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Abstract

Due to its capability to capture high-order in-
formation, the hypergraph model has shown
greater potential than the graph model in
various scenarios. Real-world entity rela-
tions frequently involve directionality, in or-
der to express high-order information while
capturing directional information in relation-
ships, we present a directed hypergraph spa-
tial convolution framework that is designed
to acquire vertex embeddings of directed hy-
pergraphs. The framework characterizes the
information propagation of directed hyper-
graphs through two stages: hyperedge in-
formation aggregation and hyperedge infor-
mation broadcasting. During the hyperedge
information aggregation stage, we optimize
the acquisition of hyperedge information us-
ing attention mechanisms. In the hyperedge
information broadcasting stage, we leverage
a directed hypergraph momentum encoder
to capture the directional information of di-
rected hyperedges. Experimental results on
five publicly available directed graph datasets
of three different categories demonstrate that
our proposed DHMConv outperforms various
commonly used graph and hypergraph mod-
els.

1 Introduction

Graph structures, owing to their capacity to intuitively
represent the relationships among entities, have found
extensive applications across diverse fields. In practi-
cal scenarios, it is not prudent to solely rely on isolated
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vertex feature vectors as the input for algorithms, as it
disregards the interdependence among vertices. This is
why, in the process of acquiring vertex embeddings, it
is imperative to integrate the features of both the ver-
tices and their neighboring vertices. By doing so, the
resulting embeddings encompass the vertex features as
well as the graph structure information, thereby facil-
itating subsequent tasks.

Graph Convolutional Neural Networks (GCNs) are
among the most widely used techniques for generating
vertex embeddings and can be broadly categorized into
two groups: spatial-based and spectral-based GCNs.
Spatial-based GCNs can be conceptualized as an infor-
mation propagation process that achieves global infor-
mation transfer via local information updates focused
on a vertex and its neighboring vertices (Gilmer et al.,
2017; Micheli, 2009; Niepert et al., 2016). Spectral-
based GCNs are inspired by the Fourier transform
in signal processing and achieve global information
updates through the Laplacian matrix (Bruna et al.,
2013; Defferrard et al., 2016; Kipf and Welling, 2016).

While the graph structure is an intuitive representa-
tion of binary relationships between vertices, its mod-
eling capacity for relationships involving multiple en-
tities is somewhat limited. Hypergraphs can be em-
ployed to model such relationships. A hyperedge in a
hypergraph can contain multiple vertices, providing a
lossless means of modeling higher-order relationships
(Bretto, 2013). In recent years, there has been exten-
sive research on machine learning methods based on
hypergraphs, such as hypergraph transductive learn-
ing (Zhou et al., 2006), spectral hypergraph neural
networks (Feng et al., 2019), and spatial hypergraph
neural networks (Gao et al., 2022). These models have
significantly enriched the theoretical foundations and
practical applications of hypergraphs in machine learn-
ing (Fan et al., 2021; Chang et al., 2021; Jiang and Luo,
2022; Mercado et al., 2021).

In practical settings, entity relationships are often
asymmetric, with directional attributes prevalent in
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many relationships such as sequential connections and
causal connections (Xie et al., 2018; Chen et al., 2019;
Liao et al., 2018). Traditional graph or hypergraph
models are inadequate for capturing the sequence of
events. To address this issue, scholars have proposed
machine learning methods based on directed graph
structures (Zhou et al., 2005; Tong et al., 2020; Kollias
et al., 2022). These methods leverage the directional-
ity of edges to guide the information flow during di-
rected graph convolution, enabling the resulting vertex
embeddings to encode both graph structure and edge
directionality (Ma et al., 2019; Kampffmeyer et al.,
2019). In order to obtain possible higher-order infor-
mation and implicit directional information on graph
structures, we have designed a directed hypergraph
spatial convolution framework.

