Generalization Bounds of Nonconvex-(Strongly)-Concave Stochastic
Minimax Optimization

Yifan Hu*
EPFL & ETH Ziirich

Siqi Zhang*
Johns Hopkins University

Abstract

This paper studies the generalization perfor-
mance of algorithms for solving nonconvex-
(strongly)-concave (NC-SC / NC-C) stochastic
minimax optimization measured by the sta-
tionarity of primal functions. We first estab-
lish algorithm-agnostic generalization bounds
via uniform convergence between the empiri-
cal minimax problem and the population min-
imax problem. The sample complexities for
achieving e-generalization are O(dx?e~2) and
O(de=*) for NC-SC and NC-C settings, re-
spectively, where d is the dimension of the
primal variable and x is the condition number.
We further study the algorithm-dependent
generalization bounds via stability arguments
of algorithms. In particular, we introduce
a novel stability notion for minimax prob-
lems and build a connection between stability
and generalization. As a result, we establish
algorithm-dependent generalization bounds for
stochastic gradient descent ascent (SGDA)
and the more general sampling-determined
algorithms (SDA ).

1 Introduction

In this paper, we consider stochastic minimax problems:

minmax F(z,y) £ Ee [f(x,y:9)], (1)

where X € R? and Y C R? (d,d € N.) are two
nonempty closed convex sets, ¢ € = is a random
variable following an unknown distribution D, and
f: X xY xZ—=Ris continuously differentiable and
Lipschitz smooth jointly in z and y for any £. We
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denote the objective (1) as the population minimazx
problem. Throughout the paper, we focus on the case
where F' is nonconvex in z and (strongly)-concave in
y, 1.e., nonconvez-(strongly)-concave (NC-SC / NC-C).
Such minimax problems appear ubiquitously in practi-
cal applications, including adversarial training (Madry
et al., 2018; Wang et al., 2019), generative adversar-
ial networks (GANs) (Goodfellow et al., 2014; Sanjabi
et al., 2018; Lei et al., 2020), reinforcement learning
(Dai et al., 2017, 2018; Huang and Jiang, 2022) and
robust training (Sinha et al., 2018).

Although the distribution D often remains unknown,
one generally has access to a dataset S = {&1, -+ ,&,}
consisting of n independently and identical distributed
(i.i.d.) samples from D. Correspondingly, researchers
resort to solving an empirical minimax problem:

n

minmax Fg(z,y) = %Zf(%yyfz) (2)

reEX yeY i—1
i=

A natural question arises: How does the output of an
algorithm A for solving the empirical minimaz problem
generalizes on the population minimaz problem?

We first specify the measurement. Since functions F’
and Fg are nonconvex in z, finding their global optimal
solutions is generally intractable. Instead, one aims to
design an algorithm A that finds an e-stationary point
of the primal function

d(z) 2 F .
() max (z,y)

It has been shown that ®(x) for NC-SC problems is
smooth, while it can be nonsmooth for NC-C prob-
lems (Thekumparampil et al., 2019; Lin et al., 2020a).
So in the NC-SC case, we find the point such that!:

V(A ()] <€,
and in the NC-C case, it is characterized as
dist (0, 0®(A,(95))) <,
IFor simplicity, here we assume X = R?, and primal

functions ®(x) and ®5(z) are differentiable. We will for-
mally introduce the detailed settings in Section 2.
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where A;(S) is the z-component of the output
of any algorithm A for solving (2), dist(y, X) =
infzex |ly — z|| and O is the (Fréchet) subdifferen-
tial of ®. When ® is nonsmooth, we resort to the
gradient norm of its Moreau envelope to measure the
first-order stationarity as it provides an upper bound
on dist (0,0®(x)) (Davis and Drusvyatskiy, 2019).

Taking the gradient norm as an example, the error for
solving the population minimax problem (1) via solving
its empirical counterpart (2) consists of two terms:

E[[VO(AL(9))]l
< E[[VEs(Az ()| + EIVE(AL(S)) = VPs(As(S5))]]

optimization error

generalization error

3)

here ®g(z) £ max,cy Fs(x,y) is the primal function
of the empirical function (2). Such decomposition on
the gradient norm also appears in nonconvex mini-
mization, e.g., Foster et al. (2018); Mei et al. (2018);
Davis and Drusvyatskiy (2022); Lei (2022). The opti-
mization error corresponds to the error of solving the
empirical minimax problem (2) which has been widely
studied (Luo et al., 2020; Yang et al., 2020b).

On the other hand, the generalization error for min-
imax problems remains largely unexplored, recently
Ozdaglar et al. (2022) found counterexamples to show
that the common primal function value gap (Farnia and
Ozdaglar, 2021) between the population and empirical
objectives may fail to characterize the generalization
error. So in this paper, our goal is to characterize the
generalization error

E[[V®(AL(S)) = Vs (As(5))]]-

It is not easy as both ®¢(-) and A, (S) depend on the
dataset .S, which induces correlation issues when taking
expectation. To address such dependence issue, one
may use uniform convergence or stability arguments.

By uniform convergence, we characterize the difference
between the empirical minimax optimization and the
population minimax problem on worst x € X, i.e.,

E sup [Ve(z) = VEs(z)].-
reX
Although uniform convergence has been extensively
studied for stochastic minimization (Kleywegt et al.,
2002; Mei et al., 2018; Davis and Drusvyatskiy, 2022), a
key difference for stochastic minimax problems is that
the empirical primal function ®g(x) is the maximum
of an average over n random functions, which drives
existing uniform convergence analysis for stochastic
minimization to be inapplicable here. Note that uni-
form convergence is invariant to the choice of algorithm

and provides an upper bound of the generalization er-
ror for any A,(S) € X. Thus the derived bound is
algorithm-agnostic that applies to any algorithms.

Another approach to investigating generalization is sta-
bility arguments, which analyze the stability of specific
algorithms and build a connection between stability
and generalization. It has been extensively studied
for stochastic minimization (Bousquet and Elisseeff,
2002; Shalev-Shwartz et al., 2010; Hardt et al., 2016;
Klochkov and Zhivotovskiy, 2021) and recently for
minimax problems (Farnia and Ozdaglar, 2021; Lei
et al., 2021; Boob and Guzman, 2023; Yang et al.,
2022¢; Ozdaglar et al., 2022). Yet most of these work
use function-value gaps as the measurement. For the
measurement of stationarity for nonconvex problems,
building up a link between stability and generalization
becomes significantly more challenging. Compared to
uniform convergence, the stability-based generalization
bound is generally independent of the dimension d.
As it requires a case-by-case analysis of stability for
different algorithms, it is algorithm-dependent. We par-
ticularly study the generalization of the widely used
stochastic gradient descent ascent (SGDA) (Farnia and
Ozdaglar, 2021) and a broad class of algorithms called
sampling-determined algorithms (SDA, see Definition
4.7) (Lei, 2022).

1.1 Contributions

In this paper, we provide a systematic study on gener-
alization bounds (see Table 1) for nonconvex stochastic
minimax problems from both uniform convergence and
stability argument perspectives. To be more specific:

e We establish the first uniform convergence results
between the population and the empirical nonconvex
minimax optimization in NC-SC and NC-C settings,
measured by stationarity. Our results provide an
algorithm-agnostic generalization bound for any algo-
rithms that solve empirical nonconvex minimax prob-
lems. Specifically, the sample complexities to achieve
an e-uniform convergence or an e-generalization er-
ror are @(dn26_2) and @(de_4) for the NC-SC and
NC-C settings, respectively.

e We introduce a novel stability measurement based
on stationarity; then, we establish the connection
between the stability and the generalization error of
an algorithm in both NC-SC and NC-C settings. We
further provide the algorithm-dependent generaliza-
tion error bound measured by the stationarity for the
classical SGDA algorithm and sampling-determined
algorithms utilizing their stability.

e Regarding the technical novelty compared to exist-
ing works, in the NC-SC case, we identified and
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characterized the distance between maximizes

argmax Fs(z,y) and argmax F(x,y),
yey yey

which is the most significant differentiation from prior
works; in the NC-C case, given the non-uniqueness
of the dual maximizers, we incorporated the /{5-
regularized objective into the analysis, which suc-
cessfully forged a link between the surrogate and the
original objective, facilitating the transition of the
analysis into the NC-SC domain.

1.2 Literature Review

Nonconvex Minimax Optimization Various algo-
rithms have been proposed to solve NC-SC minimax
optimization (Nouiehed et al., 2019; Lin et al., 2020a,b;
Luo et al., 2020; Yang et al., 2020a; Bot and Bohm,
2020; Xu et al., 2023; Lu et al., 2020; Yan et al., 2020;
Guo et al., 2021; Sharma et al., 2022; Yang et al., 2022b;
Zhang et al., 2022), and the lower bounds are recently
studied in several works (Zhang et al., 2021b; Han et al.,
2021; Li et al., 2021). Recent years witnessed a surge
of algorithms for NC-C problems in both deterministic
and stochastic settings, e.g., Zhang et al. (2020); Ostro-
vskii et al. (2021); Thekumparampil et al. (2019); Zhao
(2020); Nouiehed et al. (2019); Yang et al. (2020b); Lin
et al. (2020a); Bot and Bohm (2020); Rafique et al.
(2021). These works differ from ours in that we aim
to characterize the generalization error of algorithms
while they focus mainly on the optimization part.

Uniform Convergence A series of work from
stochastic optimization and statistical learning the-
ory studied uniform convergence on the worst-case
differences between the population objective and its
empirical objective constructed via sample average ap-
proximation (SAA, also known as empirical risk mini-
mization). Interested readers may refer to prominent
results in the literature (Fisher, 1922; Vapnik, 1999;
Van der Vaart, 2000; Kleywegt et al., 2002; Shapiro,
2006; Hu et al., 2020). For finite-dimensional problems,
Kleywegt et al. (2002) showed that the sample com-
plexity is O(de™?) to achieve an e-uniform convergence
of function values in high probability. For nonconvex
empirical objectives, Mei et al. (2018) and Davis and
Drusvyatskiy (2022) established O(de~2) sample com-
plexity to achieve an e-uniform convergence measured
by the stationarity for nonconvex smooth and weakly
convex functions, respectively. In addition, Wang et al.
(2017) used uniform convergence to demonstrate the
generalization and the gradient complexity of differ-
entially private algorithms for stochastic optimization.
Recently, Amir et al. (2022) demonstrated the general-
ization error of gradient descent on a generalized linear

model using uniform convergence and showed that the
stability argument is insufficient to achieve generaliza-
tion. To the best of our knowledge, our paper is the
first work to study uniform convergence for nonconvex
minimax optimization.

