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Abstract

We study online learning in contextual pay-
per-click auctions where at each of the T
rounds, the learner receives some context
along with a set of ads and needs to make an
estimate on their click-through rate (CTR)
in order to run a second-price pay-per-click
auction. The learner’s goal is to minimize
her regret, defined as the gap between her
total revenue and that of an oracle strategy
that always makes perfect CTR predictions.
We first show that

√
T -regret is obtainable

via a computationally inefficient algorithm
and that it is unavoidable since our algorithm
is no easier than the classical multi-armed
bandit problem. A by-product of our results
is a

√
T -regret bound for the simpler non-

contextual setting, improving upon a recent
work of Feng et al. (2023) by removing the
inverse CTR dependency that could be ar-
bitrarily large. Then, borrowing ideas from
recent advances on efficient contextual bandit
algorithms, we develop two practically effi-
cient contextual auction algorithms: the first
one uses the exponential weight scheme with
optimistic square errors and maintains the
same

√
T -regret bound, while the second one

reduces the problem to online regression via
a simple epsilon-greedy strategy, albeit with
a worse regret bound. Finally, we conduct ex-
periments on a synthetic dataset to showcase
the effectiveness and superior performance of
our algorithms.

1 Introduction

The rapid growth of internet-based advertising has led
to increasing reliance on online auctions to efficiently
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allocate advertisement slots. Pay-per-click (PPC) auc-
tions, in particular, have become a prevalent mechanism
in the digital advertising landscape, where advertisers
are charged based on the number of clicks on their
ads. In these auctions, a platform’s primary goal is to
deliver the relevant experience while maximizing value
to the advertiser and the publisher.

Existing literature on online PPC auctions mostly
focuses on the non-contextual setup (Devanur and
Kakade, 2009; Buccapatnam et al., 2014; Babaioff
et al., 2015; Feng et al., 2023), where the same set
of ads repeatedly participates in an auction, each with
a click-through rate (CTR) fixed over time. In reality,
however, the set of participating ads and their CTR
vary in each auction based on the user query, user
preferences/history, ad relevance, and other contex-
tual information. To tackle such practical scenarios, in
this work, we consider online contextual PPC auctions
with unknown CTRs and study how the auction plat-
form can leverage the contextual information to make
a revenue close to that of an oracle strategy that runs
a second-price auction with perfect knowledge of the
CTRs.

More concretely, we formulate this problem as an online
learning problem over T rounds. At each round, the
auction platform (learner) first observes some context
and a set of participating ads, and then makes an
estimate for the CTR of each ad without seeing their
bid. Afterwards, a second-price PPC auction, a truthful
and widely used mechanism (Aggarwal et al., 2006), is
run: each ad is assigned a score equal to the product
of its bid and its estimated CTR, and the ad with the
highest score wins the auction with the payment-per-
click equal to the critical price (that is, the lowest price
that still guarantees a win). The learner’s goal is to
decide the estimated CTRs in a way so that the total
revenue is close to what one would have received if
the CTR estimations were always perfect — we call
the gap between them the regret of the learner. To
make sublinear regret possible, we make a standard
realizability assumption that the learner is given access
to a CTR predictor class that contains a perfect and
unknown predictor, but we do not make any assumption
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on how the contexts and the bids are generated — they
can even be maliciously decided by an adversary.

To our knowledge, our work is the first to consider
online learning for such contextual PPC auctions. How-
ever, similar to its non-contextual version, the problem
has deep connections with the heavily studied (con-
textual) multi-armed bandit problem (Lai et al., 1985;
Auer et al., 2002). In particular, because we only ob-
serve feedback on the winner, balancing exploration
and exploitation, the infamous dilemma originated from
multi-armed bandits, is also the key challenge of our
problem. What makes our problem even more difficult
is that we cannot explore/exploit whichever ad/arm we
want but instead have to do so implicitly via setting
the estimated CTRs, which themselves by definition
also affect the reward of each ad/arm. Despite these
difficulties, by extending ideas from contextual bandits
and making careful adjustment tailored to our prob-
lem structure, we obtain a series of positive results
both theoretically and empirically. Specifically, our
contributions are:

1. As the first step, in Section 3, we provide a charac-
terization of the optimal regret of our problem via a
computationally inefficient algorithm and a simple
lower-bound argument showing that our problem
is no easier than multi-armed bandits. Our algo-
rithm is based on the well-known exponential weight
strategy, with an inverse propensity score (IPS)
weighted loss estimator that is similar to the Exp4
algorithm (Auer et al., 2002) for contextual bandits.
For a finite predictor class F , our algorithm achieves
O(
√
NT log |F|) near-optimal regret with N being

the number of ads. Notably, our result immediately
implies Õ(N

√
T ) regret for the non-contextual set-

ting, improving upon the Õ(
∑N

i=1
1
ρi

√
T ) regret of a

recent work by Feng et al. (2023) where ρi ∈ [0, 1] is
the CTR of ad i (whose inverse could be arbitrarily
large).

2. To address the computational inefficiency, we then
develop two practically efficient algorithms, taking
inspiration from recent developments in designing
efficient contextual bandit algorithms. Our first ap-
proach (Section 4) replaces the IPS estimator with
an optimistic square error estimator that is effi-
ciently computable and shares similar ideas with the
Feel-Good Thompson Sampling algorithm of Zhang
(2022). The resulting algorithm not only still enjoys
a
√
T -regret bound, but also admits an efficient (ap-

proximate) implementation by applying stochastic
gradient Langevin dynamics (SGLD) (Welling and
Teh, 2011).

3. Our second approach (Section 5) follows another
trend of recent studies that reduce contextual ban-

dits to an easier regression problem where efficient
algorithms already exist (Foster and Rakhlin, 2020;
Foster and Krishnamurthy, 2021; Foster et al., 2021).
We adopt the general framework of (Foster et al.,
2021) in attempt to find the optimal reduction from
our contextual auction problem to online regression.
We provide a simple solution based on an epsilon-
greedy strategy that is efficiently implementable and
achieves O(T 2

3 (NRegSq)
1
3 ) regret with RegSq be-

ing the regret of the regression problem. While this
method leads to a worse regret bound, we conjec-
ture that it might be the best one can do using
this reduction approach due to its distinct property:
unlike the last two algorithms, this approach does
not use the bid information from previous rounds to
decide the next CTR estimates (which sometimes
might be desirable in practice).

4. In Section 6, we also test our two efficient algorithms
on a synthetic dataset, demonstrating their superior
performance against several baseline algorithms.

Related works. One line of closely related work
is the study on the non-contextual counterpart, such
as (Devanur and Kakade, 2009; Babaioff et al., 2014,
2015; Feng et al., 2023), all of which consider designing
a globally truthful no-regret mechanism so that bidders
are incentivized to bid their true valuation throughout
all T rounds. (Devanur and Kakade, 2009; Babaioff
et al., 2014) achieves so via an explore-then-commit
strategy with O(N 1

3T
2
3 ) regret, which is shown to be

optimal for globally truthful mechanisms. (Babaioff
et al., 2015) further considers the setting where each
bidder’s bid is stochastic and designs a randomized auc-
tion that enjoys O(

√
T ) regret and is globally truthful

only in expectation. Further extensions include multi-
slot mechanism design (Gatti et al., 2012), valuations
unknown to the bidders (Kandasamy et al., 2023), and
others.

A recent work by Feng et al. (2023) considers the my-
opic bidder setting with adversarial bids and designs a
UCB-based algorithm which leads to a per-round truth-
ful auction and achieves Õ(

∑N
i=1

1
ρi

√
T ) regret. They

also consider the fixed valuation setting and design
a globally truthful auction with −Ω(T ) regret when
there exists a time-independent constant gap between
the winner and the runner up. More recently, (Xu
et al., 2023) generalizes this non-contextual setting to
the stochastic context setting and derives an ε-greedy-
based algorithm achieving Õ(N 4

3T
2
3 + 1

α2T
1
3N

2
3 ) regret

under α-rational bidders. We note that in our setting,
similar to (Feng et al., 2023), the learner is allowed
to adjust the auction on the fly based on previous
observation (but not the bids for the current round),
which makes it truthful per round but not necessarily
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globally. However, since we allow adversarial contexts
that might not be manipulatable by the bidders, we do
not find global truthfulness a meaningful requirement
for our setting (see Section 2 for more discussion).

