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Abstract

In this paper, we address the problem of learning the structure of Gaussian chain
graph models in a high-dimensional space. Chain graph models are generaliza-
tions of undirected and directed graphical models that contain a mixed set of di-
rected and undirected edges. While the problem of sparse structure learning has
been studied extensively for Gaussian graphical models and more recently for
conditional Gaussian graphical models (CGGMs), there has been little previous
work on the structure recovery of Gaussian chain graph models. We consider lin-
ear regression models and a re-parameterization of the linear regression models
using CGGMs as building blocks of chain graph models. We argue that when the
goal is to recover model structures, there are many advantages of using CGGMs
as chain component models over linear regression models, including convexity of
the optimization problem, computational efficiency, recovery of structured spar-
sity, and ability to leverage the model structure for semi-supervised learning. We
demonstrate our approach on simulated and genomic datasets.

1 Introduction

Probabilistic graphical models have been extensively studied as a powerful tool for modeling a set
of conditional independencies in a probability distribution [12]. In this paper, we are concerned with
a class of graphical models, called chain graph models, that has been proposed as a generalization of
undirected graphical models and directed acyclic graphical models [4, 9, 14]. Chain graph models
are defined over chain graphs that contain a mixed set of directed and undirected edges but no
partially directed cycles.

In particular, we study the problem of learning the structure of Gaussian chain graph models in a
high-dimensional setting. While the problem of learning sparse structures from high-dimensional
data has been studied extensively for other related models such as Gaussian graphical models
(GGMs) [8] and more recently conditional Gaussian graphical models (CGGMs) [17, 20], to our
knowledge, there is little previous work that addresses this problem for Gaussian chain graph mod-
els. Even with a known chain graph structure, current methods for parameter estimation are hindered
by the presence of multiple locally optimal solutions [1, 7, 21].

Since the seminal work on conditional random fields (CRFs) [13], a general recipe for constructing
chain graph models [12] has been given as using CRFs as building blocks for the model. We employ
this construction for Gaussian chain graph models and propose to use the recently-introduced sparse
CGGMs [17, 20] as a Gaussian equivalent of general CRFs. When the goal is to learn the model
structure, we show that this construction is superior to the popular alternative approach of using
linear regression as component models. Some of the key advantages of our approach are due to the
fact that the sparse Gaussian chain graph models inherit the desirable properties of sparse CGGM
such as convexity of the optimization problem and structured output prediction. In fact, our work is
the first to introduce a joint estimation procedure for both the graph structure and parameters as a
convex optimization problem, given the groups of variables for chain components. Another advan-
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Figure 1: Illustration of chain graph models. (a) A chain graph with two components, {x1, x2} and
{x3}. (b) The moralized graph of the chain graph in (a). (c) After inference in the chain graph
in (a), inferred indirect dependencies are shown as the dotted line. (d) A chain graph with three
components, {x1, x2}, {x3}, and {x4}. (e) The moralized graph of the chain graph in (d). (f) After
inference in the chain graph in (d), inferred indirect dependencies are shown as the dotted lines.

tage of our approach is the ability to model a functional mapping from multiple related variables to
other multiple related variables in a more natural way via moralization in chain graphs than other
approaches that rely on complex penalty functions for inducing structured sparsity [11, 15].

Our work on sparse Gaussian chain graphs is motivated by problems in integrative genomic data
analyses [6, 18]. While sparse GGMs have been extremely popular for learning networks from
datasets of single modality such as gene-expression levels [8], we propose that sparse Gaussian chain
graph models with CGGM components can be used to learn a cascade of networks by integrating
multiple types of genomic data in a single statistical analysis. We show that our approach can
reveal the module structures as well as the functional mapping between modules in different types
of genomic data effectively. Furthermore, as the cost of collecting each data type differs, we show
that semi-supervised learning can be used to make effective use of both fully-observed and partially-
observed data.