Stability-Based Generalization Bounds This
line of research focuses on analyzing generalization
bounds of stochastic optimization via the uniform
stability property of specific algorithms, including
SAA (Bousquet and Elisseeff, 2002; Shalev-Shwartz
et al., 2010), stochastic gradient descent (Hardt et al.,
2016; Bassily et al., 2020; Lei, 2022), and uniformly
stable algorithms (Klochkov and Zhivotovskiy, 2021).
Recently, a series of work further studied generaliza-
tion measured by the function-value gap of various
algorithms in minimax problems. For example, Farnia
and Ozdaglar (2021) gave the generalization bound
for the outputs of gradient-descent-ascent (GDA) and
proximal-point algorithm (PPA) for both (strongly)-
convex-(strongly)-concave and nonconvex-nonconcave
smooth minimax problems. Lei et al. (2021) studied
the stability and generalization of GDA in various set-
tings of minimax problems covering both convex and
nonconvex scenarios, while their results are sill based
on the function-value gaps. Boob and Guzmaén (2023)
established stability and generalization results of extra-
gradient (EG) in the smooth convex-concave setting.
Zhang et al. (2021a) studied the stability and gener-
alization of the empirical minimax problem under the
(strongly)-convex-(strongly)-concave setting, assuming
access to the optimal solution of the empirical min-
imax problem. Our work differs from those in that
we consider different notions of generalization errors,
also we propose a novel stability notion for minimax
optimization measured by stationarity, and build up a
link between such stability and generalization.

Notations ||-|| is reserved for the fo-norm. A set
X is compact with a diameter Dy > 0 if V& € X,
[|z]|? < Dx. projy(z') £ argming ¢y ||z — /|| is the
projection of x on a set X. Let A(S) = (A, (S),A,(S))
be the output of an algorithm A on the empiri-
cal minimax problem (2) with dataset S. We use
Vf = (Vsf,Vyf) to denote the gradient of a contin-
uously differentiable function f(z,y). Given p > 0,
we say a function g : X — R is p-strongly convex if
g(z) — (11/2)||z|)” is convex, and p-strongly concave if
—g is p-strongly convex. The function g(x) is p-weakly
convex if g(x)+ (11/2) ||| is convex. We say a function
f(z,y) is L-smooth with L > 0 if it is continuously dif-
ferentiable and |V f(x1,y1) — V f (22, y2)||* < L2(||z1 —
ol + [lyr — y2[|?) for any (21,y1), (v2,92) € X x V.
By definition, it is easy to verify that any L-smooth
function is also L-weakly convex.
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Table 1: Summary of Generalization Bounds for Nonconvex Stochastic Minimax Optimization

Approach . Stability Argument
Uniform Convergence
Setting' SGDA ‘ Sampling-determined Alg.
A d ¢ (T 4 1 T4 1
NC-SC O(”\/:) o(kte (5 + ) O("‘(v wt ﬁ))
Theorem 3.1 Corollary 4.5 Corollary 4.8
~ 1/4 1-¢o \ 1/6 1/8 1/12 1/8
NG.C o((4)"") o((=2)" + ) o((£)2+ (1))
Theorem 3.2 Corollary 4.6 Corollary 4.9

1 O() hides logarithmic factors, d: the dimension of X, n: sample size, k: condition number Z

L: Lipschitz smoothness parameter, u: strong concavity parameter, T iteration number of algorithms

C1,¢2 € (0,1): constants depending on stepsizes, refer to Corollary 4.5 and 4.6 for details. SGDA has specific requirements
on stepsize, while sampling-determined algorithms do not have restrictions on stepsize.

2 Problem Setting

We study the generalization errors of nonconvez-
strongly-concave (NC-SC) and nonconvez-concave (NC-
C) minimax problems. We begin with the main assump-
tions used throughout the paper.

Assumption 2.1 (Main Settings). We assume:

(a) The function f(x,y;§) is u-strongly concave in
y € Y for any x € X and £ € = for some p > 0.

(b) The function f(z,y;&) is L-smooth jointly in
(z,y) € X x Y for any & € =.

(¢) The gradient norm ||V f(z,y; )] is bounded by
G for any (z,y) € X x Y and & € E.

(d) Domains X and ) are compact convex sets with
diameters Dy and Dy.

Assumption 2.1 appears widely in nonconvex minimax
optimization literature (Lin et al., 2020a; Zhang et al.,
2021b), and the compact domain assumption is stan-
dard for uniform convergence (Kleywegt et al., 2002;
Davis and Drusvyatskiy, 2022).

Performance Measurement Next, we demonstrate
how to evaluate generalization in nonconvex minimax
optimization. In the NC-SC setting (1 > 0), the primal
functions ® and ®g are both continuously differentiable
and L-smooth as presented in the literature.

Lemma 2.2 (Properties of ® (Davis and Drusvy-
atskiy, 2019; Lin et al., 2020a)). In the NC-SC set-
ting, both ®(z) and ®g(x) are L 2 L(1 4 k)-smooth
with the condition number x £ L/u. Both y*(x)
and y§(x) are k-Lipschitz continuous, and V®(z) =
Vo F(z,y*(z)), VOs(x) = V,Fs(z,y5(x)).

Due to the constraint X', we measure the difference
of the stationarity between the population and em-
pirical problems using their generalized gradients, i.e.,

E [|Ga(As(S)) — Gos (As(S))ll, where Go(x) £ L(z —
projy(x — (1/L)V®(z))). It is easy to find that

generalization error of Algorithm A

< _
< Emax |[VO(z) — VOs(x)],

alg.-agnostic uniform convergence

where the inequality holds as the projection operation
onto a convex set is non-expansive. The term in the
left-hand side (LHS) is the generalization error of an
algorithm A in the NC-SC case. As it is always bounded
by the difference between gradients in the right-hand
side (RHS) above, we can directly analyze the RHS to
derive the generalization bounds.

For the NC-C case (u = 0), the primal function ®(z)
is L-weakly convex and can be nonsmooth (Lin et al.,
2020a). Thus we use the gradient of its Moreau Enve-
lope to characterize the (near)-stationarity (Davis and
Drusvyatskiy, 2019).

Definition 2.3 (Moreau Envelope). For an L-weakly
convex function ® and 0 < A < 1/L, we use ®*(z)
and prox,q(z) to denote the the Moreau envelope
of ® and the proximal point of ® for a given point x,
defined as following;:

1
P (2) 2 ggg{@(z) +olle —x||2},

1
prox,s(z) £ argmin{ ®(z) + —||z — z||* }.
zEX 2\

The following lemma illustrates the relationship be-
tween the subdifferential of the primal function and
the gradient of its Moreau envelope.

Lemma 2.4 (Properties of ®* (Davis and Drusvy-
atskiy, 2019; Thekumparampil et al., 2019)). In the
NC-C setting, the primal function ® is L-weakly
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convex. For A € (0,1/L), the Moreau envelope
@ (z) is smooth, and its gradient satisfies V®*(x) =
A1z — ) where & = prox,(z) is the proximal
point, and dist (0,09(2)) < ||[Ve*(z)]|.

Lemma 2.4 indicates that in the NC-C case, we can
measure the generalization error via the difference be-
tween the gradients of the Moreau envelopes from the
population and empirical problems, i.e.,

E ||V R0 (A,(S)) — Vo @B (A,(9))].

3 Uniform Convergence and
Generalization

In this section, we discuss the algorithm-agnostic gen-
eralization errors of stochastic minimax optimization
using uniform convergence, in both NC-SC and NC-C
cases. Throughout the section, we measure the per-
formance using the stationarity of primal functions as
discussed in the previous section.

3.1 NC-SC Stochastic Minimax Optimization

Under the NC-SC setting, the next theorem demon-
strates the uniform convergence between gradients of
the population and empirical primal functions in mini-
max problems.

Theorem 3.1 (Uniform Convergence, NC-SC). Un-
der Assumption 2.1 with g > 0, we have the uniform
convergence:

E [max || VO(2) - Vos(2)]] = O(d/2kGn~" 2 +).

This means it suffices to have n = @(dn2G26’2) to
achieve e-generalization error for any algorithm A

such that E [|Go (A4 (S)) — Gaos (Ax(9))] < e.

To the best of our knowledge, it is the first uniform con-
vergence and algorithm-agnostic generalization error
bound result for NC-SC stochastic minimax problems.
In comparison, existing works on generalization error
analysis of minimax problems (Farnia and Ozdaglar,
2021; Lei et al., 2021) using stability arguments are
algorithm-specific and can only handle function-value
gap measurement. Zhang et al. (2021a) establish
algorithm-agnostic stability and generalization in the
strongly-convex-strongly-concave regime, yet their anal-
ysis does not extend to the nonconvex regime. Since
the above generalization result is algorithm-agnostic, it
holds for any algorithms that search for approximate
stationary points of empirical minimax problems. This
is particularly useful for SOTA algorithms designed for
finite-sum minimax optimization, including Catalyst-

SVRG (Zhang et al., 2021b) and SREDA (Luo et al.,

2020), as these algorithms are too complicated to con-
duct stability analysis to derive generalization bounds.

Proof Sketch We briefly discuss the proof of Theo-
rem 3.1, we defer the proof to Appendix B.

Step 1: First, we use a p-net {xk}szl (Vapnik, 1999)
to decompose the error and handle the dependence issue
between argmax,cy [|[V®g(z) — V®(z)| and ®g(z).

Step 2: For any zp within the p-net, we have the error
following decomposition

[V@s(zk) — VO(zi)|| S E[|[VOs(xk) — V(24|
+([|[V@s(zr) — VO(21)|| = E[|[VOs(z) — VO (21

When bounding E ||[V®s(zr) — V@ ()| in the right-
hand side (RHS), we need to characterize the difference
between argmax,y Fs(z,y) and argmax,cy F(x,y)
using the stability argument of sample average ap-
proximation (Shalev-Shwartz et al., 2009). This step
appears uniquely for minimax optimization due to
the special structure of the primal function ®g(x) =
max, % S, f(z,y;&), which is not the average over
n random functions. Then we utilize the established
stability argument to show that the first term in the
RHS is sub-Gaussian and apply the concentration in-
equality, which leads to the result. O

3.2 NC-C Stochastic Minimax Optimization

Recall that, in the NC-C case, the primal function
® is L-weakly convex (Thekumparampil et al., 2019),
and thus that V& is not well-defined. As shown in
Lemma 2.4, we use the gradient norm of the Moreau
envelope of the primal function as the measurement.

Here we consider the algorithm-agnostic generalization
bound obtained via uniform convergence, i.e.,
1
E [[V&2 (A.(S)) - VEE (A (9))]|

< E [Iwnea? HV@ﬁ(x) — Vo (2)|].

The next theorem illustrates the generalization error
for NC-C stochastic minimax optimization problems.

