real + (Real r)
The value of the addition of r and the operand. The operation evaluates to
undefined if the evaluation is mathematically illegal.

 Real - (Real r)
The value of the subtraction of r from the operand. The operation evaluates
to undefined if the evaluation is mathematically illegal

 Real * (Real r)

IVML Language Specification

 49

The value of the multiplication of the operand and r. The operation evaluates
to undefined if the evaluation is mathematically illegal

 Real - ()
The negative value of the operand. The operation evaluates to undefined if
the evaluation is mathematically illegal

 Real / (Real r)
The value of the operand divided by r. The operation evaluates to undefined
if the evaluation is mathematically illegal, in particular if r is equal to zero .

 Real abs()
The absolute value of the operand.

 Integer floor ()
The largest integer that is less than or equal to the operand13.

 Integer round()
The integer that is closest to the operand. When there are two such integers,
the largest one13.

 Real max (Real r)
The maximum of the operand and r.

 Real min (Real r)
The minimum of the operand and r.

 Boolean < (Real r)
True if the operand is less than r.

 Boolean > (Real r)
True if the operand is greater than r.

 Boolean <= (Real r)
True if the operand is less than or equal to r.

 Boolean >= (Real r)
True if the operand is greater than or equal to r.

 Boolean = (Real r)
Assigns the value r to the variable operand and returns true14.

3.4.2 Integer

The standard type Integer represents the mathematical concept of integer following
the Java range restrictions for integer values. Thus, Integers range from Java’s
Integer.MIN_VALUE (-2147483648) to Java’s Integer.MAX_VALUE (2147483647).
Note that Integer is a subclass of Real.

 Integer - ()
The negative value of the operand. The operation evaluates to undefined if
the evaluation is mathematically illegal

 Integer + (Integer i)
The value of the addition of the operand and i. The operation evaluates to
undefined if the evaluation is mathematically illegal

13 Since IVML has no BigInteger implementation, the result will be between -2147483648 and 2147483647 (see

Section 3.4.2 for more details).
14 The Boolean return type is required as stand-alone constraints must be of Boolean type. The result of an

assignment operation is always true.

IVML Language Specification

 50

 Integer - (Integer i)
The value of the subtraction of i from the operand. The operation evaluates
to undefined if the evaluation is mathematically illegal

 Integer * (Integer i)
The value of the multiplication of the operand and i. The operation evaluates
to undefined if the evaluation is mathematically illegal

 Real / (Integer i)
The value of the operand divided by i. The operation evaluates to undefined if
the evaluation is mathematically illegal, in particular if i is equal to zero.

 Integer abs()
The absolute value of the operand.

 Integer div (Integer i)
The number of times that i fits completely within the operand.

 Integer mod (Integer i)
The result is the operand modulo i.

 Integer max (Integer i)
The maximum of the operand and i.

 Integer min (Integer i)
The minimum of the operand and i.

 Boolean < (Integer i)
True if the operand is less than i.

 Boolean > (Integer i)
True if the operand is greater than i.

 Boolean <= (Integer i)
True if the operand is less than or equal to i.

 Boolean >= (Integer i)
True if the operand is greater than or equal to i.

 Boolean = (Integer i)
Assigns the value i to the operand and returns true14. A real value cannot be
directly assigned to an integer, but must be converted, e.g., using the floor
operation.

3.4.3 Boolean

The basic type Boolean represents the common true/false values.

 Boolean or (Boolean b)
True if either operand or b is true.

 Boolean xor (Boolean b)
True if either operand or b is true, but not both.

 Boolean and (Boolean b)
True if both b1 and b are true.

 Boolean not ()
True if operand is false and vice versa.

 Boolean implies (Boolean b)
True if operand is false, or if operand is true and b is true. The rightmost
implication is interpreted as an assertion of the right side of the expression.

IVML Language Specification

 51

Further implications on the left side of an implication as well as implication in
a Boolean expression are just evaluated to a Boolean value.

 Boolean iff (Boolean b)
Shortcut for (a.implies(b) and b.implies(a)).

 Boolean = (Boolean b)
Assigns the value b to the operand and returns true14.

3.4.4 String

The standard type String represents strings, which can be ASCII.

 Integer size ()
The number of characters in the operand.

 String concat (String s)
The concatenation of the operand and s.

 String substring (Integer lower, Integer upper)
The sub-string of the operand starting at character number lower, up to and
including character number upper. Character numbers run from 0 to size().