2 Sparse Gaussian Chain Graph Models

We consider a chain graph model for a probability distribution over J random variables x =
{x1, . . . , xJ}. The chain graph model assumes that the random variables are partitioned into C
chain components {x1, . . . ,xC}, the τ th component having size |τ |. In addition, it assumes a par-
tially directed graph structure, where edges between variables within each chain component are
undirected and edges across two chain components are directed. Given this chain graph structure,
the joint probability distribution factorizes as follows:

p(x) =

C∏
τ=1

p(xτ |xpa(τ)),

where xpa(τ) is the set of variables that are parents of one or more variables in xτ . Each factor
p(xτ |xpa(τ)) models the conditional distribution of the chain component variables xτ given xpa(τ).
This model can also be viewed as being constructed with CRFs for p(xτ |xpa(τ))’s [13].

The conditional independence properties of undirected and directed graphical models have been
extended to chain graph models [9, 14]. This can be easily seen by first constructing a moralized
graph, where undirected edges are added between any pairs of nodes in xpa(τ) for each chain com-
ponent τ and all the directed edges are converted into undirected edges (Figure 1). Then, subsets of
variables xa and xb are conditionally independent given xc, if xa and xb are separated by xc in the
moralized graph. This conditional independence criterion for a chain graph is called c-separation
and generalizes d-separation for Bayesian networks [12].

In this paper, we focus on Gaussian chain graph models, where both p(x) and p(xτ |xpa(τ))’s are
Gaussian distributed. Below, we review linear regression models and CGGMs as chain component
models, and introduce our approach for learning chain graph model structures.

2.1 Sparse Linear Regression as Chain Component Model

As the specific functional form of p(xτ |xpa(τ)) in Gaussian chain graphs models, a linear regression
model with multivariate responses has been widely considered [2, 3, 7]:

p(xτ |xpa(τ)) = N(Bτxpa(τ),Θ
−1
τ ), (1)

where Bτ ∈ R|τ |×|pa(τ)| is the matrix of regression coefficients and Θτ is the |τ | × |τ | inverse
covariance matrix that models correlated noise. Then, the non-zero elements in Bτ indicate the
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presence of directed edges from xpa(τ) to xτ , and the non-zero elements in Θτ correspond to the
undirected edges among the variables in xτ . When the graph structure is known, an iterative pro-
cedure has been proposed to estimate the model parameters, but it converges only to one of many
locally-optimal solutions [7].

When the chain component model has the form of Eq. (1), in order to jointly estimate the sparse
graph structure and the parameters, we adopt sparse multivariate regression with covariance estima-
tion (MRCE) [16] for each chain component and solve the following optimization problem:

min

C∑
τ=1

tr((Xτ −Xpa(τ)B
T
τ )Θτ (Xτ −Xpa(τ)B

T
τ )
T )−N log |Θτ |+λ

C∑
τ=1

||Bτ ||1 + γ

C∑
τ=1

||Θτ ||1,

where Xα ∈ RN×|α| is a dataset for N samples, || · ||1 is the sparsity-inducing L1 penalty, and λ
and γ are the regularization parameters that control the amount of sparsity in the parameters. As in
MRCE [16], the problem above is not convex, but only bi-convex.

2.2 Sparse Conditional Gaussian Graphical Model as Chain Component Model

As an alternative model for p(xτ |xpa(τ)) in Gaussian chain graph models, a re-parameterization of
the linear regression model in Eq. (1) with natural parameters has been considered [14]. This model
also has been called a CGGM [17] or Gaussian CRF [20] due to its equivalence to a CRF. A CGGM
for p(xτ |xpa(τ)) takes the standard form of undirected graphical models as a log-linear model:

p(xτ |xpa(τ)) = exp
(
− 1

2
xTτ Θτxτ − xTτ Θτ,pa(τ)xpa(τ)

)
/A(xpa(τ)), (2)

where Θτ ∈ R|τ |×|τ | and Θτ,pa(τ) ∈ R|τ |×|pa(τ)| are the parameters for the feature weights between
pairs of variables within xτ and between pairs of variables across xτ and xpa(τ), respectively, and
A(xpa(τ)) is the normalization constant. The non-zero elements of Θτ and Θτ,pa(τ) indicate edges
among the variables in xτ and between xτ and xpa(τ), respectively.