Theorem 3.2 (Uniform Convergence, NC-C). Under
Assumption 2.1 with g = 0, we have

Emea;({ ||v¢,}g/(2L)(x)_vq)l/(u)(x)” _ @(d1/4n‘1/4).

Thus it suffices to have n = @(de_4) to achieve e-
generalization error for any algorithm .4 such that
E VOV D (A,(S)) - VO P (A (9)] < e.

To the best of our knowledge, this is the first algorithm-
agnostic generalization result for NC-C stochastic min-
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imax optimization. Theorem 3.2 with a similar er-
ror decomposition as (3) provides guarantees for the
population minimax problem for any algorithms that
solve the NC-C empirical problem, including the best-
known Catalyst algorithm (Yang et al., 2020b). More
specifically, if an algorithm finds an e-stationary point
of the empirical minimax problem, with sample size
n= @(de_4), the point is also an O(e)-stationary point
of the population minimax problem.

Proof Sketch The analysis of Theorem 3.2 builds up
a link between NC-C and NC-SC settings and consists
of three parts. We defer the detailed proof to Appendix
C, and briefly discuss the main flow here.

Step 1: By the definition of the gradient of the Moreau
envelope, it holds that

1
V@ () — VONz)|| < N [prox,s(x) — prox,qs ()|

We first use a p-net {xk}szl (Vapnik, 1999)
to handle the dependence issue between z* €
argmax, ¢ y ||prox,q(z) — prox,s(v)|| and ®g.

Step 2: We introduce the following f¢s-regularized
minimax problem:

. v 2
min max F(z,y) = Sllyl™
Notice that this problem is NC-SC. We further build
a connection between NC-C stochastic minimax op-
timization problems and the corresponding regular-
ized NC-SC stochastic minimax optimization problems.
Then we carefully choose the regularization parameter
v to derive the uniform convergence.

The following lemma characterizes the distance between
the proximal points of the primal function from the orig-
inal NC-C problem and its regularized NC-SC problem.
Note that the lemma may be of independent interest for
the design and the analysis of gradient-based methods
for NC-C problems.

Lemma 3.3. Let v > 0 and denote

v
P(x) = F — 2
() = max F(z,y) — 5yl

as the primal function of the regularized NC-C prob-
lem. It holds for A € (0, (L +v)~') that

vDyA
[prox, g (z) — prox, 4 (z)[|* < Tfh
The above lemma implies that for a small regularization
parameter v, the difference between the proximal point
of the primal function ® of the NC-C objective function
and the primal function & of the regularized NC-SC
problem is small.

Step 3: It remains to characterize the distance be-
tween prox,g(z) and prox,g (z), where dg is the
primal function of the regularized empirical minimax
problem. By definition of prox, 4 (z) and Prox,; (x),
the distance is equivalent to the difference between the
optimal solutions of a strongly-convex strongly-concave
(SC-SC) population minimax problem and its corre-
sponding empirical problem. We utilize the existing
stability-based results for SC-SC minimax optimiza-
tion Zhang et al. (2021a) to identify the distance. Later
we further apply the sub-Gaussian random variable ar-
gument and concentration inequality to imply the final
uniform convergence conclusion. O

3.3 Discussion: Comparing Minimization and
Minimax Optimization

For stochastic nonconvex minimization problems
mingex E[f(z;€)], the sample complexity of achiev-
ing e-uniform convergence between the gradients of the
population problem and the empirical problem, i.e.,

1 n
Erzneag ”E ;Vf(l‘,fz) —EVf(z; 9l <

is O(de~?) (Davis and Drusvyatskiy, 2022; Mei et al.,
2018). For nonconvex minimax optimization, if we only
care about the uniform convergence in terms of the
gradient of F, i.e.,

1
E max |-
TeX,yey N

n
D Vi y:&) BV f(2, 56|,

i=1
where V f denotes the full gradient with respect to z
and y, existing analysis in Mei et al. (2018) directly
gives a O(de=2) sample complexity. However, since
we consider the generalization measured by primal
gradients here, the analysis becomes more complicated,
which we detail in the following.

First, in the NC-SC setting, to establish uniform con-
vergence, we bound

E ma |[Vs(z) - V()|

n
= Ema | > Vafloie):6) BV o6 |
The primal function ®g is not in the form of averaging
over n samples, thus existing analysis for minimization
problems is not directly applicable. In addition, the
difference between the optimal points y%(x) and y*(x)
brings in an additional error term. In the NC-SC case,
the error is upper bounded by O(n_l/z), which is the
same scale as the error from establishing uniform con-
vergence on x. Thus, the final uniform convergence
established in Theorem 3.1 is of the same order as that
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for minimization problem (Mei et al., 2018; Davis and
Drusvyatskiy, 2022) except for an additional depen-
dence on the condition number k.

Moreover, in the NC-C case, since there may exist
multiple dual maximizers, the distance between y* and
y& may not be well-defined. Instead, we bound the
distance between §%(x) and §*(x), where

- v

5() £ axgmax Fs(x, ) — |yl

yeY
. v
() 2 argmax F(z,9) — & 4],

yeY

with a small enough v = O(n~'/?). The distance can be
controlled by O(n~'/4). Thus, the sample complexity
for achieving e-uniform convergence for the NC-C case
is larger than that of the NC-SC case. We leave it for
future investigation to see if one could achieve smaller
sample complexity via a better characterization of the
extra error brought in by y in the NC-C setting.

4 Algorithmic Stability and
Generalization Bounds

Notice that the uniform convergence in Theorems 3.1
and 3.2 has a dependence on the dimension d, which can
be vacuous for high-dimensional problems (Lei, 2022;
Feldman and Vondrak, 2019). It remains interesting
to build dimension-independent generalization results
utilizing the special structure of the algorithms. In this
section, we investigate the generalization performance
of specific algorithms for nonconvex stochastic minimax
optimization problems utilizing stability arguments.

4.1 Stability and Generalization

Existing literature on stability arguments in minimax
optimization often rely on stability notions based on
function values (Farnia and Ozdaglar, 2021; Lei et al.,
2021; Zhang et al., 2021a). In order to derive bounds
on the generalization in terms of primal stationarity,
we introduce the following novel notions of uniform
stability on gradients of the primal function, called
uniform primal stability.

Definition 4.1 (Uniform Primal Stability). A ran-
domized algorithm A is d-uniformly primal stable if
for every two neighboring dataset S, S’ which differ
in only one sample, we have

sgplEAHVf(Ax(S),y*(Ax(S));5)
— V(As(8"), 4" (As(8"));: )1 < 6%

The following theorem connects stability and general-
ization in minimax optimization problems. We defer

the proof to Appendix D.

Theorem 4.2 (Stability and Generalization, NC-SC).
Let A be a é-uniformly primal stable algorithm. For
any function f satisfying Assumption 2.1 with g > 0,
we have

Ea,s||[V®(Az(S)) — V@s(A=(9))|l < (1 + k) (46 + %)

To the best of our knowledge, this is the first result
that connects uniformly stable algorithms and general-
ization errors in minimax optimization, while measured
by the primal stationarity. As a comparison, in the
minimization case, Lei (2022, Theorem 2) proved that
the gap between the empirical and population gradients
is O(6 + 1/4/n), while Theorem 4.2 has an additional
dependence on the condition number x that comes from
the minimax structure.

In the NC-C case, the uniform primal stability above
in Definition 4.1 is less meaningful as y*(-) is not well-
defined. Instead, we use the following notion of uniform
primal argument stability.

Definition 4.3 (Uniform Primal Argument Stabil-
ity). A randomized algorithm A is §-uniformly pri-
mal argument stable if for every two dataset S, S’
which differ in only one sample, it holds that

E.allAz(S) — A (8")]” < 82.

It is easy to see that the uniform primal argument
stability here in Definition 4.3 implies the uniform
primal stability in Definition 4.1 applied in the NC-
SC case. The following theorem connects argument
stability and generalization in NC-C case, measured by
primal Moreau envelope stationarity.

Theorem 4.4 (Stability and Generalization, NC-C).
Let A be a d-uniformly primal argument stable algo-
rithm. For any function f satisfying Assumption 2.1
with p = 0, we have

Eas|VOVCD (4s(8)) - VoY 1 (4.(9))|
< O(8Y/6 4 n~1/8).

We defer the proof to Appendix E. Note that the anal-
ysis also leverages the idea of adding regularization to
create a surrogate NC-SC problem, as we did in Section
3.2. This result yields the relationship between stabil-
ity and generalization in NC-C problems measured by
primal stationarity. Different from the minimization
case, the perturbation on the dataset incurs errors on
both the function gradients and the dual maximizers,
which requires more careful analysis to derive the final
generalization bound.
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As a comparison, Ozdaglar et al. (2022) proposed an-
other modified metric based on the primal function
value gap to characterize the generalization error in the
NC-C case, while they still require that the nonconvex
primal function is solved exactly, and our work circum-
vents the restriction by using the primal stationarity for
the measurement. It is an interesting open problem to
study the relationship between our stationarity-based
generalization measurement and those function-value-
based ones in the literature.

With Theorems 4.2 and 4.4, to obtain the generalization
bounds of algorithms designed for NC-SC and NC-C
minimax optimization problems, it suffices to derive
the stability of specific algorithms.

4.2 Generalization of Stochastic Gradient
Descent Ascent (SGDA)

In this subsection, we study the generalization bounds
of the classical stochastic gradient descent ascent (Ne-
mirovski, 2004; Lin et al., 2020a) for minimax optimiza-
tion problems in both NC-SC and NC-C cases. Recall
the procedures of SGDA: in each iteration ¢,

Tpp1 = Projy (s — af Vo f (@, 45 &),
Yer1 = Projy (ye + of Vy f(xe, yi: &),

where (af, o)) are the stepsizes. Farnia and Ozdaglar

(2021) investigated the d-stability of SGDA. Together
with Theorems 4.2 and 4.4, we have the following gener-
alization errors in NC-SC and NC-C cases, respectively.

Corollary 4.5 (Generalization of SGDA, NC-SC).
Assume the function f is NC-SC as defined in As-

sumption 2.1 with p > 0, then if we run SGDA
for T iterations with stepsize (af,af) = (%7 %)
for some constant ¢ > 0 and 1 < r < &, let
¢ = (cL(r+1)+ 1)~ we have

Es.a [[V@(AL(S)) — VOs(A(S))ll
cofwra (T4 1)),

where (A, (S), Ay(S)) = (@r,yr) is the output of
SGDA.

