
Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order
Optimization

Zhou Zhai 1, Wanli Shi2, Heng Huang 3, Yi Chang 4, Bin Gu2,4, †

1 Nanjing University of Information Science & Technology, China
2 Mohamed bin Zayed University of Artificial Intelligence, UAE

3 University of Maryland, College Park, USA
4 School of Artificial Intelligence, Jilin University, China

†Correspondence to: jsgubin@gmail.com.

Abstract

Zeroth-order (ZO) methods, which use the fi-
nite difference of two function evaluations (also
called ZO gradient) to approximate first-order
gradient, have attracted much attention recently
in machine learning because of their broad appli-
cations. The accuracy of the ZO gradient highly
depends on how many finite differences are aver-
aged, which are intrinsically determined by the
number of perturbations randomly drawn from
a distribution. Existing ZO methods try to learn
a data-driven distribution for sampling the per-
turbations to improve the efficiency of ZO opti-
mization (ZOO) algorithms. In this paper, we ex-
plore a new and parallel direction, i.e., learn an
optimal sampling policy instead of using a ran-
dom strategy to generate perturbations based on
the techniques of reinforcement learning (RL),
which makes it possible to approximate the gra-
dient with only two function evaluations. Specif-
ically, we first formulate the problem of learning
a sampling policy as a Markov decision process.
Then, we propose our ZO-RL algorithm, i.e., us-
ing deep deterministic policy gradient, an actor-
critic RL algorithm to learn a sampling policy
that can guide the generation of perturbed vec-
tors in getting ZO gradients as accurately as pos-
sible. Importantly, the existing ZOO algorithms
for learning a distribution can be plugged in to
improve the exploration of ZO-RL. Experimen-
tal results with different ZO estimators show that
our ZO-RL algorithm can effectively reduce the
query complexity of ZOO algorithms and con-

Proceedings of the 27th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2024, Valencia, Spain. PMLR:
Volume 238. Copyright 2024 by the author(s).

verge faster than existing ZOO algorithms, espe-
cially in the later stage of the optimization pro-
cess.

1 Introduction

Gradient-based optimization is dominant in machine learn-
ing. However, in many fields of science and engineering,
explicit gradients ∇f(x) are difficult or even infeasible to
obtain. Zeroth-order (ZO, also known as derivative-free)
optimization, where the optimizer is provided with only
function values f(x) and uses the finite difference (Bera-
has et al., 2021) (also called ZO gradient) to approximate
the explicit (first-order) gradients ∇f(x). ZO optimization
(ZOO) has a lot of applications including hyperparame-
ter optimization (Gu et al., 2021; Koch et al., 2018; Shi
et al., 2022) and bandit problems (Bubeck & Cesa-Bianchi,
2012; Lattimore & Gyorgy, 2021). One of the famous ap-
plications is to generate prediction-evasive adversarial ex-
amples in the black-box setting (Liu et al., 2018a; Papernot
et al., 2017), e.g., crafted images with imperceptible pertur-
bations to deceive a well-trained image classifier into mis-
classification. Thus, ZOO has attracted a lot of attention
in recent years due to a growing requirement in real-world
applications.

Specifically, the ZO gradient is usually with the following
formula.

∇̂f(x) = 1

µq

q∑
i=1

[f(x+ µui)− f(x)]ui (1)

where µ > 0 is the smoothing parameter, {ui}qi=1 are the
random perturbed vectors drawn from a distribution p(u)
which could be a Gaussian distribution or a uniform distri-
bution on unit sphere (Nesterov & Spokoiny, 2017; Duchi
et al., 2012). Essentially, if the smoothing parameter µ ap-
proaches infinitesimal, limµ→0 f(x + µu) − f(x) is ex-
actly calculating the directional derivative ∇uf(x) along

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

Figure 1: (a) Comparison of the ZO gradient directions obtained by sampling perturbed vectors from the standard Gaussian
distribution and a learned Gaussian distribution. (b) Comparison of the ZO gradient directions obtained by a random
sampling policy and a learned sampling policy. (c) The architecture of ZO optimizer.

a direction u, which means we use q directional deriva-
tives to approximate the ground truth gradient ∇f(x) due
to ∇f(x) =

∫
u
(∇uf(x)u)p(u)du (Nesterov & Spokoiny,

2017). From this perspective, the accuracy of the ZO gradi-
ent highly depends on the number of perturbed vectors ran-
domly sampled from the distribution. For a practical ZOO
algorithm, e.g., vanilla ZOO Algorithm, we should balance
the number q of perturbed vectors and the accurateness of
ZO gradient to make the overall query complexity1 of the
ZOO algorithm as less as possible.

To improve the efficiency of ZOO algorithms, there has
been much effort made recently. The main idea of these
efforts (Maheswaranathan et al., 2019; Ruan et al., 2019)
is trying to learn a non-isotropic Gaussian distribution
N (0,Σ) (the co-variance matrix Σ may not be a scale of the
identity matrix as shown in Fig. 1.a.) to generate perturbed
vectors, instead of using the standard Gaussian distribu-
tion N (0, I). By using the learned Gaussian distribution,
one more accurate ZO gradient can be obtained for a fixed
query budget, which could improve the convergence of
ZOO algorithms. Specifically, a lot of evolutionary strate-
gies (ES) (Maheswaranathan et al., 2019) such as Natural
ES (Wierstra et al., 2008), CMA-ES (Hansen, 2006), and
Guided ES (Maheswaranathan et al., 2019) were proposed
to let co-variance matrix Σ track a low-dimensional sub-
space and further use this to guide the sampled perturbed
vectors. (Ruan et al., 2019) utilized RNN to learn an adap-
tive co-variance matrix Σ and dynamically guide the sam-
pled perturbed vectors.

