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Abstract

Multivariate time series forecasting (MTSF)
aims to predict future values of multiple vari-
ables based on past values of multivariate time
series, and has been applied in fields includ-
ing traffic flow prediction, stock price fore-
casting, and anomaly detection. Capturing
the inter-dependencies among multiple series
poses one significant challenge to MTSF. Re-
cent works have considered modeling the cor-
related series as graph nodes and using graph
neural network (GNN)-based approaches with
attention mechanisms added to improve the
test prediction accuracy, however, none of
them have theoretical guarantees regarding
the generalization error. In this paper, we
develop a new norm-bounded graph attention
network (GAT) for MTSF by upper-bounding
the Frobenius norm of weights in each layer of
the GAT model to enhance performance. We
theoretically establish that the generalization
error bound for our model is associated with
various components of GAT models: the num-
ber of attention heads, the maximum number
of neighbors, the upper bound of the Frobe-
nius norm of the weight matrix in each layer,
and the norm of the input features. Empir-
ically, we investigate the impact of different
components of GAT models on the general-
ization performance of MTSF on real data.
Our experiment verifies our theoretical find-
ings. We compare with multiple prior fre-
quently cited graph-based methods for MTSF
using real data sets and the experiment results
show our method can achieve the best perfor-
mance for MTSF. Our method provides novel
perspectives for improving the generalization
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performance of MTSF, and our theoretical
guarantees give substantial implications for
designing graph-based methods with atten-
tion mechanisms for MTSF.

1 INTRODUCTION AND
BACKGROUNDS

Complex time series data generated in the real world
make MTSF a crucial topic in various scenarios, such as
traffic forecasting, sensor signal anomaly detection in
the Internet of things, demand and supply prediction
in the supply chain management, and stock market
price prediction in financial investment. Traditional
methods like auto-regressive (Mills & Mills, 1990), auto-
regressive integrated moving average (Box et al., 2015)
and vector auto-regression (Box et al., 2015) have been
employed for time series forecasting. In addition to
these, deep learning methods (Bai et al., 2018; Zhang
et al., 2017; Tokgöz & Ünal, 2018) including graph
based neural networks (Yu et al., 2017; Wu et al.,
2019; Chen et al., 2020b) have been applied in MTSF
problems and demonstrated better performance to solve
these problems.

The attention mechanism (Vaswani et al., 2017) is also
used along with the GNN by Guo et al. (2019); Deng &
Hooi (2021) to adaptively adjust the correlations among
multiple time series. One of the seminal contributions
to GNN with attention mechanisms is the GAT frame-
work proposed by (Veličković et al., 2017). In GAT,
every node computes the importance of its neighboring
nodes, and then utilizes the importance as weights to
update its representations of the features during the
aggregation, it can handle complex inter-dependency
(i.e., the correlations) among nodes.

The generalization error bound provides a standard
approach to evaluate neural networks as it character-
izes the predictive performance of a class of learning
models for unseen data (Golowich et al., 2018). Many
frameworks specifically designed for MTSF that rely
on neural networks due to their high prediction accu-
racy and ability to handle interdependencies among
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different series. Graph-based models are among these
approaches. Despite their advantages, addressing gen-
eralization error in neural networks remains crucial, as
strong performance on training data does not guarantee
similar results on unseen data. To capture the correla-
tions among multiple correlated time series, we use the
GATs for MTSF, where each node represents a single
time series. Moreover, we observe a gap in the theo-
retical understanding of generalization error of GATs
for MTSF, specifically, existing studies on GNNs with
attention mechanism lack theoretical guarantees regard-
ing generalization error bounds. Our paper addresses
this aspect by developing the theoretical generalization
error bound for GATs for MTSF. Our generalization
error bound is derived using the Rademacher complex-
ity bounds, a method employed for deep neural net-
works in several foundational studies by Bartlett (1998);
Bartlett & Mendelson (2002); Bartlett et al. (2017);
Neyshabur et al. (2015); Golowich et al. (2018); Garg
et al. (2020). The generalization error bounds derived
in this study for MTSF rely on bounding the Empirical
Rademacher Complexity (ERC) of GAT models with
the weight matrix norm being bounded. Often this
derivation involves controlling the norm of the hidden
layer weight matrix, a strategy for establishing norm-
based generalization error bounds in DNNs, CNNs,
and GNNs. It is significant that Edelman et al. (2022)
and Fu et al. (2024) investigated the generalization
bounds of a single attention network by analyzing the
covering number-based capacity of the function class
and employing kernel methods, respectively. In our
study, we explore the generalization error bounds for
GATs in MTSF through Rademacher complexity. Addi-
tionally, we provide both theoretical and experimental
evidence to support the control of the weight matrix
norm as a means to enhance the generalization capa-
bilities of GATs. The generalization error bound we
derived includes different components of GATs models:
the number of attention heads, the maximum number
of neighbors, the upper bound of the Frobenius norm
of the weight matrix in each layer, and the norm of
the input features. We investigate the influence of
these components on the generalization performance
of MTSF using experiments with complex stock price
and weather data. Experimental results are consistent
with our theoretical findings.

Among all the factors mentioned above that influence
the generalization error, the scaling of the upper bound
of the weights’ norm is particularly significant. Since it
can be adjusted, properly controlling the upper bound
of the norm of the weight matrix is especially signifi-
cant. GATs that do not constrain weights may end up
with layers that blow-up in the norm. Weights with
abnormally large norms may cause training instability
and increased generalization error. With this consid-

eration, we propose a new method, Weights-bounded
GAT for MTSF. We specify a threshold value based on
the the weight matrix size to ensure that no element of
the weight matrix exceeds this limit, thereby making
sure the Frobenius norm of the weight matrix within
the predefined bound throughout the GATs training
and testing process. This method resembles the weight
norm control strategy seen in Hinton et al. (2012),
which also aimed to reduce generalization error by lim-
iting the L2 norm of the weight matrix. Our method
ensures GATs to maintain bounded weights throughout
the training process to prevent overfitting. To evalu-
ate the performance of our method, we compare our
method with six GNN-based methods for MTSF and
show that our method outperforms these methods for
MTSF with a smaller generalization error.

Our main contributions are as follows:
• We derive the theoretical generalization error

bound for GAT for MTSF that provides a theoret-
ical analysis of each GAT component’s influence
on the prediction performance. We also conduct
experiments to demonstrate their influence empir-
ically. Generalization error bounds derived in this
study are based on the bound of ERC of GAT
models with the weight matrix norm being con-
trolled.

• Based on our theoretical findings on the relations
between different GAT components and the gen-
eralization error bound, we propose the Weights-
bounded GAT. Our experiment results show that
it has a smaller generalization loss compared to
the vanilla GAT and other GNN-based models on
the MTSF task.

2 PRELIMINARIES
2.1 Problem Formulation And The Graph

Structure

In this paper, we focus on the task of MTSF, consid-
ering a multivariate situation that contains N corre-
lated univariate time series with each represented as
{xi,1,xi,2, . . . ,xi,t, . . .} to denote a sequence of time
series i from time step 1 to infinity. Based on a se-
quence of historical T time steps of values prior to
current time t for N time series, {x1, . . . ,xN}, with
each xi = {xi,t, . . . ,xi,t−T+1}, with each xi,t ∈ RDt ,
our goal is to predict the multi-step-away value of
{y1, . . . ,yi} using an appropriate prediction model
f , where each yi = {yi,t+1, . . . ,yi,t+C} has values
from C timestamps, with each yi,t+c ∈ R, c = 1 . . . C.
In addition, the historical inputs can be representa-
tive of multiple aspects if complemented with auxil-
iary features, so our problem can be characterized as
yi = f({x1,t, . . . ,x1,t−T+1} , . . . , {xi,t, . . . ,xi,t−T+1}),
for i = 1, . . . , N . To capture the inter-dependency,
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the problem is formulated on the graph structure as
introduced below.

We consider an undirected graph G = (N , E). The N =
{1, . . . , N}, |N | = N , is a set of nodes representing
the sources of N time series. E ⊂ N × N is the set
of edges representing the connection between series.
We let xi ∈ RD, i = 1, . . . , N be a random variable
representing the input feature vector of node i for time
series i. For node i, its corresponding input feature xi

is a multi-dimensional vector, which contains all the
historical values from T time steps, in other words, we
let xi = (xi,t, . . . ,xi,t−T+1) ∈ RD be the concatenation
of T time steps, such that D = Dt · T ; its true label
yi ∈ RC is the vector for the C-step-away values.

2.2 GATs Model

We consider the GATs defined by Veličković et al.
(2017), given the random feature matrix X =

[x1,x2, . . . ,xN ]
⊤ ∈ RN×D, the graph G = (N , E), a

L-layers GAT model is f : RN×D → RN×C , with the
final output Z(L) ∈ RN×C as,

Z(L) = f(X), (1)

with f(X) = P(L) ⊕K
k=1 σ

(
P(L−1)

· · · ⊕K
k=1 σ

(
P(2) ⊕K

k=1 σ
(
P(1,k)XW(1,k)

)
W(2)

)
· · ·W(L−1)

)
W(L) ∈ RN×C

(2)
to predict the true label [y1,y2 . . . ,yN ]

⊤ ∈ RN×C .

In a GAT with more than two layers, the output of the
hidden layer l is

Z(l) = ⊕K
k=1σ(P(l,k)Z(l−1)W(l,k)) ∈ RN×DlK , (3)

Here we use subscript (l) or (l − 1) to indicate
which layer the variable belongs to. We have l ∈
{1, 2, . . . , L− 1}, and Z0 = X.

Here, W(1,k) ∈ RD×D1 , W(l,k) ∈ RKDl−1×Dl , for l ≥ 2,
is an l − 1-to-l weight matrix for a hidden layer with
Dl feature maps. Here σ is the activation function.

And we let ⊕ denote the concatenation for the attention
heads. This definition is specific to the GATs, with its
detailed description found in Veličković et al. (2017).

And we have total K such matrices in layer l with each
matrix W(l,k) corresponding to one attention head.
P(1,k), P(2,k) and P(L−1,k) are the attention matrix
introduced by us, and function as an operator to in-
corporate the attention. We will justify its equivalence
to the original GAT models (Veličković et al., 2017) in
later paragraphs.

Even though our analysis covers GATs with more than
two layers, we will give a focus on two-layers GATs

model, which is also implemented by Veličković et al.
(2017), with the following simple form:

Z(2) = f(X) (4)

f(X) = P(2) ⊕K
k=1 σ

(
P(1,k)XW(1,k)

)
W(2). (5)

There are multiple attention heads in the 1, . . . , L− 1
layers, but there is only one attention head in the L-
th layer. That’s why in Equation (5), we use P(2)

instead of P(2,k) for a two layers neural network. This
is consistent with the standard setup for GATs.

The first layer consists of K attention heads computing
D1 features each (a total of K ×D1 features), followed
by an activation function σ. Here, W(1,k) ∈ RD×D1 is
an input-to-hidden weight matrix for a hidden layer
with D1 feature maps, and we have K such matrices.

The second layer is used for prediction: a single at-
tention head that predicts the y. For C-step-away
forecasting, we have DL = C. The W(2) ∈ RKD1×C is
a hidden-to-output weight matrix.