Another line of work on online learning in auction
considers designing auto-bidding algorithms under dif-
ferent types of auction mechanisms (such as first-price
auction (Wang et al., 2023; Han et al., 2020), second-
price auction (Balseiro and Gur, 2019; Balseiro et al.,
2023), and core auction (Gaitonde et al., 2022)) or
different types of resource and return-on-investment
constraints (Balseiro and Gur, 2019; Balseiro et al.,
2021; Lucier et al., 2023). Since we allow adversarial
bids, our results hold whether the platform is facing
these auto-bidding algorithms or not.

As mentioned, our problem bares some similarity with
the heavily-studied contextual bandit problem but is
generally more difficult due to the fact that both the
way to select an arm and its reward are determined
through the estimated CTRs. (Auer et al., 2002) pro-
poses the first contextual bandit algorithm Exp4 which
achieves the optimal regret but is computationally ineffi-
cient. Given the vast number of real-life applications of
contextual bandits, starting from (Langford and Zhang,
2007), many studies focus on developing practically
efficient algorithm under reasonable computational as-
sumptions, such as access to classification/regression
oracles (Dudik et al., 2011; Agarwal et al., 2014; Foster
et al., 2018; Foster and Rakhlin, 2020; Xu and Zeevi,
2020; Foster and Krishnamurthy, 2021; Simchi-Levi
and Xu, 2022; Zhu and Mineiro, 2022), or ability to
sample from a certain distribution using Markov chain
Monte Carlo methods (Zhang, 2022). As mentioned,
we follow and extend the ideas of these two approaches
to design efficient contextual auction algorithms.

2 Notations and Problem Setup

General notations. For a positive integer m, we use
[m] to denote the set {1, 2, . . . ,m}, ∆m to denote the
(m−1)-dimensional simplex, and Rm

≥0 to denote the set
of m-dimensional vectors with non-negative entries. For
a vector v ∈ Rm, we use maxi∈[m] vi and smaxi∈[m]vi
to denote the largest and the second largest entry of
v respectively, and argmaxi∈[m] vi and argsmaxi∈[m] vi
to denote their index.1 We also use 1 to denote the
all-one vector and ei to denote the i-th standard basis
vector (both with an appropriate dimension depending
on the context).

1In this definition, we break ties by an arbitrary fixed
deterministic rule. Note that when there is a tie, it is
possible that the “second largest” entry in fact has the
largest value.

Problem setup. The formal setup of the contextual
second-price pay-per-click auctions we consider is as
follows. An ad auction platform (called the learner)
sequentially interacts with some bidders/advertisers for
T rounds. At each round t ∈ [T ]:

1. The learner first observes a context xt from some
context space X and a set of Nt bidders participating
in the current campaign with their ads. Here, the
context xt encodes any available information about
the current campaign, such as the user query (in
the case of a search engine) and features of the
participating ads. We denote the maximum number
of bidders by N = maxt Nt.

2. What the learner needs to decide is an estimated
CTR vector: ρ̃t ∈ [0, 1]Nt , with each entry ρ̃t,i being
an estimation of the true and unknown CTR ρt,i ∈
[0, 1] of ad i under context xt.

3. Simultaneously, each bidder i decides their own bid
bt,i ∈ [0, 1] (without knowing ρ̃t or ρt).

4. A second-price pay-per-click auction (Aggarwal
et al., 2006) is then run: the winner of this campaign
is it = argmaxi∈[Nt] bt,iρ̃t,i, that is, the bidder with
the highest estimated expected cost per impression;
the payment per click of the winner is dt =

bt,jt ρ̃t,jt

ρ̃t,it

where jt = argsmaxi∈[Nt] bt,iρ̃t,i is the runner-up
(note dt ≤ bt,it by definition, so the winner never
pays more than their bid); the winner’s ad is then
displayed, and is clicked with probability ρt,it .

5. The feedback of the learner includes all the bids
bt,1, . . . , bt,Nt

and a binary variable ct ∈ {0, 1},
which is 1 if the displayed ad is clicked and 0 other-
wise (by definition, ct is a Bernoulli random variable
with mean ρt,it). The payment that the learner
receives in the end is thus ctdt.

The goal of the learner is to minimize her regret, which
measures how much more she would have received if she
had perfect knowledge of the true CTRs and set ρ̃t = ρt
all the time. More concretely, since in this imaginary
situation with ρ̃t = ρt, the expected payment received
at round t is E[ctdt] = ρt,it ·

bt,jtρt,jt

ρt,it
= bt,jtρt,jt =

smaxi∈[Nt]bt,iρt,i, the regret is formally defined as

Reg ≜
T∑

t=1

smaxi∈[Nt] bt,iρt,i −
T∑

t=1

ctdt. (1)

Achieving sublinear (in T ) regret thus implies that
the learner is on average performing almost as well as
the ideal benchmark even though she does not know
the true CTRs. This is a strong requirement that
intuitively is possible only if there is some connection
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between the context xt and the true CTR vector ρt
so that over time the learner can gradually improve
her estimation ρ̃t based on prior observations. To this
end, we make the following realizable assumption that
is analogous to those usually made in the contextual
bandit literature (see for example (Foster and Rakhlin,
2020; Foster and Krishnamurthy, 2021; Foster et al.,
2021; Zhu and Mineiro, 2022; Simchi-Levi and Xu,
2022)).

Assumption 1 (Realizability). A function class F =
{f : X × [N ] → [0, 1]}, given to the learner, contains
a perfect (but unknown) CTR predictor f∗ such that
f∗(xt, i) = ρt,i for all t and i.

Our goal is to derive algorithms with a regret bound
that is sublinear in T and polynomial in N and some
common complexity measure of F , such as ln |F| for
the case of a finite class or the number of parameters
for the case of a parametric class. In practice, such a
function class F can be any common machine learning
model (for example, a linear class or a class of neural
nets), as long as it is believed to be complex enough to
predict the true CTRs reasonably well for the specific
problem on hand.

We emphasize that we do not make any assumptions
on how the contexts and the bids are generated. In
particular, they can even be generated by an adaptive
adversary who knows the learner’s algorithm and ob-
serves her decisions in previous rounds. This generality
allows us to handle strategic bidders.

Instantaneous truthfulness versus global truth-
fulness. The reason to consider such a second-price
auction is that it is well-known to be instantaneous
truthful, that is, looking only at a particular round,
each bidder is incentivized to use their true valuation
as their bid (Aggarwal et al., 2006). Prior work such
as (Devanur and Kakade, 2009; Feng et al., 2023) con-
siders designing a (non-contextual) auction mechanism
that is globally truthful so that even looking at all
rounds together, each bidder is still incentivized to bid
their true valuation. However, this is often achieved
by an explore-then-commit strategy which fixes the
auction mechanism (such as the estimated CTRs) after
a certain period of pure exploration. Such strategies
not only are impractical but also would not make sense
at all in our contextual setting with potentially adver-
sarial contexts. In fact, exactly because the contexts
in our problem are partially decided by exogenous fac-
tors such as the user queries (that are not manipulable
by the bidders), we do not find global truthfulness
a reasonable requirement for our problem. We thus
stick with only instantaneous truthfulness and allow
the learner to change the auction on the fly based on
the context.

Comparisons to contextual bandits. One key
difference between our problem and the well-studied
contextual bandit problem is that we cannot freely pick
an “arm” (corresponding to the winner in our context),
but have to do so via proposing a particular estimated
CTR vector ρ̃t, which itself affects the “reward” of an
arm according to the definition of the winner’s payment,
making the problem more complicated. On the other
hand, what is common in both problems is that a good
balance between exploration and exploitation is clearly
necessary due to the limited feedback on the selected
arm/winner only. Because of these similarities and
differences, in what follows we will show that some
ideas from the contextual bandit literature are readily
applicable to our problem, while others require more
adjustments.