As discussed above, learning a good sampling distribution
helps to calculate a more accurate ZO gradient. Parallel to
learning a sampling distribution, learning a sampling pol-
icy to generate perturbed vectors instead of using multiple
randomly sampled perturbed vectors (please refer to Fig
1.b.) would also be a promising direction for accelerating
ZO algorithms. Theoretically, if the perturbation vector u′

is with the same direction of ∇f(x), we can have that the

1The overall number of queries of function evaluations is
called query complexity.

directional derivative ∇u′f(x) is equal to the true gradi-
ent∇f(x), i.e.,∇u′f(x)u′ = ∇f(x). Thus,∇f(x) can be
approximated by the ZO gradient with only two queries as
follows.

∇̂f(x) = 1

µ
[f(x+ µu′)− f(x)]u′ (2)

The key is to design some mechanism to find such per-
turbed vector u′ which is an unstudied problem in the com-
munity as far as we know.

In this paper, we explore Reinforcement Learning (RL)
to learn a good sampling policy to solve the above is-
sue. We propose a ZOO algorithm based on RL (ZO-RL)
to learn a sampling policy using the policy gradient algo-
rithm. Specifically, we first formulate the problem of learn-
ing a sampling policy as a Markov decision process (MDP).
Then, we use an actor-critic algorithm called deep deter-
ministic policy gradient (DDPG) (Lillicrap et al., 2015),
with two neural network function approximators to learn a
sampling policy that can guide the generation of perturbed
vectors in getting ZO gradients as accurate as possible. Im-
portantly, the existing ZOO algorithms for learning a distri-
bution can be plugged in to improve the exploration of ZO-
RL. Experimental results on three ZOO applications show
that our ZO-RL algorithm can effectively reduce the query
complexity of ZOO algorithms and converge faster than ex-
isting ZOO algorithms, especially in the later stage of the
optimization process.

2 Learning Sampling Policy for ZOO

2.1 Principle of Using RL to Accelerate ZOO

As it regains its popularity recently because of star projects
like AlphaGo (Wang et al., 2016) and AlphaStar (Arulku-
maran et al., 2019), RL is a dominant framework that can
continuously optimize a policy by maximizing the expected
cumulative reward while interacting with the environment.
Thus we take the mechanism of generating perturbed vec-
tors as the RL agent whose goal is to make the direction of

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

the perturbed vector close to the true gradient. The target
function f and the updating rules of the ZOO algorithm are
all parts of the environment. At each step, the agent picks
a perturbation vector and pass it over to the environment
for execution. The environment takes its step to calculate
ZO gradient and update xk and output xk+1 as the new ob-
servation for the RL agent. The RL agent then receives a
reward of f(xk+1) − f(xk). Please refer to Fig. 3 for the
above procedure. Basically, this is a typical RL problem,
which can be solved by model-free RL methods. The work
we present here can also be regarded as the work of model-
free learning to optimize (L2O) (Chen et al., 2021; Li &
Malik, 2016), which aims to learn a better optimization al-
gorithm by observing its execution. The RL is an effective
way to learn policies in a data-driven manner based on the
execution of algorithms.

Intuitive reason of the advantage of ZO-RL. Even RL
can work on ZOO as mentioned above, why ZO-RL can
beat the traditional ZOO algorithms in terms of query com-
plexity? We try to answer this question intuitively in the be-
low. In practice, our extensive experimental results (some
of them are provided in the appendix) support this advan-
tage.

Essentially, ZO-RL uses one perturbed vector generated
by the learned policy function and two function queries
to approximate the true gradient as shown in (2). Ideally,
if the agent becomes smart in selecting perturbed vectors,
which could produce a competitive approximation of the
truth gradient as accurate as the traditional ZO gradient (1)
with q + 1 function queries. Thus, an effective prediction
of the gradient-oriented perturbed vector by RL can reduce
the query complexity and speed up the convergence of the
ZOO algorithms. As shown in Fig 2, in the later stage of
RL training, the RL agent could learn to reduce the random
behavior (i.e., be smart) which makes ZO-RL possible to
save query complexity compared to the traditional ZOO al-
gorithms.

2.2 Formulation with MDP

We consider the problem of finding a sampling policy that
encourages the sampled perturbed vectors to be more effi-
cient in calculating the ZO gradients. As discussed in the
previous subsection, RL provides a framework in which
the agent can learn the best action to take by subsequently
receiving rewards from the environment with which it in-
teracts. Specifically, at each query of the ZO-RL algo-
rithm, the agent outputs the perturbed vectors u′ according
to the current state xk. Then, the agent receives rewards
and next state xk+1 by interacting with the environment
and learns the sampling policy to maximize rewards. We
will use MDP to formalize this procedure with the tuple
(S,A,Psa, R) as follows.

1. State space S ⊂ Rd: We choose sk = xk ∈ S

to describe the current state of ZO algorithm, where
xk is the point location for the k-th iteration 2. The
state space S could be Rd or some constraint set (e.g.
||x||2 ≤ 1) which depends on the target problem.

2. Action space A ⊂ Rd: We choose ak = u′ ∈ A as
the action, where u′ is a perturbed vector. The action
space A could be Rd regarding Gaussian distribution
or the surface of the unit sphere regarding uniform dis-
tribution on the unit sphere. Note that, no matter which
kind of action space is considered, all of them are con-
tinuous.