The linear regression model in Eq. (1) can be viewed as the result of performing inference in the
probabilistic graphical model given by the CGGM in Eq. (2). This relationship between the two
models can be seen by re-writing Eq. (2) in the form of a Gaussian distribution:

p(xτ |xpa(τ)) = N(−Θ−1τ Θτ,pa(τ)xpa(τ),Θ
−1
τ ), (3)

where marginalization in a CGGM involves computing Bτxpa(τ) = −Θ−1τ Θτ,pa(τ)xpa(τ) to obtain
a linear regression model parameterized by Bτ .

In order to estimate the graph structure and parameters for Gaussian chain graph models with CG-
GMs as chain component models, we adopt the procedure for learning a sparse CGGM [17, 20] and
minimize the negative log-likelihood of data along with sparsity-inducing L1 penalty:

min−L(X;Θ) + λ

C∑
τ=1

||Θτ,pa(τ)||1 + γ

C∑
τ=1

||Θτ ||1,

where Θ = {Θτ ,Θτ,pa(τ), τ = 1, . . . , C} and L(X;Θ) is the data log-likelihood for dataset X ∈
RN×J for N samples. Unlike MRCE, the optimization problem for a sparse CGGM is convex,
and efficient algorithms have been developed to find the globally-optimal solution with substantially
lower computation time than that for MRCE [17, 20].

While maximum likelihood estimation leads to the equivalent parameter estimates for CGGMs and
linear regression models via the transformation Bτ = −Θ−1τ Θτ,pa(τ), imposing a sparsity con-
straint on each model leads to different estimates for the sparsity pattern of the parameters and the
model structure [17]. The graph structure of a sparse CGGM directly encodes the probabilistic de-
pendencies among the variables, whereas the sparsity pattern of Bτ = −Θ−1τ Θτ,pa(τ) obtained after
marginalization can be interpreted as indirect influence of covariates xpa(τ) on responses xτ . As il-
lustrated in Figures 1(c) and 1(f), the CGGM parameters Θτ,pa(τ) (directed edges with solid line)
can be interpreted as direct dependencies between pairs of variables across xτ and xpa(τ), whereas
Bτ = −Θ−1τ Θτ,pa(τ) obtained from inference can be viewed as indirect and inferred dependencies
(directed edges with dotted line).
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We argue in this paper that when the goal is to learn the model structure, performing the estimation
with CGGMs for chain component models can lead to a more meaningful representation of the
underlying structure in data than imposing a sparsity constraint on linear regresssion models. Then
the corresponding linear regression model can be inferred via marginalization. This approach also
inherits many of the advantages of sparse CGGMs such as convexity of optimization problem.

2.3 Markov Properties and Chain Component Models

When a CGGM is used as the component model, the overall chain graph model is known to have
Lauritzen-Wermuth-Frydenberg (LWF) Markov properties [9]. The LWF Markov properties also
correspond to the standard probabilistic independencies in more general chain graphs constructed
by using CRFs as building blocks [12].

Many previous works have noted that LWF Markov properties do not hold for the chain graph mod-
els with linear regression models [2, 3]. The alternative Markov properties (AMP) were therefore
introduced as the set of probabilistic independencies associated with chain graph models with linear
regression component models [2, 3]. It has been shown that the LWF and AMP Markov proper-
ties are equivalent only for chain graph structures that do not contain the graph in Figure 1(a) as a
subgraph [2, 3]. For example, according to the LWF Markov property, in the chain graph model in
Figure 1(a), x1 ⊥ x3|x2 as x1 and x3 are separated by x2 in the moralized graph in Figure 1(b).
However, the corresponding AMP Markov property implies a different probabilistic independence
relationship, x1 ⊥ x3. In the model in Figure 1(d), according to the LWF Markov property, we have
x1 ⊥ x3|{x2, x4}, whereas the AMP Markov property gives x1 ⊥ x3|x4.

