
Communication-Efficient Federated Learning
With Data and Client Heterogeneity

Hossein Zakerinia1 Shayan Talaei2 Giorgi Nadiradze 3 Dan Alistarh1

1 Institute of Science and Technology Austria (ISTA)
2 Stanford University

3 Aptos Labs

Abstract

Federated Learning (FL) enables large-scale
distributed training of machine learning mod-
els, while still allowing individual nodes to
maintain data locally. However, executing
FL at scale comes with inherent practical
challenges: 1) heterogeneity of the local node
data distributions, 2) heterogeneity of node
computational speeds (asynchrony), but also
3) constraints in the amount of communica-
tion between the clients and the server. In
this work, we present the first variant of the
classic federated averaging (FedAvg) algo-
rithm which, at the same time, supports data
heterogeneity, partial client asynchrony, and
communication compression. Our algorithm
comes with a novel, rigorous analysis showing
that, in spite of these system relaxations, it
can provide similar convergence to FedAvg in
interesting parameter regimes. Experimental
results in the rigorous LEAF benchmark on
setups of up to 300 nodes show that our algo-
rithm ensures fast convergence for standard
federated tasks, improving upon prior quan-
tized and asynchronous approaches.

1 INTRODUCTION

In Federated learning (FL) (Konečnỳ et al., 2016;
McMahan et al., 2017), multiple clients, orchestrated
by a central authority, cooperate to jointly opti-
mize a machine learning model given their local data.
The basic FL algorithm is federated averaging (Fe-
dAvg) (McMahan et al., 2017), in which a central

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

authority periodically communicates a model to all
clients; clients optimize this model locally, and send
back the resulting updates to the server, which incor-
porates them, proceeding to the next iteration. This
approach is effective in practice (Li et al., 2020), and
motivates a rich line of research analyzing its conver-
gence (Stich, 2019; Haddadpour and Mahdavi, 2019),
as well as improved variants (Reddi et al., 2021; Karim-
ireddy et al., 2020; Li and Richtárik, 2021).

Despite its popularity, scaling federated learning runs
into a number of fundamental challenges (Kairouz
et al., 2021). One such obstacle is data heterogeneity :
the fact that the clients’ local data distributions may
be different, which can lead to difficulties in optimiza-
tion Wang et al. (2020); Karimireddy et al. (2020).
A second barrier is node heterogeneity : as practical
deployments contain large node counts, which may
execute at different speeds, it may be infeasible for
a central server to orchestrate rounds across partici-
pants (Bonawitz et al., 2019; Wu et al., 2020; Nguyen
et al., 2022). The third barrier is the communica-
tion cost of the parameter updates (Kairouz et al.,
2021), which can overwhelm communication-limited
clients (Jhunjhunwala et al., 2021; Li and Richtárik,
2021; Wang et al., 2022).

In a scalable FL system, all these three barriers need to
be mitigated: for instance, communication-reduction
may not be effective if the server has to synchronously
wait for all of the clients to complete a communication
round. Yet, supporting all these system relaxations
jointly is extremely challenging: it is known (Wang
et al., 2020) that one cannot allow both data het-
erogeneity and client asynchrony in full generality
without impacting the objective; at the same time,
none of the existing communication-efficient methods
support asynchrony (Jhunjhunwala et al., 2021; Li
and Richtárik, 2021; Wang et al., 2022). Thus, it
is interesting to ask to what extent communication-
compression, asynchrony, and heterogenous data can
be jointly supported in FL.

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Contribution. We address this question by
proposing an algorithm for Quantized Asynchronous
Federated Learning called QuAFL, which is an exten-
sion of FedAvg supporting heterogeneous data, com-
munication compression, and partial asynchrony. We
provide a rigorous theoretical analysis of its conver-
gence, showing that it asymptotically matches Fe-
dAvg in interesting parameter regimes, and experi-
ments showing that it can also lead to practical gains.

Overview. At a high level, QuAFL follows the struc-
ture of FedAvg: in each “logical round,” the server
samples s clients uniformly at random, and sends them
a (compressed) copy of its current model. As soon as
a client receives the server’s message, it performs two
steps: first, it replies to the server with a (compressed)
copy of its local progress, obtained via optimization
steps on its local data, since its last server interaction.
Second, the client adopts the server’s model and will
proceed to perform up to K ≥ 1 local optimization
steps on it in the future, at its own local speed. At the
end of the round, the server collects the clients’ mes-
sages and integrates them into its parameter estimate.