3 Achieving O(
√
T ) Regret Inefficiently

In this section, as the first step, we show how adopt-
ing the idea of a classical contextual bandit algorithm
called Exp4 (Auer et al., 2002) leads to, for example,
O(
√
NT log |F|) regret for a finite predictor class F .

The algorithm is computationally inefficient, but it
illustrates that

√
T -type regret is obtainable for this

problem information-theoretically.

The idea of Exp4 is to maintain a distribution qt over
all predictors in F , defined via a classical exponential
weight scheme: qt,f ∝ exp(−η

∑
s<t ℓ̂s,f ) where ℓ̂s,f is

an estimator for some loss ℓs,f ∈ [0, 1] of predictor f
at round s. With such a distribution, the algorithm
simply samples a predictor ft from qt for round t and
follows its suggestion.

In our problem, “following ft’s suggestion” means set-
ting the estimated CTR ρ̃t,i directly as ft(xt, i) for
each i ∈ [Nt]. The loss ℓt,f of predictor f at round
t is intuitively the negative expected payment if one
follows f ’s suggestion. To ensure a range of [0, 1], we
shift it by 1, leading to ℓt,f = 1− ρt,it,f

smaxjbt,jf(xt,j)
f(xt,it,f )

where it,f = argmaxi bt,if(xt, i). It remains to con-
struct the loss estimator ℓ̂t,f based on the learner’s
observations bt and ct. Even though our loss struc-
ture is quite different from contextual bandits, we find
the standard inverse propensity score weighting still
applicable, leading to a natural loss estimator defined
in the (IPS) option of Eq. (2). It is clear that ℓ̂t,f is
unbiased since E[1{it = it,f}] = pt,it,f and E[ct] = ρt,it
implies E[ℓ̂t,f ] = ℓt,f . See Algorithm 1 for the com-
plete pseudocode. Following standard analysis of Exp4,
we show the following regret bound when F is finite
(whose proof is deferred to Appendix A).

Theorem 3.1. Algorithm 1 with learning rate η =√
log |F|∑T
t=1 Nt

and (IPS) estimators guarantees E [Reg] =
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Algorithm 1 Exponential Weights for Contextual Auction
Input: learning rate η > 0 and CTR predictor class F
for t = 1, 2, · · · , T do

Sample a function ft from qt, a distribution over F defined via qt,f ∝ exp(−η
∑

s<t ℓ̂s,f ).
Receive context xt and the set of Nt bidders.
Set the estimated CTR to be ρ̃t,i = ft(xt, i) for all i ∈ [Nt] and receive bids bt ∈ [0, 1]Nt .
Select the bidder it = argmaxi∈[Nt] bt,iρ̃t,i as the winner, with payment per click dt =

bt,jt ρ̃t,jt

ρ̃t,it
where

jt = argsmaxi∈[Nt] bt,iρ̃t,i is the runner up.
Receive feedback ct = 1{ad it is clicked} and payment ctdt.
Define loss estimator ℓ̂t,f for each f ∈ F as

ℓ̂t,f =

{
1{it=argmaxi∈[Nt]

bt,if(xt,i)}
pt,it

(
1− ct ·

smaxj∈[Nt]
bt,jf(xt,j)

f(xt,it)

)
, (IPS)

1
4η (f(xt, it)− ct)

2 − smaxj∈[Nt] bt,jf(xt, j), (OptSq)
(2)

and pt,i = Prft∼qt{it = i} is the probability of i being the winner.

O
(√∑T

t=1 Nt log |F|
)
= O(

√
NT log |F|).2

Now, we argue that such
√
T dependence in the regret

is unavoidable. To see this, we first discuss the im-
plication of Theorem 3.1 for a special non-contextual
case where for each i, ρt,i = ρi stays the same for all
t (so the context xt plays no role in predicting the
CTRs), which is essentially the setting of (Devanur
and Kakade, 2009). In this case, a class of constant pre-
dictors (that ignore the context input) F = {(x, i)→
θi : θ ∈ [0, 1]N} trivially satisfies Assumption 1. By
applying Algorithm 1 to a discretized version this class:
F̂ = {(x, i) → θi : θ ∈ {0, 1

T ,
2
T , . . . , 1}

N}, which has
a size of O(TN ) and can approximate F up to error
O(1/T ), we immediately obtain the following corollary
(see Appendix A for the proof).

Corollary 3.1. In the non-contextual setting described
above, Algorithm 1 with predictor class F̂ , learning rate

η =
√

log T
T , and (IPS) estimators guarantees E[Reg] ≤

O(N
√
T log T ).3

Notably, (Feng et al., 2023) considers the same non-
contextual setting and designs a UCB-based algorithm
with O

(∑N
i=1

1
ρi

√
T log(NT )

)
regret. Our result thus

strictly improves upon theirs by removing the depen-
dence on 1

ρi
, which can be arbitrarily large as long as

there exists an ad with a very low CTR.

Next, we show in the following theorem that the
√
T

2For simplicity, we set the learning rate in terms of the
unknown quantity

∑T
t=1 Nt, but this can be easily resolved

by applying a standard doubling trick. The same holds for
other results in this work.

3We note that this is not a contradiction with the Ω(T 2/3)
lower bound of (Devanur and Kakade, 2009) since they
insist on global truthfulness while we do not; see related
discussions in Section 2.

dependence is unavoidable even in this non-contextual
case.

Theorem 3.2. In the non-contextual setting described
above with T ≥ N ≥ 3, for any algorithm A, there
exists a sequence of bids {bt}Tt=1 and CTRs {ρi}Ni=1

such that the expected regret suffered by A is at least
Ω(
√
NT ).

The formal proof of Theorem 3.2 is deferred to Ap-
pendix A. The general idea of the proof is to transform
the auction problem in this non-contextual setting to
a hard instance of the classical multi-armed bandit
problem, whose minimax regret is well-known to be of
order Θ(

√
NT ). To see this, consider the case where

Nt = N and bt = 1 for all t, and ρi = 1/2 for all i
except for two uniformly at random chosen ads, whose
CTR are always 1/2 + Θ(

√
N/T ). Obverse that: 1)

the oracle strategy with ρ̃t,i = ρi receives expected pay-
ment 1/2 + Θ(

√
N/T ) per round; 2) no matter which

ad (arm) is selected as the winner by the learner, since
the payment per click can not exceed the bid 1 accord-
ing to the auction design, the expected payment of the
learner is at most the CTR of the chosen winner (arm);
3) the feedback to the learner at each round is only a
Bernoulli random variable with mean being the CTR
of the chosen winner (arm). These facts together show
that the instance above is no easier than an N -armed
bandit problem with reward means being the same as
the CTR configuration above, which is well-known to
incur Ω(

√
NT ) regret.

While Algorithm 1 with (IPS) achieves optimal regret
guarantee, as mentioned, the caveat of Algorithm 1
with (IPS) loss estimators is its computational ineffi-
ciency. Indeed, the complicated form of the estimator,
in particular the pt,it term, makes it difficult to com-
pute efficiently. In the next two sections, we address
this issue via two different approaches.
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4 An Efficient Approach via
Optimistic Squared Errors

Our first approach to derive a practically efficient al-
gorithm is to replace the (IPS) estimator ℓ̂t,f in Algo-
rithm 1 with an optimistic squared error that not only is
easy to compute itself, but also allows efficient gradient
computation so that one can directly apply stochastic
gradient Langevin dynamics (SGLD) (Welling and Teh,
2011) to approximately sample from qt. The optimistic
squared error is defined in (OptSq) of Eq. (2), whose
design is largely inspired by the Feel-Good Thompson
Sampling algorithm of a recent work (Zhang, 2022) for
contextual bandits. It contains a natural squared error
term (f(xt, it)− ct)

2 (scaled by 1/4η), which measures
how good f is in predicting the CTR of the selected
winner it under context xt. However, the squared er-
ror itself is insufficient in encouraging exploration; see
(Zhang, 2022) for detailed discussions even for the eas-
ier contextual bandit problem. To ensure exploration,
we propose to subtract from the squared error a “bonus”
term smaxjbt,jf(xt, j), which is the expected payment
we would receive if f ’s predictions were exactly the true
CTRs (and we followed these predictions in setting ρ̃t).
This serves as a form of optimism: the larger the pay-
ment in f ’s predicted world, the smaller its optimistic
squared error ℓ̂t,f , and consequently the larger weight
f gets in the sampling distribution qt to ensure that it
is properly explored. The necessity of such optimism
is not only for regret analysis, but also verified in our
experiments (see Section 6).

