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Abstract

The restricted isometry property (RIP) is es-
sential for the linear map to guarantee the
successful recovery of low-rank matrices. The
existing works show that the linear map gen-
erated by the measurement matrices with in-
dependent and identically distributed (i.i.d.)
entries satisfies RIP with high probability.
However, when dealing with non-i.i.d. mea-
surement matrices, such as the rank-one mea-
surements, the RIP compliance may not be
guaranteed. In this paper, we show that the
RIP can still be achieved with high probabil-
ity, when the rank-one measurement matrix
is constructed by the random unit-modulus
vectors. Compared to the existing works, we
first address the challenge of establishing RIP
for the linear map in non-i.i.d. scenarios. As
validated in the experiments, this linear map
is memory-efficient, and not only satisfies the
RIP but also exhibits similar recovery per-
formance of the low-rank matrices to that of
conventional i.i.d. measurement matrices.

1 INTRODUCTION

The low-rank matrix recovery is a popular topic in
many fields, such as wireless communication, signal
processing, and image processing (Candes et al., 2013;
Chen et al., 2015; Shechtman et al., 2015; Davenport
and Romberg, 2016; Zhang et al., 2018b; Chen and
Chi, 2018; Chi et al., 2019; Zhang et al., 2019; Zhang
and Tay, 2021; Farias et al., 2022; Tong et al., 2022).
The primary objective for this problem is to recon-
struct a low-rank matrix from a limited number of ob-
servations. These observations are obtained through
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a linear map, which consists of the measurement ma-
trices. To be more specific, the measurements for a
low-rank matrix X ∈ CM×N are give by the following

yk =
1√
K

⟨Ak,X⟩+ zk, k = 1, 2, . . . ,K, (1)

where Ak ∈ CM×N are the measurement matrices,
⟨Ak,X⟩ = tr(AH

k X), and zk is the noise or measure-
ment error. The K measurement matrices {Ak}Kk=1

collectively define a linear map, denoted as A(·) :
CM×N → CK×1, where each entry of A(X) is given
by [A(X)]k = 1√

K
⟨Ak,X⟩, k = 1, 2, . . . ,K. Thus, the

measurement model in (1) is shown in a compact form

y = A(X) + z, (2)

where y = [y1, . . . , yK ]T and z = [z1, . . . , zK ]T .

The goal of low-rank matrix recovery is to reconstruct
X from the linear mapA(·) and measurements y in (2).
There are various approaches, including both convex
and non-convex methods, (Recht et al., 2010; Candes
and Plan, 2011; Chen and Chi, 2018; Chi et al., 2019;
Ma et al., 2018; Jain et al., 2013, 2010; Zheng and Laf-
ferty, 2015; Tu et al., 2016) can be utilized to fulfill the
goal. The convex methods (Recht et al., 2010; Can-
des and Plan, 2011; Chen and Chi, 2018) utilize the
nuclear norm of X as a penalty term in their objec-
tive functions to promote low-rank solutions. It has
been shown that, when the linear map satisfies the
restricted isometry property (RIP) with the required
RIP constant, these convex methods can guarantee
successful recovery in noiseless scenarios or bounded
reconstruction errors in the presence of noise. In ad-
dition to convex methods, non-convex techniques (Chi
et al., 2019; Ma et al., 2018; Jain et al., 2013, 2010;
Zheng and Lafferty, 2015; Tu et al., 2016), such as
gradient-based methods and alternating minimization
methods, offer greater computational efficiency . No-
tably, these gradient-based methods, as demonstrated
in the works by Chi et al. (2019); Zheng and Lafferty
(2015); Tu et al. (2016), can ensure convergence with
proper initialization when the linear map A(·) satis-
fies the RIP with the necessary constant. Furthermore,
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some studies (Ge et al., 2017; Zhang et al., 2018a) have
investigated the presence of spurious local minima in
low-rank matrix recovery problems. When there are
no spurious local minima, non-convex methods can
achieve global minima. The works by Ge et al. (2017);
Zhang et al. (2018a) have shown that, when the linear
map A(·) satisfies the RIP with the required constant,
the low-rank matrix recovery problem formulated in
this manner has no spurious local minima, thereby
guaranteeing exact recovery.

As mentioned above, one can find that the RIP of the
linear mapA(·) plays an important role in ensuring the
low-rank matrix recovery. In particular, the definition
of RIP is presented below.

Definition 1 (Standard RIP over Low-Rank Matri-
ces (Candes and Plan, 2011)). For the set of rank-r
matrices, we define the RIP constant δrwith respect to
operator A(·) as the smallest numbers such that for all
X of rank at most r:

(1− δr)∥X∥2F ≤ ∥A(X)∥22 ≤ (1 + δr)∥X∥2F .

There are many types of linear map that satisfy the
defined RIP above. When the entries of Ak are i.i.d.
complex Gaussian entries (Recht et al., 2010; Candes
and Plan, 2011), or when the entries of Ak are i.i.d.
unit-modulus (Zhang et al., 2018b), where each entry
is unit-modulus and its phase follows a uniform distri-
bution in the range [0, 2π], then the linear map A(·)
satisfies the RIP with high probability, on the condi-
tion that the number of measurementsK ≥ c(M+N)r
for large enough constant c > 0.

However, in certain scenarios of low-rank matrix re-
covery, the entries in the measurement matrix are
non-i.i.d. or do not follow the distributions men-
tioned above, such as the low-rank matrix comple-
tion (Candès and Recht, 2009; Candès and Tao, 2010),
phase retrieval (Candes et al., 2015; Ma et al., 2018),
and quadratic sensing problem (Chen et al., 2015; Cai
and Zhang, 2015). In general, the associated linear
map A(·) in these scenarios does not satisfy the RIP
property. To analyze the recovery performance guar-
antee under these non-RIP scenarios, some variants of
RIP are defined, such as incoherence for matrix com-
pletion (Candès and Recht, 2009; Candès and Tao,
2010) and RIP-ℓ2/ℓ1 for the rank-one measurements
(Chen et al., 2015; Cai and Zhang, 2015). However,
many existing advancements based on RIP, such as
the works in (Chi et al., 2019; Ma et al., 2018; Jain
et al., 2013, 2010; Zheng and Lafferty, 2015; Tu et al.,
2016) , are not applicable for these non-RIP scenarios.