The main contributions of this paper are as follows:

e We have proposed a directed hypergraph convo-
lution framework, DHMConv, which is capable of
encoding high-order information of directed hy-
pergraphs and flexibly encoding directional infor-
mation of directed hyperedges.

e We optimized the process of hyperedge convolu-
tion using an attention mechanism, which enables
the model to focus on specific hyperedges and ver-
tices during the convolution operation.

e We propose a directed hypergraph momentum en-
coder to effectively capture the directionality in-
formation in directed hyperedges. This encoder
further enhances the accuracy and stability of ver-
tex information updates by modeling directional
information in a refined manner.

Our study involved conducting link prediction, ver-
tex classification, and ablation experiments on five
datasets from different domains. The results conclu-
sively demonstrate that the DHMConv framework ex-
hibits exceptional potential for effectively handling di-
rected hypergraphs.

2 Preliminaries

For any arbitrary unweighted directed hypergraph G,
it can be expressed as G = (V, E) (Gallo et al., 1993),
where V' denotes the set of vertices in the directed hy-
pergraph V' = {vy,v9,v3, -+ ,v,}, and E represents
the set of directed hyperedges in the directed hyper-
graph E= {ela €2,€3, " aem,}-

Given a directed hyperedge e in a hypergraph, its
directional information can be represented as e =
{etail ghead) " where €' is the set of tail vertices of
the hyperedge, and e"“?? is the set of head vertices of

the hyperedge. Information propagation occurs within

the same directed hyperedge, propagating from e** to
head
ehead,

Similar to the definition of a directed hyperedge e, we
define the adjacency matrix H = {H!* [heed} for
a directed hypergraph, it denotes the membership of
a vertex in a hyperedge. The adjacency matrix H is
defined based on the combination of H*** and H"ee?,
as shown in formulas (1) and (2), respectively.

) 1 v E 6tail
H'(y e) = ’ . 1
( ) 0’ v ¢ 6150,11 ( )
1, v € ehead
}{head v, e _ ’ 2
( ) {O, v ¢ 6head ( )

Directed hyperedges and vertex degrees are crucial fac-
tors in spatial convolutions. By utilizing the adjacency
matrix, we can define and compute the degrees of di-
rected hyperedges and vertices, as outlined in formulas
(3) and (4), respectively.

dige) = Z H"l(y, e) + Z Hhevd(y e) (3)
veV veV

digy) = 3 H(w,e)+ 3 H (o) (4
ecE eeE

3 Directed Hypergraph Momentum
Convolution

In this section, we provide a detailed exposition of
the information propagation process of the DHMConv
model proposed in this paper from a spatial perspec-
tive, which is analogous to the message-passing process
of vertex-hyperedge-vertex in hypergraph convolution.
It is worth noting that the directedness of hypergraphs
in the DHMConv model guides the entire informa-
tion propagation process, distinguishing it from the
message-passing process in conventional hypergraphs
(Gao et al., 2022; Bai et al., 2021).

3.1 Directed Hyperedge Information
Aggregation

In prior hypergraph convolution works (Ausiello and
Laura, 2017), the process of aggregating vertex in-
formation through hyperedges did not explicitly con-
sider the individual weights associated with each ver-
tex/hyperedge pair. Instead, weight matrices were uti-
lized to determine the significance of vertices, which
overlooked the heterogeneity of vertex impacts on dif-
ferent hyperedges. Inspired by the work of Velickovié
et al. (2017), this paper proposes an attention-based
hyperedge information aggregation process to account
for this variation.
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In this paper, attention coefficients for the vertex-
hyperedge pairs are computed using the following
method:

£ve = LeakyReLU(a"[WhL||WRL]), wvee (5)

A\ exp(Eye) (©)

”6 > exp(eieneat) + > exp(ejoren)’
Z‘eeh,ead jeetail

Where a and W are trainable parameters, h, and h.
represent feature vectors of vertices and hyperedges.
| is the concatenation operation. Specifically, ¢, and
Ave denote attention value and attention score between
vertices and hyperedges, respectively.