One key difference from FedAvg is that, in QuAFL,
the entire process is partially-asynchronous: clients
perform local steps each at their own speed, indepen-
dently of the server’s round structure, on their local
version of the parameters. Thus, when sampled by the
server, a client may still be in the middle of performing
its K local steps since its last interaction, or may not
yet have completed any local steps at all! In QuAFL,
the clients’ progress may be partial—as a client may
not have completed its K local steps—and is always
computed on a stale version of the parameter, previ-
ously sent by the server. The second key difference
is that, in QuAFL, all client-server communication is
compressed using a fast customized quantizer.

There are two analytical challenges in this setting: the
first is in showing that the optimization process can
still converge in this highly-decoupled setting, in which
clients proceed at different speeds, can be interrupted
asynchronously by the server, and sometimes do not
make any progress at all. The second challenge is to in-
terface asynchrony with communication compression:
as detailed later, using standard quantizers (Alistarh
et al., 2017; Karimireddy et al., 2019) induces error
proportional to the second-moment gradient bound,
which leads to both poor practical performance, and
major difficulties in the analysis.

Our analysis circumvents these obstacles, and shows
that QuAFL can provide surprisingly strong conver-
gence guarantees, which match those of FedAvg in cer-
tain parameter regimes. We achieve this via a new
potential argument, which roughly shows that, un-

der standard assumptions, the discrepancy between
the client and server models is always bounded, and
by leveraging an instance of position-aware quantiza-
tion (Davies et al., 2021), which has the property that
the compression error only depends on the distance
between the models at the server and the clients. Our
analysis approach controls the “noise” due to model
inconsistency precisely, ensuring that local models are
close enough to allow correct encoding and decoding
using the customized positional quantizer.

We validate our algorithm experimentally in the rigor-
ous LEAF benchmark (Caldas et al., 2018), on a range
of standard tasks. We show that QuAFL can compress
updates by more than 3× without significant loss of
convergence, and can even withstand a large fraction
of “slow” clients submitting infrequent or even no up-
dates, also in non-i.i.d. data settings. Moreover, in
settings where client computation speeds are heteroge-
nous, QuAFL provides end-to-end speedup in terms of
iteration times, since the server can progress without
waiting for all clients to complete their local compu-
tation, and is also competitive with asynchronous FL
approaches such as FedBuff (Nguyen et al., 2022).

Related Work. There has been significant work
on communication-compression for FedAvg (Philip-
penko and Dieuleveut, 2020; Reisizadeh et al., 2020;
Jin et al., 2020; Haddadpour et al., 2021). However,
virtually all prior work considers synchronous itera-
tions. Reisizadeh et al. (2020) introduced a vari-
ant of FedAvg which supporting standard compres-
sors, and provides convergence bounds under the as-
sumption of i.i.d. client data. Jin et al. (2020) ex-
amined the signSGD quantizer (Seide et al., 2014) for
FedAvg, providing convergence guarantees; however,
the rates are polynomial in the model dimension d,
rendering them less practically meaningful. Haddad-
pour et al. (2021) proposed a family of algorithms
with communication-compression; yet, to prove con-
vergence in the challenging heterogeneous-data set-
ting, they require very strong technical assumptions
on quantized gradients (Haddadpour et al., 2021, As-
sumption 5). Chen et al. (2021) also considered update
compression, but under convex losses, coupled with a
strong second-moment bound assumption on the gra-
dients. Finally, Jhunjhunwala et al. (2021) adapt the
degree of compression during the execution, proving
convergence only under i.i.d. data sampling. In sum,
all prior work on compression for FedAvg requires at
least one non-standard assumption. By contrast, our
analysis works for non-convex losses, non-i.i.d. data,
without second-moment gradient bounds. In addition,
we support partial client asynchrony.