We observe that when using sparse CGGMs as chain component models, we estimate a model with
the LWF Markov properties and perform marginalization in this model to obtain a model with linear-
regression chain components that can be interpreted with the AMP Markov properties.

3 Sparse Two-Layer Gaussian Chain Graph Models for Structured Sparsity

Another advantage of using CGGMs as chain component models instead of linear regression is
that the moralized graph, which is used to define the LWF Markov properties, can be leveraged to
discover the underlying structure in a correlated functional mapping from multiple inputs to multiple
outputs. In this section, we show that a sparse two-layer Gaussian chain graph model with CGGM
components can be used to learn structured sparsity. The key idea behind our approach is that
while inference in CGGMs within the chain graph model can reveal the shared sparsity patterns for
multiple related outputs, a moralization of the chain graph can reveal those for multiple inputs.

Statistical methods for learning models with structured sparsity were extensively studied in the lit-
erature of multi-task learning, where the goal is to find input features that influence multiple related
outputs simultaneously [5, 11, 15]. Most of the previous works assumed the output structure to be
known a priori. Then, they constructed complex penalty functions that leverage this known out-
put structure, in order to induce structured sparsity pattern in the estimated parameters in linear
regression models. In contrast, a sparse CGGM was proposed as an approach for performing a joint
estimation of the output structure and structured sparsity for multi-task learning. As was discussed
in Section 2.2, once the CGGM structure is estimated, the inputs relevant for multiple related outputs
could be revealed via probabilistic inference in the graphical model.

While sparse CGGMs focused on leveraging the output structure for improved predictions, another
aspect of learning structured sparsity is to consider the input structure to discover multiple related
inputs jointly influencing an output. As CGGM is a discriminative model that does not model the
input distribution, it is unable to capture input relatedness directly, although discriminative models
in general are known to improve prediction accuracy. We address this limitation of CGGMs by
embedding CGGMs within a chain graph and examining the moralized graph.

We set up a two-layer Gaussian chain graph model for inputs x and outputs y as follows:

p(y,x) = p(y|x)p(x) =
(
exp(−1

2
yTΘyyy − xTΘxyy)/A1(x)

)(
exp(−1

2
xTΘxxx)/A2

)
,

where a CGGM is used for p(y|x) and a GGM for p(x), and A1(x) and A2 are normalization con-
stants. As the full model factorizes into two factors p(y|x) and p(x) with distinct sets of parameters,
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a sparse graph structure and parameters can be learned by using the optimization methods for sparse
CGGM [20] and sparse GGM [8, 10].

The estimated Gaussian chain graph model leads to a GGM over both the inputs and outputs, which
reveals the structure of the moralized graph:

p(y,x) = N

(
0,

(
Θyy ΘT

xy

Θxy Θxx + ΘxyΘ−1yyΘT
xy

)−1)
.

In the above GGM, we notice that the graph structure over inputs x consists of two components,
one for Θxx describing the conditional dependencies within the input variables and another for
ΘxyΘ−1yyΘT

xy that reflects the results of moralization in the chain graph. If the graph Θyy contains
connected components, the operation ΘxyΘ−1yyΘT

xy for moralization induces edges among those
inputs influencing the outputs in each connected component.
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(a) (b)
Figure 2: Illustration of sparse two-layer Gaussian chain
graphs with CGGMs. (a) A two-layer Gaussian chain
graph. (b) The results of performing inference and moral-
ization in (a). The dotted edges correspond to indirect de-
pendencies inferred by inference. The edges among xj’s
represent the dependencies introduced by moralization.

Our approach is illustrated in Figure 2.
Given the model in Figure 2(a), Figure
2(b) illustrates the inferred structured
sparsity for a functional mapping from
multiple inputs to multiple outputs. In
Figure 2(b), the dotted edges correspond
to inferred indirect dependencies intro-
duced via marginalization in the CGGM
p(y|x), which reveals how each input
is influencing multiple related outputs.
On the other hand, the additional edges
among xj’s have been introduced by
moralization ΘxyΘ−1yyΘT

xy for multiple inputs jointly influencing each output. Combining the re-
sults of marginalization and moralization, the two connected components in Figure 2(b) represent
the functional mapping from {x1, x2} to {y1, y2} and from {x3, x4, x5} to {y3, y4, y5}, respectively.