3. Transition probability Psa = P(·|s, a): We do not
know the transition probability. We will use model-
free RL methods to learn the policy.

4. Reward function R(s, a) : S × A → R: We con-
sider the reward function R(sk, ak) = rk = f(xk) −
f(xk+1) as the difference between the function val-
ues at the current point location xk and the immedi-
ately following point location xk+1 after the action ak
is performed, which encourages the learned policy to
reach the minimum of the function value as quickly as
possible.

We also provide a visualization of MDP in Figure 3.
Through the framework of MDP, we will propose an RL-
based ZOO algorithm to learn an action policy to maximize
the expected cumulative reward, which will be discussed in
detail in the following. The optimal policy is to sample per-
turbed vectors along the ground-truth gradient direction of
the unknown function.

2.3 ZO-RL Algorithm

Actor-Critic Method. As mentioned above, the action
space is continuous in our ZOO problem. We adopt the de-
terministic sampling policy π, because it has the advantage
of requiring fewer data to be sampled compared with the
stochastic policy gradient algorithm. Thus, we can achieve
higher efficiency for the algorithm and have stable perfor-
mance in a series of tasks with continuous action space.

To find the optimal policy to approach the true gradient di-
rection, we use deep deterministic policy gradient (DDPG)
to learn sampling policy π. DDPG is an actor-critic and
model-free algorithm (Konda & Tsitsiklis, 2000; Lillicrap
et al., 2015) for RL over continuous action spaces and out-
put deterministic actions in a stochastic environment to
maximize cumulative rewards.

The DDPG has two neural network function approxima-
tors. One is called the actor-network which learns a de-
terministic sampling policy π(x|θπ) with neural network

2In the appendix, we provide the result of using the function
values from the previous m iterations as states, since this state can
reflect the effectiveness of the previous estimated ZO gradient.

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

Figure 2: Illustration of the change of ZO gradient direction.

Figure 3: Illustration of learning sampling policy for ZOO
based on RL.

weights θπ . The other is called the critic network, which
outputs a state-action value function Q(s, a|θQ) with neu-
ral network weights θQ to evaluate the value of the action
performed.

In addition, DDPG creates a copy of the actor and critic net-
works, Q′(s, a|θ′Q) with neural network weights θ′π and
π′(x|θ′π) with neural network weights θ′Q respectively,
which are called target networks and used for calculating
the target values. The weights of these target networks are
updated by making them slowly track the learned networks:
θ′ ← τθ′ + (1 − τ)θ′ with τ ≪ 1. This means that the
target values are constrained to change slowly, greatly im-
proving the stability of learning. This simple change moves
the relatively unstable problem of learning the action-value
function closer to the case of supervised learning.

At each iteration, we minimize a squared-error loss L to

update the critic network parameter:

min
θQ

L =
1

N

N∑
k=1

(yk −Q(s, a|θQ))2 (3)

where yk represents the TD target denoted as

yk = rk + γQ′
(
sk+1, π

′(xk+1|θ′π)|θ′Q
)

(4)

We maximize the cumulative reward using a sampled pol-
icy gradient to the actor-network parameter:

∇θπJ

≈ 1

N

N∑
k=1

∇{uk}Q(s, a|θQ)|s=xk,a=π(xk) · ∇θππ(x|θπ)|xk

where J = Er,s∼S,a∼π[R(s, a)] represents the expected
cumulative reward.

Initialization with a Warm Start. At each iteration of
ZO-RL, we use actor-network to output action u′ accord-
ing to current state xk. Then, we transfer the action u′ to
ZO Oracle, calculate the ZO gradient g̃ and output the next
state xk+1, and use the critic network to output the reward
of this action. We call {u′, xk, xk+1, rk} a transition. Good
transitions can accelerate the learning speed of the agent.
Random sampling can effectively estimate the accurate gra-
dient direction by querying multiple perturbed vectors in
each iteration. Thus, in order to better initialize the actor-
network, we can use random sampling to sample perturbed
vectors and interact with the current environment to obtain
an accurate ZO gradient estimator ĝ. We store these transi-
tions generated by random sampling into the replay mem-
ory buffer and use them to initialize the actor-network. We
use a cosine similarity ρ to calculate the similarity of gradi-
ent directions obtained by plain random sampling and our
sampling policy π(x|θπ):

ρ =
ĝ · g̃

||ĝ|| · ||g̃||
(5)

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

Figure 4: Illustration of ZO-RL algorithm.

where ĝ is the ZO gradient estimator defined in (1) with
the perturbed vectors generated by random sampling, and
g̃ is the ZO gradient estimator defined in (2) with the per-
turbed vector generated by our RL based policy. Obviously,
ρ ∈ [−1, 1]. If ρ closes to 1, that means the directions be-
tween ĝ and g̃ are close to each other. Thus, we set a thresh-
old ϵ to control when to switch to the pure RL method. Cor-
respondingly, if ρ < ϵ, we use the random sampling policy
to generate perturbed vectors and initialize the actor net-
work. Note that once ρ ≥ ϵ, the codes in lines 6-9 will not
be executed anymore which also supports that the codes in
lines 6-9 are just for initialization.

ZO-RL. We summarize our ZO-RL algorithm in Algo-
rithm 1. Note that lines 5-10 of Algorithm 1 correspond to
the also-ran which is used for initialization. Once ρ ≥ ϵ,
lines 6-9 will not be executed anymore, which means that
we will use the perturbed vectors produced by the RL-
based sampling policy to calculate the ZO gradients and
update the solutions entirely.