In this paper, our primary focus is on the concept
of rank-one measurements as introduced by Cai and
Zhang (2015). We aim to demonstrate that when the

measurement matrix follows the specified distribution,
the associated linear map satisfies the RIP. It is worth
noting that the quadratic sensing problem and phase
retrieval can be considered special cases of the rank-
one projection problem. For rank-one measurements
(Cai and Zhang, 2015; Li et al., 2019), the measure-
ment matrix Ak can be represented as an outer prod-
uct of two vectors,

Ak = ukv
H
k . (3)

However, in general cases where the measurement ma-
trices Ak are defined above, it has been established in
prior works (Cai and Zhang, 2015; Chi et al., 2019)
that the associated linear map does not satisfy the
RIP. For example, studies of Chi et al. (2019); Cai
and Zhang (2015); Chen et al. (2015) have shown that
when the entries of both uk and vk are i.i.d. Gaus-
sian, the associated linear map A(·) does not satisfy
the RIP. In our work, we impose specific distribution
on the random vectors uk and vk instead of i.i.d. Gaus-
sian in the existing works (Chi et al., 2019; Cai and
Zhang, 2015; Chen et al., 2015). We show that when
the entries in uk and vk are i.i.d. unit-modulus, the
associated linear map satisfies the RIP with high prob-
ability. As far as we know, our research marks the first
attempt to tackle the challenge of establishing RIP for
the linear map in non-i.i.d. scenarios. Additionally, it
lays the foundational framework for proving RIP in
various forms of random rank-one measurements.

2 RIP ANALYSIS OF LINEAR MAP

2.1 Sufficient Condition of RIP

For arbitrary uk and vk in (3), whether the corre-
sponding linear map A(·) satisfies the RIP is challeng-
ing to check. Fortunately, the following theorem pro-
vides a sufficient condition on which the linear map
A(·) satisfies the RIP.

Theorem 1 (Candes and Plan (2011), Theorem 2.31).
Let A(·) : CM×N → CK×1 be a linear map with
random measurement matrices obeying the following
condition: for any given X ∈ CM×N and any fixed
0 < α < 1

Pr
(∣∣∥A(X)∥22 − ∥X∥2F

∣∣≥α∥X∥2F
)
≤ C exp(−cK) (4)

for fixed constants C, c > 0 (which may depend on α).
Then if K ≥ Dmax{M,N}r, A satisfies the RIP with
constant δr > 0 with probability exceeding 1 − Ce−dK

for fixed constants D, d > 0.

1It is worth noting that the original result in the work
(Candes and Plan, 2011) is for the real case, i.e., A :
RM×N → RK×1 and X ∈ RM×N . However, the result
is ready to extend to the complex case.
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Without loss of generality, we assume ∥X∥F = 1.
Therefore, according to Theorem 1, in order to show
the linear map A(·) meet RIP, we need to prove the
following probability

Pr
(∣∣∥A(X)∥22 − 1

∣∣ ≥ α
)

(5)

is close to zero. Note that the probability is taken over
the linear map A(·) and the X is fixed and arbitrary.

For the linear map A(·) where the entries in Ak are
drawn from i.i.d. CN (0, 1), it is easy to verify that
the condition in (4) holds. Therefore, the correspond-
ing linear map satisfies the RIP with high probability.
This is also consistent with the real case where Ak are
drawn according to i.i.d. N (0, 1) in the following.

Remark 1 (Recht et al. (2010); Candes and Plan
(2011)). If the entries of Ak are i.i.d. Gaussian en-
tries N (0, 1), then A(·) satisfies the r-RIP with RIP
constant δr with high probability as K ≳ (M+N)r/δ2r .

Moreover, when the entries in Ak of the linear map are
i.i.d. (Recht et al., 2010; Candes and Plan, 2011; Zhang
et al., 2018b) , the central limit theorem can be applied
to approximately verify the sufficient condition in (4).
However, for the rank-one model in (3), the entries of
measurement matrix Ak are dependent. Due to this
dependence, the standard RIP in Definition 1 may not
hold for the general uk and vk. For example, when the
entries of uk and vk are i.i.d. Gaussian, the RIP does
not hold in this scenario because the uHXv involves
fourth moments of Gaussian variable (Cai and Zhang,
2015; Kueng et al., 2017; Candes et al., 2013).

To evaluate the concentration property of the linear
map for this dependent and rank-one measurement
model in (3), some alternative conditions, such as
RIP-ℓ1/ℓ1 (Candes et al., 2013) and RIP-ℓ2/ℓ1 (Chen
et al., 2015; Cai and Zhang, 2015), have been proposed.
These studies demonstrate that the convex methods
can ensure the exact recovery based on these alterna-
tive conditions. However, in the context of non-convex
analyses, techniques like the alternating minimization
method (Jain et al., 2013), singular value projection
method (Jain et al., 2010), and other local optimal
analysis (Ge et al., 2017; Chi et al., 2019; Ma et al.,
2018), these variants of RIP (Candes et al., 2013; Chen
et al., 2015; Cai and Zhang, 2015) are not applicable,
because these analysis are based on the standard RIP.
Thus, this highlights the crucial importance of stan-
dard RIP in Definition 1 compared to its variants.

It is indeed a well-established fact that the linear map
A(·) with general setting for uk and vk in (3) may not
satisfy the standard RIP. However, in this paper, we
find that if we impose some specific design for uk and
vk, it becomes possible to attain the standard RIP for

the designed linear map. The main result of the paper
is presented in the following theorem.

Theorem 2. Suppose the measurement matrix Ak =
ukv

H
k ∈ CM×N , where uk ∈ CM×1,vk ∈ CN×1 are

given in the following

uk = [ejθk,1 , . . . , ejθk,M ]T ,

vk = [ejϕk,1 , . . . , ejϕk,N ]T , (6)

with θk,m,∀m and ϕk,n,∀n being i.i.d. from a uni-
form distribution on [0, 2π]. For the linear map A(·) :
CM×N → CK×1 generated by {Ak}Kk=1, where

[A(X)]k =
1√
K

⟨Ak,X⟩,

=
1√
K

uH
k Xvk,∀ k = 1, 2, . . . ,K,

it satisfies RIP with high probability as long as K ≥
Dmax{M,N}r for some large enough constant D.