4 Sparse Multi-layer Gaussian Chain Graph Models

In this section, we extend the two-layer Gaussian chain graph model from the previous section into
a multi-layer model to model data that are naturally organized into multiple layers. Our approach is
motivated by problems in integrative genomic data analysis. In order to study the genetic architec-
ture of complex diseases, data are often collected for multiple data types, such as genotypes, gene
expressions, and phenotypes for a population of individuals [6, 18]. The primary goal of such studies
is to identify the genotype features that influence gene expressions, which in turn influence pheno-
types. In such problems, data can be naturally organized into multiple layers, where the influence of
features in each layer propagates to the next layer in sequence. In addition, it is well-known that the
expressions of genes within the same functional module are correlated and influenced by the com-
mon genotype features and that the coordinated expressions of gene modules affect multiple related
phenotypes jointly. These underlying structures in the genomic data can be potentially revealed by
inference and moralization in sparse Gaussian chain graph models with CGGM components.

In addition, we explore the use of semi-supervised learning, where the top and bottom layer data
are fully observed but the middle-layer data are collected only for a subset of samples. In our
application, genotype data and phenotype data are relatively easy to collect from patients’ blood
samples and from observations. However, gene-expression data collection is more challenging, as
invasive procedure such as surgery or biopsy is required to obtain tissue samples.

4.1 Models
Given variables, x = {x1, . . . , xJ}, y = {y1, . . . , yK}, and z = {z1, . . . , zL}, at each of the three
layers, we set up a three-layer Gaussian chain graph model as follows:

p(z,y|x)=p(z|y)p(y|x)

=

(
exp(−1

2
zTΘzzz− yTΘyzz)/C2(y)

)(
exp(−1

2
yTΘyyy − xTΘxyy)/C1(x)

)
, (4)
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where C1(x) and C2(y) are the normalization constants. In our application, x, y, and z correspond
to genotypes, gene-expression levels, and phenotypes, respectively. As the focus of such studies
lies on discovering how the genotypic variability influences gene expressions and phenotypes rather
than the structure in genotype features, we do not model p(x) directly.

Given the estimated sparse model for Eq. (4), structured sparsity pattern can be recovered via
inference and moralization. Computing Bxy = −Θ−1yyΘT

xy and Byz = −Θ−1zz ΘT
yz corresponds

to performing inference to reveal how multiple related yk’s in Θyy (or zl’s in Θzz) are jointly
influenced by a common set of relevant xj’s (or yk’s). On the other hand, the effects of moralization
can be seen from the joint distribution p(z,y|x) derived from Eq. (4):

p(z,y|x) = N(−Θ−1(zz,yy)Θ
T
(yz,xy)x,Θ

−1
(zz,yy)),

where Θ(yz,xy) = (0J×L,Θxy) and Θ(zz,yy) =

(
Θzz ΘT

yz

Θyz Θyy + ΘyzΘ
−1
zz ΘT

yz

)
. Θ(zz,yy) cor-

responds to the undirected graphical model over z and y conditional on x after moralization.

4.2 Semi-supervised Learning
Given a dataset D = {Do,Dh}, where Do = {Xo,Yo,Zo} for the fully-observed data and Dh =
{Xh,Zh} for the samples with missing gene-expression levels, for semi-supervised learning, we
adopt an EM algorithm that iteratively maximizes the expected log-likelihood of complete data:

L(Do;Θ) + E
[
L(Dh,Yh;Θ)

]
,

combined with L1-regularization, where L(Do;Θ) is the data log-likelihood with respect to the
model in Eq. (4) and the expectation is taken with respect to:

p(y|z,x) = N(µy|x,z,Σy|x,z),

µy|x,z = −Σy|x,z(Θyzz + ΘT
xyx) and Σy|x,z = (Θyy + ΘyzΘ

−1
zz ΘT

yz)
−1.