2.4 Improve Exploration
The RL usually can only evaluate the performance of an
action but does not know whether the action is the best. For
this reason, the essence of RL determines that it needs ex-
ploration very much. Thus, we add a noise from an appro-
priate Gaussian distribution to the action performed by the
agent in RL to increase the exploration, which is formalized
by u′ = (1 − α)π(xk|θπ) + α · ū, where ū ∼ N (0,Σk).
α ∈ [0, 1] is the trade-off parameter to balance the learned
policy and an exploration distribution. Adding noise to the
action can help RL to explore the environment more ef-
fectively and to think about all possible actions. Here, we
utilize the learned sampling distribution from existing ZOO
algorithms as the noise distribution to improve the quality
of exploration. Specifically,

1. (Ruan et al., 2019) proposed a ZOO algorithm called
ZO-LSTM, which use a Long Short-Term Memory
(LSTM) network called QueryRNN to learn the sam-

Algorithm 1 Zeroth-Order Optimization with RL (ZO-RL)

Input: Smoothing parameter µ, the number of sampled
perturbed vectors q and learning rate η, mini-batch size
N and threshold ϵ, α ∈ [0, 1].

Output: RL based Sampling policy π(x|θπ).
1: Initialize Σ = Id, ρ = 0 and sampling policy π(x|θπ).
2: for k = 1 to K do
3: Get a perturbed vectors u′ = (1−α)π(xk|θπ)+α·ū,

where ū ∼ N (0,Σk).
4: Calculate the ZO gradient estimator g̃k according to

(2) with the perturbed vectors u′.
5: if ρ < ϵ then
6: Randomly sample q perturbed vectors {ui}qi=1

from the Gaussian distribution N (0,Σk).
7: Calculate the ZO gradient estimator ĝk according

to (1) with the q perturbed vectors.
8: Update ρ based on ĝk and g̃k according to (5).
9: Update g̃k = ĝk (use ĝk to substitute g̃k).

10: end if
11: Update xk with g̃k, e.g. xk+1 = xk − η · g̃k.
12: Store transition {{ui}qi /u′, xk, xk+1, rk} in a replay

memory buffer.
13: Update Σ (e.g. according to (6)).
14: Observe N transitions from the replay memory

buffer to update the actor-network and critic net-
work.

15: end for

pling distributions. They dynamically update the co-
variance matrix Σk as follows.

Σk = QueryRNN([∇̂f(xk), xk−1]) (6)

QueryRNN can increase the sampling probability in
the direction of the bias of the estimated gradient or
the parameter update of the previous iteration.

2. (Maheswaranathan et al., 2019) proposed a Guided
Evolutionary Strategy for ZO-Guided ES, which in-
corporates surrogate gradient information (which is

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

correlated with true gradient) into random search. It
keeps track of a low dimensional guided subspace
defined by k surrogate gradients, which is combined
with the full space for query direction sampling. Thus,
they dynamically update the covariance matrix Σk as
follows.

Σk = βId + (1− β)UUT (7)

where U ∈ Rd×k is the orthonormal basis of the
guided subspace (i.e., UUT = Ik), β trades off be-
tween the full space and the guided space.

At each iteration of our ZO-RL algorithm, we can update
Σk (i.e. line 13 of Algorithm 1) to learn the corresponding
Gaussian distribution.

3 Experimental Setup

3.1 Design of experiments

We empirically demonstrate the superiority of our proposed
ZO-RL on three practical application problems (black-
box adversarial attack, non-convex binary classification,
and hyperparameter optimization problem). Specifically, to
show the advantages of the learned sampling policy, we
compare the performance of our ZO-RL with existing ZO
gradient estimators on three ZOO algorithms.

The comparative ZO gradient estimators are summarized
as follows:

1. ZO-RS (Wang et al., 2019): ZO gradients are calculated
by (1) with randomly sampled perturbed vectors from
standard Gaussian distribution.

2. ZO-LSTM (Ruan et al., 2019): They learned the Gaus-
sian sampling rule and dynamically predicted the co-
variance matrix Σ for query directions with recurrent
neural networks, and generated ZO gradient by Up-
dateRNN.

3. ZO-Guided ES (Maheswaranathan et al., 2019): ZO
gradients are calculated by (1) with randomly sampled
perturbed vectors from a learned Gaussian distribution.
They let the covariance matrix Σ in Gaussian distribu-
tion be related to the recent history of surrogate gradi-
ents during optimization.

4. ZO-RL: ZO gradients are calculated by (2) with the per-
turbed vector generated by our ZO-RL.

5. ZO-RL-LSTM: ZO gradients are calculated by (2) with
the perturbed vector generated by our ZO-RL where
ZO-LSTM is used to improve the exploration.

The three ZOO algorithms are summarized as follows:

1. SGD (Ghadimi & Lan, 2013): A stochastic gradient
descent algorithm based on the ZO gradient estima-
tors.

2. signSGD (Liu et al., 2018b): A stochastic gradient de-
scent algorithm based on the sign of the ZO gradient
estimators.

3. ADAM (Chen et al., 2017): A stochastic gradient de-
scent algorithm based on adaptive estimates of lower-
order moments.

To show the sensitivity of our proposed algorithm, we com-
pare the performance of ZO-RL with different values of hy-
perparameters. In addition, we use ablation experiments to
test the impact of each component of ZO-RL on the perfor-
mance of our ZO-RL algorithm. The uniform distribution
on the unit sphere is also considered for generating per-
turbed vectors. These results are included in the appendix.