A complementary approach has been to investigate FL
optimizers with faster convergence (Mishchenko et al.,

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

2019; Karimireddy et al., 2020), or adaptive optimiz-
ers (Reddi et al., 2021; Tong et al., 2020). These
approaches can be compatible with communication-
compression (Gorbunov et al., 2021; Li and Richtárik,
2021; Wang et al., 2022). Specifically, for non-convex
losses, MARINA (Gorbunov et al., 2021) offers the-
oretical guarantees both in terms of convergence and
bits transmitted. However, MARINA is synchronous;
moreover, it periodically computes full gradients and
transmits uncompressed model updates, and requires
complex synchronization and variance-reduction to
compensate for quantization noise. DASHA (Tyurin
and Richtárik, 2023) proposed a family of theoreti-
cal methods which extend MARINA with Momentum
Variance Reduction (MVR) (Cutkosky and Orabona,
2019), partially relaxing the coupling between the
server and the workers. By contrast to this work, we
focus on obtaining a practical algorithm in a highly-
decoupled model, with competitive convergence relative
to vanilla FedAvg: we always transmit compressed,
low-precision messages, and consider asynchronous
communication and client progress.

FedBuff (Nguyen et al., 2022) is a state-of-the-art
practical approach for asynchronous FL, where nodes
aggregate their updates asynchronously in a shared
buffer; once the buffer is full, the server updates the
global model and communicates it. Our convergence
bounds are competitive to FedBuff, but in a more gen-
eral setting, as we do not assume a gradient bound.
Experimentally, QuAFL achieves better performance
relative to FedBuff in the non-i.i.d. case: the intu-
itive reason is that, in this case, slower clients will
consistently contribute less frequently to the buffer,
meaning that convergence could be “skewed” towards
fast clients. Parallel work by Koloskova et al. (2022)
and Mishchenko et al. (2022) provide sharp conver-
gence bounds for asynchronous SGD in a related
but different model, with arbitrary worst-case delays.
Specifically, they prove convergence rates that are sim-
ilar to ours in the case of a single client sampled at a
time. By contrast, our work considers a probabilistic
model on the delays, similar to Cannelli et al. (2020).
The two models are incomparable: we allow the worst-
case delay to be unbounded, but assume that each
client i proceeds at an expected speed Hi. In addi-
tion, in our algorithm, the clients can be interrupted
by the server during their local computation, which
leads to further difficulties in the analysis, and practi-
cal improvements in terms of waiting times. FedNova
(Wang et al., 2020) works in a synchronous model, but
it allows each node to perform a different number of lo-
cal steps at each round. One main difference between
our work and FedNova is that in the asynchronous
setting, the (n − s) clients which are not participat-
ing in a round can still perform local updates at their

own speed, while in the synchronous scenario of Fed-
Nova, these (n− s) clients will be idle. We show that
asynchrony can result in faster wall-clock time con-
vergence. Similarly, FedNova requires that, at each
round, all participating nodes perform at least one lo-
cal step, which results in all nodes having to wait for
the slowest client; we allow nodes to perform zero steps
at a round. Additionally, the bounded dissimilarity
assumption in FedNova is stronger than the standard
literature definition, which we use in our analysis.

2 THE ALGORITHM

2.1 System Overview

Optimization Setting. We assume a distributed
system with one coordinator and n workers, jointly
minimizing a d-dimensional, differentiable function f :
Rd → R. We consider empirical risk minimization
(ERM), where data samples are located at the n nodes.
Each agent i has a local function fi associated to its
own data partition, i.e ∀x ∈ Rd: f(x) =

∑n
i=1 fi(x)/n.

The goal is to converge on a model x∗ which minimizes
the empirical loss. Clients run a distributed variant of
SGD, coordinated by the central node. Each client i
is able to obtain unbiased stochastic gradients g̃i of its
own local function fi, i.e. E[g̃i(x)] = ∇fi(x), sampling
i.i.d. from its local distribution.

System Model. Our algorithm will follow the gen-
eral pattern of FedAvg, in that the server periodi-
cally polls a subset of clients, sending them its model.
However, the interaction pattern is (partially) asyn-
chronous: when contacted, clients immediately com-
municate their local progress since the last interaction,
even though it may be partial, and afterwards proceed
to take local steps on the new model communicated
by the server, until their next interaction. Moreover,
the clients themselves may progress at heterogeneous
speeds: the number of local steps taken by client i be-
tween server interactions t and t+1 is a random vari-
able Hi, taking values in {0, 1, 2, . . . ,K}, where K is
an upper bound on how many steps a client can take in
isolation. Our only assumption is that, for each client
i and every server interaction, the expected value of
Hi, denoted by Hi, exists and is > 0. That is, on aver-
age, each client has a fixed speed, and makes non-zero
progress. However, clients may progress at different
speeds, and the individual step distributions Hi can be
completely different. We emphasize that Hi can be 0,
meaning that i has taken no steps between interactions.