Intuitively, the reason that the standard RIP for the
linear map (6) holds is because the entries in uk and
vk are unit-modulus, which are bounded compared to
the scenario where uk and vk are i.i.d. Gaussian (Chen
et al., 2015; Cai and Zhang, 2015). Moreover, they
experience some special symmetric statistical property
compared to i.i.d. Gaussian scenario, which enables
us to prove the RIP in the following sections. Before
delving into details of the proof, we first discuss the
applications of the measurement model outlined in (6).

Compared to the i.i.d. measurement matrix Ak, the
rank-one measurements can offer enhanced storage ef-
ficiency for the linear map, as demonstrated by (Cai
and Zhang, 2015). Moreover, within the context of
rank-one measurements, the designed unit-modulus
setting in (6) can further save the storage of the mea-
surement matrices, as opposed to case of i.i.d. Gaus-
sian uk and vk. The reason behind this efficiency is
that, for the unit-modulus setting described in (6), it is
necessary to store only the phases of the vectors uk and
vk. In contrast, for the i.i.d. Gaussian uk and vk, one
must preserve both the magnitudes and phases of these
vectors to accurately construct the measurement ma-
trix Ak. Most importantly, based on the established
results in Theorem 2, the proposed unit-modulus rank-
one measurements are applicable for many RIP-based
algorithms or analysis (Jain et al., 2013, 2010; Ge
et al., 2017; Chi et al., 2019; Ma et al., 2018), making
the rank-one unit-modulus measurements a promising
option for the matrix recovery task. Therefore, build-
ing on the advantages highlighted earlier, the rank-one
measurement model with unit-modulus vectors in (6)
has widespread applications in the field of low-rank
matrix recovery, especially when the configuration of
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the measurement matrices is applicable, such as chan-
nel estimation in communication systems (El Ayach
et al., 2014; Zhang et al., 2018b, 2020), phase retrieval
(Candes et al., 2013; Ma et al., 2018), covariance esti-
mation (Chen et al., 2015), and X-ray crystallography
(Shechtman et al., 2015).

2.2 Inequalities of Tail Bounds

To establish the fact that the linear map in Theorem 2
satisfies the RIP, we need to evaluate the probability of
the event in (5). After straightforward manipulations,
one can find that E[∥y∥22] = 1. Thus, the bound in (5)
is about the tail bound. When the probability is small,
it means that the value of ∥y∥22 is strictly concentrated
around its expected value. In the following, we will
evaluate the upper and lower tail bounds, respectively.

For the upper tail bound, due to the independence
among the entries of A(X), one can apply Chernoff
bound for any h > 0,

Pr(∥A(X)∥22 ≥ (1 + α))

= Pr(hK∥A(X)∥22 ≥ hK(1 + α))

= Pr(ehK∥A(X)∥2
2 ≥ ehK(1+α))

≤ E[ehK∥A(X)∥2
2 ]e−hK(1+α).

Since the second part of the right-hand side (R.H.S.)
of the inequality above, i.e., e−hK(1+α), goes to zero
as K goes to infinity, we focus on the first part,

E[ehK∥A(X)∥2
2)] = E[eh

∑
k=1 |⟨Ak,X⟩|2 ]

=
(
E[eh|⟨A1,X⟩|2 ]

)K
=
(
E[eh|u

H
1 Xv1|2 ]

)K
.

For convenience, we ignore the subscript the subscripts
of u and v. Using Taylor series for ehK|⟨A1,X⟩|2 gives

E[eh|u
HXv|2 ] = E

[ ∞∑
t=0

ht

t!
|uHXv|2t

]

=

∞∑
t=0

ht

t!
E[|uHXv|2t]. (7)

For the lower tail bound in (5), we have

Pr(∥A(X)∥22 ≤ (1− α))

= Pr(−hK∥A(X)∥22 ≥ −hK(1− α))

≤ E[e−hK∥A(X)∥2
2 ]ehK(1−α)

=
(
E[e−h|uHXv|2 ]

)K
ehK(1−α).

Similarly, using the Taylor series yields

E[e−h|uHXv|2 ] = E

[ ∞∑
t=0

(−h)t

t!
|uHXv|2t

]

=

∞∑
t=0

(−h)t

t!
E[|uHXv|2t]. (8)

In summary, we have the following upper tail proba-
bility bound

Pr(∥A(X)∥22 ≥ (1 + α)) ≤( ∞∑
t=0

ht

t!
E[|uHXv|2t]

)K

e−hK(1+α), (9)

and the lower tail probability bound

Pr(∥A(X)∥22 ≤ (1− α)) ≤( ∞∑
t=0

(−h)t

t!
E[|uHXv|2t]

)K

ehK(1−α). (10)

To check whether the sufficient condition in (4) holds
for the linear map A(·), we need to evaluate the val-
ues in (9) and (10). By observing the R.H.S. of (9)
and (10), one can find that the key is to calculate
E[|uHXv|2t].

3 CONNECTION WITH THE
ALL-ONE MATRIX

The value of E[|uHXv|2t] depends on the realiza-
tions of X, which is challenging to manipulate. To
handle this, we first focus on a specific X, where
X = 1√

MN
11T , then establish a relationship between

E[|uHXv|2t] and E[|uH11Tv|2t]. In particular, when
X = 1√

MN
11T , we have that

E

[∣∣∣∣uH 1√
MN

11Tv

∣∣∣∣2t
]
=

1

M tN t
E

∣∣∣∣∣∑
m=1

u∗
m

∣∣∣∣∣
2t
E

∣∣∣∣∣∑
n=1

vn

∣∣∣∣∣
2t
 . (11)

Compared to E[|uHXv|2t], the value in (11) only de-
pends on the random vector u and v, which is appli-
cable to derive a bound for it. We first provide some
preliminaries, and all their proofs are attached in Sec-
tion B of the supplementary materials.