Attention Model We now give more explanation
about the attention introduced in the GAT model. In
section 2 of the original GAT paper, Veličković et al.
(2017) mentioned the learnable linear transformation to
transform the input features into higher-level features
with sufficient expressive power. In their process, they
first apply a shared linear transformation, parameter-
ized by the weight matrix, W ∈ RD×D1 , to every node.
Then they perform self-attention on the node: a shared
attentional mechanism a : RD1 × RD1 → R computes
attention coefficients eij = a(x⊤

i W,x⊤
j W), to indicate

the importance of node j’s features to node i. Let N (i)
denote the neighborhood of node i (including i). They
also inject the graph structure into the mechanism by
performing masked attention: they compute eij for
nodes j ∈ N (i), the neighbors of node i, which might
include node i itself. Then they normalize the coeffi-
cients to make them easily comparable across different
nodes using the softmax function to obtain pi,j

pi,j = ϕ([ei,1, ei,2, . . .])
j =

exp ei,j∑
j′∈N (i) exp ei,j′

.

Then the output features from the first layer for
each node will be: σ(

∑
j∈N (i) p

i,jx⊤
j W). They also

propose the K-head attention. The K indepen-
dent attention mechanisms execute the aforementioned
transformation, and then their output are concate-
nated, resulting in the following feature representation:
⊕K

k=1σ(
∑

j∈N (i) p
i,j
(k)x

⊤
j W(k)).

To make the above process more integrated, here in
the GAT models, we introduce the attention matrix P
that contains the normalized attention coefficients used



Multivariate Time Series Forecasting By Graph Attention Networks With Theoretical Guarantees

to compute a linear combination of the neighborhood
features, yielding the new feature representation for
every node. This matrix contains individual node’s
importance weights with every other node in its neigh-
borhood.

For any k ∈ [K], let P(l,k) ∈ RN×N , l ∈ [L], is the
matrix of the graph attention matrix defined by the
attention coefficients 1. We define the graph attention
matrix P(l,k) with entries[

P(l,k)

]
ij
:= pi,j(l,k) = 0, if j /∈ N (i). (6)

In (6), pi,j(l,k) ∈ [0, 1] is the coefficients of node i at-
tributed from node j. Each row sum of the P(l,k) is
equal to 1, which is

∑
j∈N (i) p

i,j
(l,k) = 1. Here pn

(l,k) (row
i of P(l,k)) denotes node i’s all coefficients.

In the paper by Veličković et al. (2017), the pro-
posed attention mechanism a computes the attention
coefficients—ei,j and later applies the normalized at-
tention coefficients pi,j . We integrate the result of this
whole process into an attention matrix P(l,k), which in-
corporates the attention. Since the sum of row elements
of the P equals one, we have the following property
hold for P(l,k):

∥∥P(l,k)

∥∥
F
≤ N , i.e., the Forbunis norm

of P(l,k) is bounded by the total number of nodes.

2.3 The Empirical Risk Framework for MTSF

We first introduce function spaces of GATs for MTSF.
In our paper, given the feature X ∈ RN×D, and the
true label y ∈ RC , we let function class F be the space
of our GAT classes that contains the GAT functions f
in (2) which outputs f(X). In other words, we let F
be hypothesis class for functions f : RN×D → RN×C ,
with f defined in (2) We defer the detailed definitions
of F in later sections, i.e. in terms of Weights-bounded
GAT for the MTSF problem, see the Definition 13 and
Definition 16.

To predict the true label yi for node i
where i = 1, . . . , N , we then introduce
I =

{
ei ∈ RN , i = 1, . . . , N

}
as the space that

contains the N−dimensional standard basis vector
that selects the index of the node label. Given the
node basis vector ei ∈ I, then the node i’s output for
f is given by e⊤i f(X) ∈ RC .

To learn the f , we collect n ∈ N+ training data, with
the training set S = {(X1,Y1), . . . , (Xn,Yn)} contains
n size of samples, where for each sample j = 1, . . . , n,
we have feature Xj = [x1j ,x2j , . . . ,xNj ]

⊤ ∈ RN×D,
true label Yj = [y1j ,y2j , . . . ,yNj ]

⊤ ∈ RN×C . Then
we let g : RC × RC → [0, 1] be the loss function. We
then introduce the function class GF defined on I ×

1In the final layer, we can have P(L) ∈ RM×N , where
M ≤ N , if we only care about a part of the nodes.

RN×D × RC by composing the functions in F with
g(·, ·), i.e.,

GF =
{
(ei,X,y) 7→ g(e⊤i f(X),y); f ∈ F

}
. (7)

We assume that g is bounded, i.e., the range of loss is
[0, 1] (if not, we can scale the loss function) without loss
of generality. Additionally, we suppose g is Lipschitz
with constant Lg.

For the risk function g in GF defined over
F satisfying the above conditions, given the
expected/population risk E(g) and the em-
pirical risk function Ên(g) are defined as:

E(g) = E

[
1

N

N∑
i=1

g
(
e⊤i f(X),yi

)]
. (8)

Ên(g) =
1

n

n∑
j=1

1

N

N∑
i=1

g
(
f⊤(Xj)ei,yij

)
. (9)

A predictor f ∈ F given such g ∈ GF can be generalized
if lim sup|S|=n→∞ Ên(g) → E(g) a.s.

A predictor with a generalization guarantee is to obtain
a bound of E(g) − Ên(g). It is closely related to the
complexity of its hypothesis space. In that sense, we
would like to obtain a uniform bound:

sup
g∈GF

E(g)− Ên(g). (10)

for all functions in GF . Using empirical process theory,
the above error can be bounded by the Rademacher
Complexity of the function class F with high probabil-
ity, see Theorem 3.2 for an example.

2.4 The Rademacher Complexity
Given a GATs model space F , which is subject to be de-
fined later, and which contains functions f : RN×D →
RN×C in (2), and fixed an ei ∈ I for i = 1, . . . , N , we
introduce the function class Fi as

Fi =
{
fi : X 7→ e⊤i f(X); f ∈ F

}
. (11)

Then given the training set S and Fi, then, the ERC
over Fi is defined as

R(Fi) = Eϵ

 sup
fi∈Fi

1

n

n∑
j=1

ϵjfi(Xj)

 . (12)

where {ϵ1, · · · , ϵn} are i.i.d. indexed Rademacher se-
quence satisfying P (ϵj = 1) = P (ϵj = −1) = 1/2.

3 GENERALIZATION BOUND FOR
THE GAT MODEL

3.1 Notation
We use bold-faced letters to denote vectors and cap-
ital letters to denote matrices or fixed parameters
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(which should be clear from the context). Given a
vector w ∈ RD, ∥w∥ refers to the Euclidean norm.
For a matrix W, ∥W∥F refers to the Frobenius norm,

∥W∥F =
√∑

i

∑
j |wi,j |2. A function f : Rn → Rm is

L-Lipschitz, L ≥ 0, if ∥f(a)− f(b)∥ ≤ L ∥a− b∥ for all
a, b ∈ Rn. We use standard big-O notation, with O(·)
hiding constants.

3.2 Function Class of GAT

Given the inputs X = [x1, . . . ,xN ]
⊤ as multiple time

series with each xi as input feature for node i, the
class of 2-layer GATs for MTSF f maps X to the
output f(X) that represents a C-step-away prediction
expressed in Equation (5). We consider a subset of
such class requiring each f with a bounded weights
norm, expressed as

F = {f : defined in in (5);∥∥W(1,k)

∥∥
F
≤ M1,

∥∥∥wc
(2)

∥∥∥ ≤ M2,
}
,

(13)

for all c = 1, . . . , C. We are interested in this function
class because our subsequently derived theory for the
bound in (10) is controlled by the ERC within this class.
Given the I = {ei}Nn=1 and the true label yi ∈ RC , we
define fi to predict yi by mapping X to the output
fi(X), for i = 1, . . . , N . Let Fi be the hypothesis class
for fi : RN×D → RC for node i:

Fi =
{
X 7→ e⊤i f(X); f ∈ F

}
. (14)

Furthermore, we also provide a model space Fc
i for

functions f c
i : RN×D → R with a single dimensional

output that corresponds to the c-th component of model
output from fi(X) for the c-th time step, expressed as

Fc
i =

{
X 7→ f c

i (X); fi = (f1
i , . . . , f

c
i ) ∈ Fi

}
. (15)

The function classes Fi and Fc
i are introduced to facil-

itate the derivation of our theory, as illustrated in the
proof of Theorem 3.2.

3.3 An Upper Bound of Rademacher
Complexity of GAT Class

Here we first provide an upper bound of ERC of GAT
class Fc

i for single dimensional output of MTSF.
Theorem 3.1 (Upper Bound of ERC of GAT class
Fc

i for MTSF). Let the GAT class Fc
i follows the

definition 15, with the activation function σ(·) be 1-
Lipschitz continuous, and also satisfy σ(0) = 0 and
σ(αz) = ασ(z) for all α ≥ 0. Assume that the Frobe-
nius norm of every weights matrix in the first layer of
the GAT class is bounded, namely,

∥∥W(1,k)

∥∥
F

≤ M1

with some constant M1 > 0 for k = 1, . . . ,K. Also, the
norm of the weights vector of the second layer of the
GATs is bounded,

∥∥∥wc
(2)

∥∥∥ ≤ M2, where c ∈ [C], with

some constant M2 > 0. Let N (i) denote the neigh-
borhood of node i (including i), also let the constant
Ne ∈ N+ be defined as the maximum number of neigh-
bors, Ne := maxi |N (i)|, for all node i ∈ N .

Assume the feature vectors xi, i = 1, . . . N for time
series come from a bounded domain, namely, that the
L2-norm of xi is bounded by some positive constant B:
{xi : ∥xi∥ ≤ B}. Then let R(Fc

i ) be the ERC defined in
the definition 2.4 for GAT class Fc

i in the definition 15,
given the I = {ei}Ni=1, and the total n sized training set
S = {(X1,Y1), . . . , (Xn,Yn)}, such that for each sam-
ple j = 1, . . . , n, we have Xj = [x1j ,x2j , . . . ,xNj ]

⊤,
Yj = [y1j ,y2j , . . . ,yNj ]

⊤, then for all i = 1, . . . , N
and all c = 1, . . . , C, if we let Ma := BK(Ne)

2M1M2

then we have

R(Fc
i ) = O

(
Man

−1/2
)
.

We see that this ERC bound has a polynomial depen-
dence on the Ne, the maximum number of neighbors.
The worst case is that Ne = N , the total number of
nodes, in the fully connected graph. A small Ne < N
can result in a smaller bound. The proof details can
be found in §A.

3.4 Generalization Error Bound of the GAT
Class for MTSF

In this section, we will give the final generalization
error bound of the GAT class for MTSF. The formal
result is in the following theorem and the proof is in
§B.

Theorem 3.2. Define the hypothesis class GF as the
definition 7, with F defined in Definition 13. Let all
conditions in Theorem 3.1 be satisfied. We suppose
g : RC × RC → [0, 1] is Lipschitz with constant Lg.
Then, for any δ ∈ (0, 1), for all f ∈ F with g ∈ GF ,
denote Mb := Ma +

√
ln(2/δ), then with probability at

least 1− δ, we have

sup
g∈GF

E(g)− Ên(g) = O
(
Mbn

−1/2
)
,

The proof details can be found in §B.