The information aggregation process of hyperedges is
modeled by the equation (7), which comprises two dis-
tinct cases: directional aggregation and bidirectional
aggregation.

hett = Aggregate(hl,),

etoil Directional (7)
VEN head | tail .y .

et et Bidirectional

Building on the aforementioned discussion, the infor-
mation flow from the head and tail vertices of a di-
rected hyperedge to the hyperedge itself can be math-
ematically formulated as follows:

i]/e ca — 1)? (8)
o veeread V dig(v) - \/dig(e

7 _ )\Ue

hgtait hi}
v;u \/m \/m (9)

Where dig(v) and dig(e) denote the degree of a ver-
tex and a hyperedge, respectively, and the function of

\/dig(v) - \/dig(e) is to normalize the data.

Representation of hyperedge embedding in layer [ 4 1
is given by:

hle+1 = f(ilehead7 ]A“Lemu) + hle (10)
The function f(-) in formula (10) is influenced by the
direction of the aggregation. If it is directional aggre-
gation, the value is calculated as izemu. If it is bidi-
rectional aggregation, the value is calculated as the
sum of ﬁehead and ﬁetau. The updated values from
the vertices and the hyperedge information from layer
[ are summed to represent the hyperedge embedding
for layer [ + 1.

3.2 Directed Hyperedge Information
Broadcasting

As previously discussed, the conventional approach to
information propagation in directed graphs typically

relies on the directionality of edges, which may lead
to the loss of crucial information from the head vertex
when propagating to the tail vertex during the con-
volution process. To address this issue, we propose a
novel design where the direction of directed edges is
leveraged as the weight for information propagation.
This design allows for the simultaneous transmission
of information along the directed edges while retaining
a proportion of it to be conveyed to the tail vertex.

Similar to the process of information aggregation, di-
rected hyperedge information broadcasting can also be
divided into directional and bidirectional cases. It can
be described as the formula (11):

I+1 I+1
httt = Broadcast(hi),

ehead Directional (11)
VE N head | | tail TR

e ye Bidirectional

More specifically, the amount of information that a
vertex receives from a hyperedge can be quantified us-
ing the following formula (12) and (13):

hoeerens = 3 B (12)
veener

hypcetair = ztjlhljl (13)
veerer

The vertex embedding at layer [+1 can be represented
as the formule (14):

REY = g(hyeencoa, hycetair) + A (14)
The function g(-) in formula (14) is also influenced
by the directionality of the information broadcasting.
When the transmission is directional, it is calculated
as Eveeh,ead. When the transmission is bidirectional,
a directed hypergraph momentum encoder is used to
encode it. The resulting output is then added to the
information from layer [ to obtain the vertex informa-
tion at layer [ + 1.

3.3 Model construction and momentum
encoder

The matrix representation of information update dur-
ing the hyperedge information aggregation process can
be expressed as the formula (15) and (16):

X:H(D)
X(B) =

Xovan + X! (15)
Xetaiz + Xehead + Xé (16)

Where X represents a matrix composed of vectors, and
D and B respectively represent Directional and Bidi-
rectional. The above equation indicates adding the
corresponding elements of the matrices.
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Figure 1: The basic structure of the proposed DHMConv framework in this paper. (a) Attention-based directed
hyperedge convolution. The attention mechanism allows the model to focus on specific hyperedges and vertices
during the convolution operation, resulting in more effective and accurate updates to the hyperedge informa-
tion. (b) Hypergraph convolution based on directed hypergraph momentum encoder. The momentum encoder
enhances the accuracy of directional information capture, thereby improving the precision of updates to vertex

information.

Similarly, the matrix form of information update in
the hyperedge information broadcasting process can
be expressed as the formula (17) and (18):

X1l,+1(D) _ Hhead . Xé+1 +le; (17)
Xl—‘rl(B) —a- (Hhead . Xl-‘rl +Xl)
+ B (H XM+ X)) (18)

In order to reflect the effect of directionality in the
broadcast process, we use weights « and 3 for differ-
ent propagation directions to control the direction of
information transmission. « and (3 are trainable pa-
rameters, by adjusting their values, control over the
direction of information propagation in the broadcast
process can be achieved.