First of all, the following lemma is about the maxi-
mization of summation of combinations.
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Lemma 1. Suppose 0 ≤ p ≤ 1 and n ≥ 0, the sum-
mation below

sn(p) =

n∑
k=0

(
n

k

)2

pk(1− p)n−k

is maximized when p = 1/2.

Since the summation term p+(1−p) = 1, the Lemma 1
shows that the average value, i.e., p = 1/2, achieves
the maximum of sn(p). The results in Lemma 1 will
be utilized to compare the value of E[|uHXv|2t] with
E[|uH11Tv|2t]. As a straightforward extension, when
p+ (T − p) = T , the following Corollary holds.

Corollary 1. Suppose 0 ≤ p ≤ T and n ≥ 0, the
summation below

sn(p) =

n∑
k=0

(
n

k

)2

pk(T − p)n−k

is maximized when p = 0.5T .

Before comparing the values of E[|uHXv|2t] and
E[|uH11Tv|2t], we start from the simplified case where
x ∈ CN×1 and disregard the vector u. Specif-
ically, we evaluate the values of E

[
|xTv|2m

]
and

E
[
|1Tv|2m

]
,∀m. By doing so, we lay the founda-

tion for extending these findings to a more general
settingby incorporating additional considerations

Theorem 3. Suppose v = [ejϕ1 , . . . , ejϕN ]T with
ϕn,∀n being i.i.d. from a uniform distribution on
[0, 2π]. If x ∈ CN×1 with ∥x∥2 = 1, then for any
m ≥ 0, E

[
|xTv|2m

]
is maximized when xn = 1√

N
,∀n.

Thus, according to Theorem 3, for any ∥x∥2 = 1, one
has the following inequality,

E[|xTv|2m] ≤ 1

Nm
E[|1Tv|2m],∀m.

Furthermore, in order to extend the vector-case results
in Theorem 3 to a more general setting, we need the
following Lemmas 2 to 4 as preliminaries.

Lemma 2. Suppose t > 0 and km ≥ 0 are integers,
and non-negative cm ∈ R,∀m = 1, 2, . . . ,M , with∑M

m=1 c
2
m = 1, then the following holds

∑
k1+...+kM=t

(
t

k1, . . . , kM

)2 M∏
m=1

c2km
m ≤

∑
k1+...+kM=t

M−t

(
t

k1, . . . , kM

)2

, (12)

where the equality holds when cm = 1/
√
M .

The results in Lemma 2 mean that the summation
about the combinatorial expression is maximized when
the values of cm,∀m, are equivalent, which is the ex-
tension of result in the one-variable case of Corollary 1.

Lemma 3. Suppose non-negative random variables
X1, X2, for any k1, k2 ≥ 0 and 1/p + 1/q = 1 with
p, q ∈ [1,+∞), then we have

E
[
Xk1

1 Xk2
2

]
≤ (E[Xk1p

1 ])1/p(E[Xk2q
2 ])1/q. (13)

In particular,

E[Xk1
1 Xk2

2 ] ≤ max{E[Xk1+k2
1 ],E[Xk1+k2

2 ]}. (14)

The results in Lemma 3 are to bound E[Xk1
1 Xk2

2 ] by
the product of expectations, where the latter is more
applicable to handle. Then, the following lemma is an
extension of the results in Lemma 3, where there are
N random variables.

Lemma 4. Suppose non-negative random variables
X1, X2, . . . , XN , for any kn ≥ 0, then the following
inequality about expectation holds

E

[
N∏

n=1

Xkn
n

]
≤

N∏
n=1

(
E
[
Xt

n

])kn/t

≤ max
n

E
[
Xt

n

]
, (15)

where t =
∑N

n=1 kn.

With the results in Lemmas 2 to 4, we are now
ready to compare the values of E[|uHXv|2t] and

1
MtNtE[|uH11Tv|2t] in the following theorem, which
is proved in Section A of the supplementary materials.

Theorem 4. For any matrix X ∈ CM×N with
∥X∥F = 1, the following

E[|uHXv|2t] ≤ 1

M tN t
E[|uH11Tv|2t]

holds for any non-negative integer t. Here, u ∈ CM×1

and v ∈ CN×1 are random vectors given by

u = [ejθ1 , . . . , ejθM ]T , v = [ejϕ1 , . . . , ejϕN ]T

with θm,∀m and ϕn,∀n being i.i.d in [0, 2π] .

Thus, the results in Theorem 4 establish a relationship
between E[|uHXv|2t] and E[|uH11Tv|2t], where the
latter the only depends on the random vector u and
v. Therefore, to further proceed with Theorem 4 and
obtain a valid bound for E[|uHXv|2t] in (9) and (10),
it necessary to assess the value of E[|uH11Tv|2t]. Due
to the independence between u and v, one can express
this as E[|uH11Tv|2t] = E[|uH1|2t]E[1Tv|2t]. In this
context, the following proposition provides a valuable
bound for both E[|uH1|2t] and E[1Tv|2t].
Proposition 1. Since the entries in u and v are i.i.d.,
one can check that

E
[∣∣uH1

∣∣2t] = E
[
(u1+, . . . ,+uM )

t
(u∗

1+, . . . ,+u∗
M )

t
]

=
∑

t1+...+tM=t

(
t

t1, . . . , tM

)2

.
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One can find that the value above is the number of
abelian squares of length 2t over an alphabet with
M letters (Richmond and Shallit, 2008), denoted as
g(t,M). Similarly, the value of E

[
|1Tv|2t

]
is given by

E
[
|1Tv|2t

]
=

∑
t1+...+tN=t

(
t

t1, . . . , tN

)2

= g(t,N).

Now, the bounds of g(t,N) and g(t,M) are of interest.
Based on the results by Richmond and Shallit (2008),
the values of g(t,M) and g(t,N) are bounded by

g(t,M) ≤ C1M
2tt(1−M)/2,

g(t,N) ≤ C2N
2tt(1−N)/2,

where C1 and C2 are two constants. Therefore, the
value of E[|uH11Tv/

√
MN |2t] is upper bounded by

E

[∣∣∣∣uH 11T

√
MN

v

∣∣∣∣2t
]
≤ CM tN tt1−

M+N
2 , (16)

where C = C1C2 is a constant.