3.2 Implementation

The choice of the network structure of the critic and ac-
tor for our ZO-RL is important because they are used not
only to evaluate sampling policies but also to learn sam-
pling policies. We choose the convolutional neural network
(CNN) (Sezer & Ozbayoglu, 2018) both for the critic net-
work and the actor-network when image data are faced.
Specifically, for the MNIST dataset, we use a five-layer
CNN with two 5×5×6 convolutional layers with a step size
of 1, each convolutional layer is subsampled using a 2 × 2
pooling layer with a step size of 2, and finally a 300-unit
fully-connected layer.

The parameters of the optimizer have different descent
rates in different dimensions and the range may be differ-
ent in different environments. This may make it difficult for
the network to learn efficiently and find hyper-parameters
that generalize the scale of state values in different environ-
ments. To overcome this problem, we adapt the batch nor-
malization (Santurkar et al., 2018) to manually scale fea-
tures so that the parameters of the ZO optimizer are in a
similar range across environments and units.

For each task, we tune the hyper-parameters of baseline
algorithms to report the best performance. For ADAM,
we tune β1 values over {0.9, 0.99} and β2 values over
{0.99, 0.996, 0.999}. We coarsely tune the constant δ on a
logarithmic range {0.01; 0.1; 1; 10; 100; 1000} and set the
learning rate of baseline algorithms to η = δ/d, where d is
the dimension of dataset. We set the smoothing parameter
µ = 0.0001 in all experiments. The number q of sampled
perturbed vectors is selected over {1, 3, 5, 8, 10, 15, 20}
for each algorithm. When the overall number of queries
of function evaluations is fixed, the optimal number q of
sampled perturbed vectors of the comparison algorithm
is different. For fairness, we compare the results of each

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

(a) MNIST TEST 1 (b) MNIST TEST 2 (c) MNIST TEST 3 (d) MNIST TEST 1

Figure 5: Adversarial attack to black-box models in SGD setting.

(a) MNIST TEST 1 (b) MNIST TEST 2 (c) MNIST TEST 3 (d) MNIST TEST 1

Figure 6: Adversarial attack to black-box models in signSGD setting.

(a) MNIST TEST 1 (b) MNIST TEST 2 (c) MNIST TEST 3 (d) MNIST TEST 1

Figure 7: Adversarial attack to black-box models in ADAM setting.

algorithm under their best number of sampled perturbed
vectors. For our ZO-RL algorithm, the values for hy-
perparameters l1, l2, γ, N , τ , ϵ and α are selected over
{0.001, 0.005, 0.01, 0.05}, {0.001, 0.005, 0.01, 0.05},
{0.99, 0.95, 0.9}, {16, 32, 64}, {0.001, 0.005, 0.01, 0.05},
{0.3, 0.4, 0.5, 0.6} and {0.33, 0.5, 0.66} respectively.

4 Experimental Results and Discussion

4.1 Adversarial Attack to Black-box Models

We consider generating adversarial examples to attack the
black-box DNN image classifier and formulate it as a
zeroth-order optimization problem. The targeted DNN im-
age classifier F (x) = [F1, F2, · · · , FK] takes as input an
image x ∈ [0, 1]d and outputs the prediction scores of K
classes. Given an image x0 ∈ [0, 1]d and its correspond-
ing true label t0 ∈ [1, 2, · · · ,K], an adversarial sample x
is visually similar to the original image x0 but leads the
targeted model F to make a wrong prediction other than
t0. The black-box attack problem is normally formulated

as follows.

min
x
{Ft0(x)−max

j ̸=t0
Fj(x), 0}+ c∥x− x0∥p (8)

where the first term is the attack loss which measures how
successful the adversarial attack is and penalizes correct
prediction by the targeted model. The second term is the
distortion loss (p-norm of added perturbation) which en-
forces the perturbation added to be small and c is the reg-
ularization coefficient. In our experiment, we use ℓ1 norm
(i.e., p = 1), and set c = 0.1 for MNIST attack task. Due to
the black-box setting, one can only compute the function
values of the above objective, which leads to ZOO prob-
lems (Chen et al., 2017). Note that attacking each sample
x0 in the dataset corresponds to a particular ZOO problem
instance, which motivates us to train a ZO optimizer of-
fline with a small subset, and apply it to online attack to
other samples with faster convergence (which means lower
query complexity) and lower final loss (which means less
distortion). We randomly select 50 images that are correctly
classified by the targeted model in each test set to train the
optimizer and select another 50 images to test the learned
optimizer. All ZO optimizers use the same initial points for

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

finding adversarial examples. The dimension of the opti-
mizer function is d = 28× 28 for MNIST.

In this subsection, we compare the performance of different
ZOO algorithms under Gaussian distribution. We provide
the results under the spherical distribution in the appendix.
Fig. 5∼7. (a)∼(c) shows the black-box attack loss versus
query number using different ZOO algorithms under Gaus-
sian distribution in different settings. The loss curves are
averaged over 10 independent random trials and the shaded
areas indicate the standard deviation. The q in ZO-RL rep-
resents the number of sampled query directions in each it-
eration of random sampling. In a ZOO problem where we
can only access the function output, we care more about
the query complexity instead of running time. In the ex-
treme case, we could satisfy the running time to reduce the
query complexity. The results clearly show that our ZO-
RL algorithm can effectively reduce the query complexity
of ZOO algorithms, especially in the later stage of the opti-
mization process, and our ZO-RL-LSTM can always obtain
the best results by combining learned sampling policy and
sampling distribution. This is due to the fact that our ZO-
RL algorithm learns a smarter sampling policy through RL
instead of random sampling. Fig. 5∼7. (d) plots the cosine
similarities between the ZO gradient estimator and ground-
truth gradient. The direction of the ZO estimator gener-
ated by our ZO-RL algorithm is closer to the one of the
ground-truth gradient compared to other ZO estimators. In
the later stage of the optimization process, the convergence
of ZO gradient leads to the reduction of the reward obtained
by our ZO-RL algorithm in exploring action space. Thus,
the cosine similarity decreases after the convergence of the
ZOO algorithm.