4 EXTENSION TO GAT CLASS
WITH LAYERS L > 2

Now we extend the analysis to GATs with more than
two layers for MTSF and provide generalization error
bounds. Here, the proof is done by a simple induction
argument using the "peeling-off" technique employed
for Rademacher complexity bounds for neural networks.
The output of a L-layer GATs represents a multi-C-
step-away prediction shown in Expression (2).
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Without lose of clarity, here we abuse the notation
from 2-layer GATs, and use F to denote the function
class according to the definition of the L−layer GATs
network. Furthermore, we require that the Frobenius
norm of every weight matrix in every layer of the GAT
class is bounded, namely, for any l ∈ [L],

∥∥W(l,k)

∥∥
F
≤

Ml with some constant Ml > 0 for k = 1, . . . ,K and
l = 2, . . . , L.

F = {f : defined in in (2);∥∥W(1,k)

∥∥
F
≤ M1, . . . ,

∥∥∥wc
(L)

∥∥∥ ≤ ML

}
,

(16)

for all c = 1, . . . , C. Also, let Fi be the hypothesis class
for fi : RN×D → RC for node i:

Fi =
{
X 7→ e⊤i f(X); f ∈ F

}
. (17)

Also, we have single dimensional GAT function space
defined as

Fc
i =

{
X 7→ f c

i (X); fi = (f1
i , . . . , f

c
i ) ∈ Fi

}
. (18)

Also, the output up to layer l, l ∈ [L− 1] is given as

f(l)(X) = ⊕K
kl=1σ

(
P(l) · · · ⊕K

k2=1 σ
(
P(2)⊕K

k1=1

σ
(
P(1,k1)XW(1,k1)

)
W(2,k2)

)
· · ·W(l,kl)

)
∈ RN×DlK .

(19)

Thus, we define a layer-wised class of functions as

Fi(l) =
{
X 7→ e⊤i f(l)(X);

{∥∥W(l′,k)

∥∥
F
≤ Ml′

}
l′∈[l]

}
.

(20)

We provide an upper bound of ERC of GAT class Fc
i

with L layers with proof details in §C

Theorem 4.1 (Upper Bound of ERC of GAT class
Fc

i with L layers). Let all the assumptions from The-
orem 3.1 be fulfilled. Furthermore, let the Frobenius
norm of every weight matrix in the first L− 1 layers
of the GATs be bounded, namely,

∥∥W(l,k)

∥∥
F

≤ Ml

with some constant Ml > 0 for k = 1, . . . ,K and
l = 1, . . . , L − 1. Also, the norm of the weight vec-
tor of the last layer is also bounded,

∥∥∥wc
(L)

∥∥∥ ≤ ML,
where c ∈ [C], with some constant ML > 0. Let R(Fc

i )
be the ERC defined in Equation 2.4 for GAT class Fc

i

in the definition 16, given the n sized input set, then
for all i = 1, . . . , N and all c = 1, . . . , C, if we let
Mc := NL

e ML · · ·M1K
L−1(L− 1)1/2B then we have

R(Fc
i ) =O

(
Mcn

−1/2
)
.

Based on the theorem 4.1, we provide the generalization
error bounds for the GAT class with more than two
layers in the following theorem.

Theorem 4.2 (Generalization Error Bounds for the
GAT Class with More than Two Layers). Define the
hypothesis class GF as the definition 7, with F defined
in Definition 16. Let all conditions in Theorem 4.1 be
satisfied. We suppose g : RC × RC → [0, 1] is Lipschitz
with constant Lg. Then, for any δ ∈ (0, 1), for all
f ∈ F with g ∈ GF , which contains L-layer GATs,
denote Md := Mc +

√
ln(2/δ), with probability at least

1− δ, we have

sup
f∈F

E(g)− Ên(g) = O
(
Mdn

−1/2
)
.

In our proof, to give the generalization error bound of
a deep GAT, we first derive its ERC. To bound the
ERC, we apply the layer-peeling strategy that infor-
mally the ERC of L-layer networks is expressed by a
factor multiplied by the ERC of L− 1-layer networks.
This factor contains the product of the matrix Frobe-
nius norm of weight matrices in the current layer, the
attention head size K, and the maximum number of
neighbors Ne in the graph. Inductively, our current
bounds scale with the product of these quantities as
the network depth increases. Specifically, the norm of
the weight matrices, the number of attention heads,
and the number of attention neighbors connections
contribute as polynomial terms, where the polynomial
order roughly matches the layer count L. The bound
has an exponential dependence on the network depth.

The generalization error bound in Theorem 4.2 implies
that the following attempts can be taken to reduce the
generalization error: i) increase the training samples, ii)
minimize the empirical loss, and iii) design the neural
network carefully to achieve a proper hypothesis class.
Increasing the complexity of the hypothesis class can
decrease the approximation error but also increase the
estimation error due to a large ERC, which leads to
undesired test performance in a practical task. In the
next section, we will empirically show how structural
components of GATs related to complexity could af-
fect the test performance for a MTSF task, providing
empirical support for our theoretical findings.

4.1 Verify The Theoretical Bounds By
Experiments

Our goal is to show the relationship between the upper
bound of the generalization error of the GAT model
and variables in the ERC, including the number of
attention heads, the maximum number of neighbors,
the Frobenius norm of model weights, the norm of
inputs, and the number of samples in our training set.
We use two multivariate times data: the daily stock
price data from Nasdaq and NYSE and Beijing PM2.5
dataset to do predictions. Details about how we use
these data are in §E.2. The experiment results in top
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Figure 1: Experiment Results on Five Variables in the ERC. The red line is a possible theoretical upper bound.

row of Figure 1 are about the stock dataset, and the
bottom are about the Beijing PM2.5 dataset.

We use a three-layer GAT to demonstrate our results.
We include the details about how we control the above
six variables in §E.3. In addition, we conduct experi-
ments on two-layer GATs. Both experiments for three
and two-layer GATs show that all test losses gener-
ally conform to the O of the theoretical upper bound.
error bounds in Theorem 3.1 and 4.1. Results and
discussions are in §F.

It is noteworthy that Figure 1 also shows that the
test error decreases initially, then starts to increase.
The inconsistency observed at at the beginning may
be attributed to various factors that impact the test
error. As seen in the Theorem 4.2, in addition to the
ERC, the empirical risk also contributes to the upper
bound of the population risk or generalization error.
Nevertheless, the ERC becomes dominant by increasing
the number of attention heads, the maximum number
of neighbors, and the upper bound of weights norm,
indicating the importance of a proper design of neural
networks for MTSF to guarantee a smaller generaliza-
tion error. Among all the factors mentioned above that
influence the generalization error, the scaling of the
upper bound of the weights’ norm is particularly signif-
icant, for which we provide justifications subsequently.
Since it can be adjusted, properly controlling the upper
bound of the weights’ norm is considered crucial for
developing our method.

As reported in the previous literatures, increasing the
complexity hypothesis class in terms of larger weight
matrices bounds could decrease the approximation er-
ror, but may also increase the estimation error or the
generalization error. Therefore, in practical training
process, we generally start with a simple neural network
and gradually increase its complexity in terms of larger
weight matrix bounds to improve the test performance,
and the bound can be a tuning parameter in our model.

We call it weight control.

5 WEIGHTS-BOUNDED GAT
To show the meanings of weight control, we further de-
veloped an improved version of the GAT called Weights-
bounded GAT. A three-layer model is described in
Appendix §E.3. As the name suggests, the weight
Frobenius norm of each layer is bounded by a hyperpa-
rameter. Specifically, for the weight norm variable, we
adjust the bound of the Frobenius norm of the weight
matrix inside each layer by using weight clipping be-
fore each forward pass of the model. Each element of
the weight matrix is clipped to the threshold to make
sure the Frobenius norm of the matrix is less than or
equal to the bound. We incorporate weight constraints
within the learning process. Specifically, consider a
weight matrix W(1,k) ∈ RD×D1 in (16). During train-
ing and testing, before each forward pass, we ensure
that every element of the weight matrix adheres to the
constraint − M1√

D×D1
≤
[
W(1,k)

]
dd1

≤ M1√
D×D1

, with
d = 1, . . . , D, d1 = 1, . . . , D1, where M1 is the upper
bound given in our Theorem 3.1. This approach guar-
antees that the Frobenius norm of the weight matrix
remains at or below the specified threshold throughout
the training of GAT.

Our proposed approach is akin to regularizing the
weight norms in the network to prevent overfitting,
similar to other regularization methods. In contrast,
commonly used optimizers like SGD and Adam(W)
incorporate the weight decay parameter into training
setups for (graph attention) neural networks to control
the weight norms of the neural network. Although
this approach and our method may seem intuitively
similar in the sense that they both aim to control the
weights of the model, the methodologies they employ
to achieve this purpose differ. The weight decay en-
courages but does not mandate, GAT to possess small
weights. On the other hand, weight bounding explic-
itly controls weight norms during the learning process,
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yielding results differing from the implicit weight decay.
It compels GAT to maintain bounded weights through-
out the training process and during the test period.
Given their different approaches to addressing the gen-
eralization error, they also exhibit varying theoretical
derivations related to generalization error.

To test these two methods empirically, we conducted
an experiment to compare the Weights-bounded GAT
with its weight norm constraint hyperparameter fine-
tuned, against the Vanilla GAT with the weight decay
hyperparameter fine-tuned (which results in an implicit
weight norm constraint). For hyperparameter tuning,
we employed the Bayesian optimization method using
Hyperopt (Bergstra et al., 2013). The result is pre-
sented in §G, and it sufficiently supports the advantages
of our Weights-bounded GAT over a standard GAT
with properly tuned weight decay.

To help GAT learn temporal information for each node,
we concatenate feature vectors from all historical time
steps and subsequently apply a linear transformation.
The application of a linear transformation following
concatenation can implicitly capture the temporal rela-
tionships present in the data. Furthermore, it is worth
noting that this approach has also been employed in
several instances within the literature on time series
forecasting. Specifically, recent studies such as Das
et al. (2023); Zeng et al. (2023), utilized a similar ap-
proach to process multivariate time series data and have
demonstrated exceptional forecasting performance.

5.1 Comparison With Graph-Based Methods

We compare the Weights-bounded GAT with the SOTA
graph-based methods using test loss on the above stock
return forecasting task. So far, three works ASTGCN
(Guo et al., 2019), GMAN (Zheng et al., 2020), and
GDN (Deng & Hooi, 2021) use GAT-based models
to model multiple time series data, showing better
accuracy over other traditional linear methods (e.g.,
VAR), neural-network based methods (e.g., LSTM),
and graph-network based methods (e.g., GNNs and
GCNs). While other works in multivariate time se-
ries forecasting do not consider the attention mecha-
nism, several frequently cited ones are used as baselines
for comparison with Weights-bounded GAT, including
STGCN by Yu et al. (2017) and MTGNN by Wu et al.
(2020).

All of these works differ from ours as they do not
consider any control of model variables (e.g., the weight
matrix norm) and they lack theoretical guarantees in
terms of the generalization error.