Efficient (approximate) implementation. The
advantage of the (OptSq) estimator over (IPS) is that
it enables efficient sampling for a parametrized pre-
dictor class. Specifically, consider a parametrized and
differentiable predictor class F = {fθ : θ ∈ Θ} for some
d-dimensional parameter space Θ ⊆ Rd. Then the gra-
dient of ℓ̂t,fθ with respect to θ (at any differentiable
point) is

∂ℓ̂t,fθ
∂θ

=
1

2η
(fθ(xt, it)−ct) ·

∂fθ(xt, it)

∂θ
−bt,k

∂fθ(xt, k)

∂θ

where k = argsmax bt,jfθ(xt, j). We can then apply
SGLD to approximately sample from qt as follows: start
from a random initialization θ ∈ Θ, then repeatedly
sample uniformly at random an s ∈ [t− 1] and update

θ ← θ − αη
∂ℓ̂s,fθ
∂θ

+

√
2α

t
ε (3)

where ε is a fresh d-dimensional standard Gaussian
noise and α is a step size. Even though the existing
theory for SGLD does not necessarily tell us how many
steps are needed to ensure an accurate enough sample

(which is already the case for contextual bandits (Zhang,
2022)), this is clearly a practically efficient gradient-
based method in line with standard machine learning
practice.

Regret guarantees. Next, we show that the result-
ing algorithm also enjoys similar regret guarantees as
the version with (IPS). We start by the following gen-
eral theorem, whose analysis extends the idea of (Zhang,
2022) to our more complicated loss structure and the
new bonus term that is tailored to second-price auc-
tions and importantly involves possibly adversarial bids
bt (see Appendix B).
Theorem 4.1. Algorithm 1 with learning
rate η ≤ 1 and (OptSq) estimators en-
sures E[Reg] ≤ ZT

η + O
(
η
∑T

t=1 Nt

)
, where

ZT = −E
[
logEf∼q1 exp

(
−η
∑T

t=1

(
ℓ̂t,f − ℓ̂t,f∗

))]
.

Here, ZT should be treated as some complexity measure
of the predictor class F . As a concrete example, when
F is finite, we have the following corollary that exactly
matches Theorem 3.1.
Corollary 4.1. For a finite F , we have ZT ≤ log |F|,
and thus the regret bound in Theorem 4.1 becomes

E[Reg] = O
(
log |F|+

√∑T
t=1 Nt log |F|

)
after picking

the optimal η.

Proof. Since q1 is uniform, we have

ZT = −E

log∑
f∈F

1

|F|
exp

(
−η

T∑
t=1

(
ℓ̂t,f − ℓ̂t,f∗

))
≤ −E

[
log

1

|F|
exp

(
−η

T∑
t=1

(
ℓ̂t,f∗ − ℓ̂t,f∗

))]
= log |F|,

finishing the proof.

As another example, we consider a Lipschitz class in
the next result (proof deferred to Appendix B).
Corollary 4.2. For some constants α,B ≥ 0 and a
parametrized class

F =
{
fθ : θ ∈ Θ ⊆ [−B,B]d,

fθ is α-Lipschitz with respect to ∥ · ∥∞ in θ} ,

we have ZT = O(d log(αBT )), and thus the regret
bound in Theorem 4.1 becomes

E[Reg] = O


√√√√d log(αBT )

T∑
t=1

Nt


after picking the optimal η.
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5 An Efficient Approach via a
Regression Oracle

The second approach we take to derive a practically
efficient algorithm follows a different trend of recent
studies that reduce contextual bandits to some online
regression problem and only access the predictor class
F through an efficient regression oracle (Foster and
Rakhlin, 2020; Foster and Krishnamurthy, 2021; Zhu
and Mineiro, 2022). More concretely, we assume access
to an online regression oracle AlgSq which follows the
following protocol: at each round t ∈ [T ], the oracle
selects randomly a function ft ∈ F , then it receives a
tuple (xt, it, ct) ∈ X × [N ]× [0, 1], potentially generated
by an adaptive adversary, and suffers a squared error
(ft(xt, it)− ct)

2.4 We assume that the oracle ensures
some regret bound against the best predictor in F :
Assumption 2 (Bounded Squared Error Regres-
sion Regret). The regression oracle AlgSq guarantees
that for any (potentially adaptively chosen) sequence
{(xt, it, ct)}t∈[T ], the following is bounded by RegSq:

E
[ T∑

t=1

(ft(xt, it)− ct)
2 − inf

f∈F

T∑
t=1

(f(xt, it)− ct)
2
]
.

There are many examples of such a regression oracle.
For instance, when F is a d-dimensional linear class, On-
line Newton Step (ONS) (Hazan et al., 2007) achieves
RegSq = O(d log T ). We refer the reader to (Foster
and Rakhlin, 2020) for other examples, and point out
that in practice (and in our experiments), such an or-
acle is often implemented by a simple gradient-based
method. The important point is that the regression
problem does not require a balance between exploration
and exploitation, and is thus generally easier than the
original problem and is better studied with known effi-
cient algorithms. This also means that to reduce the
original problem to its regression counterpart, the key
is to figure out an appropriate exploration strategy.

Foster et al. (2021) provide a general framework to
find the optimal exploration strategy using a concept
called Decision-Estimation Coefficient (DEC). For our
problem, it boils down to understanding the following
quantity

decγ(ρ̂) = min
Q

max
ρ∈[0,1]N ,b∈[0,1]N

Eρ̃∈Q

[(
smaxi∈[N ]biρi − ρi∗

smaxj∈[N ]bj ρ̃j

ρ̃i∗

)
︸ ︷︷ ︸

per-round regret

−γ (ρi∗ − ρ̂i∗)
2︸ ︷︷ ︸

squared error

]

(4)

4For simplicity, we consider a proper oracle here, but
one can also use an improper oracle that makes a prediction
after seeing (xt, it), not necessarily following some ft ∈ F ,
as in (Foster and Rakhlin, 2020).

where the min is over all possible distributions Q over
the set [0, 1]N , i∗ = argmaxi biρ̃i is the winner accord-
ing to ρ̃, γ > 0 is some coefficient, and ρ̂ ∈ [0, 1]N is
a given CTR prediction (provided by the regression
oracle). In words, decγ(ρ̂) measures how small the
gap can be made between the per-round regret of the
learner using a randomized strategy Q and the squared
prediction error of the oracle in the worst case. Under-
standing this quantity provides both an algorithm and
a corresponding regret bound, as shown below.

Proposition 5.1. Suppose that at each round t, 1) the
oracle AlgSq outputs a CTR predictor ft ∈ F ; 2) the
learner then randomly sets ρ̃t according to the distribu-
tion that realizes the minQ in the definition of decγ(ρ̂t)
where ρ̂t,i = ft(xt, i); 3) finally the oracle is fed with the
tuple (xt, it, ct). Then the regret of the learner satisfies
E[Reg] ≤ γRegSq + E

[∑T
t=1 decγ(ρ̂t)

]
.

For example, if decγ(ρ̂t) turns out to be O(Nγ ) for
all t, then picking the optimal γ leads to E[Reg] =
O(
√
NTRegSq) (which, for linear class, implies

E[Reg] = O(
√
dNT log T ) if ONS is used as the or-

acle). For contextual bandits, the corresponding DEC
is indeed shown to be O(Nγ ) (Foster and Rakhlin, 2020).

An upper bound and a simple algorithm. Un-
fortunately, we are unable to show that our DEC is
of order 1/γ due to the very complicated second-price
structure. Nevertheless, we can show a worse bound
decγ(ρ̂t) = O(

√
N/γ). This is achieved by a simple

ε-greedy strategy (with ε =
√

N/γ) — let Q concen-
trate on N + 1 CTR predictions: the greedy one ρ̂
with probability 1− ε (exploitation), and the one-hot
CTR predictions e1, . . . , eN , each with probability ε/N
(exploration, since when ρ̃ = ei, ad i will always be
selected as the winner, and we observe signal on its
CTR).5 Put together, this leads to Algorithm 2 and
the following result, whose analysis requires a careful
treatment to the second-price structure despite the
simplicity of the algorithm (see Appendix C).