We can add self-loops to vertices to obtain the [ 4+ 1
layer vertex information by the same formula as above.
By normalizing the weights with n = o/(a + ), the
update during hyperedge broadcasting can be repre-
sented as:

Xf,+1<B) — U-Hhead-Xé-i_l—l—(l—’r]) . [ytail ~Xé+1 (19)

In this paper, the equation (19) is referred to as the di-
rected hypergraph momentum encoder. The complete
process of hyperedge information aggregation and hy-
peredge information broadcasting based on momen-
tum encoder is referred to as directed hypergraph mo-
mentum convolution.

In the process of directed hypergraph momentum con-
volution, we drew inspiration from k-GNN (Morris
et al., 2019) and employed the summation function
as the aggregation scheme. The scientific validity of
this approach was confirmed by Xu et al. (2018).

The proposed framework is capable of processing the
convergence and broadcasting processes in both unidi-
rectional and bidirectional ways, depending on the di-
rectionality of the directed hypergraph, as illustrated
in figure 1. As a result, four types of directed hy-
pergraph convolutional models are obtained, namely
DHMConv-DD, DHMConv-DB, DHMConv-BD, and
DHMConv-BB, each of which captures different as-
pects of the information flow within the directed hy-
pergraph.

4 Experiment

4.1 Evaluation Metrics and Datasets

In link prediction tasks with explicit features, we use
vertex features provided in the dataset as initial fea-
tures. For link prediction tasks with implicit features,
we generate initial features for potential feature learn-
ing using a uniform distribution.* The evaluation met-
rics for link prediction tasks are the area under the
ROC curve (AUC) and the average precision (AP).

*https://github.com/WBZhao98/DHM Conv
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Vertex classification tasks are a fundamental bench-
mark for evaluating the ability of machine learning
models to learn effective feature representations. In
this study, we conduct node classification experiments
on the widely used Citeseer and Cora datasets. Fol-
lowing the experimental protocol of prior research Kipf
and Welling (2016), we limit the training dataset to
20 labels per class and reserve 500 samples for test-
ing purposes. The evaluation of our proposed model’s
performance is conducted using accuracy (ACC) as the
evaluation metric.

We conduct experiments on several open-access di-
rected graph datasets, Air (Kunegis, 2013), Citeseer
(Rossi and Ahmed, 2015), Cora (Sen et al., 2008),
DBLP (Ley, 2002), and Survey (Moody, 2001). As
shown in algorithm 1, we construct directed hyper-
edges based on originally directed edges and related
semantic information.

Algorithm 1 Directed Hypergraph Construction
1: Input: directed graph adjacency matrix A
2: Initialization: H' = 0 ¢ R™*" Hhead — ( ¢
R™*™  number of directed hyperedges m =1

3: fori,j=1,2,...,ndo

4:  Tterate over all directed edges

5. if A[j][¢{] =1 then

6 HO] = 1;

7. Hreodlj]li] = 13

8: end if

9:  Construct adjacency matrix from the incoming
edges

10: end for

11: Delete all-zero columns of the matrix H?e#  Fhead

12: Output: directed hypergraph adjacency matrix
H = {Htail c Rnxm Hhead c Rnxm}

Algorithm 1 constructs a directed hypergraph based
on the incoming edges of a directed graph, which is
designed to ensure that all vertices that simultane-
ously point to a vertex are included within the same
directed hyperedge. The advantage of this approach is
to maximize the capture of vertices with higher-order
relationships into a single hyperedge.

Table 1 shows the data information. All the datasets
listed in Table 1 will be utilized for the link prediction
with implicit features task. Citeseer and Cora, which
contain vertex features and category information, will
additionally be employed for both the link prediction
with explicit features and vertex classification tasks.

4.2 Baseline

We have selected the most commonly used graph mod-
els as our baselines, including GCN (Kipf and Welling,

Table 1: Statistical information of datasets.