Corollary 4.6 (Generalization of SGDA, NC-C).
Assume the function f is NC-C as defined in Assump-
tion 2.1 with p = 0, then if we run SGDA for T
iterations with stepsize max{af,af} < ¢ for some
constant ¢ > 0, let (o = (cL + 1)~! then we have

Es.a |[V2/@0(4,(5)) - VoY 0 (Au(9))

<O((@ =6 /m)" + V),

where (A;(S5),Ay(S)) = (@r,yr) is the output of
SGDA.

The proof relies on the stability results in Farnia and
Ozdaglar (2021), which we defer to Appendix F. Com-
pared to the generalization bounds in Theorems 3.1
and 3.2 that use uniform convergence, the generaliza-
tion bounds of SGDA avoid the dependence on the
dimension d. However, the dependence on n of gener-
alization bounds of SGDA becomes worse compared to
uniform convergence in the NC-C setting. We leave the
improvement of the current results as a future direction.

4.3 Generalization of Sampling-determined
Algorithms (SDA)

Another class of algorithms we consider is the sampling-
determined algorithm (SDA) proposed in Lei (2022),
which covers a wide range of algorithms including
SGDA, stochastic extragradient, and some adaptive
variants of SGDA (Yang et al., 2022a). Its definition is
presented below for completeness.

Definition 4.7 (Sampling-determined Algo-
rithm (Lei, 2022)). Let A be an algorithm that
randomly chooses an index sequence I(A) = {i;}
from the dataset to build stochastic gradients.
We say A is sampling-determined if its output is
independent of the sample &; for any i ¢ I(.A).

Note that the SDA algorithm class does not in-
clude some sophisticated common algorithms like
SVRGDA (Palaniappan and Bach, 2016). In Lei (2022),
the o-stability of SDA is derived using its sampling-
determined property. Equipped with Theorem 4.2, we
obtain the following generalization error bounds of SDA
n NC-SC and NC-C cases, respectively.

Corollary 4.8 (Generalization of SDA, NC-SC).
Assume the function f is NC-SC as defined in As-
sumption 2.1 with g > 0. If we run a SDA algorithm
A for T iterations, we have

s [V0(A:(S) - Ves(x()] < 0(s(y/ T + 1)),

Corollary 4.9 (Generalization of SDA, NC-C). As-
sume the function f is NC-C as defined in Assumption
2.1 with p = 0. If we run a SDA algorithm A for T'
iterations, we have

Es.4 || V20 (4,(8)) - oy *1 (4,(9))|
< O((T/n)1/12 + n—1/8).

Compared with Corollary 4.5 and 4.6, the generaliza-
tion bound of SDA does not require specific stepsizes
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and applies to a wider class of algorithms, but the
generalization bound of SDA algorithm has a worse de-
pendence on sample size n. We leave lifting the specific
stepsize requirements of SGDA in Corollary 4.5 as an
interesting future direction.

5 Conclusion and Future Directions

In this work, we take an initial step toward under-
standing the generalization performances of NC-SC
and NC-C stochastic minimax problems, measured by
the first-order stationarity of the primal functions. Our
study covers both uniform convergence and algorithmic
stability argument perspectives.

Several future directions are worth further investiga-
tion. First it remains interesting to see whether we can
improve the uniform convergence and stability results
under the NC-C setting, particularly the dependence
on sample size n. Also it is an interesting problem
to relax existing assumptions in this work, like the
bounded gradient norm and the compact domain, re-
cently there have appeared several ways to relax the
bounded gradient assumption, e.g., instance-dependent
Lipschitz continuity in Davis and Drusvyatskiy (2022)
and Bernstein condition in Klochkov and Zhivotovskiy
(2021). Another possible direction is to investigate
the generalization performances for specific applica-
tions, in fact some recent studies in stochastic mini-
mization show that specific machine learning models
(e.g., generalized linear models) enjoy dimension-free
uniform convergence bounds (Amir et al., 2022; Davis
and Drusvyatskiy, 2022). It would be interesting to
see whether such dimension-free uniform convergence
property also holds for some minimax applications.
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A Additional Definitions and Tools
For convenience, we summarize the notations commonly used throughout the paper.

e Population minimax problem and its primal function?

F(z,y) £ B¢ f(z,5:6), ®(z) 2 maxF(z,y), y"(z)= argmax F(z,y).
yey yeY

e Empirical minimax problem and its primal function

a1y .
— Z r,y;6), ®s(r) 2 max Fs(z,y), yi(z) £ argmax Fs(z,y).
=1 yey yeY

3

e Moreau envelope and corresponding proximal point:

1 1
#(a) £ mip {22 + 5~ ol |, proxaela) £ avgmin {8(:) + - o17),

O3 (x

~

1 1
2 iy {5(:) + g5l —alP . proxy, (o) £ argmin {@(2) + gl - ol .

zeX zeX

e Gg(z): gradient mapping (generalized gradient) of a function ®.
e ||||: ¢2-norm.
. = (V2 f,Vyf): the gradient of a function f.
e proj,(2'): the projection operator.
A

o A(S)
S.

(Az(S), Ay(S)): the output of an algorithm A on the empirical minimax problem (2) with dataset

e NC / WC: nonconvex, weakly convex.

e NC-SC / NC-C: nonconvex-(strongly)-concave.
e SOTA: state-of-the-art.

e d: dimension number of X.

e r: condition number %, L: Lipschitz smoothness parameter, u: strong concavity parameter.

e O(-) hides poly-logarithmic factors.
o f=Q(g) if f(x) > cg(x) for some ¢ > 0 and nonnegative functions f and g.

e We say a function g : X — R is convex if V z1,22 € X and p € [0,1], we have g(px1 + (1 — p)za) >
pg(x1) + (1 = p)g(a2).

For completeness, we introduce the definition of a sub-Gaussian random variable and related lemma, which are
important tools in the analysis.

Definition A.1 (Sub-Gaussian Random Variable). A random variable 7 is a zero-mean sub-Gaussian random

2Another commonly used convergence criterion in minimax optimization is the first-order stationarity of F, i.e.,
IVaF| < e and |V, F| < e (or its corresponding gradient mapping) (Lin et al., 2020a; Xu et al., 2023). We refer readers
to Lin et al. (2020a); Yang et al. (2022b) for a thorough comparison of these two measurements. In this paper, we always
stick to the convergence measured by the stationarity of the primal function.
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variable with variance proxy U% if En = 0 and either of the following two conditions hold:

2 2

t
) for any s € R; (b) P(|n| > t) < 2exp (—22) for any ¢ > 0.
o
"

0.2
(a) Elexp(sn)] < exp ( ”2

We use the following McDiarmid’s inequality to show that a random variable is sub-Gaussian.

Lemma A.2 (McDiarmid’s inequality). Let 7,...,7, € R be independent random variables. Let h : R™ — R
be any function with the (cy, ..., ¢,)-bounded differences property: for every ¢ = 1,...,n and every (n1,...,7,),
and (77, ...,m,) that differ only in the i-th coordinate (n; = n; for all j # i), we have

21, -5 mn) — B0y, - )] < e
For any t > 0, it holds that

2t
(A, 1) ~ B )| 2 ) < 2050 (— 53 )
=il =

Lemma A.3 (Properties of ® and ®*, Full Version). In the NC-SC setting (u > 0), both ®(x) and ®g(x) are
L 2 L(1 + x)-smooth with the condition number & £ L/pu, both y*(2) and y%(z) are s-Lipschitz continuous
and V®(z) = V,F(z,y"(z)), V®s(x) = Vo Fs(x,y&(z)). In the NC-C setting (1 = 0), the primal function ® is
L-weakly convex, and its its Moreau envelope ®*(x) is differentiable, Lipschitz smooth, also

Vorz) = A"z — 1), [V (z)| > dist (0,09(2)), (4)

where & = prox,s(z) and 0 < A < 1/L.

For completeness, we formally define the stationary point here. Note that the generalized gradient is defined on
X while the Moreau envelope is defined on the whole domain R?.

Definition A.4 (Stationary Point). Let € > 0, for an L-smooth function ® : X — R, we call a point
2 an e-stationary point of ® if ||Ge(x)|| < €, where Gg is the gradient mapping (or generalized gradient)
defined as Gg(x) = i(m —projy(z — (1/E)V<I>(x))), for an L-weakly convex function ®, we say a point z an

e-(nearly)-stationary point of @ if [|[ V&Y L) (z)]| < e.

B Proof of Theorem 3.1

Proof. To derive the desired generalization bounds, we take an p-net {xk},?:l on X so that there exists a
ke {l,---,Q} for any x € X such that ||z — z3|| < p. Note that such p-net exists with Q = O(p~?) for compact
X (Kleywegt et al., 2002). Utilizing the definition of the p-net, we have

Emax[[Vs(z) — VE(z)|

< Emax [[VOs(z) = VOs(xk)|| + [[VOs(2k) — VO (i) || + [|[VO(2) — VE(2)]]] (5)
< Emax ||[V®g(zx) — VO (z1)| + 2L(1 + &) p,

ke(Q]
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where the last inequality holds as ® and ®g are L(1 4+ x)-smooth following Lemma 2.2. For any s > 0, we have

exp (S]Ermneag IV®s(x) — Vfb(a:)H)

ke(Q]

3 Eexp (s IV®s () — V(x| +2L(1+H)
ke(Q]

< exp (s[EgIéz[ag(] IVOs(zx) — VO(z1)|| + 2L(1 + k) D
< Eirel%(] exp (s _||V‘I)S(J?k) V(i) +2L(1 + k)p ) (©)
<EY exp (s_||v<1>s(xk) V(x| + 2L(1 + K)p )

where the second inequality uses Jensen’s inequality and monotonicity of exponential function, and the third
inequality uses summation over k € [@] to handle the dependence issue, i.e., the z in the last line is independent
of S. We use the exponential function as an intermediate step so that the final sample complexity depends on
log(Q) rather than @, which is of order O(p~). Without loss of generality, selecting p such that 2L(1 + k)p = §,

we have
Emax Vs (x) - V()|

flog < Z Eexp (s[[|V®(zr) — VOs(2)|| — E||[VO(21) — VOg5(24)]]])
ke(Q] (7)

cexp (SE |[V®(z1) — V®s(ax)|]) exp (?))