5 Results

In this section, we empirically demonstrate that CGGMs are more effective components for sparse
Gaussian chain graph models than linear regression for various tasks, using synthetic and real-world
genomic datasets. We used the sparse three-layer structure for p(z,y|x) in all our experiments.

5.1 Simulation Study

In simulation study, we considered two scenarios for true models, CGGM-based and linear-
regression-based Gaussian chain graph models. We evaluated the performance in terms of graph
structure recovery and prediction accuracy in both supervised and semi-supervised settings.

In order to simulate data, we assumed the problem size of J=500, K=100, and L=50 for x, y, and
z, respectively, and generated samples from known true models. Since we do not model p(x), we
used an arbitrary choice of multinomial distribution to generate samples for x. The true parameters
for CGGM-based simulation were set as follows. We set the graph structure in Θyy to a randomly-
generated scale-free network with a community structure [19] with six communities. The edge
weights were drawn randomly from a uniform distribution [0.8, 1.2]. We then set Θyy to the graph
Laplacian of this network plus small positive values along the diagonal so that Θyy is positive
definite. We generated Θzz using a similar strategy, assuming four communities. Θxy was set to
a sparse random matrix, where 0.4% of the elements have non-zero values drawn from a uniform
distribution [-1.2,-0.8]. Θyz was generated using a similar strategy, with a sparsity level of 0.5%. We
set the sparsity pattern of Θyz so that it roughly respects the functional mapping from communities
in y to communities in z. Specifically, after reordering the variables in y and z by performing
hierarchical clustering on each of the two networks Θyy and Θzz, the non-zero elements were
selected randomly around the diagonal of Θyz.

We set the true parameters for the linear-regression-based models using the same strategy as the
CGGM-based simulation above for Θyy and Θzz. We set Bxy so that 50% of the variables in x
have non-zero influence on five randomly chosen variables in y in one randomly chosen community
in Θyy. We set Byz in a similar manner, assuming 80% of the variables in y are relevant to eight
randomly-chosen variables in z from a randomly-chosen community in Θzz.
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Figure 4: Precision/recall curves for graph structure recovery in CGGM-based simulation study. (a)
Θyy, (b) Θzz, (c) Bxy, (d) Byz, and (e) Θxy. (CG: CGGM-based models with supervised learning,
CG-semi: CG with semi-supervised learning, LR: linear-regression-based models with supervised
learning, LR-semi: LR with semi-supervised learning.)
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Figure 5: Prediction errors in CGGM-based simulation study. The same estimated models in Figure
4 were used to predict (a) y given x, z, (b) z given x, (c) y given x, and (d) z given y.
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Figure 6: Performance for graph structure recovery in linear-regression-based simulation study.
Precision/recall curves are shown for (a) Θyy, (b) Θzz, (c) Bxy, and (d) Byz.

(a) (b)

(c) (d) (e)

Figure 3: Illustration of the structured spar-
sity recovered by the model with CGGM
components, simulated dataset. (a) Θzz.
(b) Byz = −Θ−1zz ΘT

yz shows the effects of
marginalization (white vertical bars). The
effects of moralization are shown in (c)
Θyy + ΘyzΘ

−1
zz ΘT

yz, and its decomposi-
tion into (d) Θyy and (e) ΘyzΘ

−1
zz ΘT

yz.

Each dataset consisted of 600 samples, of which 400
and 200 samples were used as training and test sets.
To select the regularization parameters, we estimated
a model using 300 samples, evaluated prediction er-
rors on the other 100 samples in the training set, and
selected the values with the lowest prediction errors.
We used the optimization methods in [20] for CGGM-
based models and the MRCE procedure [16] for linear-
regression-based models.