Datasets Nodes Edges  Vertex Edge
Air 1,226 2,615  Airport Route
Citeseer 3,312 4,715 Paper Citation
Cora 2,708 5,429 Paper Citation
DBLP 12,590 49,759  Paper Citation
Survey 2,539 12,969 User Friendship

2016), GraphSAGE (Hamilton et al., 2017), and GAT
(Velickovi¢ et al., 2017). Moreover, we have also incor-
porated advanced hypergraph learning models, such as
HGNN (Feng et al., 2019), HNHN (Dong et al., 2020),
HGNN+ (Gao et al., 2022), and directed graph learn-
ing models, such as DIGCN (Tong et al., 2020) and
DiGAE (Kollias et al., 2022).

The baseline models employed in this study provide
comprehensive evidence of the divergent performance
exhibited by graph convolutional networks operating
in the spatial and spectral domains, as well as their
augmented counterparts that integrate higher-order or
directional information. These models are systemati-
cally evaluated on common datasets, highlighting their
distinct performances.

4.3 Parameter Settings and Environment

To train all models, we optimized them with the Adam
algorithm and employed full-batch gradient descent.
In order to ensure fairness in our comparative exper-
iments, we conducted hyperparameter tuning for all
models to obtain the best baseline results. We em-
ployed grid search to tune hyperparameters, where the
learning rate Ir was selected from {0.001, 0.005, 0.01,
0.05, 0.1}, weight decay w was selected from {0.0001,
0.0002, 0.0003}, and dropout rate (Srivastava et al.,
2014) dp was selected from {0.1, 0.2, 0.3}. All other
parameters, as well as some model-specific parameters,
were set to the best values given in the original paper’s
corresponding experiments (Tong et al., 2020; Kollias
et al., 2022). In the experiments, DHMConv utilized
a single-layer network structure to obtain vertex em-
beddings.

All experiments were conducted on a 64-bit Windows
10 operating system with an Intel Core i7-10700 CPU
@ 2.9GHz and 32GB of memory. The algorithm imple-
mentation utilized Python 3.6 as the underlying pro-
gramming language environment, with NumPy 1.19.5
used for data format conversion and matrix operations.
The development of the relevant deep learning model
framework was based on pytorch version 1.10.0.
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Table 2: The results of the Link Prediction task using 64-dimensional implicit features.

Model Air Citeseer Cora DBLP Survey
AUC AP AUC AP AUC AP AUC AP AUC AP

GCN 71.56 73.05 67.93 70.35 74.63 76.30 89.28 87.77 86.16 87.25
GraphSAGE 81.97 79.23 75.68 76.59 85.70 83.94 91.32 89.08 87.34 85.36
GAT 80.33 81.52 73.97 77.56 8259 84.62 9534 9582 91.09 91.62
DiGCN 87.27 88.18 77.09 80.24 87.66 87.58 86.92 84.02 90.21 89.91
DiGAE 80.15 79.93 72,55 75.15 82.68 83.29 8896 87.01 86.14 83.99
HGNN 85.17 84.52 77.45 79.11 87.31 86.27 88.64 86.98 84.60 87.58
HNHN 83.62 80.51 77.81 78.53 85.79 84.72 T71.72 71.10 80.53 87.50
HGNN+ 87.14 85.60 79.52 81.93 90.11 90.72 89.83 88.59 85.82 88.96
DHMConv-DD 8746 86.52 80.78 80.38 89.54 88.51 88.40 87.49 90.35 89.45
DHMConv-DB  87.52 88.07 78.70 81.86 90.08 90.31 95.34 9537 93.36 93.79
DHMConv-BD  88.88 88.80 81.69 83.35 91.43 90.73 91.17 90.37 91.83 91.37
DHMConv-BB  87.07 87.23 78.86 82.05 89.92 91.54 95.22 9538 93.47 93.72

4.4 Performance Comparison

In this section, we present the results of experiments
on both vertex classification and link prediction tasks,
where we examine the impact of using different types
of vertex features and the effects of removing different
modules in our model. In all tables, the top score is
presented in red, the second best score is presented in
blue, and the third best score is presented in cyan. The
data in the table represents the average of the results
obtained from 100 repetitions of the experiment.