We use two evaluation metrics, the MSE and MAE.
Additionally, Table 1 reports their average test error
from 20 runs over 20 random seeds. Detailed discus-
sions can also be found in §I. The Weights-bounded

GAT has a better test loss than the other baselines.

5.2 Quantile Regression For MTSF

In this section, we also considered the probabilistic
forecasting, as it is also widely used in time series
forecasting. Specifically, we use quantile regression
for time series forecasting. In contrast to the mean
regression, the quantile regression has been considered
robust thus with its broad application in different fields
(Cai, 2002; Davino et al., 2013; Belloni et al., 2023;
Zhang et al., 2023). To obtain the estimator, a quantile
loss is proposed by Wen et al. (2017)

QL(y, ŷ, Q) = Q(y − ŷ)+ + (1−Q)(ŷ − y)+, (21)

where Q is the cumulative density value. When Q = 0.5,
the quantile loss QL is simply the Mean Absolute Error,
and its minimizer is the median of the predictive dis-
tribution, and the MAE is more robust to the outliers
compared to the MSE. The larger value of Q (such as
Q = 0.9) will penalize more on the overestimate, while
the smaller value will penalize more on the underesti-
mate. Let Q =

{
Q(l)

}q
l=1

is the set of quantiles we are
interested, then our models are trained to minimize
the total loss

∑q
l=1 QL(y, ŷ(l), Q(l)).

The quantile loss function used in this approach models
the entire probability distribution of the forecast, as
opposed to just a single point estimate. This is cru-
cial in real-world time series forecasting applications
where it is necessary to have an understanding of the
uncertainty associated with the forecast. Additionally,
the quantile loss function enables the model to learn
different levels of quantiles, which is useful when the
cost of overestimating or underestimating the forecast
is not symmetric.

We report the quantile losses for Q = 0.1, Q = 0.5,
and Q = 0.9 on both datasets. Table 2 shows that
the Weights-bounded GAT method has the smallest
quantile loss among all the methods. Specifically, the
Weights-bounded GAT has a better test error than the
other baselines regarding the 0.1, 0.9 and 0.5 quantile
loss. This further validates that our model can achieve
the best performance across the entire distribution of
the response variable.

5.3 Model Size

To ensure a fair comparison, we also included the num-
ber of parameters used by the baseline models in our
experiments in Table 3. From the table, we observe
that models that operate on both spatial and tempo-
ral dimensions (STGCN, MTGNN, ASTGCN), as well
as models that consider hierarchical graph structures
(MTGNN) or multi-attention mechanisms (GMAN),
require a large number of parameters. This increases
their risk of overfitting, particularly when many of their
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Table 1: MSE MAE (10−3)

US daily stock
MSE MAE

Weight-bounded GAT 2.04 30.61
ASTGCN (Guo et al. (2019)) 7.14 36.77

Vanilla-GAT (Veličković et al. (2017)) 7.36 45.91
GDN (Deng & Hooi (2021)) 8.11 46.31
GMAN (Zheng et al. (2020)) 7.57 38.92
MTGNN (Wu et al. (2020)) 9.77 38.77
STGCN (Yu et al. (2017)) 7.20 39.94

Table 2: Quantile Loss (10−2)

US daily stock Beijing PM2.5
Q(0.1) Q(0.5) Q(0.9) Q(0.1) Q(0.5) Q(0.9)

2.92 4.85 1.17 8.16 10.57 9.48
4.07 6.88 1.73 11.38 14.99 14.02
4.69 7.66 1.87 13.10 16.69 15.11
4.89 8.21 2.03 13.69 17.88 16.43
4.32 7.21 1.84 12.08 15.71 14.91
4.40 7.49 1.87 12.29 16.32 15.11
4.51 7.81 1.90 12.60 17.01 15.39

Table 3:
Model Size

# Of
Parameters

65417
1390441
65417
32700
209923
286019
244609

weight matrix norm bounds are large. Furthermore, the
attention-based graph neural network methods (Deng
& Hooi, 2021; Guo et al., 2019; Zheng et al., 2020) may
also be susceptible to overfitting, particularly when
there is a large number of attention heads or the graph
size is large. Our analysis indicates that the generaliza-
tion error increases with the upper bound of the weight
matrix norm, the number of attention heads, and the
maximum number of neighbors. As the Tables 1, 2
and 3 together show, our proposed Weights-bounded
GAT can achieve the best performance with a generally
smaller model size. This proves that the prediction per-
formance advantage of our model does not come from
naively scaling up the model size. It further corrobo-
rated the weight-bounded control in our method has a
significant contribution in boosting up the prediction
performance.

The best hyperparameters of Weights-bounded GAT
and computational complexity are presented in §E.5
and §E.6.

6 DISCUSSION
We provide future research directions here. First, we
discuss the fundamental over-smoothing issue in deep
GNN-based models and how our Weights-bounded
method could help to mitigate it so that deep GNN-
based models can achieve better generalization perfor-
mance in time series prediction tasks, which leaves us
as the future work. Over-smoothing occurs when re-
peated rounds of message passing lead to node features
converging to a non-informative limit. This gradual
attenuation of feature significance harms GNN-based
models ability to capture the correlation between mul-
tiple time series. As a result, the node features be-
come increasingly similar, mixing different data points
together, which makes it difficult to achieve precise
predictions. Thus, deep GNN-based models today are
more likely to suffer from the over-smoothing issue.
Works such as Li et al. (2018) firstly have demon-
strated that graph over-smoothing arises from repeated
applications of Laplacian smoothing. However, GAT’s
over-smoothing is more intricate due to its multiplica-
tion of different attention matrices at different times,
adding complexity to the issue. Unlike other GNN

based models, where over-smoothing is clearer due to
simple aggregation problems, GAT’s over-smoothing is
less straightforward.

Various researchers have studied the over-smoothing
problem in deep GNN-based models and proposed some
improvement methods (Li et al., 2018; Oono & Suzuki,
2019; Rong et al., 2019; Chen et al., 2020a; Zhao &
Akoglu, 2019; Keriven, 2022; Wu et al., 2022).

Inspired by the above-mentioned works, one of the
future research is to investigate more advanced meth-
ods for mitigating over-smoothing while preserving
generalization guarantees in GATs. For example, the
weight-norm bound parameter could be made adaptive;
that is, the adaptive weight-norm bound parameters
could vary for each layer and they could be applied to
exert control differently across different graph nodes.
In weight-bound control, the trainable adaptive pa-
rameters could potentially mitigate over-smoothing by
diversifying the attention matrices across layers and
nodes. More diversified attention matrices across layers
and nodes – thus, a less similar message passing paths
in each layer and for each node– may help mitigate the
over-smoothing issue.

Secondly, given the availability of advanced techniques
for analyzing generalization error bounds in single at-
tention networks, we believe applying these techniques
to GATs could refine and improve current bounds fur-
ther.

Finally, our bound exhibits polynomial dependence
on the maximum number of neighbors. It would be
interesting to extend our work to large graphs with a
greater number of neighbors. Future research could
aim to improve this bound.
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A Proof of Theorem 3.1
Here we will derive the upper bound of ERC of two-layer GATs with on-dimensional output for the single-time-step
prediction.

As mentioned in section 2.2, our GATs model’s second layer l(2) uses Z(1) ∈ RN×KD1 as input, and outputs
Z(2) ∈ RN×C . The input to the first layer l(1) is a set of node features

X = [x1, . . . ,xN ]
⊤ RN×D,

where each xi ∈ RD, D is the number of features in each node. The first layer produces Z(1) ∈ RN×KD1 with
each zi(1) ∈ RKD1 for i = 1, . . . , N .

We have the first layer’s weight matrix to be

W(1,k) =
[
w1

(1,k), . . . ,w
D1

(1,k)

]
∈ RD×D1 .

Now we write the output vector of GATs from (2) for all node i, i ∈ N as,

zi(2) =

KD1∑
kd1=1

wkd1

(2)

∑
i2∈Ni

pi,i2(2) ·
K∑

k=1

σ

 D∑
d=1

wd,d1

(1,k)

∑
i1∈Ni2

pi2,i1(1,k)x
d
i1

 ∈ RC .

Here wd,d1

(1,k) =
[
W(1,k)

]
dd1

, the d, d1’s entry of W(1,k). Here we use index notation kd1 ∈ [KD1] because we
already have indexes k ∈ [K] and d1 ∈ [D1]. The summation indices are within the sets i2 ∈ Ni and i1 ∈ Ni2 . By
the definition of the attention matrix P as given in (6), we can allow both indices i2 and i1 to iterate from 1 to
N without losing anything.

And it is easy to show that above output can be easily written as in vector format:

zi(2) =

KD1∑
kd1=1

wkd1

(2)

N∑
i2=1

pi,i2(2) ·
K∑

k=1

σ

(
N∑

i1=1

pi2,i1(1,k)

〈
wd1

(1,k),xi1

〉)
,

where wd1

(1,k) represents the column d1 of W(1,k), wkd1

(2) represents the row kd1 of W(2), and wc
(2) represents the

column c of W(2). Then the class of functions defined over the node set N for all i ∈ N and c ∈ [C] will be

Fi =

{
f : X 7→ e⊤i f(X) =

KD1∑
kd1=1

wkd1

(2)

N∑
i2=1

pi,i2(2) ·
K∑

k=1

σ

(
N∑

i1=1

pi2,i1(1,k)

〈
wd1

(1,k),xi1

〉)
∈ RC ; (22)

∥∥W(1,k)

∥∥
F
≤ M1,

∥∥∥wc
(2)

∥∥∥ ≤ M2

}
, (23)

Furthermore, we also provide a model space with a single dimensional output that corresponds to the c-th
component of model output from f(x) for the c-th time step. Now we write the output of node i of time-step c of
l(2) as

f c
i (X) = zi,c(2) =

KD1∑
kd1=1

wkd1,c
(2)

N∑
i2=1

pi,i2(2) ·
K∑

k=1

σ

(
D∑

d=1

wd,d1

(1,k)

N∑
i1=1

pi2,i1(1,k)x
d
i1

)
,

and its vector format is

f c
i (X) = zi,c(2) =

KD1∑
kd1=1

wkd1,c
(2)

N∑
i2=1

pi,i2(2) ·
K∑

k=1

σ

(
N∑

i1=1

pi2,i1(1,k)

〈
wd1

(1,k),xi1

〉)

=

N∑
i2=1

pi,i2(2) ·
〈 K∑

k=1

σ

(
N∑

i1=1

pi2,i1(1,k)

〈
wd1

(1,k),xi1

〉)
︸ ︷︷ ︸

:=z
i2
(1)

,wc
(2)

〉
.

(24)
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Then the c− th component of the output vector of node i can be re-written as

zi,c(2) = σ

(
N∑

i2=1

pi,i2(2) ·
〈
zi2(1),w

c
(2)

〉)
,

where wc
(2) represents column c of W(2).

Now let hypothesis class Fc
i be a set of functions on ei and X. Specifically, we have such single dimensional GAT

function space defined as

Fc
i =

{
f c
i : Xj 7→ f c

i (Xj) =

KD1∑
kd1=1

wkd1,c
(2)

N∑
i2=1

pi,i2(2) ·
K∑

k=1

σ

(
N∑

i1=1

pi2,i1(1,k)

〈
wd1

(1,k),xi1

〉)
;

∥∥W(1,k)

∥∥
F
≤ M1,

∥∥∥wc
(2)

∥∥∥ ≤ M2, fi = (f c
1 , . . . , f

c
i ) ∈ Fi

}
.