4 RIP OF RANK-ONE UNIT-
MODULUS MEASUREMENTS

In this section, we prove the RIP of rank-one measure-
ments with unit-modulus vectors in Theorem 2. Recall
that it is essential to evaluate the tail bounds in (9)
and (10) to show they satisfy the sufficient condition
provided in Theorem 1. Based on the established re-
sults in Section 3, we can simplify the upper and lower
tail bounds in (9) and (10), respectively, as shown in
the following theorem.

Theorem 5. For the linear map A(·) defined in The-
orem 2, we have the following upper tail probability
bound for any X ∈ CM×N with ∥X∥F = 1,

Pr(∥A(X)∥22 ≥ (1 + α)) ≤ e−c1K , (17)

where c1 > 0 is a constant depending on α. In addi-
tion, the lower tail probability bound is given by

Pr(∥A(X)∥22 ≤ (1− α)) ≤ e−c2K , (18)

where c2 > 0 is also a constant depending on α.

According to the results in Theorem 5, it is evident
that both the upper and lower tail bounds exhibit an
exponential decrease as the number of measurements
K. This observation leads us to verify the sufficient
condition for the RIP outlined in Theorem 1. Conse-
quently, the linear map associated with random unit-
modulus vectors satisfies the RIP with high probabil-
ity, as shown in Theorem 2. In the following, we pro-
vide a comprehensive proof of Theorem 5.

Proof of Theorem 5. To prove the upper tail bound in
(17), we combine the results in (9) and Theorem 4,

Pr(∥A(X)∥22 ≥ (1 + α))

≤

( ∞∑
t=0

ht

t!
E[|uHXv|2t]

)K

e−hK(1+α)

≤

( ∞∑
t=0

ht

t!
E

[∣∣∣∣uH 11T

√
MN

v

∣∣∣∣2t
])K

e−hK(1+α).

Then from Proposition 1, we have

Pr(∥A(X)∥22 ≥ (1 + α))

≤

(
1 + h+ 2h2 − 2M + 2N − 1

2MN
h2+

∞∑
t=3

ht

t!
CM tN tt1−

M+N
2

)K

e−hK(1+α). (19)

In the following, we need to choose a h which makes
the bound above tight. Note that there exists Z > 0,
which makes the following hold for any 0 < h ≤ Zα,

1 + h+ 2h2 − 2M + 2N − 1

2MN
h2+

∞∑
t=3

ht

t!
CM tN tt1−

M+N
2 ≤ 1 + h+ 2h2. (20)

For convenience, we define

f(h) = (1 + h+ 2h2)e−h(1+α).

Thus, according to (19) and (20), for any 0 < h ≤ Zα,
the tail probability in (19) is bounded as follows

Pr(∥A(X)∥22 ≥ (1 + α)) ≤ (f(h))K . (21)

Comparing (21) with the sufficient condition in (4),
we need to prove that the above expression has the
form of C exp(−cK). In other words, we need to show
there exists a h1 ∈ (0, Zα] such that f(h1) < 1, then
(f(h1))

K converges to zero as K goes to infinity.

Note that f(0) = 1. Thus, in order to show there
exists h1 such that f(h1) < 1, it is sufficient to show
the first derivative of f at 0 is negative, i.e., f ′(0) < 0,
which is obviously true. Therefore, we choose h = h1,
the expression in (21) is rewritten as

Pr(∥A(X)∥22 ≥ (1 + α)) ≤ (1 + h1 + 2h2
1)

Ke−h1K(1+α)

= e−c1K ,

where the constant c1 = − ln(f(h1)) = − ln((1 + h1 +
2h2

1)e
−h1(1+α)) > 0. Thus, the bound for the upper

tail probability (17) is proved.
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Fig. 1: Probability Density Function of ∥A(X)∥22 with Different Number of Measurements

For the lower tail probability in (18), we have

Pr(∥A(X)∥22 ≤ (1− α))

≤
∞∑
t=0

(−h)t

t!
E[|uHXv|2t]ehK(1−α)

≤
(
1− h+ 2h2E[|uHXv|4]

)K
ehK(1−α)

≤

(
1− h+ 2h2E

[∣∣∣∣uH 11T

√
MN

v

∣∣∣∣4
])K

ehK(1−α)

≤ (1− h+ 2h2)KehK(1−α). (22)

Similarly, we need to prove that the above expression
has the form of C exp(−cK) in Theorem 1, where C
and c are constants. The straightforward method is
to minimize the value above with respect to h. Here,
for simplicity, we just let h = 1

4 . Then, the lower tail
probability in (22) is bounded by

Pr(∥A(X)∥22 ≤ (1− α)) ≤ 0.875Ke
1
4K(1−α) ≤ e−c2K ,

where c2 = 1.83 + (1/4)α > 0. Therefore, the bound
for the lower tail probability (18) is proved.

Based on the results of Theorem 5, we finally provide
the proof of the Theorem 2, and show that the linear
map associated with the random unit-modulus vectors
satisfies the RIP with high probability.

Proof of Theorem 2. By utilizing the union bound for
the probability in (5), we have

Pr
(∣∣∥A(X)∥22 − 1

∣∣ ≥ α
)

= Pr
(
∥A(X)∥22 ≥ 1 + α

)
+ Pr

(
∥A(X)∥22 ≤ 1− α

)
.

According to the results inTheorem 5, combining the
upper and tail bounds together gives

Pr(
∣∣∥A(X)∥22 − 1

∣∣ ≤ α) ≤ e−c1K + e−c2K

≤ 2e−cK ,

where c = min(c1, c2). Furthermore, according to
Theorem 1, if the number of measurements K ≥
Dmax{M,N}r, the linear map A(·) satisfies the RIP
with isometry constant δr > 0 with probability exceed-
ing 1− 2e−dK for fixed constants D, d > 0.

5 NUMERICAL EXPERIMENTS

In this section, we verify that the linear map gener-
ated by the random unit-modulus satisfies the RIP.
Subsequently, we assess the recovery performance of
low-rank matrices by employing this linear map.