Theorem 5.1. For any ρ̂t ∈ [0, 1]N , we have
decγ(ρ̂) = O(

√
N/γ), evidenced by the ε-greedy strat-

egy described above. Consequently, Algorithm 2
with ε = T− 1

3 (NRegSq)
1
3 guarantees E[Reg] =

O(T 2
3 (NRegSq)

1
3 ).

Discussion and conjecture. Despite the worse re-
gret bound, one nice property of Algorithm 2 is that it

5Note that in this case the payment is always 0, which,
practically speaking, might not be desirable. However, since
in reality there is always a minimum allowed bid σ > 0, we
can in fact replace ei by σ

2
· 1+ (1 − σ

2
)ei instead, which

still ensures exploration of ad i while leading to at least
σ2/2 payment per click.
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Algorithm 2 Epsilon Greedy with an Online Regression Oracle
Input: exploration parameter ε > 0 and an online regression oracle AlgSq satisfying Assumption 2
for t = 1, 2, . . . , T do

Obtain a CTR predictor ft from the oracle AlgSq.
Receive context xt and the set of Nt bidders.
With ε probability, pick i ∈ [Nt] uniformly at random and set ρ̃t = ei ∈ RNt ; with the remaining 1 − ε
probability, set ρ̃t,i = ft(xt, i) for all i ∈ [Nt]
Receive bids bt ∈ [0, 1]Nt .
Select the bidder it = argmaxi∈[Nt] bt,iρ̃t,i as the winner, with payment per click dt =

bt,jt ρ̃t,jt

ρ̃t,it
where

jt = arg smaxi∈[Nt]bt,iρ̃t,i is the runner-up.
Receive feedback ct = 1{ad it is clicked} and payment ctdt.
Feed the tuple (xt, it, ct) to the oracle AlgSq.

in fact never uses the bid information in deciding ρ̃t,
since the oracle never receives the bid information as
feedback. This is in sharp contrast with Algorithm 1
where both (IPS) and (OptSq) are defined in terms of
the bids. This property is useful when the second-price
auction is actually run by a third party who collects
the bids from the advertisers without revealing them
to the platform that makes the CTR predictions.

In fact, this property is inherent in this DEC approach
and not just because of our choice of a potentially
suboptimal ε-greedy strategy. Indeed, even for the
algorithm described in Proposition 5.1 that solves the
minQ part of Eq. (4) exactly, it still by definition does
not use the bid information but only the predictions
from the oracle (which, again, is independent of any
bids from prior rounds). We conjecture that because of
this aspect, the optimal bound of decγ(ρ̂) might indeed
be Θ(

√
N/γ), achieved by the simple ε-greedy strategy.

We leave this question for future investigation.

6 Experiments

We implement the two efficient algorithms we pro-
pose, namely Algorithm 1 with (OptSq) loss estimators
and Algorithm 2, and demonstrate their superior perfor-
mance on a synthetic dataset compared to three simple
baselines: 1) a strategy that always make random CTR
predictions, 2) a strategy that always make the same
CTR prediction for all ads, which is equivalent to run-
ning a second-price auction using only the bids, and 3)
a variant of Algorithm 1 that uses the (OptSq) estima-
tor but removes its optimistic part smaxjf(xt, j)bt,j
(denoted by (Sq)).

For Algorithm 1, η is chosen from { 1
16 ,

1
8 ,

1
4}, and

SGLD Eq. (3) is run for 32 steps per round with a
step size α chosen from {0.0005, 0.001, 0.005, 0.01, 0.05}.
For Algorithm 2, the parameter ε is chosen from
{T− 1

3 , 2T− 1
3 , 4T− 1

3 }, and the regression oracle is sim-
ply implemented by online gradient descent (Zinkevich,
2003) with a learning rate from {0.001, 0.005}.

We use one-hidden-layer neural nets for the CTR pre-
dictors. Specifically, at each time t, our context xt is a
matrix in Rd×(1+Nt), where the first column xt,0 repre-
sents some common information shared by all advertis-
ers (such as the user query), and the (i+ 1)-th column
xt,i represents the feature of ad i. Our predictor class is
then F = {fθ : fθ(x, i) = Sigmoid(θ⊤0 x0+θ⊤xi), θ0, θ ∈
[−1, 1]d} where for any u ∈ R, Sigmoid(u) = 1

1+e−u .

Synthetic dataset construction. We generate a
synthetic dataset by choosing d = 128 and T = 104

and uniformly at random sampling Nt from 5 to 10, xt

from [−1, 1]d×(1+Nt), and bt from [0.1, 1]. To generate
the underlying CTR predictor f∗, we first generate
some fake CTRs uniformly at random from [0.2, 1] for
each t and then use the full dataset to fit a model
from F as the final f∗. To avoid the trivial fixed CTR
strategy already performing very well, we also make
a final adjustment and set the bid of the ad with the
lowest CTR to be 1 (imagine a little-known new brand
trying to bid high to get more impressions).

Results. We repeat our experiment with 4 different
random seeds and plot in Figure 1 the average and the
standard deviation (as shaded areas) of the cumulative
regret over these 4 trials under the best hyperparam-
eters. From Figure 1, we see that 1) as our theory
indicates, Algorithm 1 (OptSq) indeed suffers lower re-
gret than Algorithm 2; 2) both of our algorithms beat
the three baselines with a large margin; 3) Algorithm 1
(Sq) is only comparable to the random CTR strategy,
demonstrating that the optimistic part of (OptSq) is
indeed both theoretically and empirically critical.
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Figure 1: Performance of different algorithms on syn-
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A Omitted Proofs in Section 3

Proof of Theorem 3.1. According to standard analysis of exponential weight (see for example (Wei et al., 2020,
Lemma 14)), we have for any f0 ∈ F :〈

qt − ef0 , ℓ̂t

〉
≤ 1

η
D(ef0 , qt)−

1

η
D(ef0 , qt+1) +

η

2

∑
f∈F

qt,f ℓ̂
2
t,f ,

where D(u, v) =
∑

f∈F uf log
uf

vf
is the KL divergence between u and v. Taking summation over t ∈ [T ], we have

with it,f = argmaxi bt,if(xt, i):

T∑
t=1

〈
qt − ef0 , ℓ̂t

〉
≤ D(ef0 , q1)

η
+

η

2

T∑
t=1

∑
f∈F

qt,f ℓ̂
2
t,f

=
D(ef0 , q1)

η
+

η

2

T∑
t=1

∑
i∈[Nt]

∑
f∈F,i=it,f

qt,f ℓ̂
2
t,f

=
D(ef0 , q1)

η
+

η

2

T∑
t=1

∑
i∈[Nt]

∑
f∈F,i=it,f

qt,f
p2t,i

(
1− ct ·

smaxjbt,jf(xt, j)

f(xt, it,f )

)2

· 1{it = i}

≤ D(ef0 , q1)

η
+

η

2

T∑
t=1

∑
i∈[Nt]

∑
f∈F,i=it,f

qt,f1{it = i}
p2t,i

=
D(ef0 , q1)

η
+

η

2

T∑
t=1

∑
i∈[Nt]

1{it = i}
pt,i

(pt,i =
∑

f∈F :i=it,f
qt,f )

where the inequality is because smaxjbt,jf(xt, j) ≤ bt,it,f f(xt, it,f ) and thus 1− ct · smaxjbt,jf(xt,j)
f(xt,it,f )

∈ [0, 1]. Taking
expectation over both sides and noticing

E
[
1{it = i}

pt,i

]
= E

[
pt,i
pt,i

]
= 1,

E
[
ℓ̂t,f

]
= E

[
1{it = it,f}

pt,it

(
1− ρt,it,f ·

smaxjbt,jf(xt, j)

f(xt, it,f )

)]
= 1− ρt,it,f ·

smaxjbt,jf(xt, j)

f(xt, it,f )

= 1− f∗(xt, it,f ) ·
smaxjbt,jf(xt, j)

f(xt, it,f )
,

we obtain

E

[
T∑

t=1

f∗(xt, it,f0) ·
smaxjbt,jf0(xt, j)

f0(xt, it,f0)
−

T∑
t=1

f∗(xt, it,ft) ·
smaxjbt,jft(xt, j)

ft(xt, it,ft)

]

= E

[
T∑

t=1

f∗(xt, it,f0) ·
smaxjbt,jf0(xt, j)

f0(xt, it,f0)
−

T∑
t=1

ctdt

]
≤ D(ef0 , q1)

η
+

η

2

T∑
t=1

Nt.