To upper bound E [|[V® () — V®s(x)||, we use the following observation. Define y%;, (z) £ argmax, ¢y Fse (2, y)
where S = {&},, SO = {&,...,& 1,641, ..., &) and € is i.i.d. from &;. Since x is independent of S or
S for any i, by Danskin’s theorem, we have

n

Be Vo (2,07 (2:6) = — 3 Vaf (0, 052 6)

i=1

E|VO(x) — VOs(2)| = E

— E| Ee Vo f(z,y"(z ——ZV fz,y*(2): &)
+ iinf(a:,y*(x);&) — i;vxf(x,yg(x);&)

< E||Ee Vo f (2, y" (2 ——ZV flzy*(2):&) ®)
+E ;évmx Zv f.y5(2): &)

< E|[Ee Vo f(a,y"( —va f,y™ @36 + LE |y (2) - 5 ()]

< fﬁwEny*m—y;(wu,

where the second inequality holds by the smoothness of f, and the last inequality holds because the variance
is upper bounded by the second moment. To derive an upper bound on ||y*(z) — y5(x)||, we first bound
Hygm (z) — yf;(x)“ and utilize the stability argument. Since f(x,y;&) is p-strongly concave in y for any x and &
and y%(x) is the maximizer of Fg(z,-), we have

2

(=Fs(z,y50 (2))) — (=Fs(z,y5(x))) ) 9)

(2) — 5 ()|
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On the other hand, we have
Fs(z,y5(2)) — Fs(z,y50 ()
=Fsu (z,y5(z)) — Fso (T, Y5 ()
1
= [ ys@)6) — oyt @):6) + Fe,yio @):€) - F, v
<Fsu (z,y5(x)) — Fs (=, ygm ()

2| 50 (2036 — £, 0561+ 317y (0 €) — S0 32 €)

*

—
8

~
N
SO
~

[

*

2G
S;H?qum (z) —ys(@)]|

where the last inequality holds by Lipschitz continuity and the optimality of y%;, (x). Combined with (9), it holds
that
4G
* % < =
[ @) @) < 2
In addition, we have

E[F(z,y*(z)) = F(z,ys5(z))]
= E[F(z,y"(2)) — Fs(z,y"(2))] + E [Fs(z,y"(2)) — Fs(z,y5(2))]
+E[Fs(z,ys(2)) — Fe,ys(x))]
<E[Fs(z,y5(x)) - F(z,y5(x))

]

o * Lo
=E EZf(m,yS( EZ]EEf:EyS )f)]

- :L 10
= E %Zf(x,yi%(w);&)—%zlga f(%y%(w)?fi)] "
=E %Zf(w,yfe(ﬂf);&) - lef(w,y;n(x)s&)]

L i=1 i=1
< GElys(x) - yso (@)

4G?

Si

where the first inequality holds as y§(z) = argmax,y, Fs(z,y5(x)) and E[F(z,y*(z)) — Fs(z,y*(z))] = 0, the
third equality holds as y§(z) and y%,, (x) are identical distributed and y,, () is independent of { by definition, the
second inequality holds by Lipschitz continuity of f on gy, and the last inequality holds by plugging the upper bound
on [lys(w) — y5e) (z)||. On the other hand, since F'(x,y) is strongly concave in y and y*(x) = argmax, ¢y, F'(z,y),
it holds that

Fa,y"(2)) — F(z,ys(x)) = g\ly*(x) — (@)l

Therefore, we have

8G?
E [|y* —Ye <y —.
ly*(2) —ys(@)l < Zn
Plugging into (8), it holds that
8G* G
E[V®(zy) — VOs(zi)|| < L = (11)

wn o o\n
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Next we show that [|[V®(z) — V@g(z)|| — E||V®(z) — VPg(x)| is zero-mean sub-Gaussian. Notice that for any
!, we have

[V&(z) = VOs(2)|| - [VO(z) = Vs (2]

< | Ves(z) = Vege (@)
= ZV [z ys ZV f z ys(n( ) fj) - lvwf(xvyg(i)(x)afz{)
#Z n (12)
< L||y§<7:> (z) - y§(m)|| + gHfo(x,yZm(x);fé) - fo(m,ygm(x);ﬁi)n
< 4LG/M—&—2G7
n

where the first inequality uses triangle inequality, the first equality uses the definition of ®g and ®g), the
third inequality uses the assumption that G is the uniform upper bound of Vf(z,y;£) on X x Y for any &.
By McDiarmid’s inequality (Lemma A.2) and the definition of sub-Gaussian random variables, it holds that
IVO(x) — VOg(zk)|| — E||VP(2k) — VPs(xg)| is a zero-mean sub-Gaussian random variable with variance
proxy o2 £ (2LG/u + G)2 /n. By the definition of zero-mean sub-Gaussian random variables, it holds that

Eexp(s[[[V@(ax) — Vs (xy)] - E [V (zx) — Vs (ax)]]) < exp ( 7 ) (13)

Plugging (11) and (13) into (7), we have

log(Q)  so? 8G2 G ¢
_ < IA\®) o, T D T B
B Vs (x) - V()| < L4 T Ly o+ o (14
Minimizing the right-hand side over s, we have
G €
< 4 -
EIV0s(e) - Vo)l < 2y 2D 1 1,5 4 £t
(15)
\/2109( )(2LG/u+G)2 s, G Le
f

Recall that Q = O(p~?) with p = ¢/(4L(1 + k)), thus log(Q) = O(dlog(4L(1 + k)e~')), which verifies the first
statement in the theorem. For the sample complexity, following the discussion on the performance measurement
in Section 2, it is easy to derive that it requires

=0 (2d€2(2LG/,u +G)?log(4L(1 + H)efl)) = O(dr*e?) (16)
to guarantee that E ||V®g(x) — V®(x)| < e for any x € X, which concludes the proof. O

C Proof of Theorem 3.2

We first provide the proof of Lemma 3.3.

Proof. Since F(x,y) is L-smooth, it is obvious that F(z,y) — %||y[|* is (L 4 v)-smooth. By Thekumparampil et al.
(2019, Lemma 3), ®(z) is (L + v)-weakly convex in z. Therefore, ®(z) + sxlle —2[|*is (3 — (L + v))-strongly
convex in x for any fixed z’. Denote §(z) £ argmax, ¢y F(z,y) — 5|yl?, y*(x) = argmax,cy F'(x,y). It holds
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that

(1/A = (L +v))[[proxyg (z) — prox, (x)||?

DO | =

. 1 N 1
< ®(prox,g(2)) + oy llprox,e () — z||* — ®(prox,4(z)) — oy Iprox; g () — x|?
. v, . 1
= F(prox,g(z),y(prox,s(z))) — 5||3/(PI'0X>\<I>($))H2 + ﬁHPI‘OXAcb(fU) - tz
. v, . 1
— F(prox,4 (), j(prox,g())) + 5IIy(pr0><A<i>(~T))II2 — gy Iprox,4(z) — x?

< F(prox,q(z),y" (prox,e(r))) + %Hprox)@(x) - 55”2 - %Hg(prox,\q,(x))H?
— F(prox, (), (prox,q (1)) — 5 [orox,q (@) — 2 + 2 3(prox,q (o) -

N 1 vV, .
< F(proxyg(z),y”" (prox,ge(z))) + ﬁHPI‘OX,\@(fﬂ) - 33||2 - §||y(P1‘0XA<I>(33))||2
— F(prox,;(2),y" (prox,4 (¢))) — 35 [IpProx,q () — ol + 3 1" (prox, (2))
1 1
= &(prox,e(2)) + oy [lprox,qe () — z||* — @(prox, 4 (x)) — oy Iprox; 4 () — x|?

+ 12

Sy (prox, (@) = 3 [3(prox,s ()

2l (rox g (@)I> = 2 3 (prox,s ()]

I/Dy
2 )

IA

IN

where tlie first inequality holds by strong convexity of ®(z) + iAHz — x||? and optimality of prox,g4(z) for
min,cyx ¢(2) + %Hz — x|, the first equality holds by definition of ®, the second inequality holds by optimality
of y*(prox,e(z))) = argmax, ¢y F(prox,4(),y), the third inequality holds by optimality of §(prox,q())) =
argmax, ¢y, F(prox,q(z),y) — 5|lyl|?, the second equality holds by definition of ®, the fourth inequality holds
by optimality of proxyg(z) = argmin, ¢ »{®(z) + 55 ||z — ||}, the last inequality holds by the compactness of
domain ). O

Next, we demonstrate the proof of Theorem 3.2.

Proof. By Lemma 3.3, we have

)\VDy
_ . < —
[prox,e(z) — prox, 4 (z)|| < 1-XNL+v)
)\UDy
[proxss; (@) = proxye (Wl <\ [+ =375y

To derive the desired uniform convergence, similar to the proof of Theorem 3.1, we take an p-net {xk},?:l on X
so that there exists a k € {1,---,Q} for any x € X such that ||x — zx|| < p. Note that such p-net exists with
Q = O(p~?) for compact X. We first decompose the error as the approximation error from NC-SC minimax
problems to NC-C minimax problems. Then we utilize the p-net to address the dependence between S and
argmax, .y [|[V®3(z) — VO (z)||. First, note that
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Emax |[VO}(z) - VO @)
1
:X E glea;( ||P1‘0X,\<I>s (z) — prox,g(z)||

1
<+ Emax [prox,a, () - prox,, (#)] + [prox,s, (z) — prox,q(«)]
+ [[prox, g (2) — prox, ()]

2 /\Z/Dy 1
ST @ + 5 Buaxliproxs, (@) - prox,s(a)]

2 )\Z/Dy T l

ST oaz o) T B lliprox,s, (#) — prox,g, (u)] (18)

+lprox, 4, (zx) — prox,g (zx)|| + [lprox, s (zx) — prox, 4 ()|]

vDy 1 2p
<9 |— VY g i — i =
> )\(1 — A(L + l/)) + )\ ]1361?5(] ||prox)\¢'5 ('Tk) prox)\@(xk)” + )\(1 . )\(L + Z/))
I/Dy 1
Ao s % | 2 B (oprones ) —proxa ()
2
N p

A1 =ML +v))’

where the first and the third inequality use the triangle inequality, the second inequality uses Lemma 3.3 for
® and ®g, 7, is the closest point to z in the p-net, the fourth inequality holds by (1 — A(L + v))~!-Lipschitz
continuity of proximal operator (Davis and Drusvyatskiy, 2022, Lemma 4.3) since F(z,y) — ¥|y[|? is a (L 4 v)-
smooth function, and the last inequality follows a similar argument in (6). All that remains is to bounding

Eexp (sHprox)\és () — prox, 4 (m)H) for € X that is independent of S. Notice that
Eexp (sHprox)\@S (zx) — proxké(xk)H)
= Eexp (S[Hprox)\,i,s (xg) — prox)\(i)(xk)H —-E Hprox/\@s (k) — prox)\(i)(a:k)m)

- exp (SE‘

prox,s. (r¢) ~ prox,q (n) )

Next, we show that HproxA(i)S (1) — prox, 4 () H -E HproxAéS () — prox, 4 () H is a zero-mean sub-Guassian
random variable and E Hprox)\és (1) — prox, 4 (zx)|| is bounded. Since xj, is independent of .S, it is sufficient to
show an upper bound of the following term where x € X is independent of S.

E|prox,s (x) — prox,4(«)|.