Directly validating the RIP of the linear map is known
to be NP-hard. Hence, we opt to demonstrate that
the sufficient condition for RIP as outlined in Theo-
rem 1 holds true. This condition suggests that the
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Fig. 2: Comparison of Two Expectations: All-One Ma-
trix Scenario 1

MtNtE[|uH11Tv|2t] and Arbitrary Ma-
trix Scenario E[|uHXv|2t]

value of ∥A(X)∥2F associated with unit-modulus vec-
tors is highly concentrated around its expected value,
which is ∥X∥2F . To illustrate this, we conduct an
experiment as presented in Fig. 1. In this experi-
ment, we randomly generate a fixed X ∈ C40×80 with
∥X∥F = 1 and examine the probability density func-
tions of ∥A(X)∥2F by using two types of linear map.
The first is generated by the rank-one model using
random unit-modulus vectors, while the second serves
as the benchmark and is based on i.i.d. Gaussian Ak.

As depicted in Fig. 1, it is evident that the value of
∥A(X)∥2F generated by rank-one measurements with
random unit-modulus vectors is concentrated around
its expectation ∥X∥2F for different number of measure-
ments. Comparing this outcome to the scenario where
the entries of measurement matrix Ak are i.i.d. Gaus-
sian, we observe that the probability density function
gap between these two scenarios is notably narrow.
Therefore, according to Theorem 1, the linear map em-
ploying the random rank-one unit-modulus measure-
ments satisfies the RIP with high probability, similar
to the scenario using i.i.d. Gaussian Ak. Furthermore,
as the number of measurements K increases, both the
Gaussian and rank-one unit-modulus curves become
increasingly tightly concentrated around the expected
value ∥X∥2F . This is consistent with the results in The-
orem 5, where the tail bound exponentially decreases
with the number of measurements K.

Since the results in Theorem 4 are essential in the
derivation of RIP analysis, we conduct an experi-
ment in Fig. 2 to confirm the correctness of Theo-
rem 4. Specifically, in Theorem 4, we have estab-
lished the fact: under the constraint ∥X∥F = 1, the
random variable |uHXv| achieves the largest (2t)th

moment when X = 1√
MN

11T . In other words, we

conclude that E[|uHXv|2t] ≤ 1
MtNtE[|uH11Tv|2t],∀ t.
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Fig. 3: Recovery Error of Low-Rank Matrix by Using
Rank-One Unit-Modulus and i.i.d. Gaussian Measure-
ments with Different Number of Measurements

For the experiment in Fig. 2, we randomly gener-
ate 100 matrices X ∈ C40×80 and empirically cal-
culate E[|uHXv|2t] for each X and t = 1, 2, . . . , 10.
The blue line represents the scenario of the all-
one matrix, 1

MtNtE[|uH11Tv|2t]. The red curve il-
lustrates the mean and standard deviation for the
100 realizations of arbitrary X. Upon reviewing
Fig. 2, we can readily observe that E[|uHXv|2t] ≤
1/(M tN t)E[|uH11Tv|2t],∀ t. Therefore, the value of
E[|uHXv|2t] is maximized when the matrix X has the
form of the all-one matrix, i.e., X = 1√

MN
11T . In

conclusion, these experimental results are in perfect
alignment with our analysis in Theorem 4.

In Fig. 3, we evaluate the low-rank matrix recovery
performance by using the linear map of the rank-one
unit-modulus measurements and i.i.d. measurement
matrix Ak. We randomly generate the target com-
plex low-rank matrix X with dimension of 40 × 80 of
rank r = 5. We let the number of measurements K
vary from 400 to 1500. For fair comparison, we uti-
lize the well-known nuclear norm minimization (Recht
et al., 2010) to recover the low-rank matrix from the
measurements. The optimization problem is given by

min
X

∥X∥∗

subject to A(X) = y.

We can refer to the findings in (Recht et al., 2010) that
the recovery error by using i.i.d. Ak decreases with the
number of measurements K. As evident in Fig. 3, the
recovery error of the designed linear map exhibits a
similar trend as the case of i.i.d. Gaussian. Moreover,
observe that there is a sharp transition to near zero
error at around 1100 measurements for these two sce-
narios, which is consistent with the results in (Recht
et al., 2010). Overall, the observations in Fig. 3 suggest
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that rank-one measurements with unit-modulus vec-
tors achieves a recovery performance similar to that of
i.i.d. Gaussian Ak. Additional numiercal experiments
about the recovery performance by using non-convex
matrix recovery algorithms are attached in Section C
of the supplementary materials.

Furthermore, the use of unit-modulus vectors allows
for more efficient memory storage for the linear map,
reducing the hardware costs associated with the linear
map. As we have analyzed, this type of linear map not
only satisfies the RIP but also exhibits similar recovery
performance as the case of i.i.d. measurement matri-
ces, as demonstrated in our experiments. Therefore,
these advantages position our designed rank-one mea-
surements with unit-modulus vectors as a promising
linear map in low-rank matrix recovery.

6 CONCLUSION

In this paper, we have conducted a comprehensive RIP
analysis for rank-one measurements with random unit-
modulus vectors. The symmetric statistical properties
of unit-modulus vectors have allowed us to derive the
tail bound which exponentially decrease with the num-
ber of measurements . In comparison to the scenario
of i.i.d. measurement matrices, the linear map gen-
erated by unit-modulus vectors not only satisfies the
RIP but also offers the high memory efficiency. These
advantageous properties show the potential of rank-
one unit-modulus measurements as a highly effective
linear map in the field of low-rank matrix recovery.
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The supplementary materials contain detailed proofs of the results that are missing in the main paper, and
additional experiments are provided as well.

A PROOF OF THEOREM 4

After standard manipulations, one can find that

E[|uHXv|2t] ≤ E[|uHX̄v|2t],

where each entry in X̄ is equal to the absolute value of the corresponding entry in X. Therefore, it remains to
show that

E[|uHX̄v|2t] ≤ 1

M tN t
E[|uH11Tv|2t].

For the easy notation, we let X = X̄. Denoting Xm,: as the mth row of X, we have

E
[
|uHXv|2t

]
= E

(∑
m

u∗
mXm,:v

)t(∑
m

umXm,:v
∗

)t
 .