(25)

We now begin presenting the proofs.

Step1: According to the definition of Fc
i in definition 25, the two layers GATs output in (24), and ERC in 2.4,

fix a λ > 0, and a fix a node i for all i = 1, . . . , N , and fix a c for all c = 1, . . . , C, we have

R(Fc
i ) =Eϵ

 1

n
sup

fc
i ∈Fc

i

n∑
j=1

ϵjf
c
i (Xj)



=Eϵ

 1

n
sup

∥W(1,k)∥F
≤M1

∥wc
(2)∥≤M2

n∑
j=1

ϵj

N∑
i2=1

pi,i2(2)j ·
〈
zi2(1)j ,w

c
(2)

〉

=Eϵ

 1

n
sup

∥W(1,k)∥F
≤M1

∥wc
(2)∥≤M2

〈 n∑
j=1

ϵj

N∑
i2=1

pi,i2(2)j · z
i2
(1)j ,w

c
(2)

〉
(a)
≤ 1

n

1

λ
logEϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λ
〈 n∑

j=1

ϵj

N∑
i2=1

pi,i2(2)j · z
i2
(1)j ,w

c
(2)

〉


(26)

Inequality (a) is based on Jensen’s inequality.

Equation (26) will be used in the derivation of the upper bound for the Rademacher complexity of GAT.

We continue to analyze the

Q :=
1

λ
logEϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λ
〈 n∑

j=1

ϵj

N∑
i2=1

pi,i2(2)j · z
i2
(1)j ,w

c
(2)

〉
 (27)

of the above equation.
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By the argument in sup(
∑

i xi) ≤
∑

i sup(xi), we have

Eϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λ
〈 n∑

j=1

ϵj

N∑
i2=1

pi,i2(2)j · z
i2
(1)j ,w

c
(2)

〉


=Eϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λ

N∑
i2=1

n∑
j=1

ϵjp
i,i2
(2)j ·

〈
zi2(1)j ,w

c
(2)

〉


≤Eϵ

exp


N∑
i2=1

sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λ

n∑
j=1

ϵjp
i,i2
(2)j ·

〈
zi2(1)j ,w

c
(2)

〉


≤ 1

N

N∑
i2=1

Eϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λN

n∑
j=1

ϵjp
i,i2
(2)j ·

〈
zi2(1)j ,w

c
(2)

〉


(28)

For any fixed i2 for all j, we have

Eϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λN

n∑
j=1

ϵjp
i,i2
(2)j ·

〈
zi2(1)j ,w

c
(2)

〉


(a)
≤Eϵ

exp
max

j,i,i2

∣∣∣pi,i2(2)j

∣∣∣ · sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λN

n∑
j=1

ϵj ·
〈
zi2(1)j ,w

c
(2)

〉


(b)
≤Eϵ

 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

exp

λN

n∑
j=1

ϵj ·
〈
zi2(1)j ,w

c
(2)

〉


(29)

The inequality (a) is due to the contraction inequality of ERC which is presented in Lemma D.1. The inequality (b)
is due to: the definition of graph attention matrix P, i.e., the maximum value of entries in each row is equal to 1;
the exponential function is monotone increasing.

Taking one step further, we obtain that

Eϵ

 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

exp

λN

n∑
j=1

ϵj ·
〈
zi2(1)j ,w

c
(2)

〉


(a)
≤Eϵ

 sup
∥W(1,k)∥F

≤M1

exp

M2λN

∥∥∥∥∥∥
n∑

j=1

ϵjz
i2
(1)j

∥∥∥∥∥∥


(30)

The inequality (a) comes from the Cauchy-Schwartz inequality.
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Step2: To bound the rest, we show a useful lemma.

Lemma A.1. Given a hypothesis class F of vector-valued functions that map the GATs inputs to the outputs ,
and any convex and monotonically increasing function h : R → R+, the following equation holds for the GATs
model of definition 15 with a 1-Lipschitz, positive-homogeneous activation function σ(·),

Eϵ

 sup
∥W(1,k)∥F

≤M1

h

∥∥∥∥∥∥
n∑

j=1

ϵjz
i2
(1)j

∥∥∥∥∥∥


=Eϵ

 sup
∥w(1,k)∥=M1

h

∥∥∥∥∥∥
n∑

j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)∥∥∥∥∥∥


≤2Eϵ

 sup
∥w(1,k)∥=M1

h

 K∑
k=1

n∑
j=1

ϵj

N∑
i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉 ,

(31)

where ϵj are independent Rademacher variables.

Proof. We first introduce some definitions.

The Z(1) is composed by concatenation of K outputs from the K identically structured attention layers l(1,k),
with each output denoted as

H(1,k) = σ(P(1,k)XW(1,k)) ∈ RN×D1 .

We then further write the output of attention head k of first layer l(1) as

H(1,k) =
[
h(1,k,1),h(1,k,2), . . . ,h(1,k,N)

]⊤ ∈ RN×D1 .

The output of first layer l(1) is

Z(1) =
[
h1
(1,k),h

2
(1,2), . . . ,h

N
(1,KD1)

]⊤
∈ RN×KD1 .

By the concatenation relationship, we have the row i2 of Z(1) to be

zi2(1) =
[
h⊤
(1,1,i2)

,h⊤
(1,2,i2)

, . . . ,h⊤
(1,k,i2)

]
∈ RKD1 . (32)

And we define each h(1,k,i2) as

h(1,k,i2) =
[
h1
(1,k,i2)

, h2
(1,k,i2)

, . . . , hD1

(1,k,i2)

]⊤
∈ RD1 ,

with each hd1

(1,k,i2)
∈ R defined as

hd1

(1,k,i2)
= σ

(
N∑

i1=1

pi2,i1(1,k)

〈
wd1

(1,k),xi1

〉)
.

Firstly, we have

Eϵ

 sup
∥W(1,k)∥F

≤M1

h

∥∥∥∥∥∥
n∑

j=1

ϵj · zi2(1)j

∥∥∥∥∥∥


≤Eϵ

 sup
∥w(1,k)∥=M1

h

 K∑
k=1

∣∣∣∣∣∣
n∑

j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)∣∣∣∣∣∣
 ,

(33)
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The equality is due to the following derivation:∥∥∥∥∥∥
n∑

j=1

ϵj · zi2(1)j

∥∥∥∥∥∥
2

=

KD1∑
kd1=1

 n∑
j=1

ϵjh
d1

(1,k,i2)j

2

=

K∑
k=1

D1∑
d1=1

 n∑
j=1

ϵjh
d1

(1,k,i2)j

2

=

K∑
k=1

D1∑
d1=1

 n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
wd1

(1,k),xi1j

〉)2

For a fixed k-th attention head, we let the w1
(1,k),w

2
(1,k), . . . ,w

D1

(1,k) be the the columns of W(1,k), then, by positive
homogeneity of σ, we have

K∑
k=1

D1∑
d1=1

 n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
wd1

(1,k),xi1j

〉)2

=

K∑
k=1

D1∑
d1=1

∥∥∥wd1

(1,k)

∥∥∥2
 n∑

j=1

ϵjσ

 N∑
i1=1

pi2,i1(1,k)j

〈
wd1

(1,k)∥∥∥wd1

(1,k)

∥∥∥ ,xi1j

〉2

The supremum of this quantity over w1
(1,k),w

2
(1,k), . . . ,w

D1

(1,k) under the constraint that
∥∥W(1,k)

∥∥2
F

≤ M2
1 =∑D1

d1=1

∥∥∥wd1

(1,k)

∥∥∥2 ≤ M2
1 is attained when

∥∥∥wd1

(1,k)

∥∥∥ = M1 for some d1 and
∥∥∥wd′

1

(1,k)

∥∥∥ = 0 for all other d′1 ̸= d1. In

the end, only the d1 term remain. For simplicity of notation, we use w(1,k) to mean that d1’s column wd1

(1,k).
Therefore, take the squared root on both sides, we have

Eϵ

 sup
∥W(1,k)∥F

≤M1

h

∥∥∥∥∥∥
n∑

j=1

ϵj · zi2(1)j

∥∥∥∥∥∥


≤Eϵ

 sup
∥w(1,k)∥=M1

h

∣∣∣∣∣∣
K∑

k=1

n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)∣∣∣∣∣∣
 (34)

Based on the previous analysis and go back to function h, we have

Eϵ

 sup
∥w(1,k)∥=M1

h

∣∣∣∣∣∣
K∑

k=1

n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)∣∣∣∣∣∣


(a)
≤Eϵ

 sup
∥w(1,k)∥=M1

h

+

 K∑
k=1

n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)
+ Eϵ

 sup
∥w(1,k)∥=M1

h

−

 K∑
k=1

n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)
(b)
=2Eϵ

 sup
∥w(1,k)∥=M1

h

 K∑
k=1

n∑
j=1

ϵjσ

(
N∑

i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉)
(c)
≤2Eϵ

 sup
∥w(1,k)∥=M1

h

 K∑
k=1

n∑
j=1

ϵj

N∑
i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉

(35)
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where the equality (a) above is due to h(|x|) ≤ h(+x) + h(−x) for any convex and monotonically increasing
function h, and the equality (b) comes from the symmetry in the distribution of the ϵi random variables, and the
equality (c) we use the fact that σ is 1−Lipschitz continuous and Ledoux-Talagrand contraction inequality in
Lemma D.1.

Then by Lemma A.1, we choose h(α) = exp (M2λN · α), we have

Eϵ

 sup
∥W(1,k)∥F

≤M1

exp

M2λN

∥∥∥∥∥∥
n∑

j=1

ϵjz
i2
(1)j

∥∥∥∥∥∥


≤2Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λN ·
K∑

k=1

n∑
j=1

ϵj

N∑
i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉
≤2

1

K

K∑
k=1

·Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNK ·
n∑

j=1

ϵj

N∑
i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉
(36)

Put (28), (30), and (36) together, we get

Q ≤ 1

λ
log

Eϵ

 sup
∥W(1,k)∥F

≤M1

exp

M2λNK

∥∥∥∥∥∥
n∑

j=1

ϵj · zi2(1)j

∥∥∥∥∥∥
2


≤ 1

λ
log

2
1

N

N∑
i2=1

1

K

K∑
k=1

·Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNK ·
n∑

j=1

ϵj

N∑
i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉 (37)

We continue to derive that

Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNK ·
n∑

j=1

ϵj

N∑
i1=1

pi2,i1(1,k)j

〈
w(1,k),xi1j

〉
≤ 1

N

N∑
i1=1

Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNKN
〈 n∑

j=1

ϵjp
i2,i1
(1,k)jxi1j ,w(1,k)

〉 (38)

Now we fix a i, we have

Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNKN
〈 n∑

j=1

ϵjp
i2,i1
(1,k)jxi1j ,w(1,k)

〉
≤Eϵ

exp
 max

k,j,i2,i1

∣∣∣pi2,i1(1,k)j

∣∣∣ sup
∥w(1,k)∥=M1

M2λNKN
〈 n∑

j=1

ϵjxi1j ,w(1,k)

〉
(a)
≤Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNKN
〈 n∑

j=1

ϵjxi1j ,w(1,k)

〉 ,

(39)

where in inequality a again we use the property of the attention matrix P.