2.2 Algorithm Description

Overview. The pseudocode for QuAFL is given in
Algorithm 1. From the server’s perspective, the execu-

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Algorithm 1 Pseudocode for the QuAFL Algorithm at Server and Clients.

% Initial models X0 = X1 = X2 = ... = Xn = 0d, number of local steps K
% Encoding (Enc(A)) and decoding (Dec(B,Enc(A))) functions, with common parametrization.
% For each client i, the expected local steps between two consecutive server interactions is Hi.
% For each client i, we define weights ηi =

Hmin
Hi

where Hmin is the minimum speed among Hi.

% At the Server:

1: for t = 0 to T − 1 do % Each round takes a fixed amount of time.
2: Server chooses s clients uniformly at random, let S be the resulting set.
3: for all clients i ∈ S do
4: Server sends Enc(Xt) to the client i.
5: Server receives Enc(Y i) from client i % Y i is the client’s model with the progress since the last interaction.
6: Q(Y i)← Dec(Xt, Enc(Y i)) % Decodes quantized client messages relative to Xt

7: end for
8: Xt+1 = 1

s+1
Xt +

1
s+1

∑
i∈S Q(Y i)

9: end for

% At Client i:
% Upon (asynchronous) contact from the server run InteractWithServer
% Local variables:
% Xi stores the base client model, following the last server interaction. Initially 0d.

% h̃i accumulates local gradient steps since last server interaction, initially 0d.

1: function InteractWithServer
2: MSGi ← Enc(Xi − ηηih̃i) % Client i compresses its local progress since last contacted.
3: Client sends MSGi to the server.
4: Client receives Enc(Xt) from the server, where t is the current server time.
5: Q(Xt)← Dec(Xi, Enc(Xt)) % Client decodes the message using its own model as reference point.

6: Xi = 1
s+1

Q(Xt) +
s

s+1
(Xi − ηηih̃i) % The client then updates its local model

7: LocalUpdates(Xi,K) % Finally, The client goes back to compute new local updates.
8: Wait()
9: end function

1: function LocalUpdates(Xi, K)

2: h̃i = 0 % local gradient accumulator
3: for q = 0 to K − 1 do

4: h̃q
i = g̃i(X

i − η
∑q−1

ℓ=0 h̃ℓ
i) % compute the qth local gradient

5: h̃i = h̃i + h̃q
i % add it to the accumulator

6: end for
7: end function

tion is similar to FedAvg: we execute logical “rounds,”
where in each round t the server polls a subset of
s workers, sending them a compressed version of its
model Enc(Xt). However, the server does not wait for
workers to perform local steps over Xt in this round :
instead, it immediately receives each worker’s local
progress Enc(Y i) since worker i’s last server inter-
action. (Thus, the server will observe progress on Xt

from clients only on their next interaction.) The re-
ceived progress is de-quantized, and integrated into the
server’s local model via weighted averaging.

From the other perspective, a contacted worker i could
be either idle when polled by the server, having com-
pleted its K steps since the last server interaction, or
still in the process of performing local steps. In either
case, the worker immediately quantizes its possibly-
partial local progress Y i since the last server con-
tact, and sends it in quantized form Enc(Y i) to the
server. The worker then decodes the server’s quantized
message Q(Xt), and updates its own local model Xi

correspondingly via weighted averaging. The worker
then starts performing K local steps on top of the
updated local parameters, until its next server inter-
action. QuAFL relaxes the FedAvg pattern as follows.

Non-blocking Communication. A key limitation
of standard FedAvg is that the server has to wait
for all contacted workers to compute their K up-
dates and transmit them each round, before moving
on. In QuAFL, communication is non-blocking : the
contacted worker node i immediately returns (a quan-
tized version of) its local progress since the last in-
teraction to the server, without performing any com-
putation. We emphasize that this progress may be
incomplete, or even zero for some clients, and that it
is computed with respect to the server’s previously-
communicated model, not the one just received. Con-
versely, the server does not wait for clients to take
steps on its current model Xt; it will observe these
updates in future interactions. This significantly re-
duces the server’s waiting times, and allows QuAFL to

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

“pipeline” several communication rounds over a fixed
wall-clock time, at the cost of supporting inconsistent
client models in the analysis and in practice.