(5)

Picking f0 = f∗, which is in the class F by Assumption 1, the left-hand side above becomes exactly the expected
regret E [Reg]. Finally, since q1 is a uniform distribution over F , we know that D(ef∗ , q1) = log |F|, and picking
η =

√
log |F|∑T
t=1 Nt

then leads to the claimed regret bound.

Proof of Corollary 3.1. For any u ∈ [0, 1], define ⌊u⌋T = 1
T ⌊Tu⌋. Since we consider the non-contextual setting, we

have ρ = ρt for all t ∈ [T ] and the policy f ∈ F̂ can be represented as a vector in [0, 1]N . To show that Algorithm 1
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guarantees O(N
√
T logN) regret, let f̂∗ = (⌊ρ1⌋T , . . . , ⌊ρN⌋T ) ∈ F̂ . Using Eq. (5) and picking f0 = f̂∗, we know

that

E

 T∑
t=1

ρi
t,f̂∗ ·

bt,j
t,f̂∗ f̂

∗
j
t,f̂∗

f̂∗
i
t,f̂∗

−
T∑

t=1

ctdt

 ≤ O(N log T

η

)
+

ηNT

2
,

where it,ρ = argmaxi bt,iρt,i and jt,ρ = argsmaxi bt,iρt,i. It remains to argue that the first term above is close to∑T
t=1 smaxibt,iρi, the revenue of the oracle strategy. To this end, for each time t we consider two cases depending

on whether f̂∗ and ρ selects the same winner. If it,f̂∗ = it,ρ, we have

ρi
t,f̂∗ ·

bt,j
t,f̂∗ f̂

∗
j
t,f̂∗

f̂∗
i
t,f̂∗

≥ bt,j
t,f̂∗ f̂

∗
j
t,f̂∗

(since f̂∗
i = ⌊ρi⌋T ≤ ρi)

≥ bt,jt,ρ f̂
∗
jt,ρ (since bt,j

t,f̂∗ f̂
∗
j
t,f̂∗

= smaxibt,if̂
∗
i and jt,ρ ̸= it,ρ = it,f̂∗)

≥ bt,jt,ρρjt,ρ −
1

T
(since f̂∗

i = ⌊ρi⌋T ≥ ρi − 1
T )

= smaxibt,iρi −
1

T
.

Otherwise, we know that bt,j
t,f̂∗ f̂

∗
j
t,f̂∗
≥ bt,it,ρ f̂

∗
it,ρ
≥ bt,it,ρρit,ρ − 1

T ≥ smaxibt,iρi − 1
T . Combining both cases, we

know that

E

[
T∑

t=1

smaxibt,iρi −
T∑

t=1

ctdt

]
≤ E

 T∑
t=1

ρi
t,f̂∗ ·

bt,j
t,f̂∗ f̂

∗
j
t,f̂∗

f̂∗
i
t,f̂∗

−
T∑

t=1

ctdt

+ 1

≤ O
(
N log T

η

)
+

ηNT

2
+ 1.

Picking η =
√

log T
T achieves the claimed bound.

Proof of Theorem 3.2. The proof follows the idea of the lower bound construction in multi-armed bandits.
Consider an instance of the auction problem with Nt = N bidders and CTR {ρi}Ni=1. The bid vector bt at
each round t is 1. Denote ρ(i,j) (i ̸= j) to be the environment where ρ

(i,j)
k = 1

2 for all k ∈ [N ]\{i, j} and
ρ
(i,j)
i = ρ

(i,j)
j = 1

2 + ε for some ε > 0 to be specified later. We also denote ρ(0) to be the environment where
ρ
(0)
i = 1

2 for all i ∈ [N ].

Consider the environment E where ρ is uniformly drawn from the N(N−1)
2 environments {ρ(i,j)}i ̸=j,i,j∈[n]. For

notational convenience, we denote Ei,j [·] (E0) to be Eρ(i,j) [·] (Eρ(0)). Let ni be the number of rounds ad i is
selected as the winner (via picking an estimated CTR). Since the payment per click can not exceed the bid 1
according to the auction design, the expected revenue of the learner is at most the CTR of the winning ad. In
addition, the benchmark revenue in environment ρ(i,j) is ( 12 + ε)T by picking the estimated CTR as the true
CTR. Therefore, the expected regret with respect to environment E is lower bounded as follows:

EE [Reg] ≥ 2

N(N − 1)

∑
i ̸=j

Ei,j

(1

2
+ ε

)
T − 1

2

∑
k ̸=i,j

nk −
(
1

2
+ ε

)
(ni + nj)


=

2

N(N − 1)

∑
i ̸=j,i,j∈[N ]

Ei,j [ε(T − ni − nj)] , (6)

where the last equality uses the fact that
∑N

i=1 ni = T . According to Exercise 15.2.(a) of (Lattimore and
Szepesvári, 2020), we have

Ei,j [ni + nj ] ≤ E0[ni + nj ] + T

√
1

4
ε2E0[ni + nj ].
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Taking summation over all i ̸= j, i, j ∈ [N ], we obtain that∑
i̸=j,i,j∈[N ]

Ei,j [ni + nj ] ≤
∑

i̸=j,i,j∈[N ]

E0[ni + nj ] +
Tε

2

∑
i ̸=j,i,j∈[N ]

√
E0[ni + nj ]

≤ (N − 1)

N∑
i=1

E0[ni] +
Tε

2
(N − 1)

N∑
i=1

√
E0[ni]

≤ (N − 1)T +
Tε(N − 1)

2

√
NT, (7)

where the second inequality uses
√
a+ b ≤

√
a+
√
b and the third inequality is due to Cauchy-Schwarz inequality.

Applying Eq. (7) to Eq. (6), we obtain that

EE [Reg] ≥ εT − 2ε

N(N − 1)
·
[
(N − 1)T +

Tε(N − 1)

2

√
NT

]
= εT − 2εT

N
− ε2N− 1

2T
3
2

≥ 1

3
εT − ε2N− 1

2T
3
2 . (N ≥ 3)

Picking ε = 1
4

√
N
T leads to EE [Reg] ≥ 1

48

√
NT . Therefore, there exists one environment among {ρ(i,j)}i ̸=j,i,j∈[N ]

such that Ei,j [Reg] ≥ 1
48

√
NT , which finishes the proof.