Step3: Then by Cauchy-Schwartz, we have
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Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNKN
〈 n∑

j=1

ϵjxi1j ,w(1,k)

〉

=Eϵ

 sup
∥w(1,k)∥=M1

exp

M2λNKN


∥∥∥∥∥∥

n∑
j=1

ϵjxi1j

∥∥∥∥∥∥
2

2

∥∥w(1,k)

∥∥2
2


1/2



(a)
≤Eϵ

exp
M2M1λNKN

∥∥∥∥∥∥
n∑

j=1

ϵjxi1j

∥∥∥∥∥∥
 .

(40)

here we use xi1j to mean the input coming from the j’s batch of data and n’s node. Subsequently, we define the
following random variable Z

Z = M2M1N
2K

∥∥∥∥∥∥
n∑

j=1

ϵjxi1j

∥∥∥∥∥∥ (41)

We further bound the expectation of Z, we have

Eϵ [Z] = Eϵ

M2M1N
2K

∥∥∥∥∥∥
n∑

j=1

ϵjxi1j

∥∥∥∥∥∥


(a)
≤M2M1N

2K

√√√√√√Eϵ


∥∥∥∥∥∥

n∑
j=1

ϵjxi1j

∥∥∥∥∥∥
2


≤M2M1N
2K

√√√√√Eϵ

∑
j′j

ϵj′ϵjx⊤
i1j′

xi1j


(b)
=M2M1N

2K

√√√√ n∑
j=1

∥xi1j∥
2

(42)

and the inequality (a) is by Jensen’s inequality. And the equality (b) follows the i.i.d. condition of Rademacher
sequences with zero-mean.

Next, based on equation (37), (39), (40), and (41),

We have

nR(Fc
i ) ≤ Q ≤ 1

λ
log

(
2
1

N

N∑
i2=1

1

K

K∑
k=1

1

N

N∑
i1=1

·Eϵ [exp (λZ)]

)

=
1

λ
log 2 +

1

λ
log (·Eϵ [expλ (Z − Eϵ [Z])]) + Eϵ [Z]

(43)

Following the results in Ledoux & Talagrand (1991), we can show Z is sub-Gaussian with the following variance
factor V since Z is a deterministic function of the i.i.d. random variables ϵ1, . . . , ϵn satisfies a bounded-difference
condition, i.e.,

Z(ϵ1, ..., ϵj , ..., ϵn)− Z(ϵ1, ...,−ϵj , ..., ϵn) ≤ 2M2M1N
2K ∥xi1j∥ (44)

If we denote M = M2M1N
2K, then we have

V =
1

4

n∑
j=1

(2M ∥x∥)2 = 2M2
n∑

j=1

∥xi1j∥
2

(45)
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According to the property of sub-Gaussian random variables, the following inequality holds for Z:

1

λ
log (Eϵ [exp (λ(Z − Eϵ [Z]))])

≤
λM2

∑n
j=1 ∥xi1j∥

2

2

(46)

To minimize the right hand side of (43), let λ =

√
2 log(2)

M
√∑n

j=1∥xi1j∥2
, combined with the earlier result, we get

Q
(a)
≤ 1

λ
log 2 +

1

λ
log (·Eϵ [expλ (Z − Eϵ [Z])]) + Eϵ [Z]

≤M

√√√√ n∑
j=1

∥xi1j∥
2

√
log 2

2
+

√
log 2

2
M

√√√√ n∑
j=1

∥xi1j∥
2
+M

√√√√ n∑
j=1

∥xi1j∥
2

≤M
(√

2 log 2 + 1
)√√√√ n∑

j=1

∥xi1j∥
2

(b)
≤N2KM2M1

√
n
(√

2 log 2 + 1
)
B

(47)

where (a) holds by the choice of λ and simple calculation, and (b) holds by our assumption that ∥x∥ ≤ B .
Finally, after changing N to Ne, and (47) holds for all n, we have

R(Fc
i ) ≤ BK(Ne)

2M1M2

(√
2 log 2 + 1

)
(n)−1/2 (48)

B Poof of Theorem 3.2
We now turn to prove the Theorem 3.2. Our proof strategy will be the following. We first provide a classic
theorem that was used to bound the expected loss based on the empirical loss and the upper bound of ERC of
loss functions associated with GATs for the multi-time-step situation Fi, then we derive this upper bound of
ERC of loss functions of Fi by extending the upper bound of ERC of GATs with one-dimensional output for the
single-time-step prediction Fc

i , based on the existing theorem in literature.

Proof. From Theorem 3.3 Mohri et al. (2018), first, we define loss function class for Fi

GFi
= {(X,y) 7→ g(fi(X),y);

fi ∈ Fi,X ∈ RN×D,y ∈ RC
}
.

(49)

We will show the following holds for all g ∈ GF ,

E(g) ≤ Ê(g) + 2
1

N

N∑
i=1

R(GFi
) + 3

√
ln(2/δ)

2n
,

where E(g), R(GFi
), and Ê(g) are defined in section 2.3. We will prove this based on Theorem 3.3.

We know the training set contains training set S = {(X1,Y1), . . . , (Xn,Yn)} contains n size of i.i.d samples
over the graph G, where for each sample j = 1, . . . , n, we have feature Xj = [x1j ,x2j , . . . ,xNj ]

⊤, true label
Yj = [y1j ,y2j , . . . ,yNj ]

⊤. For GF , we let ϕ defined for any sample S by

ϕ(S) = sup
g∈GF

(
E(g)− ÊnS(g)

)
. (50)

Let S and S′ be two samples differing by exactly one point, say (Xj ,Yj) in S and (X′
j ,Y

′
j) in S′. Furthermore, we

have S = {(X1,Y1), . . . , (Xn,Yn)} and S′ = {(X′
1,Y

′
1), . . . , (X

′
n,Y

′
n)} having the same distribution as (X,Y).



Zhi Zhang, Weijian Li, Han Liu

Then, since the difference of suprema does not exceed the supremum of the difference, we have

ϕ(S′)− ϕ(S) ≤ sup
g∈GF

(
ÊnS′(g)− ÊnS(g)

)
= sup

g∈GF

1
N

∑N
i=1

[
g(e⊤i f(X

′
j),y

′
ij))− g(e⊤i f(Xj),yij))

]
n

≤ 1

n
. (51)

Similarly, we can obtain ϕ(S)− ϕ(S′) ≤ 1
n , thus |ϕ(S)− ϕ(S′)| ≤ 1

n . Then, by Bounded differences inequality, see
Corollary 2.21 in Wainwright (2019), for any δ > 0, with probability at least 1− δ/2, the following holds:

ϕ(S) ≤ ES [ϕ(S)] +

√
log 2

δ

2n
. (52)

We next bound the expectation of the right-hand side as follows:

ES [ϕ(S)] = E
[
sup
g∈GF

(
E(g)− ÊnS(g)

)]

= ES

 sup
g∈GF

E

[
1

N

N∑
i=1

g
(
e⊤i f(X),yi

)]
− 1

n

n∑
j=1

1

N

N∑
i=1

g
(
e⊤i f(Xj),yij

)
≤ 1

N

N∑
i=1

ES

 sup
g∈GF

E
[
g
(
e⊤i f(X),yi

)]
− 1

n

n∑
j=1

g
(
e⊤i f(Xj),yij

)
(a)
=

1

N

N∑
i=1

ES

 sup
g∈GFi

ES′

 1

n

n∑
j=1

g
(
fi(X

′
j),y

′
ij

)
− 1

n

n∑
j=1

g (fi(Xj),yij)


(b)
≤ 1

N

N∑
i=1

ES,S′

 sup
g∈GFi

 1

n

n∑
j=1

(
g
(
fi(X

′
j),y

′
ij

)
− g (fi(Xj),yij)

)
(c)
≤ 1

N

N∑
i=1

ES,S′,ϵ

 sup
g∈GFi

 1

n

n∑
j=1

ϵj ·
(
g
(
fi(X

′
j),y

′
ij

)
− g (fi(Xj),yij)

)
≤ 1

N

N∑
i=1

ES,ϵ

 sup
g∈GFi

1

n

n∑
j=1

ϵjg
(
fi(X

′
j),y

′
ij

)+
1

N

N∑
i=1

ES′,ϵ

 sup
g∈GFi

1

n

n∑
j=1

−ϵjg (fi(Xj),yij)


= 2

1

N

N∑
i=1

ES,ϵ

 sup
g∈GFi

1

n

n∑
j=1

ϵjg (fi(Xj),yij)

 = 2
1

N

N∑
i=1

ER(GFi
).

Equation (a) uses the fact that points in S′ and S are sampled in an i.i.d. fashion and they have the same
distribution. Inequality (b) holds due to the sub-additivity of the supremum function. Inequality (c) holds due to
the

(
g
(
fi(X

′
j),y

′
ij

)
− g (fi(Xj),yij)

)
and ϵj ·

(
g
(
fi(X

′
j),y

′
ij

)
− g (fi(Xj),yij)

)
have the same distribution.

Furthermore, we observe that, by changing one point in S changes ES,ϵ

[
supg∈GFi

1
n

∑n
j=1 ϵjg (fi(Xj),yij)

]
by at

most 1
n . Then, using again bounded difference inequality, with probability 1− δ/2 the following holds:

ES,ϵ

 sup
g∈GFi

1

n

n∑
j=1

ϵjg (fi(Xj),yij)

 ≤ Eϵ

 sup
g∈GFi

1

n

n∑
j=1

ϵjg (fi(Xj),yij)

+

√
log 2

δ

2n

Thus, we obtain with with probability 1− δ the following holds:

sup
g∈GF

(
E(g)− ÊnS(g)

)
≤ 2

1

N

N∑
i=1

R(GFi
) + 3

√
log 2

δ

2n
.
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In order to extend to multi-dimensional vector-valued functions for MTSF, we will use the contraction inequality
for the hypothesis class Fi of vector-valued functions fi ∈ RC and Lipschitz continuous property of g. However,
the RHS of equation 53 has supremum over all fi ∈ Fi which is hard to compute and we can reduce it to scalar
classes, and derive the following bound (Maurer, 2016). Lemma B.1 shows this derivation, Then put the result in
(48) for R(Fc

i ) for all i = 1, . . . , N and for all c = 1, . . . , C, in the end, we get

sup
g∈GF

(
E(g)− ÊnS(g)

)
≤ 2

√
2CLgR(Fc

i ) + 3

√
log 2

δ

2n
.

