
Optimal Sparse Survival Trees

Rui Zhang Rui Xin Margo Seltzer Cynthia Rudin
Duke University Duke University University of British Columbia Duke University

Abstract

Interpretability is crucial for doctors, hospi-
tals, pharmaceutical companies and biotech-
nology corporations to analyze and make de-
cisions for high stakes problems that involve
human health. Tree-based methods have been
widely adopted for survival analysis due to
their appealing interpretablility and their abil-
ity to capture complex relationships. However,
most existing methods to produce survival
trees rely on heuristic (or greedy) algorithms,
which risk producing sub-optimal models. We
present a dynamic-programming-with-bounds
approach that finds provably-optimal sparse
survival tree models, frequently in only a few
seconds.

1 INTRODUCTION

Interpretability is essential for high stakes decisions
(Rudin et al., 2022), particularly in healthcare. Thus,
when a machine learning model estimates the answers
to critical questions such as “how long is this patient
expected to survive?”, the reasoning process of the
model must be understandable to humans. There has
been little overlap between the fields of interpretable
machine learning and survival analysis, despite the
importance of survival analysis problems in healthcare
and beyond. Survival analysis is used in reliability
modeling for mechanical failure of equipment (where it
is called reliability analysis), customer churn prediction,
and questions in the social sciences such as predicting
economic events. Early work in survival analysis either
did not use covariates, such as Kaplan-Meier curves
(Kaplan and Meier, 1958), or used a (non-sparse) linear
combination of covariates, such as Cox proportional
hazard models (Cox, 1972). Interpretable machine

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

learning tools introduce the ability to use sparse and
nonlinear combinations of variables to form accurate
survival models. This makes survival analyses more
powerful, while maintaining the interpretability neces-
sary for use in practice.

In a classical setup for survival analysis, we might wish
to predict the time at which an event (“death”) will oc-
cur. However, estimating time-to-event is problematic,
because some of the data are censored, meaning that
the time of the event is not known; all we know is that
the individual survived beyond the last observation
time. Because we cannot distinguish between samples
who have different death times when neither time is
observed, we instead estimate the probability that a
sample with variables x survives past time y, which is
defined as the survival function Sx(y). Since Sx(y) is
a probability estimate, it suggests that techniques for
classification or regression might work, but the loss func-
tion is completely different, so these techniques do not
apply directly. Some machine learning techniques can
adapt to many loss functions to achieve high performing
models but not interpretable models. Specifically, it is
easy to adapt standard machine learning techniques to
produce black box survival models, simply by changing
the loss function to a survival loss (Che et al., 2018;
Ching et al., 2018; Giunchiglia et al., 2018; Hothorn
et al., 2006; Ishwaran and Kogalur, 2007; Katzman
et al., 2018; Ripley and Ripley, 2001). Since the sur-
vival curves created by these methods are black box,
they are unlikely to be useful in practice. Another easy
way to get survival models is to use greedy methods for
minimizing the loss function; greedy tree-based models
for the survival function Sx(y) are popular (Ciampi
et al., 1988; Davis and Anderson, 1989; Gordon and
Olshen, 1985; Hothorn et al., 2006; Jin et al., 2004; Ke-
les and Segal, 2002; LeBlanc and Crowley, 1992, 1993;
Molinaro et al., 2004; Segal, 1988; Therneau et al., 1990;
Zhang, 1995). These methods generally choose and fix
the top split first according to heuristic splitting rules,
and continue to split according to heuristics until the
tree is formed, perhaps using additional heuristics to
prune the tree afterwards to prevent overfitting. How-
ever, their performance is often limited as a bad split
cannot be fixed once it has been made.

Optimal Sparse Survival Trees

To get interpretable models that achieve good per-
formance requires optimization. As soon as the re-
quirement of sparsity is added to any machine learn-
ing problem, the problem becomes computationally
extremely hard, and techniques must be tailored to
the specific loss functions in order to maintain perfor-
mance. Specialized techniques have been developed for
classification and regression for sparse decision trees
(Grubinger et al., 2014; Dunn, 2018; Lin et al., 2020;
Nijssen et al., 2020; Zhang et al., 2023). We have
learned from these modern methods that their single –
very sparse – trees are often as accurate as black box
models for tabular datasets. We have also learned that
each problem requires whole new algorithms. However,
fully optimizing a survival tree is much harder than a
classification or regression tree.

The only previous attempt to construct optimized
sparse survival trees that we know of is that of Bertsi-
mas et al. (2022) who attempted to solve the problem
using Mixed Integer Programming (MIP) and local
search. However, their method assumes that the ra-
tio of the hazard functions for any two individuals is
constant over time. Their search method also can get
stuck at local optima. Their code is proprietary and
tends to crash very often (about 90% of runs).

The method presented in this paper is first algorithm
for optimal sparse survival trees with public code. We
chose a dynamic-programming-with-bounds framework,
where theorems based on the survival loss – in this case,
the Integrated Brier Score – are used to narrow the
search space. The tighter these bounds are, the better
they prune the search space and reduce computation.
Our bounds are tight enough that optimal sparse sur-
vival trees can be found in seconds or minutes for
all public survival analysis datasets we know of. We
call our algorithm Optimal Sparse Survival Trees
(OSST). In Section 2.1, we present notation and the
survival objective, and Sections 2.2 and 2.3 present our
theorems that make training optimal sparse survival
trees possible. Section 3 contains the experimental
results. An extended related work section appears in
the appendix.

2 METHODOLOGY

2.1 Notation and Objective

We denote the training dataset (X, c,y) as
{(xi, ci, yi)}Ni=1, where ci ∈ {0, 1} is a binary
variable indicating whether the sample has an observed
death (ci = 1) or is censored (ci = 0), and yi ∈ R is
the time of last observation for sample i. xi ∈ {0, 1}M
is a binary feature vector, where real-valued variables
are converted to a set of binary variables using either

all possible splits or a subset of splits chosen by a
black box model (McTavish et al., 2022). The union of
{xi} is the set of possible splits for any decision tree.

The Integrated Brier Score (IBS) for censored obser-
vations proposed by Graf et al. (1999) is used as our
performance metric. We denote the loss of tree t on
the training dataset as

L(t,X, c,y) :=
1

ymax

∫ ymax

0

BS(y)dy (1)

where ymax = max{yi}Ni=1 is the latest time point of
all observed samples, and BS(y) is the Brier Score of
tree t at given time y, which can be interpreted as the
mean square error between the data and the predicted
survival function Ŝxi

(y) by tree t, weighted by Inverse
Probability of Censoring Weights (IPCW):

BS(y) =
1

N

N∑
i=1

(Ŝxi
(y)− 0)2

Ĝ(yi)
· 1yi≤y,ci=1

+
(Ŝxi

(y)− 1)2

Ĝ(y)
· 1yi>y (2)

where Ŝxi
(·) is estimated by a non-parametric Ka-

plan–Meier estimator at the leaf node to which xi

gets assigned, and Ĝ(·) is the Kaplan–Meier estimate
of the censoring distribution c, which is assumed to be
independent of any covariates (Molinaro et al., 2004).
The Kaplan–Meier estimator, known as the product
limit estimator, is given by

Ŝ(y) =
∏

i:yi≤y

(
1− di

ni

)
(3)

where di is the number of deaths at time yi, and ni is
the number of samples known to have survived up to
time yi. The first term in Equation 2 applies to non-
censored data and encourages the survival function to
be close to 0 after the death event. The second term
applies to censored and non-censored data, encouraging
the survival function to be 1 up until the censoring (for
censored data) or up until a death event is observed
(for non-censored data).

We define the objective function R(t,X,y) of tree t,
as a combination of the tree loss defined above and a
complexity penalty: L(t,X, c,y) + λ · complexity(t),
where the complexity penalty is Ht, the number of
leaves in tree t:

R(t,X, c,y) := L(t,X, c,y) + λHt. (4)

In addition to the soft constraint on complexity, we
also add an optional hard constraint:

L(t,X, c,y) + λHt, s.t. depth(t) ≤ d. (5)

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

The hard constraint on depth makes computation sub-
stantially easier, because each increase in depth creates
an exponentially larger search space. The soft com-
plexity constraint is always used, because it excludes
unnecessary leaves. That is, the optimal tree with a
depth limit of 6 might need only 8 leaves, but the hard
constraint would permit trees having up to 64 leaves.
Our algorithm finds optimal trees that minimize Equa-
tion 5 in seconds. It can also minimize Equation 4
without a depth constraint but takes more time to find
the globally optimal solution.

2.2 Dynamic Programming

We use dynamic-programming-with-bounds (Algorithm
1) for optimization (see Hu et al., 2019; Lin et al., 2020;
McTavish et al., 2022; Zhang et al., 2023); the question
here is how to derive the bounds for survival analysis so
that the search space is pruned effectively (Line 35-38).
If the bounds determine that a partially constructed
tree cannot be part of an optimal solution, then the
part of the search space it extends to can be eliminated.

We start with a single leaf node to which all sample
points are assigned (Line 1-5), and then try splitting
this single leaf by all possible features and all possible
ways of splitting those features (Line 12-17). This pro-
cess produces more leaf nodes, each containing only a
subset of the data; recursive splitting creates a large
number of nodes/subsets. Each node/subset represents
a sub-problem for which we want to find the correspond-
ing optimal sub-tree. Each sub-problem is identified
by a support set s = {s1, s2, . . . , sN}, where si is a
Boolean value indicating whether sample i is in the
support set s. With each sub-problem, the algorithm
records and updates the lower bound and upper bound
(current best score) of its corresponding sub-tree objec-
tive (Line 19). The sub-problem is considered solved
when these two bounds converge (Line 9, 22). If the
bounds determine that a sub-problem cannot bene-
fit from splitting (Line 37), then we can mark it as
solved without further exploration of that part of the
search space. We store all sub-problems and the par-
ent/child relationships between them in a dependency
graph. Since a sub-problem can have more than one
parent problem (i.e., a sub-problem can arise by multi-
ple different sequences of splits), the dependency graph
lets us avoid duplicate computations. A priority queue
is maintained to store the copies of all unsolved sub-
problems, and there can be multiple copies of a specific
sub-problem in the queue at the same time (i.e., the
subproblem can be pushed by its child problems, Line
21; or it can be pushed by its parent problem, Line
29-30). We use the difference between the fraction of
captured points and the objective lower bound as the
priority value for ordering the queue. Once all sub-

problems in the graph are solved, the optimization is
complete, and we can extract all optimal survival trees
from the graph.

2.3 Bounds

Using notation similar to Lin et al. (2020), we rep-
resent a tree t as a set of Ht distinct leaves: t =
{l1, l2, . . . , lHt}. It can also be written as:

t = (tfix, δfix, tsplit, δsplit,K,Ht),

where tfix = {l1, l2, . . . , lK} are a set of K fixed
leaves that are not allowed to be further split in
this part of the search space, δfix = {Ŝl1 , Ŝl2 , . . . , ŜlK}
are predicted survival functions for the fixed leaves,
tsplit = {lK+1, lK+2, . . . , lHt} are Ht − K splitting
leaves that can be further split in this part of the
search space, and their predicted survival functions are
δsplit = {ŜlK+1

, ŜlK+2
, . . . , ŜHt

}.

A child tree t′ = (t′fix, δ
′
fix, t

′
split, δ

′
split,K

′, Ht′) can be
created by splitting a subset of splitting leaves tsplit
in tree t. t′fix is a superset of tfix. We denote σ(t) as
the set of all child trees of t. Note that proofs for all
theorems are in Appendix B.

2.3.1 Lower Bounds

A large portion of the search space is reduced through
leveraging lower bounds of the survival tree objective.
Specifically, as we will show, if the objective lower
bound of tree t exceeds the current best objective so
far, Rc, then neither tree t nor any of its children
t′ ∈ σ(t) can be an optimal tree. This is typically
called the hierarchical objective lower bound, but we
cannot prove this without some work. Let us start by
deriving some principles of the objective.
Theorem 2.1. The loss of a survival tree is an additive
function of the observations and leaves.

Because of Theorem 2.1 and that fixed leaves are not
allowed to be further split in this part of the search
space, the loss of observations in fixed leaves provides
a lower bound for tree t:

R(t,X, c,y) ≥ L(tfix,X, c,y) + λHt, (6)

where L(tfix,X, c,y) is the sum of losses for the fixed
leaves:

L(tfix,X, c,y) =
1

ymax

1

N

N∑
i=1

{∫ yi

0

(Ŝxi(y)− 1)2

Ĝ(y)
dy

+ci

∫ ymax

yi

(Ŝxi
(y)− 0)2

Ĝ(yi)
dy

}
· 1cap(tfix,xi),

where 1cap(tfix,xi) is 1 if a leaf in tfix captures xi (when
xi falls into one of the fixed leaves of t), 0 otherwise.