Recall the definition that

. v 1
prox(r) = argmin { max B¢ (2, :) — 5 Iyl + 5512 — o}, (19)
rox,.,(2) = angin  ma L 3 (180 ~ Lol + o o] (20)
o = X — 1Gi) — = —_— — .
PrO¥ads ;gex yey n = e 9 1Y 2\

Denote the solution of (19) as (z*(z),y*(x)) and the solution of (20) as (zs(x),ys(z)). We need to bound the
distance between z*(z) and zg(x), note that this (z*(x),y*(x)) comes from a strongly-convex-strongly-concave
stochastic minimax problem, where the modulus is 1’;‘L and v, respectively; while the other comes from the
sample average approximation counterpart. By Zhang et al. (2021a, Theorem 1 and Appendix A.1), we have the

following results:

1—- AL
2

T T2
K 2 K o F 2<& Li)‘ ﬂ
E lzs(2) - 2 (@) + 5 Ellys(e) -y ()2 < = [ 22 422 ),
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where L, is the Lipschitz continuity parameter of f(z,y;€) + sxllz — #||? in z € X for any given y € Y and ¢,

and Ly is the Lipschitz continuity parameter of f(z,y;£) — %[ly[|* in y € Y for any given z € X and £. More
specifically, since f(-, ;&) is G-Lipschitz continuous for any £, we have

~ 2./ D o
L. <G+=5 * L, <G+v\Dy.

Therefore, we have

E [[prox,4_(z) — prox,4(z)|| = E|zs(x) — 2" (2)]|
VETss@ — @ < | M( 2 L) 21

IN

1—-AL n 1- )L 1%

Next, we show that |[zs(z) — 2" ()| — E[[2s(z) — 2*(2)]| is a zero-mean sub-Gaussian random variable. Replacing
one sample &; in S with an i.i.d. sample £/ and denote the new dataset as ), by Zhang et al. (2021a, Lemma 2),
it holds that

L2x2 L2)
(VAT FESVAL

Izs(x) = 2" (@) = 2500 (2) = 2" (@) < [|25(2) = 2500 (2)[| < i\/(

where zgu) follows a similar definition of zg but with a different dataset S (#). By McDiarmid’s inequality (Lemma
A.2) and the definition of sub-Gaussian random variables, it holds that ||zg(z) — z*(x)|| — E ||zs(z) — z*(z)]| is
1252 Lix

a zero-mean sub-Gaussian random variable with variance proxy % G502 T oD

). By the definition of

sub-Gaussian random variable and (21), it holds that

Eexp (s Prox, s (x1) — prox, 4 (z H)

s

Prox,g T)) — Prox, 4 (xx H —E‘ Prox,g (k) — PI'OX,\@(Z‘I@)HD

sEHprox)\cb () — prox, 4 (rx) H)

< Eexp (s[ ’proxms(:ck — prox, ; (zy H fEHproxM) (z1) — prox, 4 (xy HD (22)
oA 2v2 [ 12\ L2
- exXp +—
1-AL n \1-XL v
<

N O S ) o (o] 22 22 L3\ L
Plon\ a2 Tua-an) ) )P 1-A n \1=XL v )|

where the second inequality uses definition of zero-mean sub-Gaussian random variable. Combining (22) with
(18), for

~ ~ —1
1 A1 = AL L2)\2 L2X
_ € ( ) _ € T Y ) ) (23)

s "m0\ le@) <(1 L2 T v(1= D)
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it holds that
E ma |[V83(z) - VOA(z)|

vDy 2p
SHNToAC ) T AT 1)

1 1 52 L2)\2 i§>\
BV L e R S VA PR e v

+

1 oN ov2 [ I2n 12
1 z Y
T 8\ PN TN (1)\L+1/>
vDy 1 1 s2 L2)2 L2\
<2 —mMmm— + —1 — - z Y
S 3aoan T s @t e, ((1 CNL? I AD)
1 o\ 2v2, [2\ L2 2
+ —s \[( £ + —y) + L
M VI n \1-XL ' v A1 = AL)
.y vDy log(@Q) , 15 [ L2X\? N L2)
A1 = AL) \s Xon\ (1= AL " v(1—=AL)

AN\ 1=-XL n

1 iz L2 W2 (12 L2
= 2\/4LvDy + 4L 03(Q) (Lg+y> Y f<x+y +§
14 14

1| 23 2v2( L2x L2\ e
<1—)\L+I/ *1

2n

1 L2 L2
_ o /ATDy + 4z, | 8@ (L;ﬁ + y)

2n vL
2 2
+2L\/4L\{I§((G+4LL\/DX) R (G+u;ﬁpy) ) L

Here the first equality holds by the selection of p, the second equality holds by the selection of A and s, and
the last equality holds by plugging in L, and L,. Note that p, s, and v are only used for analysis purposes,
and A is only used in the definition of gradient mapping. Thus one has free choices on these parameters. Since

d .
Q=0 ((DPX) ), then we choose v = O (ﬂ) in the right-hand side above, which verifies the first statement.
For the sample complexity result, to make sure that the right-hand side of (24) of order O(¢), it suffices to have

n=0 (L) — 0 @ tog (7))

v

which concludes the proof.

D Proof of Theorem 4.2

For simplicity we define the following notations:

F(z,y) 2Ee [f(z,y;8)], ®(z) = max F(z,y),  Fs(x,y) = %Z [f(z,y;&)], ®s(x) = max Fs(,y),

y*(z) 2argmax F(z,y), y&(z) 2 argmax Fs(x,y), ®(z;¢) = mjiX flz,y; ),
Y Yy 1

and the Moreau envelope of a function ®:

1 1
#0) 2 g {000) + 5o~ 3} proxa(o) 2 argmin {o(a) + -~

zeX

(25)

O

b (21)
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similar notations can be defined for ®g, which we do not repeat here.

Definition D.1 (Uniform Stability). We say a randomized algorithm A is d-uniformly stable in z-gradients if
for every two dataset S, S’ which differ in only one sample, for every & € = we have

SUp B |V (As(9), 4,()i€) = Vo f (Au(S"), Ay (S)); E)II° < 82, (28)

Lemma D.2 (Concentration of Optimizers). For y* and y§ defined above, with Assumption 2.1, we have for
any x € X,

ly™(2) —ys (@) < %lIVyFs(%y*(x)) — VyF(z,y"(2))]- (29)

Proof. By the optimality of y*(z) and y%(x), we have for any y € Y

(y —y"(2), VyF(2,y"(2))) <0

. . (30)
{y —ys(x), Vy Fs(z,y5(x))) < 0.
Setting y = y&(z) and y = y*(x) in the above inequalities respectively, we have
(ys(@) —y*(2), Vy F(z,y"(x)) — VyFs(z, y5(x))) < 0. (31)
In addition, by strong concavity of Fg(z,-), we have
(y5(@) = y" (@), Vy Fs(z,y5(2)) = Vy Fs(a,y" (@) + pllys () -y (2)]* < 0. (32)
Combining (31) and (32), we have
(y5(x) =y (2), Vy Fz,y" (@) = V, Fs(a,y"(2))) + pllys(z) - y*(@)]|* < 0. (33)
Rearranging terms, it holds that
pllys(@) — v @)II° < (y5(@) — y* (@), Vy Fs(a,y" () = V, F(z,y" (2)) (34)
< lys(@) —y" @) - IVyFs(z,y" () = Vy F(z,y* (2))]],
which implies
* * 1 * *
lys(z) —y* ()|l < ;llVyFS(%y (2)) = VyF(z,y"(z))]. (35)
It concludes the proof. O

Lemma D.3 (Stability of Optimizers). For y§ and y§, defined above where S and S’ are two dataset differing
in only one sample (§; and &), with Assumption 2.1 while g > 0, we have for any = € X,

lys(@) = ys @)l < ZIVyFs(@, 45 (2)) = Vo Fs (2,5 (@) < 770 (36)

Proof. The proof is similar to that of Lemma D.2. By the optimality of y%(x) and y%, (x), we have for any y € Y

(y —ys(x), VyFs(z,ys(x))) <0
(y = y5 (), Vy Fs (2,y5 (x))) < 0.

Setting y = y& (z) and y = y5(z) in the above inequalities respectively, we have

(ys(x) — ys (2), Vy Fsr (2, ys () — Vy Fs (2, y5(x))) < 0. (38)

In addition, by strong concavity of Fs(z,-), we have

(5 (@) =y (), Vy Fs(@,y5(x)) = Vo Fs (2,55 () + ullys(z) — 5 (@)]° <0. (39)

(37)
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Combining (38) and (39), we have

(ys(@) — y& (), Vy Fs(@, y () = V, Fs(e, y (@) + nlys (@) — y3 @)]* < 0. (40)

Rearranging terms, it holds that

ullys (x) = y5 (@)|° < (y5(@) — y5 (@), Vy Fs (@, 5 (@) = Vy Fsr (2,95 (2)) (41)
< ys(@) — ys (@) - IV Fs (2,55 (2) = VyFsr (2, y5 (),
which implies
lys(z) — ys (@) < l||VyF5(x7y§/ (z)) = VyFor (2, y5 ()]l
‘Lll 1 , 2G (42)
= L2 st 060 - Vs i) | < 2,

which concludes the proof. Here the equality above is due to the variables being the same (x,y% (x)), while S
and S’ differ in only one sample. O

Theorem D.4 (Stability and Generalization, NC-SC). Let A be an J-uniformly primal stable algorithm, for
any function f satisfying Assumption 2.1 with g > 0, we have

E0 5] VB(AL(S)) — Vs(A <>)|<<1+n>(46+%). (43)

Proof. Following the definition, we have

VO(A(S)) = VPs(AL(S))
= Vo F(As(5), 4" (Ae(S))) = Va Fs (A (), y5(A(9)))
= VoI (As(S), 5" (Ax(5))) = VaFs(Ax(5), ¥ (As

so we know that
||V<I>(«4w(5))—V<I>s( (5))||
+ IIV Fs(Am(S),y*(Ax(S))) = Vo Fs(A:(5), y5(Ac (5)Il,

for the first term above, by Lei (2022, Theorem 2) (i.e., regarding (A, (S),y*(A.(S))) as one single variable to
recover their conclusion), we have

B sV F(ALS) 0 (A(S) = VaFs(A(S) " (A8 < 404/ 0D <a i 2 ao
for the second term above, by Lemma D.2, we have
Ea,s [IVaFs(Ax(S), 4" (A(S))) = VaFs(Az(S), ys(Az(9)))l
< LEas [ly*(As(5)) = y5(A(9)) ]l
< /<;<46 + erJ )> )
G
< Ii(45 + ﬁ)’

where the third inequality applies the same argument as that in (46). We conclude the proof by combining the
two bounds above together. 0
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E Proof of Theorem 4.4

The proof uses the idea from Lei (2022, Theorem 3) and our proof of Theorem 3.2. Unlike Lei (2022) which
considers the minimization case, with ®(x) # E[®(z;¢)], we need some modification in the proof. To address
the non-uniqueness of y*(z) in the NC-C case, similar to the uniform convergence analysis in the NC-C case
(Theorem 3.2), we resort to the regularized objective in the proof to characterize corresponding distances.