Model Averaging. This parameter inconsistency is
handled via the server- and client-side averaging mech-
anism, which differs from the standard FedAvg iter-
ation. Specifically, in each round, the server model
“weight” is 1

s+1 , and it gets averaged with s clients.

Each of them, plus the server itself, gets a 1
s+1 “frac-

tion” of the server model. Thus, the server’s model is
evenly distributed among s + 1 participants; in turn,
the server receives a 1

s+1 fraction of the local models
of each client node it interacts with. Crucially, this
average does not change, but the local models move
closer to the mean. This idea will be reflected in our
analysis, which works by first tracking convergence at
the mean of client models, since the change in aver-
age only depends on the stochastic gradient updates
at the round, and on the prior mean. We show that
mean convergence implies convergence at the server.

Partial Client Asynchrony. As discussed in Sec-
tion 2.1, clients progress at different speeds. Specifi-
cally, each client i is assumed to take Hi steps between
two server interactions, in expectation. We support
this in QuAFL as follows: the only shared information,
maintained by the server, is Hmin, the lowest “speed”
of any participating client. To address the difference
in average speeds, each client will “dampen” its trans-
mitted progress before transmitting it to the server,
by a factor of ηi = Hmin/Hi. We will show that this is
sufficient to maintain balance in the optimization ob-
jective, without losing any client privacy, as the server
does not need to be aware of client speeds.

Fully-Quantized Communication. For quan-
tization, we employ a customized version of the
lattice-based quantizer of Davies et al. (2021); its
parametrization is described formally in Section 3.
Quantization works via an encoding function Enc(A),
which maps A to its quantized representation. To
“read” message Enc(A), a node calls the symmetric
Dec(B,Enc(A)) function, which allows “decoding” of
Enc(A) with respect to a reference B, returning out-
put Q(A). As evident from the pseudocode, server-
client communication in QuAFL is always quantized,
as opposed to prior methods (Gorbunov et al., 2021),
where the server still transmits full-precision updates.

The Issue with Standard Quantizers. We em-
phasize that compressing via standard quantizers (Al-
istarh et al., 2017), induces error proportional to the
model’s norm, which is in principle unbounded. Thus,
applying direct quantization to existing methods is not
theoretically-justified, and experimentally it does not
always lead to good results (see Section 4). Prior work

in decentralized optimization Lu and De Sa (2020);
Nadiradze et al. (2021) addressed this by only trans-
mitting model updates. This requires both additional
memory at the client, or an unrealistic second-moment
gradient bound. Our approach avoids both issues: it
requires no extra memory, and makes no extra assump-
tions.

3 CONVERGENCE ANALYSIS

3.1 Analytical Assumptions

We begin by stating the assumptions we make in the
theoretical analysis of our algorithm. We assume the
following for the global loss function f , the client losses
fi, and their stochastic gradients g̃i:

1. Uniform Lower Bound: There exists f∗ ∈ R
such that f(x) ≥ f∗ for all x ∈ Rd.

2. Smooth Gradients: For any client i, the gra-
dient ∇fi(x) is L-Lipschitz continuous for some
L > 0, i.e. for all x, y ∈ Rd: ∥∇fi(x)−∇fi(y)∥ ≤
L∥x− y∥.

3. Bounded Variance: For any client i, the vari-
ance of the stochastic gradients is bounded by

some σ2 > 0, i.e. for all x ∈ Rd: E
∥∥∥g̃i (x) −

∇fi (x)
∥∥∥2 ≤ σ2.

4. Bounded Dissimilarity: There exist constants
G2 ≥ 0 and B2 ≥ 1, s.t. ∀x ∈ Rd:∑n

i=1
∥∇fi(x)∥2

n ≤ G2 +B2∥∇f (x) ∥2.