 Boolean matches (String r)
Returns whether the operand matches the regular expression r. Regular
expressions are given in the Java regular expression notation. For example,
the following operation will check whether mail is a valid e-mail-address:

mail.matches(“[\w]*@[\w]*.[\w]*“);

 Boolean substitutes (String r, String s)
Replaces all occurrences of the regular expression r in the operand by s.
Regular expressions are given in the Java regular expression notation. For
example, the following operation will substitute the occurrence of “@” with
“{at}” in an e-mail-address:

mail.substitutes(“@”, “{at}”);

 Integer toInteger ()
Converts the operand to an Integer value. If the operand cannot be
converted, the result of the operation is undefined yielding that the
containing expression is undefined (cf. Section 3.1.11).

 Real toReal ()
Converts the operand to a Real value. If the operand cannot be converted,
the result of the operation is undefined yielding that the containing
expression is undefined (cf. Section 3.1.11).

 Boolean = (String s)
Assigns the value s to the operand and returns true14.

3.5 Enumeration Types

Enumerations allow the definition of sets of named values.

3.5.1 Enum

Enums inherit all operations from AnyType and adds the following operation:

 Boolean = (Enum e)
Assigns the value e to the operand and returns true14.

IVML Language Specification

 52

 Integer ordinal (Enum e)
Returns the ordinal of the given enum value represented by the operand. In
case of ordered enums, the value is explicitly defined in the model. In case of
ordinary enums, the internally assigned ordinal is returned.

3.5.2 OrderedEnum

In contrast to Enums, individual ordinal values for the literals in an OrderedEnum are
specified. Thus, an OrderedEnum defines a (total) ordering on its literals so that
further operations in addition to those defined for Enum are available.

 Boolean < (OrderedEnum l)
True if the operand is less than the ordinal value of the literal l.

 Boolean > (OrderedEnum l)
True if the operand is greater than the ordinal value of the literal l.

 Boolean <= (OrderedEnum l)
True if the operand is less than or equal to the ordinal value of the literal l.

 Boolean >= (OrderedEnum l)
True if the operand is greater than or equal to the ordinal value of the literal
l.

 OrderedEnum min(OrderedEnum l)
The literal of operand and l having the minimum ordinal value (including
equality).

 OrderedEnum max(OrderedEnum l)
The literal of operand and l having the maximum ordinal value (including
equality).

3.6 Constraint

The basic type Constraint represents a constraint variable, i.e., a variable (freezable)
constraint. In addition to the operations provided by AnyType, the Constraint type
provides the following operations:

 Boolean = (Constraint c)
Assigns the constraint c to the operand and returns true14.

3.7 Collection Types

This section defines the operation of the collection types. The two IVML collections
Set and Sequence are both subtypes of the abstract collection type Collection. Each
collection type is actually a template type with one parameter. ‘T’ denotes the
parameter. A concrete collection type is created by substituting a type for the T. So a
collection of integers is referred in IVML by setOf(Integer). Although the
keyword collectionOf does not exist, we will use it in this section to denote types
of Collection (Section 3.7.1).

3.7.1 Collection

Collection is the abstract superclass of all collections in IVML.

 Integer size ()

IVML Language Specification

 53

The number of elements in the collection operand.

 Boolean includes (T object)
True if object is an element of operand, false otherwise.

 Boolean excludes (T object)
True if object is not an element of operand, false otherwise.

 Integer count (T object)
The number of times that object occurs in the collection operand.

 Boolean isEmpty ()
Is the operand the empty collection?

 Boolean notEmpty ()
Is the operand not the empty collection?

 Boolean isDefined()
Returns whether (a variable of) the operand is defined, i.e. that an instance
was already assigned.

 T sum()
The addition of all elements in the operand. Elements must be of a type
supporting the + operation (Integer or Real).

 T product()
The multiplication of all elements in the operand. Elements must be of a type
supporting the * operation (Integer or Real).

 T min()
The minimum of all elements in the operand. Elements must be of a type
supporting the < operation (Integer or Real).

 T max()
The minimum of all elements in the operand. Elements must be of a type
supporting the > operation (Integer or Real).

 T avg()
The average of all elements in the operand. Elements must be of a type
supporting the / operation (Integer or Real).

 Boolean forAll (Iterators | expression)
Results in true if expression evaluates to true for each element in the operand
collection.

 Boolean exists (Iterators | expression)
Results in true if expression evaluates to true for at least one element in the
operand collection.