B Omitted Proofs in Section 4

Proof of Theorem 4.1. Let i∗t = argmaxi∈[Nt] bt,iρt,i, j
∗
t = argsmaxj∈[Nt] bt,iρt,i, it,f = argmaxi∈[Nt] bt,if(xt, i),

and jt,f = argsmaxi∈[Nt] bt,if(xt, i). Also recall the notation it = argmaxi∈[Nt] bt,iρ̃t,i and jt =
argsmaxj∈[Nt] bt,iρ̃t,i. Then, we decompose the regret as follows:

E [Reg] = E

[
T∑

t=1

smaxi∈[Nt] bt,iρt,i −
T∑

t=1

ctdt

]

= E

[
T∑

t=1

ρt,j∗t bt,j∗t −
T∑

t=1

ρ̃t,jtbt,jt
ρ̃t,it

ρt,it

]

= E

[
T∑

t=1

Eit,jt

[
ρ̃t,jtbt,jt
ρ̃t,it

(ρ̃t,it − ρt,it)

]]
− E

[
T∑

t=1

(
ρ̃t,jtbt,jt − ρt,j∗t bt,j∗t

)]

= E

[
T∑

t=1

Ef∼qt

[
f(xt, jt,f )bt,jt,f

f(xt, it,f )
(f(xt, it,f )− f∗(xt, it,f ))

]]

− E

 T∑
t=1

(
ft(xt, jt)bt,jt − f∗(xt, j

∗
t )bt,j∗t

)︸ ︷︷ ︸
≜FGt


≤ E

[
T∑

t=1

Ef∼qt [|f(xt, it,f )− f∗(xt, it,f )|]

]
− E

[
T∑

t=1

FGt

]

where the inequality is because
f(xt,jt,f )bt,jt,f

f(xt,it,f )
≤ bt,it,f ≤ 1. Note that the “Feel-Good” term FGt is the difference

between what ft believes its payment is in its predicted world and that of the perfect predictor f∗. We now
analyze the other term for each time t, which can be written as:∑

i∈[Nt]:pt,i ̸=0

Ef∼qt [1{it,f = i}|f(xt, i)− f∗(xt, i)|] .
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where pt,i is the probability of it being i. Now consider a fixed i. We have for any µ > 0,

Ef∼qt [1{it,f = i}|f(xt, i)− f∗(xt, i)|]

≤ Ef∼qt

[
1{it,f = i}

4µpt,i
+ µpt,i (f(xt, i)− f∗(xt, i))

2

]
(AM-GM inequality)

=
1

4µ
+ µpt,iEf∼qt

[
(f(xt, i)− f∗(xt, i))

2
]
, (pt,i = Ef∼qt [1{it,f = i}])

which, after taking the summation over i, becomes

Nt

4µ
+ µEit∼pt

Ef∼qt

[
(f(xt, it)− f∗(xt, it))

2
]

(note the important decoupling effect here: f is not ft). With notation LSt ≜ (f(xt, it) − f∗(xt, it))
2 (“Least

Squares”), we have thus shown for any µ > 0:

E[Reg] ≤ 1

4µ

T∑
t=1

Nt + µE

[
T∑

t=1

Eit∼ptEf∼qt [LSt]

]
− E

[
T∑

t=1

Eft∼qt [FGt]

]
. (8)

Next, using the fact that ct is a Bernoulli random variable with mean f∗(xt, it) and following a similar analysis of
Lemma 4 in (Zhang, 2022), we can show that

1

16η
Ef∼qt [LSt]− Eft∼qt [FGt] ≤ −

1

η
logEct|xt,itEf∼qt

[
exp

(
−η
(
ℓ̂t,f − ℓ̂t,f∗

))]
+ 4η, (9)

with ℓ̂t,f defined as the (OptSq) option shown in Algorithm 1. For completeness, we include the proof of Eq. (9)
in Lemma B.1. Comparing Eq. (8) and Eq. (9) naturally suggests picking µ = 1

16η , so that

E[Reg] ≤ 4η

T∑
t=1

Nt + 4Tη − 1

η

T∑
t=1

logEct|xt,itEf∼qt

[
exp

(
−η
(
ℓ̂t,f − ℓ̂t,f∗

))]
. (10)

Note that the analysis so far holds for any qt. To complete the proof, we now use the specific form of qt defined
in Algorithm 1: qt,f ∝ exp

(
−η
∑t−1

s=1 ℓ̂s,f

)
. Using standard analysis of the multiplicative weight update, we show

in Lemma B.2 the following:

−E
[
Eit logEct|xt,it Ef∼qt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗))

]]
≤ Zt − Zt−1, (11)

where Zt = −E
[
logEf∼q1 exp

(
−η
∑t

τ=1

(
ℓ̂t,f − ℓ̂t,f∗

))]
. Combining this fact with Eq. (10), we arrive at

E[Reg] ≤ 4η

T∑
t=1

Nt + 4Tη +
1

η

T∑
t=1

(Zt − Zt−1)

≤ 4η

T∑
t=1

Nt + 4Tη +
ZT

η
, (telescoping and Z0 = 0)

which finishes the proof.

Lemma B.1. Suppose that η ≤ 1. For any distribution qt over F and bt ∈ [0, 1]N , we have

1

16η
Ef∼qt [LSt]− Eft∼qt [FGt] ≤ −

1

η
logEct|xt,itEf∼qt exp

(
−η
(
ℓ̂t,f − ℓ̂t,f∗

))
+ 4η,

where LSt and FGt are defined in the proof of Theorem 4.1, and ℓ̂t,f is defined in the (OptSq) option of Eq. (2).
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Proof. Since ct ∈ {0, 1} is a Bernoulli random variable with mean f∗(xt, it), ct satisfies the following sub-Gaussian
random variable property: for any ρ,

Ect|xt,it [exp (ρ (ct − f∗(xt, it)))] ≤ exp

(
ρ2

8

)
.

Let εt = ct − f∗(xt, it). For any f , setting ρ = − 1
2 (f

∗(xt, it)− f(xt, it)), we thus have

Ect|xt,it exp

(
−1

2
εt (f

∗(xt, it)− f(xt, it))

)
≤ exp

(
1

32
LSt

)
. (12)

On the other hand, consider the following equalities:

− η
(
ℓ̂t,f − ℓ̂t,f∗

)
= −1

4
(f(xt, it)− ct)

2 +
1

4
(f∗(xt, it)− ct)

2 + η · smaxjbt,jf(xt, j)− η · smaxjbt,jf
∗(xt, j)

= −1

4
(εt + f∗(xt, it)− f(xt, it))

2 +
1

4
ε2t + η · smaxjbt,jf(xt, j)− η · smaxjbt,jf

∗(xt, j)

= −1

2
εt(f

∗(xt, it)− f(xt, it))−
1

4
LSt + ηFGt(f),

where we define FGt(f) = smaxj(f(xt, j)bt,j)− smaxj(f
∗(xt, j)bt,j) (so FGt = FGt(ft)). Combining the above

with Eq. (12), we obtain

Ect|xt,it

[
exp

(
−η
(
ℓ̂t,f − ℓ̂t,f∗

))]
≤ exp

(
− 7

32
LSt + ηFGt(f)

)
.

This further shows:

logEf∼qt

[
Ect|xt,it

[
exp

(
−η
(
ℓ̂t,f − ℓ̂t,f∗

))]]
≤ logEf∼qt

[
exp

(
− 7

32
LSt + ηFGt(f)

)]
≤ 1

2
logEf∼qt

[
exp

(
− 7

16
LSt

)]
+

1

2
logEf∼qt [exp(2ηFGt(f))] , (13)

where the last inequality is due to Cauchy-Schwarz inequality. For the first term, using the facts 0 ≤ LSt ≤ 1 and
ex ≤ 1 + x+ x2

2 for x ≤ 0, we know

Ef∼qt

[
exp

(
− 7

16
LSt

)]
≤ 1− 7

16
Ef∼qt [LSt] +

49

256
Ef∼qt [LS

2
t ] ≤ 1− 1

8
Ef∼qt [LSt],

where the last inequality is because LS2t ≤ LSt. Further using log(1 + x) ≤ x gives

1

2
logEf∼qt

[
exp

(
− 7

16
LSt

)]
≤ 1

2
log

(
1− 1

8
Ef∼qt [LSt]

)
≤ − 1

16
Ef∼qt [LSt]. (14)

Moreover, since η ≤ 1 and |FGt(f)| ≤ 1, using ex ≤ 1 + x+ 2x2 for x ≤ 2, we have

1

2
logEf∼qt [exp(2ηFGt(f))] ≤

1

2
log
(
1 + 2ηEf∼qt [FGt(f)] + 2(2η)2

)
≤ ηEf∼qt [FGt(f)] + 4η2 (log(1 + x) ≤ x)

= ηEft∼qt [FGt] + 4η2. (ft is drawn from qt)

Plugging the last bound and Eq. (14) into Eq. (13) and rearranging finishes the proof.