The first three conditions are universal in dis-
tributed non-convex stochastic optimization, whereas
the fourth encodes the fact that there must be a bound
on the amount of divergence between the local distri-
butions at the nodes in order to allow for joint opti-
mization (Karimireddy et al., 2020; Jin et al., 2020;
Gorbunov et al., 2021).

In addition, we make the following assumption on the
local progress performed by each node:

5. Probabilistic Progress: For each client i, the
expected number of local steps taken since the
last interaction when contacted by the server is
0 < Hi ≤ K.

Clearly, a condition of this type is necessary : if a client
makes zero progress on average, we cannot converge to
a consistent objective in the heterogeneous setting.

Quantization Procedure. Please recall the seman-
tics of our quantization procedure, as described in Sec-
tion 2.2. In this context, the quantizer has the follow-
ing guarantees (Davies et al., 2021) (Lemma 23):

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Lemma 3.1. (Lattice Quantization) Fix parameters
R and γ > 0. There exists a quantization procedure
defined by an encoding function EncR,γ : Rd → {0, 1}∗
and a decoding function DecR,γ = Rd × {0, 1}∗ → Rd

such that, for any vector x ∈ Rd which we are trying to
quantize, and any vector y which is used by decoding,

which we call the decoding key, if ∥x − y∥ ≤ RRd

γ

then with probability at least 1−log log(∥x−y∥
γ)O(R−d),

the function QR,γ(x) = DecR,γ(y,EncR,γ(x)) has the
following properties:

1. (Unbiased decoding) E[QR,γ(x)] =
E[DecR,γ(y,EncR,γ(x))] = x;

2. (Error bound) ∥QR,γ(x)− x∥ ≤ (R2 + 7)γ;

3. (Communication bound) O
(
d log(Rγ ∥x− y∥

)
)

bits are needed to send EncR,γ(x).

3.2 Main Results

Our proof strategy will be to show that the clients’
local models stay close to the server’s. This coupling
is used both to show that the models converge jointly,
but also that we can successfully apply the quantizer.
Let µt = (Xt +

∑n
i=1 X

i)/(n+ 1) be the mean over
all the node models in the system at a given t. Our
main result shows the following:

Theorem 3.2. Let Hi > 0 be client i’s speed,
and Hmin be the minimum client speed. As-
sume the total number of server rounds is T ≥
Ω(n3), the learning rate η = n+1

Hmin

√
sT

, and

the quantization parameters R, and γ satisfy that

γ2 = η2

(R2+7)2

(
(
∑n

i=1
H2

i

nH2)σ
2 + 2KG2 + f(µ0)−f∗

L

)
,

and R = 2 + T
3
d . Then, we have that Algorithm 1

converges at the following rate:

1
T

∑T−1
t=0 E∥∇f(µt)∥2 ≤ 4(f(µ0)− f∗)√

sT

+
36KL(

∑n
i=1

σ2

nH2
i
+ 2KG2

Hmin
2)

√
sT

+O

n3K2L2((
∑n

i=1
H2

min

nH2
i
)σ2 + 2KG2)

Hmin
3T

 .

The algorithm uses O (sT (d log n+ log T)) expected
communication bits.

Discussion. The result shows non-trivial trade-offs
between the convergence speed of the algorithm, the
variance of the local distributions (given by σ and G),
the sampling set size s, and individual client speedsHi.
We now examine it across relevant parameter regimes.

Let us first consider the case where the clients are ho-
mogenous, i.e. H = Hi = Hmin,∀i. If assume that the

maximum number of local stepsK is constant, then we
also get constant H since K ≥ H. Then, our bound is
asymptotically-optimal. Specifically, the first two up-
per bound terms achieve the “optimal” speedup

√
sT

with respect to the sampling parameter s and the num-
ber of iterations T for the non-convex case. The third
term contains similar “nuisance factors” as the second
term, with the addition of the n3 factor, which is di-
rectly due to asynchrony. Crucially, this larger third
term is divided by T , as opposed to

√
T ; since T is our

asymptotic parameter, the whole third term is com-
monly assumed to be negligible (Lu and De Sa, 2020).
Thus, in this case essentially the entire overhead of
asynchrony and quantization is “offloaded” onto the
third term, which becomes negligible as T grows.