4.4.1 Link prediction with implicit features

In the majority of scenarios, obtaining vertex fea-
tures is challenging, which is why most directed graph
datasets do not include initial features for vertices. In
this experiment, the vertex features of Citeseer and
Cora datasets will not be used, all datasets will be
randomly assigned 64-dimensional initial features for
the vertices.

Table 2 lists the results of our link prediction exper-
iments based on latent features. Our model outper-
forms the baseline model on almost all AUC and AP
metrics for all five datasets. This demonstrates the
impressive structural feature representation capability
of our model.

Graph models are designed for undirected graphs and
may be less effective on directed datasets. Although
GAT performs well on the DBLP dataset, its perfor-
mance is mediocre on other datasets. The hypergraph
models are designed to extract high-order features of
hypergraphs, which have been demonstrated to be ad-
vantageous over graphs on several datasets. However,
due to the lack of directional information, its perfor-
mance is poor on the DBLP and Survey datasets. In

contrast, directed graph models preserve directional
information, but their ability to capture high-order in-
formation is limited. Overall, our experimental results
support capturing high-order and directional informa-
tion for accurate link prediction.

DHMConv is a novel methodology that retains high-
order information of hypergraphs while introducing a
directed hypergraph momentum encoder to encode di-
rectional information. This approach amalgamates the
advantages of hypergraphs and directed graphs and
has demonstrated remarkable potential on directed
graph datasets. It is worth noting that the selection of
direction is crucial for DHMConv, and in most scenar-
ios, we recommend integrating the results from multi-
ple directions to obtain optimal performance.

4.4.2 Vertex classification with explicit
features

Vertex classification is one of the most common tasks
on graph. After applying directed hypergraph convo-
lution, we obtain embeddings for the vertices and re-
duce their dimensionality to match the number of cat-
egories. We then use the Softmax function to obtain
the probabilities of vertices belonging to each category.

The results of vertex classification using explicit fea-
tures are presented in Table 3. It is evident that the
utilization of directed hypergraph convolution can en-
hance the classification accuracy on the Citeseer and
Cora datasets. Among the observed outcomes, DHM-
Conv achieved the highest performance.

In order to visualize the vertex embeddings generated
by DHMConv during the process of vertex classifi-
cation, we employed t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) (Van der Maaten and Hin-
ton, 2008) to reduce the dimensionality of the embed-
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Table 3: The accuracy of vertex classification tasks
with explicit features on the Citeseer and Cora
datasets.

Model Citeseer Cora
GCN 70.37 79.36
GraphSAGE 68.28 78.85
GAT 70.79 80.13
DiGCN 70.81 80.60
HGNN 71.22 81.21
HNHN 68.87 79.41
HGNN-+ 70.30 80.64
DHMConv 73.31 82.20

dings. Our results, as shown in Figure 2, demonstrate
that the vertex information after the model output can
clearly distinguish data points with different class la-
bels, a separation that is not evident in their initial
feature space.

DHMConv exhibits superior performance on the Cite-
seer dataset. However, its comparative performance
on the Cora dataset does not demonstrate a significant
advantage. In order to investigate the classification re-
sults, we conducted an analysis of the confusion ma-
trix and performed a visualization of the multi-class
classification outcomes. The heat map in Figure 3
displays the multi-class classification performance of
DHMConv on both datasets.

Based on the heatmap analysis, it is evident that the
classification performance of the Citeseer dataset is
comparatively superior in the Agents and IR cate-
gories, whereas it exhibits only average performance
on the remaining datasets. This could potentially be
attributed to the existence of inter-referencing among
papers from different categories. Notably, the classifi-
cation results across all categories on the Cora dataset
are quite satisfactory.