Optimal Sparse Survival Trees

Algorithm 1 dynamic-programming-with-
bounds (X, c,y, λ, T,R)
// Optional input: reference model T and initial risk
score R

1: Q← ∅ // priority queue
2: G← ∅ // dependency graph
3: s0 ← {1, . . . , 1}// support set for root problem
4: p0 ← find_or_create_node(G, s0) // root problem
5: Q.push(s0) // add to priority queue
6: while p0.lb ̸= p0.ub do
7: s← Q.pop()
8: p← G.find(s)
9: if p.lb = p.ub then
10: break // problem already solved
11: lb′, ub′ ← (inf, inf) // initialize starting bounds
12: for each feature j ∈ {1, . . . ,M} do

// support sets for child problems
13: sl, sr ← split(s, j,X)

14: pjl ←find_or_create_node(G, sl)
15: pjr ←find_or_create_node(G, sr)

// create bounds as if j were chosen
// for splitting

16: lb′ ← min(lb′, pjl .lb+ pjr.lb)

17: ub′ ← min(ub′, pjl .ub+ pjr.ub)
// signal the parents if an update occurred

18: if p.lb ̸= lb′ or p.ub ̸= ub′ then
19: (p.lb, p.ub)← (lb′, ub′)
20: for pπ ∈ G.parent(p) do

// propagate information upwards
21: Q.push(pπ.id,priority = count(s)/N − p.lb)
22: if p.lb ≥ p.ub then
23: continue // problem solved just now
// loop, enqueue all children that are dependencies
24: for each feature j ∈ [1,M] do
25: repeat line 14-16
26: lb′ ← pjl .lb+ pjr.lb

27: ub′ ← pjl .ub+ pjr.ub
28: if lb′ < ub′ and lb′ ≤ p.ub then
29: Q.push(sl,priority = count(sl)/N − pl.lb)
30: Q.push(sr,priority = count(sr)/N − pr.lb)
31: return
———————————————–
32: subroutine: find_or_create_node(G, s)
// p not yet in dependency graph
33: if G.find(s) = NULL
34: p.id← s // identify p by s

// compute initial lower and upper bounds
35: p.lb← get_lower_bound(s,X, c,y)
36: p.ub← get_upper_bound(s,X, c,y)
37: if fails_bounds(p) then
38: p.lb = p.ub // no more splitting allowed
39: G.insert(p) // put p in dependency graph
40: return G.find(s)

Theorem 2.2. (Hierarchical Objective Lower Bound).
Any tree t′ = (t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t) in
the child tree set of tree t = (tfix, δfix, tsplit, δsplit,K,Ht)
obeys:

R(t′,X, c,y) ≥ L(tfix,X, c,y) + λHt.

Theorem 2.2 indicates that the objective lower bound
of the parent tree also holds for all its child trees, which
means that if the parent tree can be pruned via the
lower bound then so can its child trees.

Sometimes even if the parent tree t satisfies
L(tfix,X, c,y) + λHt ≤ Rc, we still can prune all of its
child trees, which is shown in Theorem 2.3.

Theorem 2.3. (Objective Lower Bound with One-
step Lookahead). Let t = (tfix, δfix, tsplit, δsplit,K,Ht)
be a tree with Ht leaves. If L(tfix,X, c,y) + λHt +
λ > Rc, even if its objective lower bound obeys
L(tfix,X, c,y) + λHt ≤ Rc, then for any child tree
t′ ∈ σ(t), R(t′,X, c,y) > Rc.

This bound shows that although the parent tree cannot
be pruned via the lower bound, we should not explore
any of its child trees if L(tfix,X, c,y) + λHt + λ > Rc,
because all of them are sub-optimal.

To make the lower bound tighter, we leverage the prop-
erty that some points cannot be partitioned into dif-
ferent leaves in any survival tree, by introducing the
concept of equivalent points.

Equivalent Points

We denote the loss from sample {xi, ci, yi} with predic-
tion Ŝxi

(·), as L(Ŝxi
(·),xi, ci, yi), where

L(Ŝxi
(·),xi, ci, yi) =

1

ymax

1

N

∫ yi

0

(Ŝxi(y)− 1)2

Ĝ(y)
dy

+ ci

∫ ymax

yi

(Ŝxi(y)− 0)2

Ĝ(yi)
dy. (7)

In the simplest case, L(Ŝxi(·),xi, ci, yi) = 0 if the
leaf node contains only {xi, ci, yi}. More formally,
L(Ŝxi

(·),xi, ci, yi) can be zero only if two conditions
are satisfied: (1) there is no sample in the same leaf that
died prior to sample {xi, ci, yi}, i.e., {xj , cj = 1, yj <
yi} (here, the first term in 7 is nonzero because the
survival function will be < 1 at yi), and (2) if ci = 1,
then all the points in i’s leaf that were observed to
survive up to time yi must also die at yi. To explain,
if ci = 1 and there are (censored or uncensored) points
in i’s leaf node whose observation time is later than
yi, i.e., {xj , cj , yj > yi}, the second term in 7 will be
nonzero (those points will force the survival curve to be
nonzero even after i dies at time yi). Also if ci = 1, we

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

cannot have censored points with the same observation
time as i, i.e., {xj , cj = 0, yj = yi}, since it would mean
that when i dies at yi, another point does not, so the
survival function cannot go to 0 at yi.

If each sample point can be placed in a leaf by itself,
the tree t can achieve zero loss, but this tree is clearly
overfitted. Further, such a tree may not be possible
if there exist two samples {xi, ci, yi} and {xj , cj , yj}
such that xi = xj , but ci ̸= cj or yi ̸= yj ; we call such
points equivalent points. There is no tree that can
partition these samples into different leaves, so the loss
contributed from these samples must be non-zero if the
two conditions above cannot be satisfied.

Let us generalize this argument. Let u be a set of
equivalent points where samples have exactly the same
feature vector x, such that ∀j1, j2, ...j|u| ∈ u:

xj1 = xj2 = · · · = xj|u| . (8)

Assume set u does not satisfy the two conditions, which
means loss is non-zero:

|u|∑
k=1

L(Ŝxjk
(·),xjk , cjk , yjk) > 0. (9)

Let us derive the lower bound for Equation 9. Recall
that samples in a leaf share the same predicted survival
function.

Lemma 2.4. (Equivalent Loss). Let u be a set of
equivalent points defined as in (8). We denote ∗S as
the optimal step function that minimizes IBS loss only
for set u (leaf contains set u only), such that:

∗S = argmin
S

|u|∑
k=1

L(S,xjk , cjk , yjk).

We define Equivalent Loss for set u as Eu =∑|u|
k=1 L(∗S,xjk , cjk , yjk). Then, any leaf l that captures

set u in a survival tree has loss L(l,X, c,y) ≥ Eu.
Lemma 2.5. Let l be a leaf node that captures n equiv-
alent sets: {ui}ni=1 and corresponding Eui . The loss of
l: L(l,X, c,y) ≥

∑n
i=1 Eui .

That is, the lower bound of a leaf is the sum of equiva-
lent losses of the equivalent sets it captures.

Theorem 2.6. (Equivalent Points Lower Bound). Let
t = (tfix, δfix, tsplit, δsplit,K,Ht) be a tree with K fixed
leaves and Ht −K splitting leaves. For any child tree
t′ = (t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t):

R(t′,X, c,y) ≥ L(tfix,X, c,y) + λHt

+
∑
u∈U

Eu · 1cap(tsplit,u), (10)

where U is the set of equivalent points sets in the train-
ing dataset (X, c,y) and 1cap(tsplit,u) is 1 when tsplit
captures set u, 0 otherwise. Combining with Theorem
2.3, we have a tighter bound: for any child tree t′:

R(t′,X, c,y) ≥ L(tfix,X, c,y) + λHt + λ

+
∑
u∈U

Eu · 1cap(tsplit,u). (11)

Lower Bound from Reference Models

Given that the hardness of the optimization problem
to solve varies, the Equivalent Points Lower Bound
may not be tight enough in some cases. When it is
not tight enough to sufficiently prune the search space,
calculating the bound adds overhead and slows the
optimization procedure. Moreover, some datasets do
not have many equivalent points, resulting in a looser
lower bound.

To efficiently prune the search space, we adopt the
guessing technique of McTavish et al. (2022). Specif-
ically, we use a reference survival model that we be-
lieve will make errors that will also be made by an
optimal survival tree and use the errors made by
the reference model as a lower bound in our branch-
and-bound method. We denote the reference model
as T and let ŜT

xi
(·) be its predicted survival func-

tion for sample i. Define sa as the subset of train-
ing samples that satisfy a boolean assertion a, such
that: sa := {i : a(xi) = True, i ∈ {1, 2, · · · , N}},
X(sa) := {xi : i ∈ sa}, c(sa) := {ci : i ∈ sa}, and
y(sa) := {yi : i ∈ sa}, which corresponds to a subprob-
lem defined in Section 2.2 (e.g., the boolean value at
index i in s is True for i ∈ sa). We define our guessed
lower bound of subproblem sa as the error made by the
reference model T on these samples plus a complexity
penalty λ:

lbguess(sa) = L(ŜT ,X(sa), c(sa),y(sa)) + λ (12)

where ŜT = {ŜT
xi
(·) : i ∈ sa} and

L(ŜT ,X(sa), c(sa),y(sa)) =∑
i∈sa

L(ŜT
xi
(·),X(sa), c(sa),y(sa)),

which is the sum of sample losses defined in Equation
7. We set the guessed lower bound lbguess as the ini-
tial lower bound for each subproblem. If the initial
upper bound is less than or equal to lbguess, then we
consider this subproblem solved without further explo-
ration of that portion of search space. Even when the
initial lower bound is less than the initial upper bound,
lbguess still improves runtime. Recall that during the
optimization process, the lower bound of a subprob-
lem never decreases and the upper bound of it never

Optimal Sparse Survival Trees

increases. Since the updates of a subproblem’s lower
bound rely on the lower bounds of its children, tighter
initial lower bounds of children help the parent’s lower
bound converge to its upper bound.

It can happen that we miss the true optimal solution
of the subproblem sa if lbguess > R∗(sa), where R∗(sa)
is the optimal objective of subproblem sa. This could
impact the optimality of the optimization problem.
We next quantify how much performance we might
sacrifice by using lbguess. Theorem 2.7 shows that the
distance to the true optimal solution depends on the
performance of the reference model, and, under certain
circumstances, we do not lose optimality at all.
Theorem 2.7. (Guarantee on guessed survival tree per-
formance). Given dataset {X, c,y}, depth constraint
d, leaf penalty λ and a reference model T , let tguess
be the tree returned using lbguess defined in Equation
12 and R(tguess,X, c,y) be its objective. Let t∗ be the
true optimal tree on the training set according to the
regularized objective defined in Equation 4. We have:

R(tguess,X, c,y) ≤ λHt∗ +

N∑
i=1

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝt∗

xi
(·),xi, ci, yi)

}
(13)

where ŜT
xi
(·) is the predicted survival function of refer-

ence model T on sample i, and Ŝt∗

xi
(·) is the predicted

survival function of optimal tree t∗. That is, the ob-
jective of the guessed tree is no worse than the union
of errors made by the reference model and the optimal
tree.

Under certain circumstances, the tree returned does
not lose optimality.
Corollary 2.7.1. Let T, tguess, t∗ defined as in Theo-
rem 2.7. If the reference model T performs no worse
than t∗ on each sample, the tree returned using lbguess
is still optimal.

In other words, if the reference model has good training
performance (even if it is overfitted), the tree returned
after using this optional guessing technique is still op-
timal.

3 EXPERIMENTS

We ran experiments on 17 datasets (11 real-world sur-
vival datasets and 6 synthetic datasets from regression
tasks), whose details are described in Appendix D. Our
experiments answer the following questions. 1) How
far from optimal are existing survival tree methods
(Section 3.1)? 2) How well do optimal sparse survival
trees generalize (Section 3.2)? 3) How long does OSST
take to find the optimal survival trees (Section 3.4)? 4)

How does OSST scale on large datasets (Section 3.5)?
5) What do optimal survival trees look like (Section
3.6)?

We used Conditional Inference Trees (CTree) (Hothorn
et al., 2015), Recursive Partitioning and Regression
Trees (RPART)(Therneau and Atkinson, 2019), and
the SurvivalTree model in Scikit-survival (SkSurv) (Pöl-
sterl, 2020) as baselines. Interpretable AI (IAI) imple-
ments the OST algorithm proposed by Bertsimas et al.
(2022). We were given a license to the (proprietary)
software, but source code was unavailable. When we
tried to run the experiments, it frequently crashed. As
a result, we were unable to include results from it below.
We discuss Interpretable AI further in Appendix L.

We use several metrics to evaluate the quality of our
survival trees, discussed in Appendix C. This includes
the Integrated Brier Score Ratio (IBS Ratio – higher
is better). The IBS Ratio of tree t is:

IBS Ratio(t) = 1− L(t,X, c,y)

L(t0,X, c,y)
(14)

where L is the IBS loss defined in Equation 1 and t0
is a single node containing all samples (equivalently a
KM estimator ignoring all features). All IBS scores in
our experiments below refer to IBS Ratios.

We also use other metrics, namely Harrell’s C-index and
Uno’s C-index (which are concordance metrics, higher
is better), and Cumulative-Dynamic-AUC (higher is
better); see Appendix C. Note that these metrics are
not additive, which means that if we want to optimize
them, then we must construct the entire survival tree.
Therefore we can use these metrics only in the evalua-
tion stage, not for training. We found that even though
we optimize the IBS, our optimal survival trees often
perform better on the other metrics as well, which we
show in Section 3.3 and Appendix G.

3.1 Optimality

For our method and baselines, we used different hyper-
parameters to generate trees of various sizes and show
the relationship between loss and sparsity. Figure 1
demonstrates that OSST produces better performance
(IBS Ratio) than all other methods. Compared with
other methods, the trees returned by OSST have higher
performance and fewer leaves, which means that the
trees found by OSST have higher quality in both test
performance and sparsity. Importantly, since OSST is
the only method to produce optimal trees, other methods
cannot quantify closeness to optimality without OSST.
More extensive results appear in Appendix E.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 1: Training Score (IBS Ratio) of CTree, RPART, SkSurv and OSST on datasets: aids_death, uissurv,
veterans, max depth 5.

Figure 2: 5-fold cross validation of CTree, RPART, SkSurv and OSST on datasets: credit, employee, max depth 5.

Figure 3: Testing performance of CTree, RPART, SkSurv and OSST on churn dataset, max depth 5, using
different metrics. Cross-validation was used for confidence intervals.

Optimal Sparse Survival Trees

3.2 Generalization

We ran 5-fold cross-validation experiments on vari-
ous datasets; the results show that OSST generalizes
well. Figure 2 shows that optimal sparse survival trees
also obtain higher testing performance. More cross-
validation results appear in Appendix F.