For equal speeds Hi = H and non-constant local steps
K, it is reasonable to assume thatH = Θ(K): on aver-
age, each client i will have completed a significant frac-
tion of its local steps on the old version of the modelXi

when being contacted. (Otherwise, the sampling fre-
quency of the server is too high, and the server should
simply decrease it.) If H = Θ(K), our algorithm also
gets linear speedup with respect to the parameter H
in terms of reducing the impact of the variance σ2,
in the second term. These dependencies match some
of the best known bounds for standard FedAvg, in a
similar learning rate regime: without asynchrony and
quantization, we asymptotically recover the FedAvg
bounds (Karimireddy et al., 2020).

Finally, take the interesting case of heterogeneous
client speeds Hi. The first term is not affected, and
the third term remains negligible as long as the “slow-
down” of the slowest node is not asymptotic in the to-
tal steps T . In the second term, there is a remarkable
difference between the variance terms σ2/H2

i , which
decrease proportionally to the client speeds, and the
discrepancy term 2KG2, which only gets decreased
proportionally to the square of Hmin, the speed of the
lowest node. This is inherent: since the local data dis-
tributions are heterogenous, the system cannot make
progress in the discrepancy term without contributions
from the slowest node. As such, our results are com-
patible with the trade-offs between asynchrony and
data heterogeneity in FedNova (Wang et al., 2020).

To simplify the discussion, the Theorem statement
considers a parametrization of the quantizer under
which the impact of quantization noise is subsumed
into the third upper bound term. For a more fine-
grained upper bound result, please see Appendix B.4.

Convergence at the Server. We can obtain a sim-
ilar bound for convergence of the server’s model, as
opposed to convergence of the mean of local models.

Corollary 3.3. Assume that the total number of steps

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

is T ≥ Ω(n4), whereas all the other parameter values
are identical to Theorem 3.2. Then, with probability at
least 1−O(1

T), the server’s model Xt converges asymp-
totically at the same rate as the model average.

This bound is very similar to our main result, except
for the larger dependency between the parameters T
and n. Intuitively, this is required in the analysis due
to the additional “mixing time” required for the server
to converge to a similar bound to the mean µt. How-
ever, we do not observe such a requirement in practical
experiments, and this bound is realistic given that the
optimization process is usually executed over a large
number of iterations.

Thus, the discussion of convergence interesting param-
eter regimes remains the same as for convergence of the
average. In sum, QuAFL can match some of the best
known rates for FedAvg. We find this surprising, since
our algorithm executes in a highly-decoupled environ-
ment, in which communication is non-blocking and
compressed, and clients are partially asynchronous.

3.3 Overview of the Analysis

We provide an overview of the proofs, outlining the
main intermediate results. (The full analysis is given
in the Appendix.) The first step is bounding the
deviation between the local models and their mean.
For this, we define the following potential function:
Φt = ∥Xt − µt∥2 +

∑n
i=1 ∥Xi − µt∥2. We can show

that this potential has the following supermartingale-
type property:

Lemma 3.4. For any time step t we have:

E[Φt+1] ≤ (1− 1

4n
)E[Φt]

+ 8sη2
n∑

i=1

η2i E∥h̃i∥2 + 16n(R2 + 7)2γ2.

The intuition behind this result is that potential Φt

will stay well-concentrated around its mean, except for
influences from the variance due to local steps (second
term) or quantization (third term). With this in place,
the next lemma allows us to track the evolution of the
average of the local models, with respect to local step
and quantization variance:

Lemma 3.5. For any step t, E∥µt+1 − µt∥2 ≤
2η2

(n+1)2E∥
∑

i∈S ηih̃i∥2 + 2(R2+7)2γ2

(n+1)2 .

In both cases, the upper bound depends on the second
moment of the nodes’ local progress (

∑
i η

2
i E∥h̃i∥2 or

∥
∑

i∈S ηih̃i∥2). This is due to the fact that the server
contacts s clients, which are chosen uniformly at ran-
dom. Then, our main technical lemma uses properties

(2), (3) and (4), to concentrate these quantities around
the true gradient E∥∇f(µt)∥2, where the expectation
is taken over the algorithm’s randomness.