Then, according to the multinomial theorem, we have

E
[
|uHXv|2t

]
= E

 ∑
k1+...+kM=t

(
t

k1, . . . , kM

)∏
(u∗

mX1,:v)
km

∑
k′
1+...+k′

M=t

(
t

k′1, . . . , k
′
M

)∏
(umXm,:v

∗)k
′
m


= E

[ ∑
k1+...+kM=t

(
t

k1, . . . , kM

)2∏
|Xm,:v|2km

]
. (23)

For the concise proof, we express Xm,: = cmxT
m where ∥xm∥2 = 1. Without loss generality, we assume cm ≥

0,∀m. Then we rewrite the expression (23) above as

E

[ ∑
k1+...+kM=t

(
t

k1, . . . , kM

)2∏
|Xm,:v|2km

]

= E

[ ∑
k1+...+kM=t

(
t

k1, . . . , kM

)2∏
|xT

mv|2km

M∏
i=1

c2km
m

]
.

Then, according to Lemma 4, we have

E
[∏

|xT
mv|2km

]
≤ max

m
E
[
|xT

mv|2t
]
.

Thus, the value of E
[
|uHXv|2t

]
in (23) is upper bounded by

E
[
|uHXv|2t

]
≤

∑
k1+...+kM=t

(
t

k1, . . . , kM

)2

max
m

E
[
|xT

mv|2t
] M∏
i=1

c2km
m

= E
[
|uHX∗v|2t

]
,

where X∗ = [c1xm∗ , c2xm∗ , · · · , cMxm∗ ]T and m∗ = argmaxm E
[
|Xm,:v|2t

]
. In other words,

E
[
|uHXv|2t

]
≤ E

[
|uHX∗v|2t

]
=

∑
k1+...+kM=t

(
t

k1, . . . , kM

)2

E
[
|xT

m∗v|2t
] M∏
i=1

c2km
m

= E
[
|xT

m∗v|2t
]︸ ︷︷ ︸

first part

∑
k1+...+kM=t

(
t

k1, . . . , kM

)2 M∏
i=1

c2km
m︸ ︷︷ ︸

second part

. (24)
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By Theorem 3, the first part of value in (24) is maximized when the entries in xm∗ are equivalent. According to

Lemma 2, the second part is maximized when cm =
√

1
M . Recall that X∗ = [c1xm∗ , c2xm∗ , · · · , cMxm∗ ]T , after

substituting the setting of xm∗ and cm into the expression of X∗, one can easily check the corresponding matrix
is expressed as X∗ = 1√

MN
11T . Thus, we have

E
[
|uHXv|2t

]
≤ 1

M tN t
E[|uH11Tv|2t].

This concludes the proof.

B PROOF OF PRELIMINARIES

B.1 Proof of Lemma 1

Note that the Legendre polynomials Pn(x) is expressed as

Pn(x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k.

After simple manipulations, the expression of sn(p) is expressed as

sn(p) = (2p− 1)nPn

(
1

2p− 1

)
.

After performing first-order derivative, one can check that the value of sn is maximized when p = 1/2.

B.2 Proof of Theorem 3

Without loss of generality, we can assume that entries in x are non-negative, i.e., xn ≥ 0,∀n. This is because
E
[
|xTv|2m

]
≤ E

[
|x̄Tv|2m

]
. Then, the expression of E

[
|xTv|2m

]
is

E
[
|xTv|2m

]
= E [(x1v1 + . . .+ xNvN )

m
(x1v

∗
1 + . . .+ xNv∗N )

m
] . (25)

Without loss of generality, we assume x1 ̸= x2. To complete the proof, we will show that by letting x1 = x2 =√
x2
1+x2

2

2 , the expectation in (25) will increase. Here, we denote y =
∑N

n=3 xnvn, and t =
∑N

n=3 x
2
n. Therefore,

we have x2
1 + x2

2 = 1− t. Then, according to the multinomial theorem, we have

E
[
|xTv|2m

]
= E [(x1v1 + x2v2 + y)

m
(x1v

∗
1 + x2v

∗
2 + y∗)

m
]

= E

[ ∑
k1+k2+k3=m

(
m

k1, k2, k3

)
(x1v1)

k1(x2v2)
k2yk3

∑
k′
1+k′

2+k′
3=m

(
m

k′1, k
′
2, k

′
3

)
(x1v

∗
1)

k′
1(x2v

∗
2)

k′
2yk

′
3

]
.

Because of the property of expectation, the expression above can be written in∑
k1+k2+k3=m

(
m

k1, k2, k3

)2

(x1)
2k1(x2)

2k2E
[
|y|2k3

]
=

m∑
k3=0

∑
k1+k2=m−k3

(
m

k1, k2, k3

)2

(x1)
2k1(x2)

2k2E
[
|y|2k3

]
=

m∑
k3=0

∑
k1+k2=m−k3

(
m

k3,m− k3

)2(
m− k3
k1, k2

)2

(x1)
2k1(x2)

2k2E
[
|y|2k3

]
=

m∑
k3=0

(
m

k3,m− k3

)2

E
[
|y|2k3

] ∑
k1+k2=m−k3

(
m− k3
k1, k2

)2

(x1)
2k1(x2)

2k2 .
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Based on Corollary 1, the value of
∑

k1+k2=m−k3

(
m−k3

k1,k2

)2
(x1)

2k1(x2)
2k2 is maximized when x2

1 = x2
2 = 1−t

2 .

Because we assume the positiveness, we will have that x1 = x2 =
√

1−t
2 . This concludes the proof.

B.3 Proof of Lemma 2

Without loss of generality, we assume c1 ̸= c2 while c21 + c22 is a constant. Similar to the proof in Section B.2, it
is sufficient to prove that making c1 = c2 can increase the value in (12). Then, the general result in Lemma 2
can be obtained by induction. First of all, separating c1, c2 with cm,∀m ≥ 3 gives the following,

∑
k1+...+kM=t

(
t

k1, . . . , kM

)2 M∏
m=1

c2km
m

=
∑

k1+...+kM=t

(
t

k1, . . . , kM

)2

c2k1
1 c2k2

2

M∏
m=3

c2km
m

=

t∑
t0=0

∑
k1+k2=t0

∑
k3+,...,kM=t−t0

(
t

k1, . . . , kM

)2

c2k1
1 c2k2

2

M∏
m=3

c2km
m

=

t∑
t0=0

∑
k1+k2=t0

∑
k3+,...,kM=t−t0

(
t

t0, t− t0

)2(
t0

k1, k2

)2(
t− t0

k3, . . . , km

)2

c2k1
1 c2k2

2

M∏
m=3

c2km
m .