3.3 Comprehesive Quality

We evaluated trees returned by all methods again, us-
ing metrics defined in Appendix C. Figure 3 shows
that the trees found by OSST also have higher Uno’s
C-index, Harrell’s C-index and Cumulative-Dynamic-
AUC, which indicates better overall quality.

3.4 Running Time

Table 1 shows the 60-trial average run time and stan-
dard deviation of OSST on each dataset, using different
configurations. The trees vary in complexity between
4 and 64 leaves. OSST is often able to find the optimal
survival trees within a few seconds. More details appear
in Appendix H.

Dataset running time(s)
aids 2.28(±3.66)

aids_death 2.05(±3.82)
maintenance 0.78(±1.12)

uissurv 3.41(±2.86)
veterans 0.35(±0.53)
whas500 8.76(±14.7)
gbsg2 0.20(±0.25)

insurance 0.08(±0.02)
sync 2.65(±1.93)

Table 1: Summary of OSST average running time with
different configurations on various datasets.

3.5 Scalability

Figure 4 shows that OSST achieved similar scalability
performance to greedy methods with datasets of fewer
than 10K samples. It is slower than CTree and RPART
due to their greedy nature, but interestingly, it scales
better than SkSurv when the number of samples ex-
ceeds 10K. The details of this experiment can be found
in Appendix I. Again, we note that greedy methods do
not have any performance guarantees (unlike OSST).

3.6 Optimal Survival Trees

Figure 5 and 6 show two example optimal sparse sur-
vival trees trained on the veterans and churn dataset.
More trees can be found in Appendix K.

4 LIMITATIONS

We limited our baselines to other interpretable mod-
els. In high-stakes decision making, practitioners are
ethically unable to use uninterpretable models. Partic-
ularly in medical domains where data are messy and
incomplete, interpretability is essential (Council, 2019;
Ellis et al., 2022). At the same time, sparsity comes
with a cost; it is not clear whether sparse survival tech-
niques achieve the performance of black box models
(see Appendix N for more detail).

5 CONCLUSION

We provide a practical algorithm that is able to find
provably-optimal sparse survival trees within a reason-
able time, despite the hardness of fully optimizing a
survival tree. Our method quickly finds optimal sparse
survival models that generalize well and scales nicely
to large datasets. There are many possible directions
for future work. One is extending the optimized ob-
jective to other metrics mentioned before and possibly
new metrics defined by users. The other one is to find
systematic ways to create reference models that sub-
stantially speed up the search without impacting the
performance of the returned trees.

Code Availability

The implementation of Optimal Sparse
Survival Trees can be found at https:
//github.com/ruizhang1996/optimal-sparse-
survival-trees-public.

Acknowledgements

We acknowledge the support of the Natural Sciences
and Engineering Research Council of Canada (NSERC).
Nous remercions le Conseil de recherches en sciences
naturelles et en génie du Canada (CRSNG) de son
soutien.

We acknowledge the following grants: NIH
1R01HL166233-01 and NIH/NIDA R01DA054994.

https://github.com/ruizhang1996/optimal-sparse-survival-trees-public
https://github.com/ruizhang1996/optimal-sparse-survival-trees-public
https://github.com/ruizhang1996/optimal-sparse-survival-trees-public

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 4: Training time of CTree, RPART, SkSurv and OSST as a function of sample size on household dataset,
d = 5, λ = 0.01 (60-minutes time limit).

Figure 5: Optimal survival tree produced by OSST for churn dataset, 7 leaves. IBS ratio: 48.68%

Figure 6: Optimal survival tree produced by OSST for veterans dataset, 8 leaves. IBS ratio: 32.83%

Optimal Sparse Survival Trees

References

A. Bender, A. Groll, and F. Scheipl. A generalized
additive model approach to time-to-event analysis.
Statistical Modelling, 18(3-4):299–321, 2018.

D. Bertsimas, J. Dunn, E. Gibson, and A. Orfanoudaki.
Optimal survival trees. Machine Learning, 111(8):
2951–3023, 2022.

Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu.
Recurrent neural networks for multivariate time se-
ries with missing values. Scientific Reports, 8(1):
6085, 2018.

T. Ching, X. Zhu, and L. X. Garmire. Cox-nnet: an arti-
ficial neural network method for prognosis prediction
of high-throughput omics data. PLoS Computational
Biology, 14(4):e1006076, 2018.

M. Choi. Kaggle insurance data, 2018.
URL https://www.kaggle.com/datasets/
mirichoi0218/insurance.

A. Ciampi, S. A. Hogg, S. McKinney, and J. Thiffault.
Recpam: a computer program for recursive partition
and amalgamation for censored survival data and
other situations frequently occurring in biostatistics.
i. methods and program features. Computer Methods
and Programs in Biomedicine, 26(3):239–256, 1988.

J. Council. Data challenges are halting AI projects,
IBM executive says. The Wall Street Journal, 2019.
URL https://www.wsj.com/articles/data-
challenges-are-halting-ai-projects-ibm-
executive-says-11559035800.

D. R. Cox. Regression models and life-tables. Journal
of the Royal Statistical Society: Series B (Method-
ological), 34(2):187–202, 1972.

D. R. Cox. Analysis of binary data. Routledge, 2018.

R. B. Davis and J. R. Anderson. Exponential survival
trees. Statistics in Medicine, 8(8):947–961, 1989.

A. Dispenzieri, J. A. Katzmann, R. A. Kyle, D. R.
Larson, T. M. Therneau, C. L. Colby, R. J. Clark,
G. P. Mead, S. Kumar, L. J. Melton III, et al. Use of
nonclonal serum immunoglobulin free light chains to
predict overall survival in the general population. In
Mayo Clinic Proceedings, volume 87, pages 517–523.
Elsevier, 2012.

D. Dua and C. Graff. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2017. Accessed: 2022-
04-01.

J. Dunn. Optimal Trees for Prediction and Prescription.
PhD thesis, Massachusetts Institute of Technology,
2018.

R. J. Ellis, R. M. Sander, and A. Limon. Twelve key
challenges in medical machine learning and solutions.
Intelligence-Based Medicine, 6:100068, 2022. ISSN

2666-5212. doi: https://doi.org/10.1016/j.ibmed.
2022.100068. URL https://www.sciencedirect.
com/science/article/pii/S2666521222000217.

S. Fotso et al. PySurvival: Open source package for
survival analysis modeling, 2019. URL https://www.
pysurvival.io/.

E. Giunchiglia, A. Nemchenko, and M. van der Schaar.
Rnn-surv: A deep recurrent model for survival anal-
ysis. In Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Confer-
ence on Artificial Neural Networks, Rhodes, Greece,
October 4-7, 2018, Proceedings, Part III 27, pages
23–32. Springer, 2018.

L. Gordon and R. A. Olshen. Tree-structured survival
analysis. Cancer Treatment Reports, 69(10):1065–
1069, 1985.

E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher.
Assessment and comparison of prognostic classifica-
tion schemes for survival data. Statistics in Medicine,
18(17-18):2529–2545, 1999.

T. Grubinger, A. Zeileis, and K.-P. Pfeiffer. evtree:
Evolutionary learning of globally optimal classifica-
tion and regression trees in r. Journal of Statistical
Software, 61:1–29, 2014.

F. E. Harrell Jr, K. L. Lee, and D. B. Mark. Multivari-
able prognostic models: issues in developing models,
evaluating assumptions and adequacy, and measur-
ing and reducing errors. Statistics in Medicine, 15
(4):361–387, 1996.

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recur-
sive partitioning: A conditional inference framework.
Journal of Computational and Graphical Statistics,
15(3):651–674, 2006.

T. Hothorn, K. Hornik, and A. Zeileis. ctree: Condi-
tional inference trees. The Comprehensive R Archive
Network, 8, 2015.

X. Hu, C. Rudin, and M. Seltzer. Optimal sparse deci-
sion trees. In Proceedings of Conference on Neural
Information Processing Systems (NeurIPS), 2019.

H. Hung and C.-T. Chiang. Estimation methods for
time-dependent auc models with survival data. Cana-
dian Journal of Statistics, 38(1):8–26, 2010.

H. Ishwaran and U. B. Kogalur. Random survival
forests for r. R News, 7(2):25–31, 2007.

H. Jin, Y. Lu, K. Stone, and D. M. Black. Alternative
tree-structured survival analysis based on variance
of survival time. Medical Decision Making, 24(6):
670–680, 2004.

J. D. Kalbfleisch and R. L. Prentice. The statistical
analysis of failure time data. John Wiley & Sons,
2011.

https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.kaggle.com/datasets/mirichoi0218/insurance
https://www.wsj.com/articles/data-challenges-are-halting-ai-projects-ibm-executive-says-11559035800
https://www.wsj.com/articles/data-challenges-are-halting-ai-projects-ibm-executive-says-11559035800
https://www.wsj.com/articles/data-challenges-are-halting-ai-projects-ibm-executive-says-11559035800
https://www.sciencedirect.com/science/article/pii/S2666521222000217
https://www.sciencedirect.com/science/article/pii/S2666521222000217
https://www.pysurvival.io/
https://www.pysurvival.io/

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

E. L. Kaplan and P. Meier. Nonparametric estima-
tion from incomplete observations. Journal of the
American Statistical Association, 53(282):457–481,
1958.

J. L. Katzman, U. Shaham, A. Cloninger, J. Bates,
T. Jiang, and Y. Kluger. Deepsurv: personalized
treatment recommender system using a cox propor-
tional hazards deep neural network. BMC Medical
Research Methodology, 18(1):1–12, 2018.

S. Keles and M. R. Segal. Residual-based tree-
structured survival analysis. Statistics in Medicine,
21(2):313–326, 2002.

D. G. Kleinbaum and M. Klein. Survival analysis, a
self-learning text. Springer, 1996.

H. Kvamme, Ø. Borgan, and I. Scheel. Time-to-event
prediction with neural networks and cox regres-
sion. Journal of Machine Learning Research, 20:
1–30, 2019.

J. Lambert and S. Chevret. Summary measure of
discrimination in survival models based on cumula-
tive/dynamic time-dependent roc curves. Statistical
Methods in Medical Research, 25(5):2088–2102, 2016.

J. F. Lawless. Statistical models and methods for life-
time data. John Wiley & Sons, 2011.

M. LeBlanc and J. Crowley. Relative risk trees for
censored survival data. Biometrics, pages 411–425,
1992.

M. LeBlanc and J. Crowley. Survival trees by good-
ness of split. Journal of the American Statistical
Association, 88(422):457–467, 1993.

C. Lee, W. Zame, J. Yoon, and M. Van Der Schaar.
Deephit: A deep learning approach to survival analy-
sis with competing risks. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32,
2018.

S. Lemeshow, S. May, and D. W. Hosmer Jr. Applied
survival analysis: regression modeling of time-to-
event data. John Wiley & Sons, 2011.

J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer. Gen-
eralized and scalable optimal sparse decision trees. In
Proceedings of International Conference on Machine
Learning (ICML), pages 6150–6160, 2020.

H. McTavish, C. Zhong, R. Achermann, I. Karimalis,
J. Chen, C. Rudin, and M. Seltzer. Fast sparse
decision tree optimization via reference ensembles.
In Proceedings of AAAI Conference on Artificial
Intelligence, 2022.

A. M. Molinaro, S. Dudoit, and M. J. Van der Laan.
Tree-based multivariate regression and density esti-
mation with right-censored data. Journal of Multi-
variate Analysis, 90(1):154–177, 2004.

S. Nijssen, P. Schaus, et al. Learning optimal decision
trees using caching branch-and-bound search. In
Proceedings of AAAI Conference on Artificial Intel-
ligence (AAAI), 2020.

L. Norton. A gompertzian model of human breast
cancer growth. Cancer Research, 48(24_Part_1):
7067–7071, 1988.

S. Pölsterl. scikit-survival: A library for time-to-event
analysis built on top of scikit-learn. Journal of Ma-
chine Learning Research, 21(212):1–6, 2020. URL
http://jmlr.org/papers/v21/20-729.html.

B. D. Ripley and R. M. Ripley. Neural networks as
statistical methods in survival analysis. Clinical
Applications of Artificial Neural Networks, 237:255,
2001.

C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semen-
ova, and C. Zhong. Interpretable machine learn-
ing: Fundamental principles and 10 grand chal-
lenges. Statistics Surveys, 16(none):1 – 85, 2022.
doi: 10.1214/21-SS133. URL https://doi.org/10.
1214/21-SS133.

M. Schumacher, G. Bastert, H. Bojar, K. Hübner,
M. Olschewski, W. Sauerbrei, C. Schmoor, C. Bey-
erle, R. Neumann, and H. Rauschecker. Randomized
2 x 2 trial evaluating hormonal treatment and the du-
ration of chemotherapy in node-positive breast cancer
patients. german breast cancer study group. Journal
of Clinical Oncology, 12(10):2086–2093, 1994.

M. R. Segal. Regression trees for censored data. Bio-
metrics, pages 35–47, 1988.

T. Therneau and B. Atkinson. rpart: Recursive Par-
titioning and Regression Trees, 2019. URL https:
//CRAN.R-project.org/package=rpart. R pack-
age version 4.1-15.

T. M. Therneau, P. M. Grambsch, and T. R. Flem-
ing. Martingale-based residuals for survival models.
Biometrika, 77(1):147–160, 1990.

H. Uno, T. Cai, L. Tian, and L.-J. Wei. Evaluating
prediction rules for t-year survivors with censored re-
gression models. Journal of the American Statistical
Association, 102(478):527–537, 2007.

H. Uno, T. Cai, M. J. Pencina, R. B. D’Agostino, and
L.-J. Wei. On the c-statistics for evaluating overall
adequacy of risk prediction procedures with censored
survival data. Statistics in Medicine, 30(10):1105–
1117, 2011.