Figure 3 illustrates how the model with CGGM chain
components can be used to discover the structured
sparsity via inference and moralization. In each panel,
black and bright pixels correspond to zero and non-
zero values, respectively. While Figure 3(a) shows
how variables in z are related in Θzz, Figure 3(b)
shows Byz = −Θ−1zz ΘT

yz obtained via marginaliza-
tion within the CGGM p(z|y), where functional map-
pings from variables in y to multiple related variables
in z can be seen as white vertical bars. In Figure 3(c), the effects of moralization Θyy +

ΘyzΘ
−1
zz ΘT

yz are shown, which further decomposes into Θyy (Figure 3(d)) and ΘyzΘ
−1
zz ΘT

yz
(Figure 3(e)). The additional edges among variables in y in Figure 3(e) correspond to the edges
introduced via moralization and show the groupings of the variables y as the block structure along
the diagonal. By examining Figures 3(b) and 3(e), we can infer a functional mapping from modules
in y to modules in z.

In order to systematically compare the performance of the two types of models, we examined the
average performance over 30 randomly-generated datasets. We considered both supervised and
semi-supervised settings. Assuming that 200 samples out of the total 400 training samples were
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Figure 7: Prediction errors in linear-regression-based simulation study. The same estimated models
in Figure 6 were used to predict (a) y given x, z, (b) z given x, (c) y given x, and (d) z given y.

missing data for y, for supervised learning, we used only those samples with complete data; for
semi-supervised learning, we used all samples, including partially-observed cases.

The precision/recall curves for recovering the true graph structures are shown in Figure 4, using
datasets simulated from the true models with CGGM components. Each curve was obtained as an
average over 30 different datasets. We observe that in both supervised and semi-supervised set-
tings, the models with CGGM components outperform the ones with linear regression components.
In addition, the performance of the CGGM-based models improves significantly, when using the
partially-observed data in addition to the fully-observed samples (the curve for CG-semi in Fig-
ure 4), compared to using only the fully-observed samples (the curve for CG in Figure 4). This
improvement from using partially-observed data is substantially smaller for the linear-regression-
based models. The average prediction errors from the same set of estimated models in Figure 4 are
shown in Figure 5. The CGGM-based models outperform in all prediction tasks, because they can
leverage the underlying structure in the data and estimate models more effectively.

For the simulation scenario using the linear-regression-based true models, we show the results for
precision/recall curves and prediction errors in Figures 6 and 7, respectively. We find that even
though the data were generated from chain graph models with linear regression components, the
CGGM-based methods perform as well as or better than the other models.

5.2 Integrative Genomic Data Analysis

Table 1: Prediction errors, mouse diabetes data

Task CG-semi CG LR-semi LR
y | x, z 0.9070 0.9996 1.0958 0.9671
z | x 1.0661 1.0585 1.0505 1.0614
y | x 0.8989 0.9382 0.9332 0.9103
z | y 1.0712 1.0861 1.1095 1.0765

We applied the two types of three-layer chain graph
models to single-nucleotide-polymorphism (SNP),
gene-expression, and phenotype data from the pancre-
atic islets study for diabetic mice [18]. We selected
200 islet gene-expression traits after performing hier-
archical clustering to find several gene modules. Our
dataset also included 1000 SNPs and 100 pancreatic
islet cell phenotypes. Of the total 506 samples, we
used 406 as training set, of which 100 were held out as a validation set to select regularization
parameters, and used the remaining 100 samples as test set to evaluate prediction accuracies. We
considered both supervised and semi-supervised settings, assuming gene expressions are missing
for 150 mice. In supervised learning, only those samples without missing gene expressions were
used.

As can be seen from the prediction errors in Table 1, the models with CGGM chain components are
more accurate in various prediction tasks. In addition, the CGGM-based models can more effectively
leverage the samples with partially-observed data than linear-regression-based models.

6 Conclusions

In this paper, we addressed the problem of learning the structure of Gaussian chain graph models
in a high-dimensional space. We argued that when the goal is to recover the model structure, using
sparse CGGMs as chain component models has many advantages such as recovery of structured
sparsity, computational efficiency, globally-optimal solutions for parameter estimates, and superior
performance in semi-supervised learning.
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