For convenience, we recall the definition of regularized objective functions here.

O(z) = max F(z,y) — - ®g(z) = max F, — =
(2) =max F(z,y) — S llvll",  Ps(z) = max Fs(z,y) — 3 llyll",

~ 14 2 ~k v 2 (48>
7 () = anmiax () — I, () = argmas F (e, ) — 2yl
yeY yeY
In addition, following the notation in Lei (2022), we define
s = prox 5 (A,(5)) = argmin {&(x) + Lz — A.(8)]*},
2L reX (49)
ws = proxs. (As(S)) = argmin {B5(x) + Lz — A(9)]}.
2L xre

As discussed in Appendix C, the function F(z,y) — %HyH2 is (L 4 v)-smooth, and the function ®(z) is (L + v)-
weakly-convex (the same hold for Fg(z,y) — %Hy”2 and (I\)S(x))

First, we build up a connection between algorithm stability and proximal operators to facilitate the analy-
sis.

Lemma E.1 (Algorithm Stability and Proximal Operators). Let A be an algorithm. For any function f
satisfying Assumption 2.1 with g = 0, we have the following inequalities for any two neighboring dataset S and
S’, we have

_ 2L ,
1Bs = @s/| < 7= A(S) = A

oL , °G  2L(G +vyDy)
L—I/”A(S) — A+ n(L —v) + nv(L—v)

ws —ws || <

where ® and g follows the definitions in (48) and (49).
The proof basically follows the proof of Lei (2022, Lemma 15 and 16) with some differences in detailed parameters.

Proof. For the first result, note that ?{;(m) is (L + v)-weakly-convex and differentiable, so we have
(s — s, V(is) ~ VB(@is)) ) 2 ~(L+ ) |s — s[> (51)
On the other hand, by the optimality of wg, we have
—2L(Ws — Au(S)) — VOiis) € 0Tx(iWs), —2L(Ts — Ax(S)) = V(W) € ITx (W), (52)

where Ty (x) is the indicator function of the set X, i.e., Zy(x) =0 if z € X and Ty (z) = oo otherwise. Since X is
convex, the subgradient 0Zy is monotone, and thus

o~

<@S — g, 2L — Au(S")) — 2L (s — AL(S)) + Vd(wsr) — v¢(ws)> = (g — W, OTx (Ws) — AT (Ts'))

(53)
Combining (51) and (53), it follows that

(W — Wgr, 2L(Wgr — Ay (S")) — 2L (s — A, (S))) > —(L + v)||ws — wsr||*. (54)
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Rearranging the terms, we have

(L —v)|@s — @ ||* < 2L{is — W1, Au(S) = Au(S")) < 2L @5 — T [[| Az (S) = Ax(S")]]-
We obtain the first result by dividing both sides by (L — v)||wg — wg||.
For the second statement, applying the fact that ‘/ﬁs is weakly-convex and differentiable,

(ws —ws:, Vs(ws) — Vds(ws) ) > (L +v)l|ws — we|*

Similar as (53), by the optimality condition of wg and wg,

~

<ws —wy, 2L(ws — Ag(S")) — 2L(ws — Ay (S)) + VB (ws) — vq>s(ws)> > 0.
Therefore, by the above two equations, we obtain that
—(L+w)lJws —ws||” < (ws — wer, 2L(wsr — Ax(S")) = 2L(ws — Au(9)) + Vs (wsr) — Vs (ws:) ).
By the definition of @5 and wg, we rewrite the additional term V@S/(ws/) — V@S(wsx) as
Vg (ws) — Vs (ws)
=Vs (FS’ (wsr; Y (wsr)) — gll% (ws')||2) — Vs (ws:)

=V, Fs/(wsr; 55 (wsr)) — Vs (ws:)
=V, Fs/(ws; Y5 (ws)) — VaFs(ws; ys (wsr)) + Vi Fs(ws; Y5 (wsr)) — Ve Fs(ws; ys(ws:))

1 . 1 - s -
= vaf(ws’uyS’ (wgr); &) — vaf(wsuysf (ws); &)+ VeFs(ws; Y (wsr)) — Vo Fs(wsr; Y (wsr)),
Eo

Eq
where the third equation holds since V®g(wg) = VaFs(wg:; y5(wg)). Thus it holds that
—(L+v)|ws —ws||* < (ws —wsr, —2L(ws — Az (S)) + 2L(ws — Az (S")) + By + Ey).
Rearranging terms, we have

(L —v)|ws —ws|?

(ws —wgr, 2L(A;(S) — A, (S")) + E1 + Es)

[ws — wsr | |12L(Az(S) — Az (S")) + E1 + Es

Jws — ws: [|(2L|| (Az(S) — Az (S + [ Brl| + [ E2l)

< Jlws —ws| <2LII(AI(S) — A5+ % + W)

IAIACIA

nv
where the last inequality uses the fact that that ||Ey|| < 2G/n via Lipschitz continuity, and

Lemrza D.3 2L(G + vv/Dy)

Es|| < L||gg (wsr) — yg(ws:
1B < Ll[ys (wsr) = Ys(ws )| -

It concludes the proof by diving (L — v)|lws — wgr|| on both sides of (61).

(60)

O

Lemma E.2. Let A be an J-uniformly primal argument stable algorithm. For any function f satisfying

Assumption 2.1 with g = 0, we have

E |®g(ws) — ®(ws) o+ 5+ —

2GL(L+2v) . G 4 8LA(L + 2v)? G +vp
- v(L-v) v v2(L —v)? vn 27V

(62)
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Proof. Note that
E [ $s(s) - ®(s)]

= B Fs(@s, §5(@s)) - F(is,§"(@s)) — 5 155(@s) > + 517 (@) ]

E | Fs(ws, 75 (ws)) — Fs(ws, 7" (ws)) + Fs(ws, y* (ws)) — F(ws, 5" (ws)) | + gDy'

IN

H1 H2
We bound H, via the stability argument of f(wg,y*(ws); &), ie., regarding (ws, y%(wWg)) as one single variable.

E[f(ws, ¥ (ws); §)] — E [f(ws, ¥ (ws); €)]
< GE[|ws —ws || + [|7"(ws) — ¥ (ws)]]

~ ~ L+v, _ .
<GE {st — Wst|| + — “lws ws'”
<ce|(1+22). 2 jas - 4| (64
L+2v 2GL /
< A2 200 g1 AL () - A
2001+ ),
v(L-v)

where the second inequality uses Lin et al. (2020a, Lemma 4.3), and the fact that §* is the optimal solution of
a (L + v)-smooth and v-strongly concave maximization problem defined in (48); the third inequality is due to
Lemma E.1, and the last inequality follows the definition of §-uniform primal argument stability. So we have the
“composed algorithm” g is stable? in function values, which implies (Hardt et al., 2016)

B [Fs(ds. () - F (@, 7" (@) < 2025 (65)
For the term H; above, we have
E[Fs(ws,ys(ws)) — Fs(ws, y" (ws))]
< GE||j5(@s) - 7" (@s)]
< SRV, F (s, 5 (5)) — Vi (@55) — V., F (s, 5 (@55)) + v i) | (66)

G ~ o~ o~ ~ o~ o~
— ElIVyFs(ws, §" (ws)) = Vy F(ws, ™ (ws))]

where the second inequality applies Lemma D.2. We further upper bound the RHS above using the stability
argument. For V, f(wgs, ¥*(wg);§), similar to the same argument as in (64), we have

E(|Vyf(@s.§" (s);€) = Vo (s, (@);€)II”
< 2L2E |[dis — | + 57 (@) — 7 (@) ]

<1+ (“)) ||as—w5/||2] o
< 2r? (1 - (“)) - (LQ_L)E [142(5) — Ax(8)”]

8LA(L + 2v)?
- V(L -v)?

<2I’E

52

*Here we call the iteration ws = prox 5 (A.(S)) = argmin, {I/I;(;z:) + Lz — Ax(S)HQ} as an algorithm regarding

2L
that it is a composition of the algorithm A and the proximal operator.
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where the second inequality comes from Lin et al. (2020a, Lemma 4.3). It concludes that algorithm A is §-uniformly
primal stable. Applying Lei (2022, Theorem 2) to (66), we have

~ o~k ~ ~ sk~ G ~ sk~ ~ sk~
E[Fs(ws, ys(ws)) — Fs(ws, y"(ws))] < — B |[Vy Fs(ws, §(ws)) = Vy F(ws, §" (ws))]

G 8LA(L + 2v)? Var(V, f)

< — - 7 N YIJ

~ v (4 V2(L —v)? 6+ n (68)
G 8LA(L + 2v)? G

< —14 —

_1/< v2(L —v)? 5+\/ﬁ>’

which concludes the proof. O

Lemma E.3. Let A be an J-uniformly primal argument stable algorithm. For any function f satisfying
Assumption 2.1 with u = 0, we have

E |®(ws) —is(ws)} < §<4\/8L2(L+21/)2 ((L4L2 oy a2 2L2(G+z/\/D_y)2) . ﬁ)

V2 —v) n2(L — v)? n2v2(L —v)? vn
G(L+2v) [ 2L °G  2L(G+wvyDy)\ 26(G+wvyDy) v
i v (L—V5+TL(L—V) nv(L — v) ) * nv +§Dy'
(69)
Proof. Note that
E :a\)(wg) — (/f’s(ws)]
= E |F(ws, 7" (ws)) = Fs(ws, §5(ws)) = S 17" (ws)|* + 5175 (ws)|]

- (70)

~k ~k ~k > v
< E |F(ws, ¥ (ws)) — Fws,ys(ws)) + F(ws, ys(ws)) — FS(w57yS(wS))] + §Dy~
L J1 J2

For Js, by Lemma E.1, similar to the analysis of Hs in the proof of Lemma E.2; we have

E[f(ws,ys(ws); §) — E[f(ws, ys (ws); §)]]
< GE[[lws —ws || + [[75(ws) — ys (ws)|| + |75 (ws) — Y (ws)|]
L+v | 2G(G +vy/Dy)

< GE[ (14 55) - (2 1Au(S) — A + o+ ZAC L) 2EEED)

< GE [ Jus — wsl + 2 fus - we|

< GLr2). (L2_L SEIAL(S) A + . 5 QLn(j - _”f;”) 4 266G L v/Dy)
= G(Lz—/'_ = <L2—L1/5 * n([?f V) 261(22_56)32)) * = jwym)

It further holds that

Bl (ws.75(0s) ~ Fs(us. Botus)] < S ( 22 20 2O /IN)) | 20001 DY)
(72)
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For Ji, similar to the analysis of H; in the proof of Lemma E.2, we have

E||V, f(ws, §" (ws); &) = Vyf (wsr, T (ws); )|
< 2L [lws — ws | + 17" (ws) — 7" (ws)|?]