H. Zhang. Splitting criteria in survival trees. In Statis-
tical Modelling: Proceedings of the 10th International
Workshop on Statistical Modelling Innsbruck, Austria,
10–14 July, 1995, pages 305–313. Springer, 1995.

R. Zhang, R. Xin, M. Seltzer, and C. Rudin. Optimal
sparse regression trees. In Proceedings of the AAAI

http://jmlr.org/papers/v21/20-729.html
https://doi.org/10.1214/21-SS133
https://doi.org/10.1214/21-SS133
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart

Optimal Sparse Survival Trees

Conference on Artificial Intelligence, pages 11270–
11279, 2023.

L. Zhao and D. Feng. Dnnsurv: Deep neural networks
for survival analysis using pseudo values. arXiv
preprint arXiv:1908.02337, 2019.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes]

(d) Information about consent from data provider-
s/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Optimal Sparse Survival Trees

A Extended Related Work

Early Survival Analysis: In 1958, Kaplan and Meier (1958) proposed the first survival models, Kaplan-Meier
(KM) curves, which are simple non-parametric models that do not use covariates. Parametric models (Cox, 2018;
Kalbfleisch and Prentice, 2011; Lawless, 2011; Norton, 1988; Kleinbaum and Klein, 1996) usually rely on strong
assumptions either for the hazard rate or the underlying distribution of the survival time. They assume the
hazard function follows a particular distribution, such as the exponential, Weibull, or log-normal distribution.
Cox proportional hazards regression (Cox, 1972) is a practical semi-parametric approach proposed in 1972, which
makes the strong assumption of a constant hazard ratio between individuals and fails to capture non-linear
relationships between covariates and predicted outcomes. Even though the coefficient of a Cox model is easy to
interpret as a hazard ratio, it loses interpretability if the model is not sparse in the number of features.

Decision Tree Learning for Survival Analysis: Attempts have been made to adapt traditional decision
trees for censored survival data by proposing various splitting criteria to heuristically construct survival trees.
Gordon and Olshen (1985) chose splits by minimizing the Wasserstein distance between the two child node’s
Kaplan–Meier curves. Davis and Anderson (1989) used exponential log-likelihood loss for splitting. LeBlanc and
Crowley (1992) measured node deviance for splitting while Therneau et al. (1990) and Keles and Segal (2002) used
martingale residuals as the splitting criteria. Zhang (1995) combined impurity measurements for observed time
and portion of censored samples. Various authors proposed other techniques to maximize the distance between
the two child nodes using various statistics (LeBlanc and Crowley, 1993; Ciampi et al., 1988; Segal, 1988; Hothorn
et al., 2006; Jin et al., 2004). Molinaro et al. (2004) used Inverse Probability of Censoring Weight (IPCW) to
reduce the bias caused by a high degree of censoring. These splitting criteria either minimize the impurity within
nodes or maximize the dissimilarity between different nodes, but all of them use greedy approaches, which means
if a bad split is chosen at the top, there is no way to correct it. Importantly, there is no way to determine whether
the trees are optimal without a method like ours that provably optimizes the tree structure.

Black Box Survival Models: The use of decision trees for survival analysis was further extended to more
sophisticated forest models such as random survival forests (Ishwaran and Kogalur, 2007) and conditional inference
forests (Hothorn et al., 2006). Neural networks have been applied to survival analysis tasks as well (Katzman
et al., 2018; Ching et al., 2018; Che et al., 2018; Ripley and Ripley, 2001; Giunchiglia et al., 2018). These black
box models are useful for performance comparisons, but are not generally useful in practice, particularly for
high-stakes decisions.

Modern Decision Tree Methods: Hu et al. (2019); Lin et al. (2020); Zhang et al. (2023); Grubinger et al.
(2014); Nijssen et al. (2020); Dunn (2018) have shown the success of optimal sparse trees in both classification
and regression. A single sparse optimal tree can achieve the performance of complex black box models while
providing interpretability (McTavish et al., 2022). Bertsimas et al. (2022) proposed a survival tree model using
local search techniques, but it holds an assumption similar to that of the Cox model; that is the ratio of the
hazard functions for any two individuals is assumed to be constant over time and independent of the values of the
covariates. As we show in Appendix L, in cases where we can get their code to run, OSST produces better IBS
ratios than their OST algorithm.

B Theorems and Proofs

B.1 Proof of Theorem 2.1

Theorem 2.1 The loss of a survival tree is an additive function of the observations and leaves.

Proof. From Equation 1 and 2, we know:

L(t,X, c,y) =
1

ymax

∫ ymax

0

BS(y)dy (15)

=
1

ymax

∫ ymax

0

1

N

N∑
i=1

{
(Ŝxi(y)− 0)2

Ĝ(yi)
· 1yi≤y,ci=1 +

(Ŝxi(y)− 1)2

Ĝ(y)
· 1yi>y

}
dy. (16)

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Extracting the constant term 1
N and putting the integral into the summation yields:

=
1

ymax

1

N

N∑
i=1

{∫ ymax

0

(Ŝxi(y)− 1)2

Ĝ(y)
· 1yi>ydy +

∫ ymax

0

(Ŝxi(y)− 0)2

Ĝ(yi)
· 1yi≤y,ci=1dy

}

=
1

ymax

1

N

N∑
i=1

{∫ yi

0

(Ŝxi(y)− 1)2

Ĝ(y)
dy + ci

∫ ymax

yi

(Ŝxi(y)− 0)2

Ĝ(yi)
dy

}
.

Now we have proved that the loss of a survival tree is additive in observations. And each sample can only fall
into one leave at a time:

=
1

ymax

1

N

N∑
i=1

{∫ yi

0

(Ŝxi
(y)− 1)2

Ĝ(y)
dy + ci

∫ ymax

yi

(Ŝxi
(y)− 0)2

Ĝ(yi)
dy

}
· 1cap(tfix,xi),

+
1

ymax

1

N

N∑
i=1

{∫ yi

0

(Ŝxi
(y)− 1)2

Ĝ(y)
dy + ci

∫ ymax

yi

(Ŝxi
(y)− 0)2

Ĝ(yi)
dy

}
· 1cap(tsplit,xi).

Therefore, the objective is additive in the observations, and observations can be grouped by leaves, so the loss is
additive in the leaves.

B.2 Proof of Theorem 2.2

Theorem 2.2 (Hierarchical Objective Lower Bound). Any tree t′ = (t′fix, δ
′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t) in the
child tree set of t = (tfix, δfix, tsplit, δsplit,K,Ht) obeys:

R(t′,X, c,y) ≥ L(tfix,X, c,y) + λHt.

That is, the objective lower bound of the parent tree holds for all its child trees. This bound ensures that we do
not further explore child trees if the parent tree can be pruned via the lower bound.

Proof. As we know, K ′ ≥ K,Ht′ > Ht, since t′ is a child tree of t. The objective lower bound (which holds for all
trees) of t′ is:

R(t′,X, c,y) ≥ L(t′fix,X,y) + λHt′ . (17)

Since L(t′fix,X, c,y) = L(tfix,X, c,y) + L(t′fix \ tfix,X, c,y) and the loss of K ′ −K fixed leaves in t is

L(t′fix \ tfix,X, c,y) =
1

ymax

1

N

N∑
i=1

{∫ yi

0

(Ŝxi(y)− 1)2

Ĝ(y)
dy + ci

∫ ymax

yi

(Ŝxi(y)− 0)2

Ĝ(yi)
dy

}
· 1cap(t′fix\tfix,xi)

and 0 ≤ Ĝ(·) ≤ 1, so
L(t′fix \ tfix,X, c,y) ≥ 0, (18)

and thus we have:
L(t′fix,X, c,y) ≥ L(tfix,X, c,y) (19)

therefore:
R(t′,X, c,y) ≥ L(tfix,X, c,y) + λHt. (20)

B.3 Proof of Theorem 2.3

Theorem 2.3 (Objective Lower Bound with One-step Lookahead). Let t = (tfix, δfix, tsplit, δsplit,K,Ht) be a tree
with Ht leaves. If L(tfix,X, c,y) + λHt + λ > Rc, even if its objective lower bound L(tfix,X, c,y) + λHt ≤ Rc,
then for any child tree t′ ∈ σ(t), R(t′,X, c,y) > Rc. That is, even if a parent tree cannot be pruned via its
objective lower bound, if L(tfix,X,y) + λHt + λ > Rc, all of its child trees are sub-optimal and can be pruned
(and never explored).

Proof. This bound adapts directly from OSRT (Zhang et al., 2023), where the proof can be found.

Optimal Sparse Survival Trees

B.4 Proof of Lemma 2.4

Lemma 2.4 (Equivalent Loss). Let u be a set of equivalent points defined as Equation 8. We denote ∗S as the
optimal step function that minimizes the IBS loss only for set u (leaf contains set u only), such that:

∗S = argmin
S

|u|∑
k=1

L(S,xjk , cjk ,yjk).

We define Equivalent Loss for set u as

Eu =

|u|∑
k=1

L(∗S,xjk , cjk ,yjk)

then any leaf that captures set u in a survival tree trained on dataset {X, c,y} has loss ≥ Eu.

Proof. In any survival tree, the points in set u always get assigned to the same leaf. Let lu be a leaf node that
contains set u only and let Ŝ be its KM estimator. Since the KM estimator is not the minimizer of the IBS loss,
the loss of lu obeys:

L(lu,X, c,y) =

|u|∑
k=1

L(Ŝ,xjk , cjk ,yjk) ≥
|u|∑
k=1

L(∗S,xjk , cjk ,yjk) = Eu. (21)

Therefore the loss of lu is at least Eu.

Let l′u be a leaf node that contains both set u and N ′ other sample points (1 ≤ N ′ ≤ N − |u|), and denote Ŝ′ as
its KM estimator. We need to prove that for leaf node l′u, its loss is at least Eu. The loss of lu is given by:

L(l′u,X, c,y) =

|u|∑
k=1

L(Ŝ′,xjk , cjk ,yjk) +

N ′∑
k=1

L(Ŝ′,xik , cik ,yik)

Let ∗S′ be the optimal step function that minimizes the IBS loss for leaf node l′u, such that:

∗S′ = argmin
S

|u|∑
k=1

L(S,xjk , cjk ,yjk) +

N ′∑
k=1

L(S,xik , cik ,yik).

Then, the loss of l′u obeys:

|u|∑
k=1

L(Ŝ′,xjk , cjk ,yjk) +

N ′∑
k=1

L(Ŝ′,xik , cik ,yik) ≥
|u|∑
k=1

L(∗S′,xjk , cjk ,yjk) +

N ′∑
k=1

L(∗S′,xik , cik ,yik). (22)

∗S and ∗S′ obey:

|u|∑
k=1

L(∗S′,xjk , cjk ,yjk) +

N ′∑
k=1

L(∗S′,xik , cik ,yik) ≥
|u|∑
k=1

L(∗S′,xjk , cjk ,yjk) ≥
|u|∑
k=1

L(∗S,xjk , cjk ,yjk). (23)

Substituting Equation 23 into Equations 22 and 21, we have:

|u|∑
k=1

L(Ŝ′,xjk , cjk ,yjk) +

N ′∑
k=1

L(Ŝ′,xik , cik ,yik) ≥ Eu.

Therefore, for any leaf that captures the equivalent set u, its loss is greater than or equal to the equivalent loss of
the set Eu.

Lemma 2.5 Let l be a leaf node that captures n equivalent sets {ui}ni=1 with corresponding Eui . The loss of l
obeys: L(l,X, c,y) ≥

∑n
i=1 Eui

. That is, the lower bound of a leaf is the sum of equivalent losses of the equivalent
sets it captures.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Proof.

L(l,X, c,y) ≥
n∑

i=1

|ui|∑
k=1

L(Ŝ,xjk , cjk ,yjk)

≥
n∑

i=1

|ui|∑
k=1

L(∗S,xjk , cjk ,yjk),where ∗S = argmin
S

n∑
i=1

|ui|∑
k=1

L(S,xjk , cjk ,yjk),

≥
n∑

i=1

|ui|∑
k=1

L(∗Si,xjk , cjk ,yjk),where ∗Si = argmin
S

|ui|∑
k=1

L(S,xjk , cjk ,yjk)

≥
n∑

i=1

Eui
.

B.5 Proof of Theorem 2.6

Theorem 2.6 (Equivalent Points Lower Bound). Let t = (tfix, δfix, tsplit, δsplit,K,Ht) be a tree with K fixed leaves
and Ht −K splitting leaves. For any child tree t′ = (t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t):

R(t′,X, c,y) ≥ L(tfix,X,y) + λHt +

U∑
u=1

Eu · 1cap(tsplit,u), (24)

where 1cap(tsplit,u) is 1 when tsplit captures set u, 0 otherwise. Combining with the idea of Theorem 2.3, we have:

R(t′,X,y) ≥ L(tfix,X, c,y) + λHt + λ+

U∑
u=1

Eu · 1cap(tsplit,u). (25)

Proof.

R(t′,X, c,y) = L(t′,X, c,y) + λHt′

= L(t′fix,X, c,y) + L(t′split,X, c,y) + λHt′

= L(tfix,X, c,y) + L(t′fix \ tfix,X, c,y) + L(t′split,X, c,y) + λHt′ . (26)

Since samples captured by tsplit are captured either by t′fix \ tfix or t′split, and equivalence loss cannot be eliminated
in any tree, from Lemma 2.5, we have:

L(t′fix \ tfix,X, c,y) + L(t′split,X, c,y) ≥
U∑

u=1

Eu · 1cap(tsplit,u). (27)

Substituting Equation 27 into Equation 26, we have:

R(t′,X, c,y) ≥ L(tfix,X, c,y) +

U∑
u=1

Eu · 1cap(tsplit,u) + λHt′ .