5 Conclusion

We proposed an RL-based sampling policy for generating
the perturbations in ZOO. Since our method only affects
the generation of perturbed vectors, it can be used with dif-
ferent ZOO algorithms by substituting the ZO estimator to
further improve the efficiency of ZOO algorithms. Impor-
tantly, the existing ZOO algorithms for learning a distribu-
tion can be plugged in to improve the exploration of our
ZO-RL. Experimental results on different ZOO algorithms
show that our ZO-RL algorithm can effectively reduce the
query complexity of ZOO algorithms, especially in the later
stage of the optimization process, and converge faster than
existing ZOO algorithms in different scenarios.

Acknowledgments

Bin Gu was supported by the Natural Science Foundation
of China under Grant 62076138. Yi Chang was partially
supported by the Natural Science Foundation of China un-
der Grant U2341229, as well as by the Ministry of Science

and Technology Key R&D Project of China under the num-
ber 2023YFF0905400.

References
Arulkumaran, K., Cully, A., and Togelius, J. Alphastar: An

evolutionary computation perspective. In Proceedings
of the genetic and evolutionary computation conference
companion, pp. 314–315, 2019.

Berahas, A. S., Cao, L., Choromanski, K., and Scheinberg,
K. A theoretical and empirical comparison of gradient
approximations in derivative-free optimization. Founda-
tions of Computational Mathematics, pp. 1–54, 2021.

Bubeck, S. and Cesa-Bianchi, N. Regret Analysis of
Stochastic and Nonstochastic Multi-armed Bandit Prob-
lems. 2012.

Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J., and Hsieh, C.-
J. Zoo: Zeroth order optimization based black-box at-
tacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pp. 15–26, 2017.

Chen, T., Chen, X., Chen, W., Heaton, H., Liu, J., Wang,
Z., and Yin, W. Learning to optimize: A primer and a
benchmark. 2021.

Duchi, J. C., Bartlett, P. L., and Wainwright, M. J. Ran-
domized smoothing for stochastic optimization. SIAM
Journal on Optimization, 22(2):674–701, 2012.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013.

Gu, B., Liu, G., Zhang, Y., Geng, X., and Huang, H. Opti-
mizing large-scale hyperparameters via automated learn-
ing algorithm. 2021.

Hansen, N. The cma evolution strategy: a comparing re-
view. In Towards a new evolutionary computation, pp.
75–102. Springer, 2006.

Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin,
J., and Xu, Y. Autotune: A derivative-free optimiza-
tion framework for hyperparameter tuning. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 443–452,
2018.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms.
In Advances in neural information processing systems,
pp. 1008–1014, 2000.

Lattimore, T. and Gyorgy, A. Improved regret for zeroth-
order stochastic convex bandits. In Conference on
Learning Theory, 2021.

Li, K. and Malik, J. Learning to optimize. 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous con-

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

trol with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Liu, D. C. and Nocedal, J. On the limited memory bfgs
method for large scale optimization. Mathematical Pro-
gramming, 45(1):503–528, 1989.

Liu, L., Cheng, M., Hsieh, C.-J., and Tao, D. Stochas-
tic zeroth-order optimization via variance reduction
method. arXiv preprint arXiv:1805.11811, 2018a.

Liu, S., Chen, P.-Y., Chen, X., and Hong, M. signsgd
via zeroth-order oracle. In International Conference on
Learning Representations, 2018b.

Maheswaranathan, N., Metz, L., Tucker, G., Choi, D., and
Sohl-Dickstein, J. Guided evolutionary strategies: Aug-
menting random search with surrogate gradients. In In-
ternational Conference on Machine Learning, pp. 4264–
4273. PMLR, 2019.

Nesterov, Y. and Spokoiny, V. Random gradient-free mini-
mization of convex functions. Foundations of Computa-
tional Mathematics, 17(2):527–566, 2017.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik,
Z. B., and Swami, A. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on
Asia conference on computer and communications secu-
rity, pp. 506–519, 2017.

Ruan, Y., Xiong, Y., Reddi, S., Kumar, S., and Hsieh, C.-J.
Learning to learn by zeroth-order oracle. arXiv preprint
arXiv:1910.09464, 2019.

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. How
does batch normalization help optimization? arXiv
preprint arXiv:1805.11604, 2018.

Sezer, O. B. and Ozbayoglu, A. M. Algorithmic financial
trading with deep convolutional neural networks: Time
series to image conversion approach. Applied Soft Com-
puting, 70:525–538, 2018.

Shi, W., Gao, H., and Gu, B. Gradient-free method for
heavily constrained nonconvex optimization. In Inter-
national Conference on Machine Learning, pp. 19935–
19955. PMLR, 2022.

Wang, F.-Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y.,
Dai, X., Zhang, J., and Yang, L. Where does alphago go:
From church-turing thesis to alphago thesis and beyond.
IEEE/CAA Journal of Automatica Sinica, 3(2):113–120,
2016.

Wang, J.-K., Li, X., and Li, P. Zeroth order optimization by
a mixture of evolution strategies. 2019.