Lemma B.2. Algorithm 1 guarantees that for each t ∈ [T ],

−E
[
Eit∼pt logEct|xt,it Ef∼qt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗))

]]
≤ Zt − Zt−1,

where Zt = −E
[
logEf∼q1

[
exp

(
−η
∑t

τ=1

(
ℓ̂t,f − ℓ̂t,f∗

))]]
.
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Proof. Let Wt,f ≜ exp
(
−η
∑t

τ=1

(
ℓ̂t,f − ℓ̂t,f∗

))
. According to Algorithm 1, we know that

qt,f =
exp

(
−η
∑t−1

τ=1 ℓ̂τ,f

)
∫
f ′∈F exp

(
−η
∑t−1

τ=1 ℓ̂τ,f ′

)
df ′

=
Wt−1,f∫

f ′∈F Wt−1,f ′df ′ .

Then, according to the definition of Zt, we have

Zt−1 − Zt

= E

[
log

∫
f∈F Wt,fdf∫

f∈F Wt−1,fdf

]

= E

[
log

∫
f∈F Wt−1,f exp(−η(ℓ̂t,f − ℓ̂t,f∗))df∫

f∈F Wt−1,fdf

]
= E

[
logEf∼qt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗)

]]
≤ E

[
Eit∼pt

logEct|xt,itEf∼qt

[
exp(−η(ℓ̂t,f − ℓ̂t,f∗)

]]
,

where the last inequality is due to Jensen’s inequality. Rearranging the terms finishes the proof.

Proof of Corollary 4.2. To show that ZT = O(d log(αBT )), we consider a small cube around the true parameter
θ∗: ΩT = {θ : ∥θ − θ∗∥∞ ≤ 1

αT }. Since F is α-Lipschitz with respect to ∥ · ∥∞, we know that ∥fθ − fθ∗∥∞ ≤ 1
T .

Therefore, for any θ ∈ ΩT ,

− η(ℓ̂t,fθ − ℓ̂t,fθ∗ )

= −1

4
(fθ(xt, it)− ct)

2 +
1

4
(fθ∗(xt, it)− ct)

2

+ η · smaxjbt,jfθ(xt, j)− η · smaxjbt,jfθ∗(xt, j)

≥ −1

2
|fθ(xt, it)− fθ∗(xt, it)|+ η · smaxjbt,jfθ(xt, j)− η · smaxjbt,jfθ∗(xt, j). (15)

For the second and the third term, if argmaxi bt,ifθ(xt, i) = argmaxi bt,ifθ∗(xt, i), let jθ∗ = argsmaxj bt,jfθ∗(xt, j)
and we know that

smaxjbt,jfθ(xt, j)− smaxjbt,jfθ∗(xt, j)

≥ bt,jθ∗ fθ(xt, jθ∗)− smaxjbt,jfθ∗(xt, j)

≥ −bt,jθ∗ |fθ(xt, jθ∗)− fθ∗(xt, jθ∗)|.

Otherwise, let iθ∗ = argmaxi bt,ifθ∗(xt, i) and we know that

smaxjbt,jfθ(xt, j)− smaxjbt,jfθ∗(xt, j)

≥ smaxjbt,jfθ(xt, j)− bt,iθ∗ fθ∗(xt, iθ∗)

≥ bt,iθ∗ fθ(xt, iθ∗)− bt,iθ∗ fθ∗(xt, iθ∗)

≥ −bt,iθ∗ |fθ(xt, iθ∗)− fθ∗(xt, iθ∗)|.

Combining the two cases above and plugging them into Eq. (15), we obtain

−η(ℓ̂t,fθ − ℓ̂t,fθ∗ ) ≥ −
1

2T
− η

T
.

This means that

ZT = −E

[
logEf∼q1 exp

(
−η

T∑
t=1

(
ℓ̂t,fθ − ℓ̂t,fθ∗

))]
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≤ −E

[
log

1

(αBT )d
inf

θ∈ΩT

exp

(
−η

T∑
t=1

(
ℓ̂t,fθ − ℓ̂t,fθ∗

))]

≤ d log(αBT ) +
1

2
+ η = O(d log(αBT )),

which finishes the proof.

C Omitted Proofs in Section 5

Proof of Proposition 5.1. By the definition of decγ , we have

E[Reg] ≤ E

[
γ

T∑
t=1

(ρt,it − ρ̂t,it)
2 +

T∑
t=1

decγ(ρ̂t)

]
.

It remains to notice that the first term is bounded by RegSq under Assumption 2:

RegSq ≥ E

[
T∑

t=1

(ft(xt, it)− ct)
2 −

T∑
t=1

(f∗(xt, it)− ct)
2

]

= E

[
T∑

t=1

(ft(xt, it)− f∗(xt, it)) (ft(xt, it) + f∗(xt, it)− 2ct))

]

= E

[
T∑

t=1

(ft(xt, it)− f∗(xt, it))
2

]
(the conditional expectation of ct is f∗(xt, it))

= E

[
T∑

t=1

(ρt,it − ρ̂t,it)
2

]
.

This finishes the proof.

Proof of Theorem 5.1. Consider the ε-greedy strategy described above Theorem 5.1 and any ρ, b ∈ [0, 1]N . We
have

Eρ̃∈Q

[(
smaxi∈[N ]biρi − ρi∗

smaxj∈[N ]bj ρ̃j

ρ̃i∗

)
− γ (ρi∗ − ρ̂i∗)

2

]

=

(
smaxi∈[N ]biρi − Eρ̃∈Q

[
ρi∗

smaxj∈[N ]bj ρ̃j

ρ̃i∗

])
− γ

N∑
i=1

pi(ρi − ρ̂i)
2

≤
(
smaxi∈[N ]biρi − (1− ε)ρ̂i∗

smaxj∈[N ]bj ρ̂j

ρ̂̂i∗

)
− γ

N∑
i=1

pi(ρi − ρ̂i)
2

≤
(
smaxi∈[N ]biρi − ρ̂i∗

smaxj∈[N ]bj ρ̂j

ρ̂̂i∗

)
− γ

N∑
i=1

pi(ρi − ρ̂i)
2 + ε (16)

where in the first step we introduce the notation pi which is the probability of i∗ being i, in the second step
we ignore the revenue obtained from exploration and use î∗ to denote argmaxi biρ̂i, and in the last step we use
the fact smaxj∈[N]bj ρ̂j

ρ̂î∗
≤ 1. We now make the following two observations for any i ∈ [N ], both due to AM-GM

inequality and the fact pi ≥ ε/N :

|biρi − biρ̂i| −
γ

2
pi(ρi − ρ̂i)

2 ≤ b2i
2γpi

≤ N

2γε
, (17)

smaxj∈[N ]bj ρ̂j

ρ̂i
|ρ̂i∗ − ρ̂̂i∗ | −

γ

2
p̂i∗(ρ̂i∗ − ρ̂̂i∗)

2 ≤ 1

2γp̂i∗

(
smaxj∈[N ]bj ρ̂j

ρ̂̂i∗

)2

≤
b2
î∗

2γp̂i∗
≤ N

2γε
.

(18)
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We are now ready to bound Eq. (16) by considering two cases: î∗ ̸= j∗ or î∗ = j∗ where j∗ = argsmaxi biρi. In
the first case (̂i∗ ̸= j∗), we use Eq. (17) with i = j∗ and Eq. (18) to continue to bound Eq. (16) as

bj∗ ρ̂j∗ − smaxj∈[N ]bj ρ̂j +
N

γε
+ ε ≤ N

γε
+ ε,

where the last step is because j∗ is not î∗ and thus bj∗ ρ̂j∗ is not maxj bj ρ̂j and must be at most the second max.
In the second case (̂i∗ = j∗), we know î∗ ≠ argmaxi biρi ≜ k, and thus we first bound smaxi∈[N ]biρi by bkρk and
then apply Eq. (17) with i = k and Eq. (18) to obtain the following upper bound:

bkρ̂k − smaxj∈[N ]bj ρ̂j +
N

γε
+ ε ≤ N

γε
+ ε,

where the last step is again because k is not î∗. Picking ε =
√

N/γ, we have thus proven decγ(ρ̂) ≤ 2
√
N/γ.

The second statement of theorem is then a direct consequence. Indeed, following the analysis of Proposition 5.1,
we know that Algorithm 2 ensures

E[Reg] ≤ γRegSq + 2

T∑
t=1

√
N

γ

where γ = N/ε2. Plugging the value of ε finishes the proof.
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