Because Ht′ ≥ Ht + 1:

R(t′,X, c,y) ≥ L(tfix,X, c,y) + λHt + λ+

U∑
u=1

Eu · 1cap(tsplit,u).

Optimal Sparse Survival Trees

B.6 Proof of Theorem 2.7

Theorem 2.7 (Guarantee on guessed survival tree performance). Given dataset {X, c,y}, depth constraint d,
leaf penalty λ and reference model T , let tguess be the tree returned using lbguess defined in Equation (12) and
R(tguess,X, c,y) be its objective. Let t∗ be the true optimal tree. We have:

R(tguess,X, c,y) ≤
N∑
i=1

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝt∗

xi
(·),xi, ci, yi)

}
+ λHt∗ (28)

where ŜT
xi
(·) is the predicted survival function of reference model T on sample i, and Ŝt∗

xi
(·) is the predicted survival

function of optimal tree t∗. That is, the objective of the guessed tree is no worse than the union of errors made by
the reference model and the optimal tree.

Proof. Define Rguess(sa, d, λ) as the objective of the solution using the guessed lower bound for subproblem sa.
Then, R(tguess,X, c,y) can be rewritten as Rguess(sa, d, λ) where sa = {1, 2, 3, · · · , N}. We want to prove that
for any sa,

Rguess(sa, d, λ) ≤
∑
i∈sa

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝ

t∗a
xi(·),xi, ci, yi)

}
+ λHt∗(sa,d,λ) (29)

where t∗a is the optimal solution to subproblem sa. Since the lower bound of sa, which we denote by lba, is
non-decreasing during the optimization process, we denote the highest value lba gets updated to as lbmax(sa, d, λ).
The subproblem is solved when the upper bound of sa, uba ≤ lba, which means

Rguess(sa, d, λ) ≤ lbmax(sa, d, λ). (30)

Now we will prove the following inequality holds using induction:

lbmax(sa, d, λ) ≤
∑
i∈sa

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝ

t∗a
xi(·),xi, ci, yi)

}
+ λHt∗a

. (31)

Either the initial lower bound lbguess(sa) is greater than the initial upper bound ub, or lbguess(sa) ≤ ub. If
lbguess(sa) > ub, the subproblem sa is solved without further exploration, and if lbguess(sa) ≤ ub, then the lower
bound lba will get updated until it reaches ub. Since t∗a is a leaf node, the upper bound uba is fixed at ub. Also,
lbmax(sa, d, λ) will never be higher than the initial upper bound ub.

Base case: The optimal solution t∗a is a leaf node. Combining these two possibilities, we have

lbmax(sa, d, λ) ≤ max{lbguess(sa), ub}. (32)

Substituting the definition of lbguess(sa) and ub, we have:

≤ max

{∑
i∈sa

L(ŜT
xi
(·),X(sa), c(sa),y(sa)) + λ,

∑
i∈sa

L(Ŝt∗(·),X(sa), c(sa),y(sa)) + λ

}

and taking the sum out:

≤
∑
i∈sa

max
{
L(ŜT

xi
(·),X(sa), c(sa),y(sa)),L(Ŝt∗ ,X(sa), c(sa),y(sa))

}
+ λ. (33)

Because t∗(sa, d, λ) is a leaf node, Ht∗ = 1. Equation 31 holds.

Inductive case: The optimal solution t∗a is a tree. In this case d > 0. Assume Equation 31 holds for any left
and right children pair of t∗(sa, d, λ), sjl , sjr , created by splitting feature j, such that:

lbmax(sjl , d− 1, λ) ≤
∑
i∈sjl

max

{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝ

t∗jl
xi (·),xi, ci, yi)

}
+ λHt∗jl

(34)

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

and
lbmax(sjr , d− 1, λ) ≤

∑
i∈sjr

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝ

t∗jr
xi (·),xi, ci, yi)

}
+ λHt∗jr

(35)

where sjl ∩ sjr = ∅, sjl ∪ sjr = sa, t∗jl , t
∗
jr

are the optimal solutions to sjl and sjr respectively.

If initial upper bound ub ≤ lbguess(sa)+λ, then we consider sa solved without further exploration and its solution
is a leaf node in tguess.

From Equation 32 we know:

lbmax(sa, d, λ) ≤ max{lbguess(sa), ub}
≤ max{lbguess(sa), lbguess(sa) + λ}
≤ lbguess(sa) + λ

≤
∑
i∈sa

L(ŜT
xi
(·),X(sa), c(sa),y(sa)) + 2λ

≤
∑
i∈sa

max
{
L(ŜT

xi
(·),X(sa), c(sa),y(sa)), Ŝ

t∗a
xi(·),X(sa), c(sa),y(sa))

}
+ 2λ. (36)

Since t∗a is a tree, Ht∗a
≥ 2, therefore:

lbmax(sa, d, λ) ≤
∑
i∈sa

max
{
L(ŜT

xi
(·),X(sa), c(sa),y(sa)), Ŝ

t∗a
xi(·),X(sa), c(sa),y(sa))

}
+ λHt∗a

. (37)

If initial upper bound ub > lbguess(sa) + λ, we explore this subproblem sa by splitting features and creating pairs
of children subproblems sjl , sjr split on feature j. The lower bound of sa will get updated until converged with
the upper bound, and lba is updated as: lba ← max(lba,min(uba, lbsplit)), where lbsplit ← minj∈features lbjl + lbjr .
From the way of updating lba, we know for any feature j:

lbmax(sa, d, λ) ≤ lbmax(sjl , d− 1, λ) + lbmax(sjr , d− 1, λ). (38)

Using the hypothesis assumption in Equation 34 and 35:

≤
∑
i∈sjl

max

{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝ

t∗jl
xi (·),xi, ci, yi)

}
+ λHt∗jl

(39)

+
∑
i∈sjr

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝ

t∗jr
xi (·),xi, ci, yi)

}
+ λHt∗jr

.

Equation 39 holds for t∗jl , t
∗
jr

that are subtrees of t∗a,

≤
∑
i∈sa

max
{
L(ŜT

xi
(·),xi, ci, yi),L(Ŝt∗

xi
(·),xi, ci, yi)

}
+ λHt∗ . (40)

Here we proved that Inequality 31 holds for any subproblem sa, including the subproblem that is the whole
dataset, sa = {1, 2, · · · , N}.

B.7 Proof of Corollary 2.7.1

Let T, tguess, t∗ be defined as in Theorem 2.7. If the reference model T performs no worse than t∗ on each sample,
the tree returned using lbguess is still optimal. In other words, if the reference model has good performance, the
tree returned after using guessing is still optimal or very close to optimal.

Proof. Subtracting R(t∗,X, c,y) =
∑N

i=1 L(Ŝt∗

xi
(·),xi, ci, yi) + λHt∗ from the two sides of Inequality 13, we have:

R(tguess,X, c,y)−R(t∗,X, c,y) ≤
N∑
i=1

max
{
L(ŜT

xi
(·),xi, ci, yi)− Ŝt∗

xi
(·),xi, ci, yi), 0

}
.

If L(ŜT
xi
(·),xi, ci, yi) ≤ Ŝt∗

xi
(·),xi, ci, yi) then R(tguess,X, c,y)−R(t∗,X, c,y) ≤ 0, which means the tree returned

is still optimal.

Optimal Sparse Survival Trees

B.8 Splitting Bounds

When constructing a new child tree t′ = (t′fix, δ
′
fix, t

′
split, δ

′
split,K

′, Ht′), t′split needs to be determined. Splitting
bounds help determine which leaves in t′ cannot be further split and which leaves must be further split.

Theorem B.1. (Incremental Progress Bound to Determine Splitting). For any optimal tree t∗, any parent node
of its leaves must have loss at least ≥ λ when considered as a leaf.

Proof. This bound adapts directly from OSRT (Zhang et al., 2023), where the proof can be found.

Theorem B.2. (Lower Bound on Incremental Progress). Consider any optimal tree t∗ =
{l1, l2, . . . , li, li+1, . . . , lHt∗} with Ht∗ leaves. Let t′ = {l1, l2, . . . , li−1, li+2, . . . , lHt∗ ,lj} be a tree created by deleting
a pair of leaves li and li+1 in t∗ and adding their parent node lj. The reduction in loss obeys:

L(lj ,X, c,y)− L(li,X, c,y)− L(li+1,X, c,y) ≥ λ.

Proof. This bound adapts directly from OSRT (Zhang et al., 2023), where the proof can be found.

When constructing new trees, if a leaf has loss less than λ (it fails to meet Theorem B.1), then it cannot be
further split. If a pair of leaves in that tree reduce loss from their parent node by less than λ (the leaves fail to
meet Theorem B.2), then at least one of this pair of leaves must be further split to search for optimal trees.

B.9 Leaf Bounds

The following bounds on the number of leaves allow us to prune trees whose number of leaves exceed these upper
bounds.

Theorem B.3. (Upper Bound on the Number of Leaves). Let Ht be the number of leaves of tree t and let Rc be
the current best objective. For any optimal tree t∗ with Ht∗ leaves, it is true that:

Ht∗ ≤ min{⌊Rc/λ⌋, 2M}, (41)

where M is the number of features.

Proof. This bound adapts directly from OSDT (Hu et al., 2019), where the proof can be found.

Theorem B.4. (Parent-specific upper bound on the number of leaves). Let t = (tfix, δfix, tsplit, δsplit,K,Ht) be a
tree with child tree t′ = (t′fix, δ

′
fix, t

′
split, δ

′
split,K

′, Ht′) ∈ σ(t) with Ht′ leaves. Then:

Ht′ ≤ min

{
Ht +

⌊
Rc − L(tfix,X, c,y)− λHt

λ

⌋
, 2M

}
.

Proof. This bound adapts directly from OSDT (Hu et al., 2019), where the proof can be found.

B.10 Permutation Bound

Theorem B.5. (Leaf Permutation Bound). Let π be any permutation of {1 . . . Ht}. Let t = {l1, l2, . . . , lHt
},

T = {lπ(1), lπ(2), . . . , lπ(Ht)}, that is, the leaves in T are a permutation of the leaves in t. The objective lower
bounds of t and T are the same and their child trees correspond to permutations of each other.

Proof. This bound adapts directly from OSDT (Hu et al., 2019), where the proof can be found.

This bound avoids duplicate computation of trees with leaf permutation.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

B.11 Hierarchical Objective Lower Bound for Sub-trees

Theorem B.6. (Hierarchical Objective Lower Bound for Sub-trees). Let Rc be the current best objec-
tive so far. Let t be a tree such that the root node is split by a feature, where two sub-trees tleft, tright
are generated with Hleft leaves for tleft and Hright leaves for tright. The data captured by the left tree is
(Xleft,yleft) and the data captured by the right tree is (Xright,yright). Then, the objective lower bounds
of the left sub-tree and right sub-tree are b(tleft,Xleft, cleft,yleft) and b(tright,Xright, cright,yright), which obey
R(tleft,Xleft, cleft,yleft) ≥ b(tleft,Xleft, cleft,yleft), and R(tright,Xright, cright,yright) ≥ b(tright,Xright, cright,yright).
If b(tleft,Xleft, cleft,yleft) > Rc or b(tright,Xright, cright,yright) > Rc or b(tleft,Xleft, cleft,yleft) +
b(tright,Xright, cright,yright) > Rc, then t is not an optimal tree, and none of its child trees are optimal.

Proof. This bound adapts directly from GOSDT (Lin et al., 2020), where the proof can be found.

This bound can be applied to any tree, even if the tree is partially constructed. In a partially constructed tree t,
if one of its subtrees has objective worse than current best objective Rc, we can prune tree t and all of its child
trees without constructing the other subtree.

B.12 Subset Bound

Theorem B.7. Let t and T to be two trees with the same root node, where t uses feature f1 to split the
root node and T uses feature f2 to split the root node. Let t1, t2 be subtrees of t under its root node, and
(Xt1 , ct1 ,yt1), (Xt2 , ct2 ,yt2) be samples captured by t1 and t2. Similarly, let T1, T2 be subtrees of T under its
root node, and (XT1

, cT1
,yT1

), (XT2
, cT2

,yT2
) be samples captured by T1 and T2. Suppose t1, t2 are optimal

trees for (Xt1 , ct1 ,yt1), (Xt2 , ct2 ,yt2) respectively, and T1, T2 are optimal trees for (XT1 , cT1 ,yT1), (XT2 , cT2 ,yT2)
respectively. If R(t1,Xt1 , ct1 ,yt1) ≤ R(T1,XT1 , cT1 ,yT1) and (Xt2 , ct2 ,yt2) ⊂ (XT2 , cT2 ,yT2), then R(t,X, c,y) ≤
R(T,X, c,y).

Proof. This bound adapts directly from GOSDT (Lin et al., 2020), where the proof can be found.

Similar to Theorem B.6, this bound ensures that we can safely prune a partially constructed tree without harming
optimality. It checks whether subtree t1 has a better objective than T1, despite handling more data.

C Metrics

We use several metrics to evaluate the quality of our survival trees. Note that some of the following metrics are
not additive, which means that if we want to optimize them then we must construct the entire survival tree.
Therefore we use these metrics only in the evaluation stage. We found that even though we optimize the IBS, the
optimal survival trees often perform better on other metrics as well, which we show in Section 3.3 and Appendix
G.

C.1 Integrated Brier Score Ratio

To be consistent with other metrics (the higher the better), we used Integrated Brier Score Ratio (IBS Ratio) to
report IBS loss in all experimental sections. The IBS Ratio of tree t is defined as

IBS Ratio(t) = 1− L(t,X, c,y)

L(t0,X, c,y)
(42)

where L is the IBS loss defined in Equation 1 and t0 is a single node containing all samples (equivalently a KM
estimator ignoring all features). This ratio is very similar to the R2 in regression.