Wierstra, D., Schaul, T., Peters, J., and Schmidhuber, J.
Natural evolution strategies. In 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress
on Computational Intelligence), pp. 3381–3387. IEEE,
2008.

Checklist

1. For all models and algorithms presented, check if you
include:

(a) A clear description of the mathematical setting,
assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm. [Yes]

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Not Applicable]

(b) Complete proofs of all theoretical results. [Not
Applicable]

(c) Clear explanations of any assumptions. [Not Ap-
plicable]

3. For all figures and tables that present empirical results,
check if you include:

(a) The code, data, and instructions needed to repro-
duce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperpa-
rameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to the
random seed after running experiments multiple
times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data, mod-
els) or curating/releasing new assets, check if you in-
clude:

(a) Citations of the creator If your work uses existing
assets. [Yes]

(b) The license information of the assets, if applica-
ble. [Yes/No/Not Applicable]

(c) New assets either in the supplemental material or
as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Yes]

5. If you used crowdsourcing or conducted research with
human subjects, check if you include:

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

(a) The full text of instructions given to participants
and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Not Applicable]

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

Appendix for “Learning Sampling Policy to Achieve Fewer Queries for
Zeroth-Order Optimization”

A Additional Experiments

A.1 Non-Convex Binary Classification Problems

We consider a binary classification problem with a non-
convex least squared loss function minw∈Rd

1
n

∑n
i=1(yi −

1/(1+ e−wT xi))2. Here (xi, yi) is the ith data sample con-
taining feature xi ∈ Rd and label yi ∈ {−1, 1}. We com-
pare the algorithms on benchmark datasets (colon-cancer
(d = 2000), german (d = 24) and a9a (d = 123) 3). All
the algorithms only have access to the ZO oracle of func-
tion value evaluations. For each dataset, we repeat the ex-
periment 10 times and report the average and the standard
deviation.

We compare the performance of different ZOO algorithms
under Gaussian distribution. We provide the results under
the spherical distribution in the appendix. Fig. 8∼9. (a)∼(c)
show the non-convex least squared loss versus query num-
ber using different ZOO algorithms under Gaussian distri-
bution in different settings. The loss curves are averaged
over 10 independent random trials and the shaded areas in-
dicate the standard deviation. The results clearly demon-
strate that our ZO-RL leads to much faster convergence and
lower final loss under different parameter update settings
compared to existing ZOO algorithms. Fig. 8∼9. (d) plots
the cosine similarities between ZO gradient estimator and
ground-truth gradient. These results demonstrate that our
proposed ZO-RL algorithm can obtain better performance
than random sampling and learning sampling distribution,
and can be well extended to different categories of ZOO
problems.

Fig. 16∼18 show the non-convex least squared loss ver-
sus query number using different ZOO algorithms under
unit sphere distribution in different settings. The “US” is
the abbreviation of unit sphere distribution. These results
demonstrate that our proposed ZO-RL algorithm can ob-
tain better performance than random sampling and learning
sampling distribution, and can be well extended to different
categories of ZOO problems.

A.2 Hyperparameter Optimization Problems

We consider a hyperparameter optimization problem in the
l2-regularized logistic regression model. We use the logis-

3http://archive.ics.uci.edu/ml/datasets.html

tic loss l(t) = log(1+e−t) as the loss function. The hyper-
parameter optimization problem for l2-regularized logistic
regression is formulated as follows.

minλ∈[−10,10]

∑n
i=1 l(yi⟨xi, w(λ)⟩),

s.t. w(λ) ∈ argminw∈Rd

∑m
i=1 l(yi⟨xi, w(λ) + eλ||w||2

The solver used for solving the inner objective is L-BFGS
(Liu & Nocedal, 1989). We compare the algorithms on
benchmark datasets (colon-cancer (d = 2000), german
(d = 24), and a9a (d = 123)). For each dataset, we re-
peat the experiments 10 times and report the average and
the standard deviation.

We compare the performance of different ZOO algorithms
under Gaussian distribution. In the appendix, we provide
the additional results under the sphere distribution. Fig. 10.
(a)∼(c) show the loss versus query number using differ-
ent ZOO algorithms under Gaussian distribution in SGD
settings. The loss curves are averaged over 10 independent
random trials and the shaded areas indicate the standard de-
viation. Fig. 10. (d) plots the cosine similarities between
ZO gradient estimator and ground-truth gradient. These
results demonstrate that our ZO optimizer has learned a
rather general ZOO algorithm that can generalize to dif-
ferent classes of ZOO problems well.

Fig. 19∼21 show the loss versus query number using dif-
ferent ZOO algorithms under unit sphere distribution in dif-
ferent settings. The “US” is the abbreviation of unit sphere
distribution. These results demonstrate that our ZO opti-
mizer has learned a rather general ZOO algorithm that can
generalize to different classes of ZOO problems well.

A.3 Algorithm Sensitivity Experiment

A.3.1 Hyperparameter Tuning

Reinforcement learning algorithm performances are known
to be influenced by hyperparameters. To show the stabil-
ity of our proposed algorithm, we test the sensitivity of
our algorithm to reinforcement learning hyperparameters.
We carry out hyperparametric tuning experiments for the
MNIST attack task. For each hyperparameter, we calculate
the final average loss for 10 independent random trials for
each hyperparameter candidate and choose the optimal hy-
perparameters according to the final average loss minimiza-
tion criterion. Specifically, we select the optimal hyperpa-
rameters from the following candidate set:

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

(a) colon-cancer (b) german (c) a9a (d) a9a

Figure 8: Non-convex optimization problems in the SGD setting.