Lemma B.1 (See Corollary 4 in Maurer (2016)). Let F be the class of GATs functions in (13). Let Fi be the
class of vector-valued functions in (14) with fi = (f1

i , . . . , f
C
i ) ∈ Fi, with each f c

i ∈ Fc
i with Fc

i defined in (15),
let training set S = {(X1,Y1), . . . , (Xn,Yn)} contains n size of samples, where for each sample j ∈ 1, . . . , n, we
have Xj = [x1j ,x2j , . . . ,xNj ]

⊤, Yj = [y1j ,y2j , . . . ,yNj ]
⊤. with each xij ∈ RD and yij ∈ RC . Let g(·, ·) ∈ GF be

a Lg-Lipschitz function mapping RC × RC to [0, 1] with GFi
defined in (49), and associated to Fi. Then we have

for all i = 1, . . . , N ,

R(GFi) = Eϵ

 sup
g∈gFi

1

n

n∑
j=1

ϵjg(fi(Xj),yij)

 ≤
√
2

C∑
c=1

LgEϵ

 sup
fc
i ∈Fc

i

n∑
j=1

ϵjf
c
i (Xj)

 . (53)

Proof. Based on the fact that our loss g is bounded and continuous, it has Lipschitz norm 1. So we have

R(GFi) := Eϵ

 sup
fi∈Fi,g∈GFi

1

n

n∑
j=1

ϵjg(fi(Xj),yij)


= Eϵ

 sup
fi∈Fi

g has a Lg-Lipschitz norm

n∑
j=1

ϵjg(fi(Xj),yij)


≤

√
2LgEϵ

 sup
fi∈Fi

1

n

n∑
j=1

C∑
c=1

ϵjcf
c
i (Xj)

 ,

(54)

where ϵjc is an independent doubly indexed Rademacher sequence.

Eϵ

 sup
fi∈Fi

fi=(f1
i ,...,f

c
i )

1

n

n∑
j=1

C∑
c=1

ϵjcf
c
i (Xj)

 ≤
C∑

c=1

Eϵ

 sup
fc
i ∈Fc

i

1

n

n∑
j=1

ϵjf
c
i (Xj)

 , (55)

Then we can derive the following upper bound for the loss function g(fi(X),yi) with fi(X) being vector-valued
functions based on equation 54 and 55, where the RHS of equation 55 is related to R(Fc

i ):

R(GFi
) ≤

√
2

C∑
c=1

LgR(Fc
i ) (56)
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C Proof Theorem 4.1 and Theorem 4.2

Proof. For l = L, by the definition of network output and in (2) the ERC in (12), fix a λ > 0, and fix a node i for
all i = 1, . . . , N , and fix a c for all c = 1, . . . , C, we have

R(Fc
i ) =Eϵ

 1

n
sup

fc
i ∈Fc

i

n∑
j=1

ϵjf
c
i (Xj)



=Eϵ

 1

n
sup

f(L−1)∈FL−1

∥wc
(L)∥≤ML

n∑
j=1

ϵj

N∑
iL=1

pi,iL(L)j ·
〈
ziL(L−1)j ,w

c
(L)

〉

≤ 1

n

1

λ
logEϵ

 sup
f(L−1)∈FL−1

∥wc
(L)∥≤ML

exp

λ

n∑
j=1

ϵj

N∑
iL=1

pi,iL(L)j ·
〈
ziL(L−1)j ,w

c
(L)

〉


(57)

we continue to analyze the

Q :=
1

λ
logEϵ

exp
 sup
∥W(1,k)∥F

≤M1

∥wc
(2)∥≤M2

λ
〈 n∑

j=1

ϵj

N∑
iL=1

pi,iL(L)j · z
iL
(L−1)j ,w

c
(L)

〉
 (58)

of the above equation.

We use the same analysis in Equation (28), we get

Eϵ

 sup
f(L−1)∈FL−1

∥wc
(L)∥≤ML

exp

λ

n∑
j=1

ϵj

N∑
iL=1

pi,iL(L)j ·
〈
ziL(L−1)j ,w

c
(L)

〉


≤ 1

N

N∑
iL=1

Eϵ

 sup
∥W(L−1,k)∥≤ML−1

f(L−2)∈FL−2

exp

λN

n∑
j=1

ϵj ·
〈
ziL(L−1)j ,w

c
(L)

〉
 .

We then use the same analysis in equation (29) and (30), for any fixed node index iL, we get

Eϵ

 sup
∥W(L−1,k)∥≤ML−1

f(L−2)∈FL−2

exp

λN

n∑
j=1

ϵj ·
〈
ziL(L−1)j ,w

c
(L)

〉


≤Eϵ

 sup
∥W(L−1,k)∥≤ML−1

f(L−2)∈FL−2

exp

MLλN

∥∥∥∥∥∥
n∑

j=1

ϵj · ziL(L−1)j

∥∥∥∥∥∥

 .

(59)
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By using the same analysis for equation (36), we get

Eϵ

 sup
∥W(L−1,k)∥≤ML−1

f(L−2)∈FL−2

exp

MLλN

∥∥∥∥∥∥
n∑

j=1

ϵj · ziL(L−1)j

∥∥∥∥∥∥



(a)
≤2Eϵ

 sup
∥w(L−1,k)∥=ML−1

f(L−2)∈FL−2

exp

MLλN

K∑
k=1

n∑
j=1

ϵj

N∑
iL−1=1

p
iL,iL−1

(L−1,k)j

〈
w(L−1,k), z

iL−1

(L−2)j

〉


≤2
1

K

K∑
k=1

Eϵ

 sup
∥w(L−1,k)∥=ML−1

f(L−2)∈FL−2

exp

MLλNK

n∑
j=1

ϵj

N∑
iL−1=1
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(60)

For the inequality (a) above, we again apply Lemma A.1.

Similar to the Inequality (38), for a fixed k = 1, . . . ,K, we have

Eϵ

 sup
∥w(L−1,k)∥=ML−1

f(L−2)∈FL−2

exp

MLλNK
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〈
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〉

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〉


(61)

For any fixed iL−1, similar to the processes in equation (39), we have

Eϵ

 sup
∥w(L−1,k)∥=ML−1

f(L−2)∈FL−2

exp
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(L−2)j ,w(L−1,k)
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

(a)
≤Eϵ
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∥w(L−1,k)∥=ML−1

f(L−2)∈FL−2

exp

MLλNKN
〈 n∑

j=1

ϵjz
iL−1

(L−2)j ,w(L−1,k)

〉
 ,

(62)

where in inequality (a) again we use the property of the attention matrix P.

Now, we have
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Eϵ
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Then we get the induction equation, for any l ∈ [L− 1], we have
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By induction until l = 1, we get
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λ
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1
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· · ·
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(63)

We denote M = ML . . .M1N
LKL−1, we define the random variable Z

Z = M

∥∥∥∥∥∥
n∑

j=1

ϵjxi1j

∥∥∥∥∥∥ (64)

Again, we can show that Z is sub-Gaussian satisfies a bounded-difference condition with the following variance
factor V such that

V = M2
n∑

j=1

∥xi1j∥
2

(65)

Combining with the results we derived in equation (57), (59), (63), and (64), we get
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Q ≤ 1

λ
log
(
2L−1 · Eϵ [exp (λZ)]

)
=

(L− 1) log 2

λ
+

1

λ
(·Eϵ [expλ (Z − Eϵ [Z])]) + Eϵ [Z]

(66)

Furthermore, by the property of sub-Gaussian, the following inequality holds for z:

1

λ
log (Eϵ [exp (λ(Z − Eϵ [Z]))])

≤
λM2

∑n
j=1 ∥xi1j∥

2

2

(67)

If we choose λ =

√
(L−1)2 log(2)

M
√∑n

j=1∥xi1j∥2
, combined with the earlier result, we get
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(68)

Finally, after changing N to Ne, and (68) holds for all n, we got

R(Fc) ≤ NL
e ML · · ·M1K

L−1
(√

2(L− 1) log(2) + 1
)
B(n)−1/2. (69)

D Auxiliary Lemmas
Lemma D.1. (Ledoux-Talagrand contraction inequality) Let h : R → [0,+∞] be convex and monotonically
increasing. Let ϕj : R → R satisfy ϕj(0) = 0 and be Lipschitz with constant L, i.e., |ϕj(a)− ϕj(b)| ≤ L|a− b|. Let
ϵi be independent Rademacher random variables, and let f be a scalar function, then

Eϵ

h
sup

f∈F

n∑
j=1

ϵjϕj(f(Xj))

 ≤ Eϵ

h
L sup

f∈F

n∑
j=1

ϵjf(Xj)

 (70)

Proof. See Theorem 7 in Duchi (2009).

E Experiment and Data
E.1 Experiment setup

The model is trained by the Adam optimizer (Kingma & Ba, 2014). The learning rate is 1e-4. The number of
training epochs is 30. The batch size is set to 5. We split the dataset into three parts for training, validation and
testing with a ratio of 0.6 : 0.2 : 0.2. All the deep learning models, are implemented in Python with Pytorch and
executed on a server with 8 NVIDIA GeForce GTX 2080Ti GPUs. The Nvidia driver version is 470.141.03 and
the CUDA version is 11.4.
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E.2 Experiment Data

The multivariate time series have about 1500 stocks, and all of these stocks are used for training and testing.
This dataset is from Kaggle2. We ensure that the training and testing data do not overlap. For each stock, the
one-week historical data is used to predict future returns. By default, we use a three-layer (input layer, hidden
layer, and output layer) GAT to do single-step forecasting on the returns of each stock. For each variable, we try
its various values with all other variables’s values fixed. We repeat the experiment 20 times and report the loss
on the out-of-sample test dataset to represent its generalization error. We also obtain a standard deviation of the
generalization error. We use mean square error (MSE) as evaluation metrics.

To show our theory’s generality on time series prediction problems, we also conduct the same set of experiments
on a second multivariate time series dataset from a different domain. We use the Beijing PM2.5 dataset from
UCI 3. It is a by-hour dataset. The prediction target is the PM2.5 concentration in real numbers. The task is to
use 7 features’ values in the past 7 hours to predict the PM2.5 concentration value in the next hour.

Table 4: Experiment environment. The list only includes major packages. All the packages are installed using Anaconda
and Pip.

Package Version

python 3.9.13
matplotlib 3.5.2
numpy 1.23.1
pandas 1.4.4
pytorch 1.12.1
torch-geometric 2.1.0.post1
torch-scatter 2.0.9
torch-sparse 0.6.15

E.3 Neural Network Architecture

We implement our neural network as a three-layer Graph Attention Neural network. This includes the input layer,
one hidden layer, and the output layer. Each layer is a GATConv layer from the Pytorch-Geometric package 4.
We use ELU activation (Clevert et al., 2015) and Dropout (Srivastava et al., 2014) after both the input layer and
the hidden layer.

For the number of heads variable, we change the number of attention heads of each layer and all layers use
the same number of attention heads. For the number of neighbors variable, we adjust the dropout rate inside
each layer’s attention mechanism (different from the dropout layer) so that only a percentage of the nodes are
considered when using the attention to aggregate information from a node’s neighbors. For the weight norm
variable, we adjust the bound of the Frobenius norm of the weight matrix inside each layer by using weight
clipping. Each element of the weight matrix is clipped to the threshold to make sure the Frobenius norm of the
matrix is less than or equal to the bound. For the number of layers variable, we adjust the number of hidden
layers ranging from 1 to 8. For the input norm variable, we make sure each node’s feature vector’s norm is less
than or equal to a bound ranging from 1 to 28. For the maximum number of neighbors, we first create a graph
network from the data. We calculate pairwise correlations of nodes using the features, forming a correlation
matrix. For each node, we select the top Ne nodes with the strongest correlations as its neighbors.

2https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
3https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
4https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

https://www.kaggle.com/datasets/paultimothymooney/stock-market-data
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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E.4 Model Hyperparameters

Table 5: Default hyperparameters. When we study the impact of different values of a variable such as the number of heads,
we keep all other variables fixed to the a set of same values.