C.2 Concordance Indices

Harrell Jr et al. (1996) adapted the Concordance Statistic from logistic regression into survival analysis. Given a
pair of samples, i and j, a good survival model should predict a lower survival probability for the sample that is
closer to the actual death time. A concordant pair is defined as a pair of samples that satisfy this expectation

Optimal Sparse Survival Trees

(e.g., Ŝxi(yi) < Ŝxj (yi), yi < yj). When the predicted survival probabilities are tied, we consider them have 0.5
expectation to be concordant due to random arrangement. A pair is comparable either when both samples are
observed (not censored) or when one sample died before the other was censored. The concordance index is defined
as the number of concordant pairs divided by the number of comparable pairs. Formally, Harrell’s C-index is
given by:

CH =

∑
i

∑
j ci · 1yi<yj

·
(
1Ŝxi

(yi)<Ŝxj
(yi)

+ 0.5 · 1Ŝxi
(yi)=Ŝxj

(yi)

)
∑

i

∑
j ci · 1yi<yj

. (43)

Since the predicted survival function is time-dependent, we use the earlier observation time (min{yi, yj}) when
evaluating whether a comparable pair is concordant.
However, Harrell’s C-index is biased when there are a large number of censored samples. Uno et al. (2011) applied
the inverse probability of censoring weights to Harrell’s C-index to make it robust to a high degree of censoring.
Uno’s C-index is given by:

CU =

∑
i

∑
j ci · Ĝ−2(yi) · 1yi<yj

·
(
1Ŝxi

(yi)<Ŝxj
(yi)

+ 0.5 · 1Ŝxi
(yi)=Ŝxj

(yi)

)
∑

i

∑
j ci · Ĝ−2(yi) · 1yi<yj

. (44)

Remember, Ĝ(·) is the Kaplan–Meier estimate of the censoring distribution c under the assumption that it is
independent of the covariates. Uno et al. (2011) claimed that Uno’s C-index is ‘quite robust even when the
censoring is dependent on the covariates.’

C.3 Cumulative-Dynamic-AUC

The receiver operating characteristic curve (ROC) plots the the true positive rate versus the false positive rate in
binary classification tasks. The area under the ROC curve (AUC) can be extended to survival analysis: given a
time y, the true positives are samples that died before or at time y, e.g., ci = 1, yi < y (cumulative cases), and
true negatives are samples that are still alive at time y, e.g., yj > y (dynamic controls).

As we change the threshold of predicted survival function, τ , to classify samples into cumulative cases and dynamic
control cases, the true positive and false positive rates also change, which gives a time-dependent ROC curve.
The time-dependent ROC curve measures how well a survival model separates cumulative cases from dynamic
control cases at time y.

The specificity at time t is given by the proportion of the samples with predicted survival function greater than
or equal to τ :

Ŝp(τ, y) =

∑
i 1yi>y · 1Ŝ(y|xi)≥τ∑

i 1yi>y
. (45)

Uno et al. (2007) and Hung and Chiang (2010) proposed to perform IPCW when calculating the sensitivity:

Ŝe(τ, y) =

∑
i ci · Ĝ−1(yi) · 1yi≤y · 1Ŝ(y|xi)<τ∑

i ci · Ĝ−1(yi) · 1yi≤y

(46)

which gives the AUC at time y as:

ÂUC(y) =

∑
i

∑
j ci · Ĝ−1(yi) · 1yi≤y · 1yj>y · 1Ŝ(y|xi)<Ŝ(y|xj)(∑

i ci · Ĝ−1(yi) · 1yi≤y

)(∑
j 1yj>y

) . (47)

Lambert and Chevret (2016) proposed to restrict a time-dependent weighted AUC estimator to a fixed time interval,
which summarizes the mean AUC over the time range. Here we compute the time range from ymin = min{yi}Ni=1

to ymax = max{yi}Ni=1:

AUC =
1

Ŝ(ymin)− Ŝ(ymax)

∫ ymax

ymin

ÂUC(y)dŜ(y). (48)

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

D Experiment Setup Details

D.1 Datasets

We used 17 datasets of which 11 are real-world survival data and 6 are synthetic data (manually censoring on
real-world regression datasets).

Real-world survival data:

• Aids:AIDS Clinical Trial (Lemeshow et al., 2011). The event is AIDS-defining event.
• Aids_death: AIDS Clinical Trial (Lemeshow et al., 2011). The event is death.
• Churn: The task of predicting when a software as a service (SaaS) company’s customers are likely to stop their

monthly subscription. The event is end of subscription. This dataset is from pysurvival (Fotso et al., 2019).
• Credit: Lenders need to predict when a borrower will repay a loan. The event is loan repayment. This dataset

is from pysurvival (Fotso et al., 2019), adapted from UCI Machine Learning Repository (Dua and Graff, 2017).
• Employee: The task of predicting when an employee will quit. The event is an employee’s leaving. This

dataset is from pysurvival (Fotso et al., 2019).
• Maintenance: The task of predicting when equipment failure will occur. The event is machine failure. This

dataset is from pysurvival (Fotso et al., 2019).
• Veterans: Veterans’ Administration Lung Cancer Trial (Kalbfleisch and Prentice, 2011). The event is death.
• Whas500: Worcester Heart Attack Study (Lemeshow et al., 2011). The event is death.
• Flchain: Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general

population (Dispenzieri et al., 2012). The event is death.
• Gbsg2: German Breast Cancer Study Group 2 (Schumacher et al., 1994). The event is recurrence free survival.
• Uissurv: UMASS Aids Research Unit IMPACT Study (Lemeshow et al., 2011). The event is returning to

drugs.

Synthetic data: We randomly censored samples with a censoring rate of 20%.

• Airfoil: Airfoil self-noise. This dataset is from UCI Machine Learning Repository (Dua and Graff, 2017).
• Insurance: Medical cost personal. This dataset is from a Kaggle competition (Choi, 2018).
• Real-estate: Real estate valuation. This dataset is from the UCI Machine Learning Repository (Dua and

Graff, 2017).
• Sync: Synchronous machine. This dataset is from the UCI Machine Learning Repository (Dua and Graff,

2017).
• Servo: The rise time of a servomechanism. This dataset is from the UCI Machine Learning Repository (Dua

and Graff, 2017).
• Household: Individual household electric power consumption. This dataset is from the UCI Machine Learning

Repository (Dua and Graff, 2017).

D.2 Data Preprocessing

First, we removed all observations with missing values. Because we are performing hundreds of experiments
consuming months of compute time, for each dataset, we categorized some continuous features into 4 equal-width
partitions and used one-hot encoding to convert all the features into binary features:

Aids: each of age, cd4, priorzdv were discretized into 4 categories.
Aids_death: each of age, cd4, priorzdv were discretized into 4 categories.
Churn: each of articles_viewed, minutes_customer_support, smartphone_notifications_viewed, so-
cial_media_ads_viewed, and marketing_emails_clicked were discretized into 4 categories.
Credit: each of amount, installment_rate, present_residence, age, number_of_credits, andpeople_liable were
discretized into 4 categories.
Employee: feature average_montly_hours was discretized into 4 categories.
Maintenance: each of pressureInd, moistureInd, and temperatureInd were discretized into 4 categories.
Veterans: each of Age_in_years, Karnofsky_score, Months_from_Diagnosis were discretized into 4 categories.
Whas500: each of age, bmi, diasbp, hr, los, sysbp were discretized into 4 categories.
Flchain: each of age, creatinine, kappa, lambda were discretized into 4 categories.
Gbsg2: each of age, estrec, pnodes, progrec, tsize were discretized into 4 categories.

Optimal Sparse Survival Trees

Uissurv: each of age, beck, ndrugtx, los were discretized into 4 categories.
Airfoil: We discretized each of the features frequency, angle of attack, suction side displacement thickness into 4
categories.
Insurance: We discretized each of age, bmi into 4 categories.
Real-estate: We discretized each continuous feature into 4 categories.
Servo: We directly use this dataset that only contains categorical features.
Sync: We discretized each feature into 4 categories.
Household: We transformed the Date feature into Month, Time into Hour. Then we discretized each of Month,
Hour, Global_reactive_power, Voltage, Global_intensity into 4 categories.
Table 2 summarizes all the datasets after preprocessing.

Dataset Samples Orig. Features Encoded Binary
Features

Event (Censoring
Rate)

Time to Event

churn 2000 12 42 churned (53.4%) months active
credit 1000 19 56 fully_repaid

(30%)
duration

employee 15000 7 27 left (77.2%) time spend com-
pany

maintenance 1000 5 14 broken (60.3%) lifetime
aids 1151 11 25 aids (91.7%) time
aids_death 1151 11 25 death (97.7%) time
flchain 7478 9 47 death (72.5%) time
gbsg2 686 8 19 recurrence free

survival (56.4%)
time

whas500 500 14 26 death (57%) time
veterans 137 6 14 death (6.6%) time
uissurv 628 12 26 censoring

(19.1%)
time

airfoil 1503 5 17 censoring (20%) scaled sound pres-
sure level

insurance 1338 6 16 censoring (20%) charges
real-estate 414 6 18 censoring (20%) house price of

unit area
servo 167 4 15 censoring (20%) class
sync 557 4 12 censoring (20%) “If”
household 2,049,280 5 15 censoring

(20%, 50%, 80%)
global active
power

Table 2: Datasets Summary.

D.3 Experiment Platform

We ran all experiments on a 48-core TensorEX TS2-673917-DPN Intel Xeon Gold 6226 Processor, 2.7Ghz with
768GB RAM. We set a time limit of 60 minutes and a memory limit of 200GB. All algorithms ran single-threaded.

D.4 Software Packages

Recursive Partitioning and Regression Trees (RPART): CRAN package of Rpart, version 4.1.19
(https://cran.r-project.org/web/packages/rpart/index.html).
Conditional Inference Trees (CTree): CRAN package of partykit, version 1.2-16 (https://cran.r-
project.org/web/packages/partykit/index.html).
Scikit-survival(SkSurv): scikit-survival version-0.20.0 (https://scikit-survival.readthedocs.io/en/stable/index.html).

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

E Experiments: Optimality

Collection and Setup: We ran this experiment on 8 datasets: aids, aids_death, uissurv, gbsg2, churn, mainte-
nance, veterans, whas500. We trained models on the entire dataset to measure time to convergence/optimality.
For each dataset, we ran algorithms with different configurations:

• CTree: We ran this algorithm with 8 different configurations: depth limit, d, ranging from 2 to 9, and a
corresponding maximum leaf limit 2d. All other parameters were set to the default.

• SkSurv: We ran this algorithm with 8 different configurations: depth limit, d, ranging from 2 to 9, and a
corresponding maximum leaf limit 2d. The random state was set to 2023 and all other parameters were set to
the default.

• RPART: We ran this algorithm with 8× 12 different configurations: depth limits ranging from 2 to 9, and 12
different regularization coefficients (0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,
0.00001). All other parameters were set to the default.

• OSST (our method): We ran this algorithm with 8× 10 different configurations: depth limits ranging from 2
to 9, and 12 different regularization coefficients (0.1, 0.05, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001,
0.00005, 0.000025, 0.00001). The minimum sample required in each leaf was set to 7, which is consistent with
other three methods’ default value.

Calculations: For each combination of dataset and depth limit, we drew one plot (training loss against number
of leaves). Under the same depth limit, runs of one algorithm with different regularization coefficients may result
in trees with same number of leaves. In this case, we plotted the median loss of those trees and showed the best
and worst loss among these trees as lower and upper error values respectively. These plots do not display trees
where the number of leaves exceeds 30, as these trees are more likely to be overfitted and hard to interpret. A
single root node is excluded from the plots as well, as it is not meaningful.

Results: Figures 7 to 14 show that OSST consistently produces optimal trees that achieve the best IBS score,
which means they minimize the objective defined in Equation 4. OSST, which produces provably optimal trees,
defines a frontier between training loss and the number of leaves. These plots also show how far away other
methods’ objectives are from the optimal solution. OSST make it possible to quantify how far other methods are
from the optimal solution. We also noticed that the plots from depth 7 to 9 look similar or identical; when the
regularization coefficient is too small or the depth limit is too large, OSST produces complex and overfitted trees
with more than 30 leaves, which we excluded from the plots.

Optimal Sparse Survival Trees

Figure 7: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: aids.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 8: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: aids_death.

Optimal Sparse Survival Trees

Figure 9: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: uissurv.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 10: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: gbsg2.

Optimal Sparse Survival Trees

Figure 11: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: maintenance.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 12: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: churn.

Optimal Sparse Survival Trees

Figure 13: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: veterans.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 14: Training IBS achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: whas500.

Optimal Sparse Survival Trees

F Experiments: Generalization

Collection and Setup: We ran 5-fold cross-validation on the 5 datasets: churn, credit, employee, maintenance,
and servo. The time limit was set to 60 minutes. For each dataset, we ran algorithms with different configurations:

• CTree: We ran this algorithm with 4 different configurations: depth limit, d, ranging from 2 to 5, and a
corresponding maximum leaf limit 2d. All other parameters were set to the default.

• SkSurv: We ran this algorithm with 4 different configurations: depth limit, d, ranging from 2 to 5, and a
corresponding maximum leaf limit 2d. The random state was set to 2023 and all other parameters were set to
the default.

• RPART: We ran this algorithm with 4× 12 different configurations: depth limits ranging from 2 to 5, and 12
different regularization coefficients (0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,
0.00001). All other parameters were set to the default.

• OSST (our method): We ran this algorithm with 4× 12 different configurations: depth limits ranging from 2
to 5, and 12 different regularization coefficients (0.1, 0.05, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001,
0.00005, 0.000025, 0.00001).