 Boolean isUnique (Iterator | expression)
Results in true if expression evaluates to a different value for each element in
the operand collection; otherwise, result is false. isUnique may have at most
one iterator variable.

 T any (Iterator | expression)
Returns any element in the source collection for which expression evaluates
to true. If there is more than one element for which expression is true, one of
them is returned. any may have at most one iterator variable.

 Boolean one (Iterator | expression)
Results in true if there is exactly one element in the operand collection for
which expression is true. one may have at most one iterator variable.

IVML Language Specification

 54

 collectionOf(T) collect (Iterator | expression)
The Collection of elements that results from applying expression to every
member of the source set. collect may have at most one iterator variable.

 collectionOf(T) select (Iterator | expression)
The sub-collection for which expression is true. select may have at most one
iterator variable.

 collectionOf(T) reject (Iterator | expression)
The sub-collection for which expression is false. reject may have at most one
iterator variable.

 collectionOf(R) apply (Iterator, R result | result = expression)
Applies the given expression to the operand collection using the specified
iterator and stores the result in the last iterator (used here as a local variable
declaration) which is returned as the result of this operation. Expression shall
use the result “iterator” for aggregating values. Apply may have at most one
iterator variable and needs to specify the result “iterator”.

3.7.2 Set

The Set is the mathematical set. It contains elements without duplicates. Set inherits
the operations from Collection.

 Boolean == (setOf(T) s)
Evaluates to true if operand and s contain the same elements.

 setOf(T) union (setOf(T) s)
The union of operand and s.

 setOf(T) intersection (setOf(T) s)
The intersection of operand and s (i.e., the set of all elements that are in both
operand and s).

 setOf(T) excluding (T object)
The set containing all elements of operand without object.

 setOf(T) including (T object)
The set containing all elements of operand plus object.

 setOf(T) asSet ()
A Set identical to operand. This operation exists for convenience reasons.

 sequenceOf(T) asSequence ()
A Sequence that contains all the elements from operand, in undefined order.

 setOf(T) typeSelect (MetaType T)
Results the subset of elements from operand which are of type T.

 setOf(T) typeReject (MetaType T)
Results the subset of elements from operand which are not of type T.

 setOf(T) flatten (setOf(collectionOf(T))
Returns the (deep) flatten set of operand, i.e., all (recursively) contained
nested collections are turned into individual elements and the unified set
(without duplicates) is returned.

 T add(T e)
Adds an element e to the set denoted by operand. If e was already in
operand, nothing happens. Returns e.

 Boolean = (setOf(T) s)

IVML Language Specification

 55

Assigns the value s to the operand and returns true14.

3.7.3 Sequence

A sequence is a collection where the elements are ordered. An element may be part
of a sequence more than once. Sequence inherits the operations from Collection.

 Boolean == (sequenceOf(T) s)
Evaluates to true if operand and s contain the same elements.

 Sequence(T) union (sequenceOf(T) s)
The union of operand and s.

 setOf(T) asSet ()
The Set containing all the elements from operand, with duplicates removed.

 sequenceOf(T) asSequence ()
The Sequence identical to the operand itself. This operation exists for
convenience reasons.

 T add(T e)
Adds an element e to the end of the sequence denoted by operand. If e was
already in operand, nothing happens. Returns e.

 T at (Integer i)
The i-th element of the sequence operand. Valid indices run from 0 to size()-
1.
T [Integer i]The i-th element of the sequence operand. This operation is an
alias for at. Valid indices run from 0 to size()-1.

 T first ()
The first element in operand.

 T last()
The last element in operand.

 Boolean hasDuplicates()
Returns whether at least one of the elements in operand has a duplicate.

 sequenceOf(T) append (T object)
The sequence of elements, consisting of all elements of operand, followed by
object.

 sequenceOf(T) prepend(T object)
The sequence consisting of object, followed by all elements in operand.

 sequenceOf(T) insertAt(Integer index, T object)
The sequence consisting of operand with object inserted at position index.
Valid indices run from 0 to size()-1.

 Integer indexOf(T object)
The index of object object in the sequence operand. -1 if object is not a
member of operand.

 Boolean overlaps(sequenceOf(U) o)
Returns the sequence in operand and o have elements in common.

 Boolean isSubsequenceOf(sequenceOf(U) o)
Returns whether operand is a subsequence (considering the sequence and
including equality) of o.

 sequenceOf(T) typeSelect (MetaType t)
Results the subset of elements from operand which are of type t.