4.4.3 Link prediction with explicit features
and ablation experiment

We conduct link prediction using the explicit vertex
features present in the Citeseer and Cora datasets.
Additionally, we perform ablation experiments to in-
vestigate the significance of individual modules within
the model.

Experimental results of link prediction with explicit
features, as shown in Table 4, demonstrate the su-
periority of DHMConv over the baseline on two cita-
tion networks with explicit features. DHMConv con-
sistently achieves the best results across all metrics,
indicating its effectiveness in preserving graph struc-
ture and feature information. Importantly, the second-

Figure 2: (a) The distribution of raw data in Cite-
seer dataset; (b) The distribution of data in Citeseer
dataset output by DHMConv model; (¢) The distribu-
tion of raw data in Cora dataset; (d) The distribution
of data in Cora dataset output by DHMConv model.

best results are mainly observed in the experiments
conducted on directed graph models, highlighting the
significance of preserving asymmetric information for
directed graphs with explicit features.

The DHMConv in Table 4 represents the best per-
formance achieved by DHMConv on four different di-
rection combinations, the AUC and AP metrics are
obtained from the results of a single model tested un-
der identical conditions. The specific performances of
DHMConv-DD, DHMConv-DB, DHMConv-BB, and
DHMConv-BD are illustrated in Figure 4. It indicates
that in this task, the performance of DHMConv-DD is
slightly weaker than the other three models, but still
better than most baselines.

The results of the ablation experiments in Table 5
demonstrate how we achieved optimal performance
compared to the baseline experiment. It is evident
that both the attention mechanism and momentum
mechanism significantly improve the two metrics on
both datasets compared to the directed hypergraph
spatial convolution. This highlights the usefulness and
necessity of the attention mechanism and momentum
encoder.
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Figure 3: (a) Visualization results of multi-class classification on Citeseer dataset, which is divided into 6
categories; (b) Visualization results of multi-class classification on Cora dataset, which is divided into 7 categories.

Table 4: The results of link prediction tasks with ex-
plicit features on the Citeseer and Cora datasets.

Citeseer Cora

Model AUC AP AUC AP

GCN 88.37 89.29 91.99 90.27
GraphSAGE 87.35 88.85 93.11 92.95
GAT 82.27 84.46 91.33 91.18
DiGCN 93.16 93.96 93.28 93.24
HGNN 92.98 9249 82.94 82.36
HNHN 88.40 89.51 92.27 92.38
HGNN-+ 93.06  93.43 93.60 93.12
DHMConv 95.34 95.34 93.91 93.76

Table 5: The results of ablation experiments on di-
rected hypergraph with Attention and Momentum.

Citeseer Cora
Model AUC AP AUC AP
Spatial convolution 91.79 91.22 90.98 90.27
+ Attention 94.53 91.15 92.37 91.90
+ Momentum 95.34 93.34 94.23 93.10

5 Relation Work

We categorize the existing research related to our work
into two categories: 1) Enhancing graph structures
with higher-order information; 2) Enhancing graph
structures with directional information.
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Figure 4: The impact of different convolution direc-
tions on the results of Link Prediction task

5.1 Enhancing graph structures with
higher-order information

Early analysis of spectral-based convolution on graphs
was conducted by Hammond et al. (2011), and Bruna
et al. (2013) proposed a spectral-based graph convo-
lution model based on their work, which successfully
extracted structural information from graphs. Deffer-
rard et al. (2016) refined the spectral-based convolu-
tion model by utilizing Chebyshev polynomials. Kipf
and Welling (2016) further optimized the graph con-
volution process and proposed GCN, which employs a
first-order Chebyshev approximation. GCN has lower
complexity and is more easily trained, faster, and more
effective, rendering it one of the most classic and prac-
tical methods in graph machine learning. Message-
passing neural network (MPNN) is considered a classi-
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cal graph convolutional algorithm based on the spatial
domain (Gilmer et al., 2017). On this basis, Hamilton
et al. (2017) proposed the GraphSAGE model, which
endows it with inductive learning ability. Velickovi¢
et al. (2017) proposed the graph attention network
(GAT), which can assign different weights to arbitrary
pairs of vertices during the graph convolution process,
thus better incorporating the correlation between ver-
tex features into the model.