Calculations: We drew one plot per dataset and depth. For each combination of regularization coefficient and
algorithm in the same plot, we produced a set of up to 5 trees, depending on if the runs exceeded the time limit.
We summarized the measurements of training loss, testing loss and number of leaves across the set of up to 5
trees by plotting the median, showing the 25th and 75th quantiles for number of leaves, training/testing error in
the set as the lower and upper error values respectively. As in Section E, trees with more than 30 leaves and
single root node were excluded.

Results: Figures 15 to 19 show that OSST trees produce the best testing score among all the survival trees.
If an optimal tree significantly outperforms other sub-optimal trees in terms of training performance, it is also
outperformed in testing (e.g., churn depth 4 and 5; credit depth 4), otherwise the difference in testing score
becomes insignificant due to generalization error. Note that larger trees start overfitting when depth is greater
than 4 or 5 (e.g., servo depth 5), and sparse trees tend to have better generalization.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 15: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: churn.

Optimal Sparse Survival Trees

Figure 16: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: credit.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 17: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: employee.

Optimal Sparse Survival Trees

Figure 18: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset:
maintenance.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 19: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: servo.
(Trees with more than 9 leaves overfitted at depth 5)

Optimal Sparse Survival Trees

G Experiment: Tree Quality

Collection and Setup: One limitation of the IBS metric is that it heavily penalizes models for being inaccurate
in the early stages of follow-up, so we would like to see if the comprehensive quality of optimal sparse trees found
by OSST is actually better than other sub-optimal trees. We evaluated the experiments again in Section E and F
but using Uno’s C-index, Harrell’s C-index and AUC (note that OSST optimizes the IBS loss). We evaluate
the optimization experiments on gbsg2, whas500 in Section E and the cross-validation experiments on churn,
employee in Section F.

Calculations: Again, we drew one plot per dataset and depth. We replaced the performance metrics to Uno’s
C-index, Harrell’s C-index and AUC.

Results: Figure 20 to 31 show that OSST generally obtains better training and testing performance of other
metrics as well, even though it is optimized on the IBS Loss. This indicates that the sparse optimal trees found
by OSST have better overall quality over trees returned by other methods. In other word, OSST is better in
capturing the patterns in survival data than other methods.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 20: Training auc achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: gbsg2.

Optimal Sparse Survival Trees

Figure 21: Training uno_c achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: gbsg2.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 22: Training harrell_c achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves
on dataset: gbsg2.

Optimal Sparse Survival Trees

Figure 23: Training auc achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: whas500.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 24: Training uno_c achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves on
dataset: whas500.

Optimal Sparse Survival Trees

Figure 25: Training harrell_c achieved by CTree, RPART, SkSurv and OSST as a function of number of leaves
on dataset: whas500.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 26: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: churn,
metric: auc.

Optimal Sparse Survival Trees

Figure 27: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: churn,
metric:uno_c.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 28: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: churn,
metric: harrell_c.

Optimal Sparse Survival Trees

Figure 29: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: employee,
metric: auc.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Figure 30: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: employee,
metric: uno_c.

Optimal Sparse Survival Trees

Figure 31: 5-fold CV of CTree, RPART, SkSurv and OSST as a function of number of leaves on dataset: employee,
metric: harrell_c.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

H Experiment: Running Time

Collection and Setup: The experiments in Section E and F suggest that configurations with large depth limit
(e.g., d = 7, 8, 9) and small regularization coefficient often result in very large trees (with more than 40 leaves),
which lose generalization and interpretability. We compared the running time of different methods on each dataset
from depth 2 to 6, with the time limit of 60 minutes, using following configurations:

• CTree: We ran this algorithm with 5 different configurations: depth limit, d, ranging from 2 to 6, and a
corresponding maximum leaf limit 2d. All other parameters were set to the default.

• SkSurv: We ran this algorithm with 5 different configurations: depth limit, d, ranging from 2 to 6, and a
corresponding maximum leaf limit 2d. The random state was set to 2023 and all other parameters were set to
the default.

• RPART: We ran this algorithm with 5× 12 different configurations: depth limits ranging from 2 to 6, and 12
different regularization coefficients (0.1, 0.05, 0.025, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001, 0.00005,
0.00001). All other parameters were set to the default.

• OSST (our method): We ran this algorithm with 5× 12 different configurations: depth limits ranging from 2
to 6, and 12 different regularization coefficients (0.1, 0.05, 0.01, 0.005, 0.0025, 0.001, 0.0005, 0.00025, 0.0001,
0.00005, 0.000025, 0.00001). We used a random survival forest that consists of 100 trees with maximum depth 9
(in order to preserve high quality) as a reference model on datasets: airfoil, insurance, real-estate, sync, servo,
flchain for all depths, churn, credit, employee for depths 5-6. No reference model was used on other datasets.

Results: Tables 3 to 5 summarize the average running time and its 95% confidence interval for different methods.
OSST often finds the optimal survival tree in seconds. Greedy methods are generally faster, but fail to produce an
optimal tree. Interestingly, we found that the running speed of OSST on real-world survival data is generally
faster than on synthetic data if no guessing technique was applied.

Dataset Depth CTree RPART SkSurv OSST

aids

2 0.192(±0) 0.033(±0.003) 0.006(±0) 0.011(±0.000)
3 0.201(±0) 0.039(±0.005) 0.007(±0) 0.083(±0.003)
4 0.217(±0) 0.045(±0.006) 0.008(±0) 0.457(±0.056)
5 0.214(±0) 0.048(±0.007) 0.009(±0) 2.215(±0.533)
6 0.206(±0) 0.052(±0.008) 0.010(±0) 8.650(±2.530)

aids_death

2 0.192(±0) 0.033(±0.003) 0.006(±0) 0.011(±0.000)
3 0.201(±0) 0.039(±0.005) 0.007(±0) 0.083(±0.003)
4 0.217(±0) 0.045(±0.006) 0.008(±0) 0.457(±0.056)
5 0.214(±0) 0.048(±0.007) 0.009(±0) 2.215(±0.533)
6 0.206(±0) 0.052(±0.008) 0.010(±0) 8.650(±2.530)

gbsg2

2 0.201(±0) 0.023(±0.002) 0.003(±0) 0.003(±0.000)
3 0.209(±0) 0.025(±0.003) 0.004(±0) 0.019(±0.001)
4 0.213(±0) 0.027(±0.003) 0.004(±0) 0.078(±0.006)
5 0.225(±0) 0.030(±0.004) 0.005(±0) 0.264(±0.026)
6 0.214(±0) 0.031(±0.500) 0.005(±0) 0.667(±0.077)

maintenance

2 0.188(±0) 0.027(±0.004) 0.003(±0) 0.033(±0.000)
3 0.205(±0) 0.031(±0.005) 0.004(±0) 0.141(±0.022)
4 0.218(±0) 0.034(±0.001) 0.005(±0) 0.390(±0.090)
5 0.220(±0) 0.037(±0.003) 0.005(±0) 0.950(±0.320)
6 0.229(±0) 0.039(±0.004) 0.006(±0) 2.400(±1.110)

Table 3: Running time in seconds of CTree, RPART, SkSurv and OSST.

Optimal Sparse Survival Trees

Dataset Depth CTree RPART SkSurv OSST

veterans

2 0.203(±0) 0.013(±0.000) 0.001(±0) 0.007(±0.001)
3 0.200(±0) 0.014(±0.001) 0.002(±0) 0.024(±0.001)
4 0.202(±0) 0.014(±0.001) 0.001(±0) 0.095(±0.009)
5 0.208(±0) 0.015(±0.001) 0.001(±0) 0.380(±0.080)
6 0.204(±0) 0.015(±0.001) 0.001(±0) 1.270(±0.380)

whas500

2 0.217(±0) 0.026(±0.001) 0.003(±0) 0.006(±0.000)
3 0.203(±0) 0.029(±0.005) 0.003(±0) 0.007(±0.001)
4 0.229(±0) 0.033(±0.006) 0.004(±0) 0.690(±0.020)
5 0.224(±0) 0.036(±0.001) 0.005(±0) 6.040(±0.470)
6 0.234(±0) 0.038(±0.002) 0.005(±0) 37.01(±4.530)

uissurv

2 0.198(±0) 0.046(±0.001) 0.004(±0) 0.006(±0.000)
3 0.206(±0) 0.051(±0.001) 0.005(±0) 0.058(±0.001)
4 0.212(±0) 0.056(±0.006) 0.006(±0) 0.410(±0.010)
5 0.225(±0) 0.060(±0.006) 0.007(±0) 2.680(±0.140)
6 0.214(±0) 0.065(±0.008) 0.008(±0) 13.88(±1.200)

airfoil

2 0.230(±0) 0.032(±0.013) 0.190(±0) 38.12(±1.540)
3 0.286(±0) 0.139(±0.025) 0.240(±0) 32.00(±1.250)
4 0.448(±0) 0.289(±0.066) 0.288(±0) 31.90(±2.560)
5 0.272(±0) 0.348(±0.047) 0.320(±0) 31.97(±1.533)
6 0.335(±0) 0.453(±0.088) 0.360(±0) 31.98(±2.510)

real-estate

2 0.273(±0) 0.017(±0.003) 0.018(±0) 0.824(±0.005)
3 0.211(±0) 0.018(±0.004) 0.020(±0) 100.3(±13.92)
4 0.215(±0) 0.02(±0.006) 0.030(±0) 285.3(±18.61)
5 0.222(±0) 0.022(±0.001) 0.030(±0) 290.4(±16.42)
6 0.221(±0) 0.022(±0.001) 0.030(±0) 289.4(±36.42)

sync

2 0.388(±0) 0.017(±0.003) 0.026(±0) 1.920(±0.020)
3 0.201(±0) 0.019(±0.000) 0.030(±0) 2.120(±0.030)
4 0.269(±0) 0.019(±0.006) 0.053(±0) 3.788(±0.056)
5 0.204(±0) 0.021(±0.007) 0.036(±0) 3.804(±0.033)
6 0.261(±0) 0.021(±0.008) 0.040(±0) 3.785(±0.053)

credit

2 0.221(±0) 0.043(±0.007) 0.011(±0) 0.056(±0.010)
3 0.246(±0) 0.055(±0.010) 0.014(±0) 1.473(±0.482)
4 0.273(±0) 0.065(±0.010) 0.020(±0) 33.06(±12.90)
5 0.283(±0) 0.074(±0.017) 0.020(±0) 610.9(±272.3)
6 0.317(±0) 0.082(±0.020) 0.022(±0) 930.8(±398.4)

employee

2 0.260(±0) 0.412(±0.001) 0.087(±0) 0.226(±0.018)
3 0.272(±0) 0.492(±0.005) 0.122(±0) 2.090(±0.110)
4 0.335(±0) 0.552(±0.012) 0.154(±0) 16.20(±1.370)
5 0.370(±0) 0.610(±0.030) 0.183(±0) 101.8(±15.36)
6 0.443(±0) 0.6594(±0.04) 0.210(±0) 538.3(±125.7)

churn

2 0.211(±0) 0.060(±0.006) 0.016(±0) 0.138(±0.000)
3 0.225(±0) 0.074(±0.001) 0.022(±0) 0.880(±0.070)
4 0.250(±0) 0.090(±0.006) 0.030(±0) 11.67(±2.360)
5 0.281(±0) 0.048(±0.007) 0.009(±0) 125.2(±35.53)
6 0.306(±0) 0.117(±0.008) 0.038(±0) 1197(±410.5)

insurance

2 0.220(±0) 0.043(±0.003) 0.180(±0) 0.083(±0.010)
3 0.234(±0) 0.049(±0.001) 0.230(±0) 0.083(±0.010)
4 0.258(±0) 0.058(±0.002) 0.261(±0) 0.084(±0.010)
5 0.259(±0) 0.064(±0.003) 0.277(±0) 0.084(±0.010)
6 0.250(±0) 0.064(±0.005) 0.290(±0) 0.084(±0.010)

Table 4: Running time in seconds of CTree, RPART, SkSurv and OSST (continued).

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

Dataset Depth CTree RPART SkSurv OSST

flchain

2 0.418(±0) 0.523(±0.013) 0.109(±0) 0.481(±0.022)
3 0.460(±0) 0.521(±0.001) 0.110(±0) 0.336(±0.240)
4 0.523(±0) 0.652(±0.042) 0.209(±0) 0.419(±0.110)
5 0.559(±0) 0.824(±0.103) 0.244(±0) 1.264(±0.510)
6 0.601(±0) 0.064(±0.005) 0.285(±0) 7.024(±3.230)

servo

2 0.198(±0) 0.014(±0.000) 0.004(±0) 0.075(±0.001)
3 0.260(±0) 0.015(±0.002) 0.004(±0) 6.100(±0.360)
4 0.199(±0) 0.015(±0.006) 0.004(±0) 227.4(±45.10)
5 0.206(±0) 0.016(±0.007) 0.004(±0) 428.4(±85.30)
6 0.206(±0) 0.016(±0.006) 0.004(±0) 2192(±586.0)

Table 5: Running time in seconds of CTree, RPART, SkSurv and OSST (continued).

I Experiment: Scalability

Collection and Setup: We ran this experiment on the dataset household for CTree, RPART, SkSurv and
OSST. We subsampled 100, 500, 1000, 5000, 10,000, 50,000, 100,000, 500,000, 1000,000 samples from it to form
10 datasets (including the original dataset). We randomly censored samples in each dataset with censoring rates
of 20%, 50% and 80%. The depth limit was set to 5 (for all methods) and regularization coefficient to 0.01 for
OSST and 0.05 for RPART, in order to generate trees with similar size. OSST used an extreme random survival
forest that consists of 20 trees with maximum depth 3 as the reference model. We set the time limit of each run
to 60 minutes in this experiment.

Results: Figure 32 shows that OSST achieves similar performance with other greedy methods when the number
of samples is no more than ten thousand. It scales better than SkSurv on datasets with more than ten thousand
samples (8-10 times faster than SkSurv). OSST and SkSurv timed out when there are more than 0.1 million
samples in the dataset. There is no obvious difference in training time when the rate of censoring varies.