IVML Language Specification

 56

 sequenceOf(T) typeReject (MetaType t)
Results the subset of elements from operand which are not of type t.

 sequenceOf(T) flatten (sequenceOf(collectionOf(T))
Returns the (deep) flatten sequence of operand, i.e., all (recursively)
contained nested collections are turned into individual elements and the
unified sequence (including duplicates) is returned.

 Boolean = (sequenceOf(T) s)
Assigns the value s to the operand and returns true14.

3.8 Compound Types

A compound type groups multiple types into a single named unit. A compound
inherits all its operations from AnyType. Access to variable declarations within a
compound are specified using “.”. Using the type name of the compound on the left
side of a “.” is a shortcut for an all-quantification on all instances of that compound.
In addition, it defines the following operation:

 Boolean isDefined()
Returns whether (a variable of) the operand is defined, i.e. that an instance
was already assigned.

 Boolean = (Compund c)
Assigns the value c to the operand and returns true14.

IVML Language Specification

 57

4 Implementation Status

The realization of IVML and IVML-related tools is still in progress. In this section,
we summarize the current status as it is implemented by the recent version of
EASy-Producer. We will first indicate the support for core IVML concepts in Table
1, then for advanced concepts in Table 2.

IVML concept

IVML
model,
parser,

semantic
analyzer

EASy
reasoning
support
(Drools)

EASy
Configuration

support

EASy IVML
reasoning
support

project x (x) x x

Boolean x x x x

integer x
narrowing

interval
values

x
x (no

narrowing)

real x x x x

string x ? x x

enumerations x x x x

container x ? x x

type derivation
and restriction

x x x x

compounds x x x x

null values x - x x

decision
variables

x x x x

constraints x

normal,
custom

type
constraints,
compound
constraints

x (not in UI) x

constraints as
variables

x - x (not in UI) x

configurations x
initial
values

x x

Table 1: Implemented IVML core concepts (x=full support,
-=no support as not responsible, partial support indicated by text)

IVML Language Specification

 58

IVML concept

IVML
model,
parser,

semantic
analyzer

EASy
reasoning
support
(Drools)

EASy
Configuration

support

EASy IVML
reasoning
support

annotations x - x x

extended
compounds

x ? x x

referenced
elements

x - x x

project
versioning

x - x x

project
composition

x

correct
recursive

processing
missing

x (predecessor
locations not

passed to
IVML)

x

project
interfaces

x - x x

partial
configuration

x x x x

freezing
configurations

x x x x

partial
evaluation

x

correct
recursive

processing
missing

- (x)17

Table 2: Implemented IVML advanced concepts (x=full support,
-=no support as not responsible, partial support indicated by text)

17 In development.

IVML Language Specification

 59

5 IVML Grammar

In this section we depict the actual grammar for IVML. The grammar is given in six
sections (basic modeling concepts, basic types and values, advanced modeling
concepts, basic constraints, advanced constraints and terminals) in terms of a
simplified xText18 grammar (close to ANTLR19 or EBNF). Simplified means, that we
omitted technical details in xText used to properly generate the underlying EMF
model as well as trailing “;” (replaced by empty lines in order to support readability).
Please note that some statement-terminating semicolons are optional in order to
support various user groups each having individual background in programming
languages.

5.1 Basic modeling concepts
VariabilityUnit:

Project*

Project:

'project' Identifier '{'

VersionStmt?

ImportStmt*

ConflictStmt*

InterfaceDeclaration*

ProjectContents

'}' ';'?

ProjectContents:

(Typedef

| VariableDeclaration

| Freeze

| Eval

| ExpressionStatement

| AnnotateTo

| OpDefStatement

| AttrAssignment

)*

18 http://www.eclipse.org/Xtext/
19 http://www.antlr.org

IVML Language Specification

 60

ExpressionBlock:

 '{'

 ExpressionStatement+

 '}' ';'?

Typedef:

 TypedefEnum

 | TypedefCompound

 | TypedefMapping

TypedefEnum:

'enum' Identifier

'{'

TypedefEnumLiteral (',' TypedefEnumLiteral)*

'}'

TypedefConstraint?

TypedefEnumLiteral:

Identifier ('=' NumValue)?

TypedefCompound:

'abstract'? 'compound' Identifier ('refines' Identifier)?