Then, according to Corollary 1, we have the following inquality,∑
k1+k2=t0

(
t0

k1, k2

)2

c2k1
1 c2k2

2 ≤
∑

k1+k2=t0

(
t0

k1, k2

)2(
c21 + c22

2

)t0

,

where the equality holds when c1 = c2 =

√
c21+c22

2 . This concludes the proof.

B.4 Proof of Lemma 3

We mainly use the Hölder’s inequality for the proof of Lemma 3. Specifically, for positive random variables X
and Y , if 1/p+ 1/q = 1, then Hölder’s inequality shows that

E[XY ] ≤ (E[Xp])1/p(E[Y q])1/q.

For the posted problem, we let X = Xk1
1 and Y = Xk2

2 , then we have

E[Xk1
1 Xk2

2 ] ≤ (E[Xk1p
1 ])1/p(E[Xk2q

2 ])1/q.

which concludes the proof of (13).

When k1 = 0 or k2 = 0, the inequality in (14) holds trivially. Here, without loss of generality, we assume
k1, k2 ̸= 0. By letting p = k1+k2

k1
and q = k1+k2

k2
in the expression (13), one can check that 1/p+ 1/q = 1. Then,

the following inequality holds due to the Hölder’s inequality,

E[Xk1
1 Xk2

2 ] ≤ (E[Xk1+k2
1 ])

k1
k1+k2 (E[Xk1+k2

2 ])
k2

k1+k2

≤ max{E[Xk1+k2
1 ],E[Xk1+k2

2 ]}.

Thus, this concludes the proof of the result in (14).

B.5 Proof of Lemma 4

Without loss of generality, we assume kn > 0,∀n. Using the Hölder’s inequality, we have

E
[
Xk1

1 · · ·XkN−1

N−1 XkN

N

]
≤
(
E
[(

Xk1
1 · · ·XkN−1

N−1

) t
t−kN

]) t−kN
t (

E
[
(XkN

N )t/kN

])kN/t

, (26)
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where p = t/(t− kN ) and q = t/kN . Simplifying the R.H.S. in (26) yields

E
[
Xk1

1 · · ·XkN−1

N−1 XkN

N

]
≤
(
E
[(

Xk1
1 · · ·XkN−1

N−1

)t/(t−kN )
])(t−kN )/t (

E
[
Xt

N

])kN/t
. (27)

Again, using Hölder’s inequality for the first part of R.H.S. of (27) with p = t−kN

t−kN−kN−1
and q = t−kN

kN−1
, we have

E
[(

Xk1
1 · · ·XkN−1

N−1

)t/(t−kN )
]

= E
[(

Xk1
1 · · ·XkN−2

N−2

)t/(t−kN )

X
kN−1

t
t−kN

N−1

]

≤

(
E

[(
Xk1

1 · · ·XkN−2

N−2

) t
t−kN

t−kN
t−kN−kN−1

]) t−kN−kN−1
t−kN

E

(XkN−1
t

t−kN

N−1

) t−kN
kN−1


kN−1
t−kN

=

(
E
[(

Xk1
1 · · ·XkN−2

N−2

) t
t−kN−kN−1

]) t−kN−kN−1
t−kN (

E
[
Xt

N−1

]) kN−1
t−kN .

Substituting the above equation into (27) gives

E
[
Xk1

1 · · ·XkN−1

N−1 XkN

N

]
≤
(
E
[(

Xk1
1 · · ·XkN−2

N−2

) t
t−kN−kN−1

]) t−kN−kN−1
t−kN

︸ ︷︷ ︸
first part

(
E
[
Xt

N−1

]) kN−1
t
(
E
[
Xt

N

]) kN
t︸ ︷︷ ︸

remaining parts

. (28)

For the first part in (28), we iteratively utilize the Hölder’s inequality, and finally obtain the following,

E

[
N∏

n=1

Xkn
n

]
≤

N∏
n=1

(
E
[
Xt

n

])kn/t

≤ max
n

E
[
Xt

n

]
.

This concludes the proof of Lemma 4.

C ADDITIONAL EXPERIMENTS

In this section, we evaluate the recovery performance of non-convex low-rank matrix recovery algorithms by
using the rank-one unit-modulus measurements and i.i.d. Gaussian measurements. Similar to the settings in
Fig. 3, we randomly generate the target low-rank matrix X ∈ C40×80 with a rank of r = 5, and the number
of measurements K ranges from 500 to 1500. There are two typical non-convex algorithms considered in the
experiments. Specifically, in Fig. 4 , we utilize the alternating minimization method (Jain et al., 2013) to recover
the low-rank matrix from the rank-one unit-modulus measurements or the i.i.d. Gaussian measurements. In
Fig. 5, we employ the gradient-based method (Chi et al., 2019) for matrix recovery task.

As we can see in Figs. 4 and 5, for both typical non-convex methods, i.e., alternating minimization method
and gradient-based method, the designed rank-one measurements with random unit-modulus vectors achieves
a recovery performance similar to that of i.i.d. Gaussian measurements. Therefore, by integrating the results
of experiment in Fig. 3, regardless of whether convex or non-convex optimization algorithms are utilized, the
rank-one unit-modulus measurements always exhibit a similar matrix recovery performance to that of i.i.d.
measurements, which is attributed to the proven RIP results.
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Fig. 4: Recovery Error of Alternating Minimization Method by Using Rank-One Unit-Modulus and i.i.d. Gaus-
sian Measurements with Different Number of Measurements
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Fig. 5: Recovery Error of Gradient-Based Method by Using Rank-One Unit-Modulus and i.i.d. Gaussian Mea-
surements with Different Number of Measurements
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