Hyperparameter Value Comment

num-hid-layers 1 Number of hidden GATConv layers
num-heads 2 Number of attention heads; Same for all layers
num-neighbors 0.1 Neighbors to obtain attentions; Percentage of all nodes
train-ratio 0.6 Ratio of training dataset
inputs-norm 1.0 Bound of the norm of the inputs
weights-bound None Bound of the norm of the model weights if not None
hidden-size 32 Out-channels of the input layer and hidden layer
lr 1e-4 Learning rate
dropout 0.1 Dropout rate after input layer and hidden layer

We provide source code for the reproducibility of the paper. The code is posted on GitHub5.

E.5 Best Model Hyperparameters

Below we present the best hyperparameters used in our method.

Table 6: Best hyperparameters.

Hyperparameter Value Comment

num-hid-layers 2 Number of hidden GATConv layers
num-heads 16 Number of attention heads; Same for all layers
num-neighbors 6 Number of neighbors to obtain attentions;
inputs-norm 1.0 Bound of the norm of the inputs
weights-bound 4.0 Bound of the norm of the model weights if not None
hidden-size 32 Out-channels of the input layer and hidden layer
lr 1e-4 Learning rate
dropout 0.1 Dropout rate after input layer and hidden layer

E.6 Computational Complexity

Computational Complexity: The time complexity of the L layers GAT with K attention heads can be expressed
as O(KL(NDC + |E|C)). Here, D represents the number of input features, C is the number of output features,
and N and |E| denote the numbers of nodes and edges in the graph, respectively. This calculation is based on
the reference in Veličković et al. (2017).

F More Experiments And Discussions To Verify The Theoretical Bounds

F.1 Discussions About Results For Three-Layer GATs

In our experiment, we use a three-layer GAT to demonstrate Theorem 4.1, Figure 1 shows that our experiment
result is consistent with the theory. Below we provide more discussions about the results.

Number of Attention Heads - K. For three-layer GATs, Theorem 4.1 indicates that with the increasing
number of attention heads in the attention layer, the upper bound of ERC is y = O(KL−1). The experiment
results in Figure 1 shows test error beginning to increase quadratically after some values of K. This is consistent
with our theoretical results on the generalization error bound.

5https://github.com/zzh237/Weight-bounded-GAT

https://github.com/zzh237/Weight-bounded-GAT
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Maximum Number of Neighbors - Ne. For the maximum number of neighbors, the theoretical upper bound
of ERC is y = O(NL

e ). Figure 1 demonstrates that as the Ne increases, the test error conforms to this theoretical
error bound. But it is noteworthy that when the number is too small, the loss is also high. It is possible that at a
certain range, the influence of the information loss due to the limited number of neighbors is dominant. a node
may only depend on a limited number of other nodes, and increasing its neighborhood could introduce noises to
the model for MTSF.

Norm of Weight Matrix - Ml. Theorem 4.1 indicates that with the increasing bound of the Frobenius norm,
the upper bound of ERC increases polynomially. The experiment results in Figure 1 corroborate the conclusion.
When the weight norm increases, the generalization error first decreases, then increases. The reason for the initial
decrease is because the bound on the norms is so small that it severely prevents the weights from having enough
amount of updates. Thus, the scales (norms) of the weight matrices should be neither too large (induces large
generalization error) nor too small (harms weights’ updates) and choosing proper scales is important in practice.

Norm of Inputs - B. The experiment results in Figure 1 show that when the input norm is greater than
certain values, the generalization loss of the GAT has a linear relationship with the upper bound of the input
norm. This empirical observation aligns with Theorem 4.1.

Sample Size - n. Our Theorem 3.1 reports that the ERC has a polynomial O(n−1/2)’s dependence on the
sample size. As we can see from Figure 1, the generalization loss decreases when the training data set size
increases. The red curve based on the theoretical value matches the pattern of the blue and yellow curves based
on our experiments.

F.2 For Two-Layers
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Figure 2: Additional experiment results on the stock dataset using a two-layer GAT on three variables in the ERC. We
run the experiment 20 times and obtain a standard deviation of the generalization error. (a) relationship between test loss
and different variables. The red line is a possible theoretical upper bound. The plots show that when L equals to 2, all test
losses still generally conform to the big O of the theoretical upper bound.

In the experiment section, for all experiments, where the number of layers, L, needs to be fixed for studying
the relationship of the generalization error with different GAT components that impact the ERC, including the
number of attention heads, the number of neighbors, the upper bound of weights norm.

However, the upper bound of input norm and the training data size affecting the ERC do not depend on the
number of layers, thus, in our supplemental experiment for two-layer GATs, we only consider the three variables
(the number of attention heads, the number of neighbors, and the upper bound of weights norm) that impact
ERC and depend on the number of layers. Notably, Theorem 3.1 for generalization error bound of two-layer GATs
is just a special case of Theorem 4.1 for deep GATs: when we let L equal to 2 in Theorem 4.1, the generalization
error bound is identical to the bound in Theorem 3.1 multiplied with some constants. We now give empirical
results on two-layer GATs to see if it is consistent with Theorem 3.1 and Theorem 4.1.

In this appendix section, we include more experiment results from a two-layer GAT on three variables in the
ERC on the stock dataset. As Figure 2 shows, when the number of attention heads increases, the generalization
error increases at a linear rate after certain values. When the number of neighbors increases, the generalization
error initially decreases when the number of neighbors is small, then starts increasing following the trend of a
polynomial function. As for the upper bound of weight norm, the generalization error increases quadratically
with the increment of the norm. The empirical results for all three variables generally conform to the theoretical
bound suggested by Theorem 3.1 as well as Theorem 4.1. For some inconsistency between the results and the
reference red line or theoretical results at the the beginning, the reason, as we have discussed, can be due to
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the trade-off between approximation error and estimation error, since when the complexity of the hypothesis
class increases, the former decreases and the latter increases. In the long run, the estimation error or the ERC
dominates the bound.

Thus, the results for L = 2 along with the three-layer experiments provide evidence for our theoretical findings
(Theorem 3.1 and Theorem 4.1).

G Experiments Of Comparing the Weights-bounded GAT with Weight decay
we conducted an additional hyperparameter search experiment to compare the Weight-bounded GAT with Vanilla
GAT.

The experiment was repeated five times to account for variations with different random seeds. For each random
seed, for Vanilla GAT, the weight decay hyperparameter was tuned, while for Weight-bounded GAT, the weight
bound was tuned and the weight decay was not used (set to 0). The remaining hyperparameters were kept the
same. The testing Mean Squared Error (MSE) and standard deviation across different random seeds are presented
in the subsequent table.

For hyperparameter tuning, we employed the Bayesian optimization method using Hyperopt
http://hyperopt.github.io/hyperopt/. For each random seed, the optimization process ran 50 trials.
The weight decay value in each trial was sampled from a lognormal distribution λ ∼ Lognormal(1, 1). The weight
bound value in each trial was sampled from a lognormal distribution M ∼ Lognormal(1, 1).

Table 7: Comparion of Weights-bounded GAT with Vanilla GAT with Tuned Weight Decay

Dataset Method Mean(10−3) Std seed1 seed2 seed3 seed4 seed5

Stock Weight-bounded GAT 0.531 0.004 0.531 0.527 0.534 0.526 0.536
Vanilla GAT With Tuned Weight Decay 2.641 3.920 0.622 1.630 0.544 0.800 9.610

Pm25 Weight-bounded GAT 78.98 0.821 79.75 79.18 77.83 78.48 79.68
Vanilla GAT With Tuned Weight Decay 81.72 1.343 81.49 80.71 83.63 79.95 82.80

The results table shows that it is still true that the Weight-bounded GAT with fine-tuned weight bound outperforms
the Vanilla GAT with fine-tuned weight decay. The Weight-bounded GAT with tuned weight bound has both
smaller average MSE across different random seeds and smaller standard deviation. While the Vanilla GAT
with tuned weight decay would not achieve the same performance and it also has more variation across different
random seeds. The result is consistent with our intial findings in the paper.

H Comparison With Another Method For MTSF
In this section, to further evaluate our method, we also compare the performance of the Weights-bounded GAT
against a top-tier time series forecasting model that is not based on graph neural networks, the Patch Time Series
Transformer (PatchTST)Nie et al. (2022).

Table 8 presents the results, indicating that our method outperforms PatchTST across different prediction horizons
on eight common multivariate time series datasets.

Table 8: Comparison with PatchTST on multiple datasets

Prediction horizon (ETTh1) Prediction horizon (Traffic) Prediction horizon (ILI) Prediction horizon (ETTm1)
96 192 336 720 96 192 336 720 24 36 48 60 96 192 336 720

Ours 0.354 0.392 0.406 0.430 0.345 0.362 0.374 0.419 1.303 1.560 1.535 1.447 0.289 0.329 0.363 0.409
PatchTST 0.37 0.413 0.422 0.447 0.360 0.379 0.392 0.432 1.319 1.579 1.553 1.470 0.293 0.333 0.369 0.416

Prediction horizon (Weather) Prediction horizon (Electricity) Prediction horizon (ETTh2) Prediction horizon (ETTm2)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Ours 0.131 0.180 0.228 0.297 0.121 0.145 0.156 0.191 0.267 0.328 0.317 0.350 0.164 0.221 0.271 0.349
PatchTST 0.149 0.194 0.245 0.314 0.129 0.147 0.163 0.197 0.274 0.341 0.329 0.379 0.166 0.223 0.274 0.362

I Overview of Baselines used in Table 1 For MTSF
In this section, we provide an overview of the baselines we used. GDN is proposed by Deng & Hooi (2021) and is
used for anomaly detection in multivariate time series, however, it is originally used for classification. To adapt
it to our settings, we modify the output layer of GDN to perform the regression instead of the classification
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task. Apart from using graph attention mechanism, GDN also learns a directed graph to model the causal-effect
relationship between different nodes, which can capture the asymmetric dependency patterns. ASTGCN is
developed by Guo et al. (2019) for multiple traffic flow forecasting. ASTGCN considers the attention along the
time axis and between nodes. GMAN is proposed by Zheng et al. (2020) for traffic prediction. GMAN uses a
multi-attention mechanism to capture the dependencies among different graph regions and also employs a graph
pooling layer to adaptively select the most informative regions. However, the mentioned attention-based methods
may be prone to overfitting, especially when their weight matrix norm bounds are large, along with a high number
of attention heads and a large maximum number of neighbors. Our analysis indicates that the generalization
error increases if the weight matrix norm’s upper bound is large, the number of attention heads is high, and the
maximum number of neighbors is extensive.

For other methods that not consider attention mechanisms, the STGCN (Yu et al., 2017) employs 1D convolution
filters on the temporal dimension to capture temporal dependencies. MTGNN(Zhang et al., 2020) operates on a
hierarchical graph structure, where multiple graphs are stacked to capture the dependencies at different levels of
granularity. The attention mechanism could further be used to capture dependencies.

As shown in Table 1, the weight-bounded GAT performs better than all the baselines, including the vanilla GAT
that does not add the weight bound. Our theoretical framework, which explores the relationship between the
generalization error bound and the weight matrix norm bound, supports these experimental findings.
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