'{'

(VariableDeclaration

| ExpressionStatement

| AttrAssignment

| Eval)*

'}' ';'?

TypedefMapping:

'typedef' Identifier Type TypedefConstraint? ';'

TypedefConstraint:

'with' '(' Expression ')'

VariableDeclaration:

Type VariableDeclarationPart (',' VariableDeclarationPart)* ';'

VariableDeclarationPart:

Identifier ('=' Expression)?

IVML Language Specification

 61

DerivedType:

(

'setOf'

| 'sequenceOf'

| 'refTo'

)

'(' Type ')'

5.2 Basic types and values

BasicType:

'Integer'

| 'Real'

| 'Boolean'

| 'String'

| 'Constraint'

Type:

BasicType

| QualifiedName

| DerivedType

NumValue:

NUMBER

QualifiedName:

(Identifier '::' (Identifier '::')*)? Identifier

AccessName:

('.' Identifier)+

Value:

NumValue

| STRING

| QualifiedName

| ('true' | 'false')

| VERSION

IVML Language Specification

 62

5.3 Advanced modeling concepts

AnnotateTo :

('annotate' | 'attribute') Type VariableDeclarationPart

'to' Identifier (',' Identifier)*';'

AttrAssignment:

 'assign'

 '(' AttrAssignmentPart (',' AttrAssignmentPart)* ')' 'to'

 '{'

 (VariableDeclaration | ExpressionStatement | AttrAssignment)+

 '}' ';'?

AttrAssignmentPart:

 Identifier '=' LogicalExpression

Freeze:

'freeze' '{'

FreezeStatement+

'}' ('but' FreezeButList)? ';'?

FreezeStatement:

QualifiedName AccessName? ';'

FreezeButList:

'(' FreezeButExpression (',' FreezeButExpression)* ')'

FreezeButExpression:

QualifiedName AccessName? '*'?

Eval:

'eval' ExpressionBlock

InterfaceDeclaration:

'interface' Identifier '{'

Export*

'}' ';'?

IVML Language Specification

 63

Export:

'export' QualifiedName (',' QualifiedName)* ';'

ImportStmt:

'import' Identifier ('::' Identifier)? ('with' Expression)? ';'

ConflictStmt:

'conflicts' Identifier ('with' Expression)? ';'

VersionStmt:

'version' VERSION ';'

5.4 Basic constraints

ExpressionStatement:

Expression ';'

Expression:

LetExpression

| ImplicationExpression

| CollectionInitializer

ImplicationExpression:

AssignmentExpression ImplicationExpressionPart*

ImplicationExpressionPart:

ImplicationOperator AssignmentExpression

ImplicationOperator:

'implies' | 'iff'

AssignmentExpression:

 LogicalExpression AssignmentExpressionPart?

AssignmentExpressionPart:

 '=' (LogicalExpression | CollectionInitializer)

LogicalExpression:

EqualityExpression LogicalExpressionPart*

LogicalExpressionPart:

IVML Language Specification

 64

LogicalOperator EqualityExpression

LogicalOperator:

'and' | 'or' | 'xor'

EqualityExpression:

 RelationalExpression EqualityExpressionPart?

EqualityExpressionPart:

 EqualityOperator (RelationalExpression | CollectionInitializer)

EqualityOperator:

 '==' | '<>' | '!='

RelationalExpression:

AdditiveExpression RelationalExpressionPart?

RelationalExpressionPart:

RelationalOperator AdditiveExpression

RelationalOperator:

'>' | '<' | '>=' | '<=' | '<>' | '!='

AdditiveExpression:

MultiplicativeExpression AdditiveExpressionPart*

AdditiveExpressionPart:

AdditiveOperator MultiplicativeExpression

AdditiveOperator:

'+' | '-'

MultiplicativeExpression:

UnaryExpression MultiplicativeExpressionPart?

MultiplicativeExpressionPart:

MultiplicativeOperator UnaryExpression

MultiplicativeOperator:

IVML Language Specification

 65

'*' | '/'

UnaryExpression:

UnaryOperator? PostfixExpression

UnaryOperator:

'not' | '-'

PostfixExpression:

(FeatureCall Call* ExpressionAccess?)

| PrimaryExpression

Call:

'.' FeatureCall

| '->' SetOp

| '[' Expression ']'

FeatureCall:

Identifier '(' ActualParameterList? ')'

SetOp:

Identifier

'(' Declarator Expression? ')'

Declarator:

Declaration (';' Declaration)* '|'

Declaration:

Type? Identifier (',' Identifier)* ('=' Expression)?