To capture higher-order neighbor relationships in
graphs, building upon the inspiration from the K-
WL algorithm, Morris et al. (2019) introduced the
K-GNN model, which leverages Graph Neural Net-
works (GNNs) to explicitly capture higher-order re-
lationships. As hypergraphs can preserve higher-order
information compared to traditional graph structures,
Huang and Yang (2021) proposed a unified frame-
work UniGNN, for explaining the message-passing pro-
cess in both graph and hyper-layered neural networks,
which can generalize the traditional GNN models to
hypergraph neural networks.

Zhou et al. (2006) proposed a hypergraph inference
learning model. Feng et al. (2019) proposed HGNN,
which introduced spectral domain convolution on hy-
pergraphs. Dong et al. (2020) proposed HNHN,
a framework for hypergraph representation learning.
Bai et al. (2021) proposed a hypergraph attention
model, further enhancing the representation learning
capabilities. Gao et al. (2022) proposed HGNN+, a
framework for modeling the correlation of high-order
multimodal, multitype data, which learns optimal rep-
resentations within the hypergraph framework.

5.2 Enhancing graph structures with
directional information

Ghorbanzadeh et al. (2021) modeled social networks as
graph structures and performed link prediction. This
methodology inherently omits unidirectional informa-
tion present in social networks. Zhang et al. (2021)
proposed a directed graph neural network based on the
magnetic Laplacian operator, which can apply classic
algorithms on directed graphs. Niepert et al. (2016)
proposed a convolutional framework that can be used
for both undirected and directed graphs. Ma et al.
(2019) proposed a model for directed graph spectral
domain convolution, which can be directly applied to
semi-supervised node classification tasks in directed
graphs. Tong et al. (2020) proposed a directed graph
convolutional model DiGCN, which utilizes convolu-
tion and k-order approximation to learn multiscale fea-
tures in directed graphs. Kollias et al. (2022) proposed
a directed graph autoencoder model DiGAE, which is
used for learning pair-wise interpretable latent repre-
sentations of nodes in directed graphs.

In the field of directed hypergraphs, Ausiello and
Laura (2017) provided a comprehensive overview
of fundamental algorithms for directed hypergraphs.
Tran and Tran (2020) proposed a directed hypergraph
neural network methodology, which was applied to
node classification tasks. Xiao et al. (2022) introduced
a directed hypergraph convolutional network based on
hyperbolic space modeling, effectively addressing the
issue of asymmetric correlation matrices in directed
hypergraphs.

Certainly, the research on the convolutional direction-
ality issue goes beyond the studies mentioned earlier.
Beaini et al. (2021) proposed an intuitive idea of direc-
tional flow and their DGN method provided an inter-
pretable solution to several issues of GNNs, including
lack of anisotropy and low expressive power. Huang
et al. (2021) defined four different signed directed re-
lationships based on social theory and proposed corre-
sponding GNN models to aggregate and propagate in-
formation of nodes in signed networks. Clearly, explor-
ing convolutional directionality in this way has positive
implications.

6 Conclusion and Future Work

In this work, we proposed a framework for spatial con-
volution on directed hypergraphs, which optimizes the
aggregation and broadcasting of hyperedge informa-
tion through attention mechanisms and directed hy-
pergraph momentum encoders. We construct four dis-
tinct models based on directionality to address the
needs of varied data and task scenarios.

We perform diverse comparative experiments on mul-
tiple benchmark datasets to assess the performance of
our framework. Our findings reveal that our proposed
framework possesses strong feature representation ca-
pabilities and achieves exceptional results on various
fundamental tasks.

In the future, our plan is to employ the proposed
framework in practical applications such as product
recommendation and refine the model details for spe-
cific tasks to improve its real-world performance.
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