(1 N (Lj”f) lws — wS’|2] (73)

< 2I’E

2 L+v\”) oL \? 2 4G? AL*(G +vy/Dy)*
<or <1+( ) )B4 ) 1a(8) - Au( + 4 2 OV
8L3(L + 2v)? 412 52 4G? 2L%(G + vv/Dy)?
- V2 (L —v)? n?(L — v)? n2v2(L —v)? '

Combined with Lei (2022, Theorem 2), we have

E[F(ws, ys(ws)) — F(ws,§* (ws))]
G

< B[V Fs(ws, §"(ws)) = Vy F(ws, § (ws))|
< g 8L2 (L+ 21/) 412 52 4 4G? i 212 (G+ V\/Dy [ Var( yf (74)
v v? (L —v)? n?(L —v)? n2v2(L
2 2 2 2 2
< G 4 8L2(L + 2v) 4L 52+ 4G n 2L%2(G+vy/D E
v v? (L —v)? n2(L —v)? n2v2(L —v) 2 \/ﬁ
which concludes the proof. O

Next, we formally demonstrate the proof for the generalization bounds in the NC-C setting.

Theorem E.4 (Stability and Generalization, NC-C, repeat Theorem 4.4). Let A be an d-uniformly primal
argument stable algorithm, for any function f satisfying Assumption 2.1 with g = 0, we have

.05 V80D (4,(5)) — VoY P (A, ())| < © (6é +(z) ) (75)

Proof. Recall that
VoD (4,(85)) = 2L (Az(s) - prox%(A(S))), Vo PP (A,(9)) = 2L (Am(S) - prox%(A(S)))- (76)
Since ® is L-weakly-convex and G-Lipschitz (Lin et al., 2020a, Lemma 4.7), it holds that
|ve!/E (4,(5)) - VoY #F) (4, (5))|| = 2L prox g (A(S)) — proxas (A(S))| (7)
Utilizing the regularized objective function, we have

Hprox%(A(S)) - prox%(A(S))H

< [Jowox 5 4(5)) = prox s (A + [prox g (4(5)) = proxs, (A(S)| + |proxe, (A(s) - proxa (4(5)|
2L L 2L 2L
vD
<2/ 7=+ s —wsl)
(78)
where the second inequality comes from Lemma 3.3 with A = i So now the problem is transformed to

characterizing the distance between wg and wg coming from the regularized surrogate objective which is NC-SC.
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Since the function ®(z) + L|jz — A(S)||* is (L — v)-strongly convex, and by the definition of wg, we have
L—-v
2
E®(ws) + Liws — A(S)|* — (&(@s) + Lljws — AS)II)

= Eds(ws) + Ljws — AS)|* ~ (®s(@s) + Llas — AS)|*) + ($ws) - Bs(ws) ) + ($s(@s) - B(as) )
E (@(ws) - <T>s(ws)) + (‘T’s(@s) - <T>(f5s))
G<4\/8L2(L+2u)2 ( Ao 4e 2L2(G+um)2> . jﬁ)

v V2 (L—-v)? n?(L —v)? n?v2(L — v)?
G(L+2v)( 2L 2G 2L(G + v/Dy) G(G + vy/Dy)
+ v (L—uéJrn(L—V)Jr nv(L — z/)y >+ nv .

2GL(L+2v) . G [8LA(L+20)2. @
v(L —v) 0 (4 v2(L —v)? Jr% +vDy,

~ 2
wgl|

IA

IN

IN

(79)

where the second inequality uses the optimality of wg and wg, the last inequality is due to Lemma E.2 and E.3.
Now we choose v to simplify the RHS above. For simplicity, first we set v < é, soL—v> %, L +2v <2L. The
RHS above simplifies to
L—v
2

G<4\/32L4<1652 1662 (G+V¢7y)> f) 2GL<45+4G 4(G+u¢7y)>

~ 2
wg||

IN

v

Jr
n2L2 n2y? L nv

4
+2G(G+u\/7Dy)+8GL5+G<4 [128L 5+G>+VDy
nv v v v? Vn

G [ 128L2 \/ G2 (G+vyDy)? 8GL G  G+vyDy
< = 2 I
_u< v 0 +n2L2 n2y? +\/ﬁ + v <26+nL+ ny )
G [ 64L2 (G+u\/m) (80)
+V< U (5 n \F>+VD)}
2
< G(128L <5+ G +G+V\/Dy>+ >+8GL(26+ G—H/@)
v v nlL nv Vn v L nv
G [ 64L? 2(G + vv/Dy)
+V< > o+ n \/ﬁ>+l/Dy
—64G<35+2G QG””VDy)+2G(85+G+4G+G+VvDy( + >)L+VD31
L nv v/nL n v L))v

_ o(n> -0(33+V12+i+1) +o<\}ﬁ> o(i) +0(5)-o(:2+i> + 00,

where the last step hides all other dependence on parameters except § and n. Let
% :O(min (5*%,71%)), (81)
with § and 1/n small enough such that v < L/2 holds. The setting of v implies that
E|lws — @s]|> < O(i) o(ylg) + 0(%) o(i) +00) - O<V12) + O
(n) o(n 3)+o(ﬁ) o(nt) +0()-0(671) + 0(sh +n71) (82)

o
(9(5%+n’ )

IN

Bl
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As a result, we have
E |ws — @s|| < 0(5% +n-%). (83)

Further incorporating (78), we have
Eas|| VOV E0(A4,(9) - Vo *H (A, (9)|
VDy
<
=2 VL-—-v
< O(V7) + E @5 — ws
= o(st +n7?),

ws| (84)

which concludes the proof. U

F Proof of Corollary 4.5 and 4.6
Corollary F.1. Assume the function f is NC-SC as defined in Assumption 2.1, then if we run SGDA for T'

iterations with stepsize (o, ay) = (5;, - ) for some constant ¢ > 0 and 1 < r < k, we have
8G<1 4= (r+1)> eL(r+1) G
Esal[VO(As(9)) = VOs(A(9))] < (1 +8) - (24mCL(r + 1)) DT TG 4 7
n

(85)

Proof. Denote A; £ \/||xt — 2}||> + |lye — »]I%, and the event Ey, = 1(A,, = 0), we have for the full gradient
V= (Vaf . Vyf)7,
B[V f (e, y"(20);:§) = V(57 (21): €
= P(Ey, [V f(ze,y" (24);:§) = V. (2, 47 (27): O || B
+P(EQE[|Vf (2, y" (20);:€) = V. f (2, 5" (21); ) ||| B, ]

< E[IVF (e, y* (@0);€) — V(24" (@1); )| Beo] + 2GP(EY)

S E[|Vaf(@ey* (@0);) = Vo f (0, v (@) Ol + IV f (2,5 (20):€) = Vo f (@, y* (21); || v | + 2GP(EY) (86)

< 2LE[|lze — @il + [ly* (z2) — y* (@)l Bt ) + 2GP(E)

t

< 2(1 4 ) LE[[|z, — 23| By ] + 2Gg0
t

< 4kLE[A{ Ay, = 0] + QGEO,

the remaining steps aims to bound E[A;|A¢, = 0], which are the same as those in (Farnia and Ozdaglar, 2021,
Appendix B.8), with that we will get

) cL(r+1)
E|Vf(zr,y"(27);€) = VI(ap, y" (27); §)|| < dnk 126 (Z;) =

—t 87
nlL + n o ( )

to minimize the RHS above over tg, we set

1
4xL-12G | [BACE=IESY e e
to = ( nlL 221}(7’ + 1)> . TCL<LT(+J{)+1 — (24/<JCL(T + 1)) cL(r-}-l)+1 TcLﬁ«(Jj)lll (88)
and we get
* ’ %/ 2G(1 + cL(7+1)> cL(r+1)
BV f(zr,y*(x1);€) = Vf(@p, y" (27): I < - (24kcL(r + 1) FEDFTECEDT. - (89)

We conclude the proof by incorporating the above bound with Theorem 4.2. O
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Corollary F.2. Assume the function f is NC-C as defined in Assumption 2.1 with g = 0, then if we run SGDA
for T iterations with stepsize max{c, ay} < ¢ for some constant ¢ > 0, we have

Es HV<I>1/(2L>(AQC(S)) _ VQg/(QL)(Ax(S))‘) <0 <T+ ) " n (l>1/8 : (90)

n n

Proof. Denote Ay £ \/th — 2}|I> + |lye — »}||?, and the event E,, = 1(Ay, = 0), we have that
= P(Ey, )E[A¢|Ey ) + P(EL)E[AES
< E[A¢|Ey] +21/Dx + DyP(EY)

t
< E[A|Ay, = 0]+ 2/Dx + Dygo,

the remaining steps aims to bound E[A;|A;, = 0], with the results in (Farnia and Ozdaglar, 2021, Appendix B.9),
we get

2G ( T\ " to
Elzy — k|| < = = 2v/D=2, 92
lor ol < 22 (L) 4 2V (92)

where we let D = Dy + Dy. To minimize the RHS above over ¢y, we set

a A\ Vet
to = <C) T, (93)
vD
and we get
G 1\ ) o TFAT

Ellar — o < 2<L(0G) +<cG>cL+1)Dw+l>n. (94)
The proof is complete by incorporating the above bound with Theorem 4.4. O

G Proof of Corollary 4.8 and 4.9

Proof. For the NC-SC case, by Lei (2022, Corollary 6), we know the algorithm is ¢ uniformly primal stable in
gradients with 6 = 2G\/T'/n, the proof is complete by Theorem 4.2.

For the NC-C case, we want to derive the uniform primal argument stability, the flow here is almost the same as
the proof of Lei (2022, Corollary 6), let € = ||z, — 2}||?, define the event Eq as that the only different data point
&; is selected by the algorithm A, so we have

T 4DA,T

E[] <E[Q | EolP(Eo) + E[Q | EGJP(EG) <E[Q | EG]— < ———, (95)

so the algorithm is 4/4DxT /n-uniformly primal argument stable. Then we conclude the proof by substituting
the above stability results into Theorem 4.4, i.e.,

Es.a [VRY P (AL(9)) - VOY P (Au(9))|

:0(5é+n—é)=0<<2)ﬁ+<i)é> :(9((:)*(31)) (96