ActualParameterList:

Expression (',' Expression)*

ExpressionAccess:

'.' Identifier Call* ExpressionAccess?

PrimaryExpression:

(

Literal

| '(' Expression ')'

IVML Language Specification

 66

| IfExpression

| 'refBy' '(' Expression ')'

)

Call*

ExpressionAccess?

CollectionInitializer:

QualifiedName?

'{'

ExpressionList?

 '}'

ExpressionList:

ExpressionListEntry (',' ExpressionListEntry)*

ExpressionListEntry:

(Identifier ('.' Identifier)? '=')?

(ImplicationExpression | LiteralCollection)

Literal:

Value

5.5 Advanced constraints

LetExpression:

'let' Type Identifier '=' Expression 'in' Expression

IfExpression:

'if' Expression 'then' Expression 'else' Expression 'endif'

OpDefStatement:

'def' ‘static’? Type Identifier '(' OpDefParameterList ')'

'=' Expression ';'

OpDefParameterList:

(OpDefParameter (',' OpDefParameter)*)?

OpDefParameter:

 Type Identifier ('=' Expression)?

IVML Language Specification

 67

5.6 Terminals

Identifier:

 ID | VERSION | EXPONENT | 'version'

terminal VERSION:

'v' ('0'..'9')+ ('.' ('0'..'9')+)*

terminal ID:

('a'..'z'|'A'..'Z'|'_') ('a'..'z'|'A'..'Z'|'_'|'0'..'9')*

terminal NUMBER:

'-'?

(('0'..'9')+ ('.' ('0'..'9')* EXPONENT?)?

| '.' ('0'..'9')+ EXPONENT?

| ('0'..'9')+ EXPONENT)

terminal EXPONENT:

('e'|'E') ('+'|'-')? ('0'..'9')+

terminal STRING :

'"' (

'\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|'"')

)* '"'

| "'" (

'\\' ('b'|'t'|'n'|'f'|'r'|'u'|'"'|"'"|'\\') | !('\\'|"'")

)* "'"

terminal ML_COMMENT:

'/*' -> '*/'

terminal SL_COMMENT:

'//' !('\n'|'\r')* ('\r'? '\n')?

terminal WS:

(' '|'\t'|'\r'|'\n')+

terminal ANY_OTHER:

.

IVML Language Specification

 68

References

[1] K. Bak, K. Czarnecki, and A. Wasowski. Feature and Meta-models in Clafer:
Mixed, Specialized, and Coupled. In B. Malloy, S. Staab, and M. van den Brand,
editors, Proceedings of the 3rd International Conference on Software Language
Engineering (SLE '10), volume 6563 of Lecture Notes in Computer Science,
pages 102–122. Springer, 2010.

[2] Q. Boucher, A. Classen, P. Faber, and P. Heymans. Introducing TVL, a Text-
Based Feature Modelling Language. In Proceedings of the 4th International
Workshop on Variabilits Modelling of Software-Intensive Systems (VaMoS '10),
pages 159–162, 2010.

[3] E. S. de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid, editors.
Software Product Lines - 15th International Conference, SPLC 2011, Munich,
Germany, August 22-26, 2011. IEEE, 2011.

[4] Object Management Group, Inc. (OMG). Object Constraint Language.
Specification v2.00 2006-05-01, Object Management Group, May 2006.
Available online at: http://www.omg.org/docs/formal/06-05-01.pdf.

[5] Object Management Group, Inc. (OMG). Unified Modeling Language:
Superstructure version 2.1.2. Specification v2.11 2007-11-02, Object
Management Group, November 2007. Available online at:
http://www.omg.org/docs/formal/2007-11-02.pdf.

[6] Object Management Group, Inc. (OMG). Common Variability Language (CVL),
2010. OMG initial submission. Available on request.

[7] Mark-Oliver Reiser. Core Concepts of the Compositional Variability
Management Framework (CVM). Technical Report 2009/16, Technische
Universität Berlin, 2009. Available online at http://www.eecs.tu-
berlin.de/menue/forschung/forschungsberichte/.

[8] M. Rosenmüller and N. Siegmund. Automating the Configuration of Multi
Software Product Lines. In Proceedings of the 4th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS '10), pages 123–
130, 2010.

[9] Rob van Ommering. Building Product Populations with Software Components.
PhD thesis, University of Groningen, 2004.