Figure 32: Training time of CTree, RPART, SkSurv and OSST as a function of sample size on dataset household,
d = 5, λ = 0.01. (60-minutes time limit)

J Ablation Study: Guessing

We explored if OSST is still able to find optimal trees when our guessing technique is applied and how much time
it saves.

Collection and Setup: We ran this experiment on 4 datasets (churn, employee, servo, sync) for variations of
OSST.

• churn: We set depth limit to 6 and regularization coefficient to 0.0025.
• employee: We set depth limit to 6 and regularization coefficient to 0.01.
• servo: We set depth limit to 5 and regularization coefficient to 0.01.
• sync: We set depth limit to 5 and regularization coefficient to 0.01.

For each dataset, we ran OSST twice, once using the reference model lower bound and once using the equivalent

Optimal Sparse Survival Trees

points lower bound. We used random survival forests with 100 trees of depth 9 as reference models.

Calculations: We recorded the elapsed time (includes the training time of reference models), IBS scores,
iterations, and size of dependency graph for each run of OSST. We plot the training IBS against training time for
each dataset.

Results: Figure 33 shows that our reference model lower bound substantially reduces the training time (reduction
ranges from 40% to 95%), without losing the optimality of generated trees.

Figure 33: Training time savings of OSST using reference model lower bound on dataset churn, employee, servo,
sync.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

K Optimal Survival Trees

We visually compare the optimal survival trees returned by OSST and sub-optimal trees returned by other
methods. Figure 34 shows an optimal tree found by OSST with 8 leaves (IBS ratio of 32.83%) and Figure 35
shows a sub-optimal tree found by RPART with 10 leaves (IBS = 27.95%). Here, OSST found a tree with fewer
leaves yet better performance. Figures 36 to 38 show three 4-leaf survival trees returned by OSST, CTree and
SkSurv respectively, among which OSST achieves the best performance.

Figure 34: Optimal survival tree produced by OSST for veterans dataset with 8 leaves, IBS: 32.83%.

Figure 35: Sub-optimal survival tree produced by RPART for veterans dataset with 10 leaves, IBS: 27.95%.

Optimal Sparse Survival Trees

Figure 36: Optimal survival tree produced by OSST for maintenance dataset with 4 leaves, IBS: 73.25%.

Figure 37: Sub-optimal survival tree produced by CTree for maintenance dataset with 4 leaves, IBS: 52.26%.

Figure 38: Sub-optimal survival tree produced by SkSurv for maintenance dataset with 4 leaves, IBS: 71.05%.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

L Comparison with Interpretable AI

Interpretable AI implements the Optimal Survival Tree (OST) algorithm of Bertsimas et al. (2022) which optimizes
an objective that is totally different from OSST. It does not use any of the survival metrics defined in Section C.
OST assumes the cumulative hazard function of each sample is proportional to the baseline cumulative hazard
function, like Cox models do, and samples in the same leaf have the same adjusted coefficient to the baseline. It
considers the ‘ground truth’ of each sample’s adjusted coefficient as the coefficient when each sample stays in its
own leaf, which is not always possible due to the existence of equivalent points as we discussed before in Theorem
2.6. OST uses the log-likelihood difference between the fitted leaf node coefficients and the ‘true’ coefficients as
the prediction error and penalizes it with the number of leaves.

OST frequently crashed in the experiments in Section E to I (reporting segment faults, see Listing 1). With
limited results returned by IAI, we found that trees generated by IAI are not optimal in terms of IBS (ratio).
Figure 39 shows that the trees of IAI sometimes are worse than those of the greedy methods.

Figure 39: Training IBS achieved by CTree, RPART, SkSurv, IAI and OSST as a function of number of leaves on
dataset: churn.

Optimal Sparse Survival Trees

Listing 1: IAI Error Code
[Warning : This copy o f I n t e r p r e t ab l e AI so f tware i s for academic purposes
only and not for commercial use .

s i g n a l (1 1) : Segmentation f a u l t
in exp r e s s i on s t a r t i n g at none : 0
_Py_DECREF at / usr / l o c a l / s r c /conda/python −3.9.12/ Inc lude /object . h :422 [i n l i n e d]
GetResult at / usr / l o c a l / s r c /conda/python −3.9.12/ Modules/_ctypes/ c a l l p r o c . c :989 [i n l i n e d]
_ctypes_cal lproc at / usr / l o c a l / s r c /conda/python −3.9.12/ Modules/_ctypes/ c a l l p r o c . c :1301
PyCFuncPtr_call at / usr / l o c a l / s r c /conda/python −3.9.12/ Modules/_ctypes/_ctypes . c :4201
_PyObject_MakeTpCall at python3 (unknown l i n e)
_PyEval_EvalFrameDefault at python3 (unknown l i n e)
_PyFunction_Vectorcall at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55cf104ac72e)
_PyFunction_Vectorcall at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55cf104ac72e)
_PyFunction_Vectorcall at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55cf104ac72e)
unknown func t i on (ip : 0 x55c f10544bf8)
unknown func t i on (ip : 0 x55cf104ac754)
unknown func t i on (ip : 0 x55c f10544bf8)
unknown func t i on (ip : 0 x55c f104 f5286)
unknown func t i on (ip : 0 x55c f104 f54dc)
unknown func t i on (ip : 0 x55cf1053a102)
PyObject_GetAttr at python3 (unknown l i n e)
_PyObject_GetMethod at python3 (unknown l i n e)
_PyEval_EvalFrameDefault at python3 (unknown l i n e)
_PyFunction_Vectorcall at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55c f1056e f4e)
PyObject_GetItem at python3 (unknown l i n e)
_PyEval_EvalFrameDefault at python3 (unknown l i n e)
_PyFunction_Vectorcall at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55cf104aaae5)
unknown func t i on (ip : 0 x55cf10543662)
_PyFunction_Vectorcall at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55cf104aaae5)
unknown func t i on (ip : 0 x55cf10543662)
PyEval_EvalCodeEx at python3 (unknown l i n e)
PyEval_EvalCode at python3 (unknown l i n e)
unknown func t i on (ip : 0 x55c f105 f050a)
unknown func t i on (ip : 0 x55c f10620 f74)
unknown func t i on (ip : 0 x55cf104c1986)
PyRun_SimpleFileExFlags at python3 (unknown l i n e)
Py_RunMain at python3 (unknown l i n e)
Py_BytesMain at python3 (unknown l i n e)
__libc_start_main at / l i b /x86_64−l inux−gnu/ l i b c . so . 6 (unknown l i n e)
unknown func t i on (ip : 0 x55c f105ae09 f)
A l l o c a t i on s : 57922925 (Pool : 57903382; Big : 19543) ; GC: 62
Segmentation f a u l t (core dumped)

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

M Comparison with Other Interpretable Survival Models

We also compared OSST with other interpretable models. The Cox proportional hazards model provides more
flexible predictions of survival functions but fails to capture non-linear relationships among the features. More
importantly, standard Cox models generally do not have sparsity regularization and they are not sparse even
with ridge (ℓ2) regularization. We consider a single Cox model with many non-zero coefficients less interpretable
than a single sparse tree model. Generalized Additive Models (GAMs) is another interpretable survival model
form that is not as popular as Cox models. Bender et al. (2018) provide one possible way to apply GAMs to
survival analysis: the survival data should first be transformed into a format that is suitable to fit Piecewise
Exponential Additive Mixed Models (PAMMs); fitted PAMMs can be represented as GAMs and be estimated
using generic GAM software.

Collection and Setup: We ran this experiment on 5 datasets (churn, credit, employee, maintenance, servo)
for Cox, PAMM and OSST. We split each dataset into halves (training and testing sets). For each method, we
performed 5-fold cross-validation on the training set to choose hyper-parameters, trained models with the chosen
hyper-parameters on the training set and tested the performance (IBS ratio) on the testing set. There are no
available hyper-parameters to tune in pammtools.

Cox: We used CoxPHSurvivalAnalysis from scikit-survival.
PAMM: We used pam from pammtools package, https://cran.r-project.org/web/packages/pammtools/
index.html.

Results: We found that OSST approaches the performance of Cox while PAMM is dominated by OSST and a
single Kaplan-Meier curve. Table 6 shows the best hyper-parameters, training accuracies and testing accuracies
of each method on various datasets.

https://cran.r-project.org/web/packages/pammtools/index.html
https://cran.r-project.org/web/packages/pammtools/index.html

Optimal Sparse Survival Trees

Dataset Method Tuned Hyper-parameters Training IBS Ratio Testing IBS Ratio

churn

OSST regularization max_depth 0.602 0.4700.001 5

Cox alpha 0.571 0.4951

PAMM N/A -0.500 0.490N/A

credit

OSST regularization max_depth 0.199 0.1700.0025 5

Cox alpha 0.323 0.1351

PAMM N/A -0.443 errorN/A

employee

OSST regularization max_depth 0.691 0.6340.0005 5

Cox alpha 0.441 0.3765

PAMM N/A error errorN/A

maintenance

OSST regularization max_depth 0.985 0.9830.0001 5

Cox alpha 0.901 0.8981

PAMM N/A -6.54 -5.89N/A

servo

OSST regularization max_depth 0.544 0.3600.01 4

Cox alpha 0.624 0.4871

PAMM N/A error -10.963N/A

Table 6: The best hyper-parameters, training accuracies and testing accuracies of OSST, Cox and PAMM on
datasets churn, credit, employee, maintenance, servo.

Rui Zhang, Rui Xin, Margo Seltzer, Cynthia Rudin

N Black Box Survival Models

We further explored whether optimal sparse survival trees achieve the performance of black box models. Random
Survival Forest (RSF) improves predictive performance and reduces overfitting by aggregating the predicted sur-
vival functions from individual survival trees. Gradient-boosted Cox proportional hazard loss with regression trees
as the base learner can capture complex non-linear relationships and interactions between predictors, producing
more accurate predictions of survival outcomes. However, it significantly increases model complexity and makes
the model extremely hard to interpret. We tried to compare to several deep learning survival models implemented
in package survivalmodels (https://cran.r-project.org/web/packages/survivalmodels/index.html), in-
cluding Deepsurv (Katzman et al., 2018), Deephit (Lee et al., 2018), Coxtime (Kvamme et al., 2019), DNNSurv
(Zhao and Feng, 2019), but found that they were no longer able to install or run even their example codes.

Collection and Setup: We ran this experiment on 5 datasets (churn, credit, employee, maintenance, servo) for
RSF, GB-Cox. We split each dataset into halves (training and testing sets). For each method, we performed 5-fold
cross-validation on the training set to choose hyper-parameters, trained models with the chosen hyper-parameters
on the training set and tested the performance (IBS ratio) on the testing set.

RSF: We used RandomSurvivalForest from scikit-survival.
GB-Cox: We used GradientBoostingSurvivalAnalysis from scikit-survival.

Results: We found a single optimal sparse survival tree generally outperforms a random survival forest and
approaches the performance of GB-Cox. Remember that these methods sacrifice intepretability. Table 7 shows
the best hyper-parameters, training accuracies and testing accuracies of each method on various datasets.

https://cran.r-project.org/web/packages/survivalmodels/index.html

Optimal Sparse Survival Trees

Dataset Method Tuned Hyper-parameters Training IBS Ratio Testing IBS Ratio

churn

OSST regularization max_depth 0.602 0.4700.001 5

RSF max_features n_estimators max_depth 0.533 0.398sqrt 200 9

GB-Cox max_features n_estimators max_depth 0.677 0.561log2 500 3

credit

OSST regularization max_depth 0.199 0.1700.0025 5

RSF max_features n_estimators max_depth 0.221 0.154sqrt 100 5

GB-Cox max_features n_estimators max_depth 0.309 0.209sqrt 100 3

employee

OSST regularization max_depth 0.691 0.6340.0005 5

RSF max_features n_estimators max_depth 0.676 0.616log2 50 8

GB-Cox max_features n_estimators max_depth 0.784 0.625log2 500 12

maintenance

OSST regularization max_depth 0.985 0.9830.0001 5

RSF max_features n_estimators max_depth 0.565 0.545log2 50 3

GB-Cox max_features n_estimators max_depth 0.880 0.866log2 500 3

servo

OSST regularization max_depth 0.544 0.3600.01 4

RSF max_features n_estimators max_depth 0.360 0.260log2 500 3

GB-Cox max_features n_estimators max_depth 0.803 0.499log2 200 6

Table 7: The best hyper-parameters, training accuracies and testing accuracies of OSST, RSF and GB-Cox on
datasets churn, credit, employee, maintenance, servo.

	INTRODUCTION
	METHODOLOGY
	Notation and Objective
	Dynamic Programming
	Bounds
	Lower Bounds

	EXPERIMENTS
	Optimality
	Generalization
	Comprehesive Quality
	Running Time
	Scalability
	Optimal Survival Trees

	LIMITATIONS
	CONCLUSION
	Extended Related Work
	Theorems and Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Lemma 2.4
	Proof of Theorem 2.6
	Proof of Theorem 2.7
	Proof of Corollary 2.7.1
	Splitting Bounds
	Leaf Bounds
	Permutation Bound
	Hierarchical Objective Lower Bound for Sub-trees
	Subset Bound

	Metrics
	Integrated Brier Score Ratio
	Concordance Indices
	Cumulative-Dynamic-AUC

	Experiment Setup Details
	Datasets
	Data Preprocessing
	Experiment Platform
	Software Packages

	Experiments: Optimality
	Experiments: Generalization
	Experiment: Tree Quality
	Experiment: Running Time
	Experiment: Scalability
	Ablation Study: Guessing
	Optimal Survival Trees
	Comparison with Interpretable AI
	Comparison with Other Interpretable Survival Models
	Black Box Survival Models