(a) colon-cancer (b) german (c) a9a (d) a9a

Figure 9: Non-convex optimization problems in the signSGD setting.

(a) colon-cancer (b) german (c) a9a (d) a9a

Figure 10: Hyperparameter optimization problems in the SGD setting.

1. Learning rate for actor l1 =
{0.01, 0.05, 0.001, 0.005}.

2. Learning rate for critic l2 =
{0.01, 0.05, 0.001, 0.005}.

3. Mesh update parameter τ =
{0.001, 0.005, 0.01, 0.05}.

4. Cosine similarity threshold ϵ = {0.3, 0.4, 0.5, 0.6}.

5. Query number q = {5, 10, 15, 20, 30}.

6. Smoothing parameter µ =
{0.001, 0.0001, 0.00001, 0.000001}.

7. Exploration parameter α = {0.66, 0.5, 0.33}

Fig. 11 shows the loss versus query number using differ-
ent hyperparameters under Gaussian distribution for the
MNIST attack task. The loss curves are averaged over 10
independent random trials and the shaded areas indicate the

standard deviation. The results show that our ZO-RL al-
gorithm is less affected by the hyperparameters l2 and τ ,
and more affected by the hyperparameters l1, ϵ, q, µ and α.
The learning rate of actors has a much higher impact on
the results than that of critics. That is because the output
of the actor network directly determines the quality of the
sampling policy. For mesh update parameter τ , cosine sim-
ilarity threshold ϵ, and smoothing parameter µ, choosing a
smaller value can often get better results. For query num-
ber q and exploration parameter α, too large or too small
will lead to a bad result, and it takes more time to find an
optimal value.

A.3.2 Ablation Experiments

We set up ablation experiments to test the impact of each
component of ZO-RL on the performance of the algorithm
in different problems. Specifically, we set up two ablation
studies as follows:

1. To test whether pre-training can accelerate the learn-

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

(a) Learning rate for actor (b) Learning rate for critic (c) Mesh update parameter (d) Cosine similarity threshold

(e) Query number (f) Smoothing parameter (g) Exploration parameter

Figure 11: Hyperparameter tuning on MNIST attack task.

(a) Pre-training (b) Convolutional layers

Figure 12: Ablation Study.

ing rate of ZO-RL, we conduct experiments using
random sampling to sample from the standard Gaus-
sian distribution as the pre-training of reinforcement
learning policy, i.e. using cosine similarity threshold
ϵ = 0.5, and directly using reinforcement learning
policy to sample from the standard Gaussian distribu-
tion, i.e. using cosine similarity threshold ϵ = −∞.

2. To test the influence of convolutional layers on ZO-RL
performance, we conduct experiments using a 9-layer
neural network structure (4 convolution layers, 4 pool-
ing layers, and 1 full connection layer), 5-layer neural
network (2 convolution layers, 2 pooling layers, and
1 full connection layer) and 1-layer neural network (1
full connection layer).

Fig. 12 shows the loss versus query number for two ablation
studies. The results show that pre-training and deeper re-
inforcement learning networks can effectively enhance the
performance of our ZO-RL algorithm.

B Adversarial Attack to Black-box Models

Fig. 13∼15 show the black-box attack loss versus query
number using different ZOO algorithms under unit sphere
distribution in different settings. The “US” is the abbrevi-
ation of unit sphere distribution. When the overall num-
ber of queries of function evaluations is fixed, the optimal
number q of sampled perturbed vectors of the comparison
algorithm is different. For fairness, we compare the results
of each algorithm under their best number of sampled per-
turbed vectors. The results clearly show that our ZO-RL
algorithm can effectively reduce the query complexity of
ZOO algorithms, especially in the later stage of the opti-
mization process, and our ZO-RL-LSTM can always ob-
tain the best results by combining learned sampling policy
and sampling distribution.

Learning Sampling Policy to Achieve Fewer Queries for Zeroth-Order Optimization

0 2000 4000 6000 8000

Query Number

10
0

10
1

L
o
ss

ZO-RS(US,q=5)

ZO-Guided ES(US,q=8)

ZO-LSTM(US,q=10)

ZO-RL(US,q=8)

ZO-RL-LSTM(US,q=8)

(a) MNIST TEST 1 (b) MNIST TEST 2 (c) MNIST TEST 3

Figure 13: Adversarial attack to black-box models in the signSGD setting.

(a) MNIST TEST 1 (b) MNIST TEST 2 (c) MNIST TEST 3

Figure 14: Adversarial attack to black-box models in the SGD setting.

(a) MNIST TEST 1 (b) MNIST TEST 2 (c) MNIST TEST 3
Figure 15: Adversarial attack to black-box models in the ADAM setting.

(a) colon-cancer (b) german (c) a9a
Figure 16: Non-convex optimization problems in the signSGD setting.

(a) colon-cancer (b) german (c) a9a
Figure 17: Non-convex optimization problems in the SGD setting.

Zhou Zhai, Wanli Shi, Heng Huang, Yi Chang, Bin Gu

(a) colon-cancer (b) german (c) a9a
Figure 18: Non-convex optimization problems in the ADAM setting.

(a) colon-cancer (b) german (c) a9a

Figure 19: Hyperparameter optimization problems in the signSGD setting.

(a) colon-cancer (b) german (c) a9a

Figure 20: Hyperparameter optimization problems in the SGD setting.

(a) colon-cancer (b) german (c) a9a

Figure 21: Hyperparameter optimization problems in the ADAM setting.