Lemma 3.6. For any step t

E∥
∑
i∈S

ηih̃i∥2 ≤ 16s2K2L2

n
E[Φt]

+ 18sK((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 64s2K2B2E∥∇f(µt)∥2

We can use Lemmas 3.5 and 3.6 to bound E∥µt+1 −
µt∥2. Similarly to Lemma 3.6, we can get an up-

per bound for
∑

i η
2
i E∥h̃i∥2, and by combining it with

Lemma 3.4 we get the following upper bound on the
potential with respect to E∥∇f(µt)∥2.

Lemma 3.7. We have that:

T∑
t=0

E[Φt] ≤ O(Tn2(R2 + 7)2γ2 +K

T−1∑
t=0

E∥∇f(µt)∥2))

+ n2sKη2(T (

∑n
i=1 η

2
i σ

2

n
+ 2KG2).

Next, using the L-smoothness of the function f (2),
we can show that

E[f(µt+1)] ≤ E[f(µt)] + E⟨∇f(µt), µt+1 − µt⟩

+
L

2
E∥µt+1 − µt∥2.

(1)

Weighting for heterogeneous clients. Using (1),

and given that E[µt+1−µt] = − η
n+1

∑
i∈S ηih̃i(X

i
t), we

observe that the sum
∑n

i=1 E⟨∇f(µt), µt+1 − µt⟩ can
be concentrated around E∥∇f(µt)∥2, in similar fash-
ion as in Lemma 3.6. While bounding this quantity
we need to control

∑n
i=1 ηiHi(−E⟨∇f(µt),∇fi(µt)⟩).

If data were homogeneous, for each i we had
⟨∇f(µt),∇fi(µt)⟩ = ∥∇f(µt)∥2 and we would not
need weighting. However, in the heterogeneous set-
ting, the fi(µt)s are different and each of the inner
products can have arbitrary sign. Thus, we choose
ηi =

Hmin

Hi
such that all ηiHis are equal, and the full

term is −nHmin∥∇f(µt)∥2.

Final argument. Then we can place this upper
bound and the upper bound for E∥µt+1 − µt∥2 in (1),
summing over all T steps, and use Lemma 3.7 to can-
cel out the terms containing the potential

∑T
t=0 E[Φt]

based on
∑T−1

t=0 E∥∇f(µt)∥2 , and modulo some care-
ful wrangling, we obtain the convergence bound in
Theorem B.16. Setting the quantization parameters
as stated, we get the claimed convergence rate. We
discuss the impact of the quantization parameters in
detail in the Appendix.

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Figure 1: Impact of the number of peers s ∈ {10, 20, 30, 40}
on convergence, for n = 100 clients, 14-bit quantization, on
CelebA, using non-i.i.d data.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

QuAFL (20,5,10,lattice:14) swt: 5 sit: 1.312 non-weighted
QuAFL (20,5,10,lattice:14) swt: 5 sit: 1.312
Baseline
Fed-Avg (20,5,10) sit: 3

Figure 2: Convergence comparison relative to simulated
time between QuAFL and FedAvg for ResNet20/CIFAR10.

Figure 3: The impact of averaging variants vs. validation
accuracy on ResNet/CelebA, non-i.i.d data.

0 1000 2000 3000 4000 5000
Time

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu

ra
cy

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice:14) swt: 3 sit: 1.312 weighted
FedBuff (20,5,10) sit: 3

Figure 4: ResNet20/CIFAR10 experiment where Fast and
Slow clients have non-i.i.d. data from different classes.

4 EXPERIMENTAL RESULTS

Experimental Setup. We implement QuAFL in Py-
torch train neural networks for image classification
tasks, specifically residual CNNs (He et al., 2016)
on the MNIST (LeCun and Cortes, 2010), Fashion
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky and
Hinton, 2009) and CelebA (Liu et al., 2015) datasets,
in the rigorous benchmarking setup of LEAF (Caldas
et al., 2018). Experiments on MNIST, FMNIST and
CIFAR use a fixed random split of the training set
among the nodes, while the CelebA experiments are
executed in a pure non-i.i.d. setting, in which the sam-
ples are split across classes, so that each client receives
a non-overlapping subset of classes. Full experimental
details are presented in the Appendix. We omit error
bars for readability, as the variance between experi-
ments is low and does not impact our conclusions.

Goals and Metrics. Experiments are described by
(n, s,K, b), where b is the number of bits used. In
addition, swt is the server waiting time between two
consecutive calls, and the server interaction time, sit,
as the amount of time that server needs to send and
receive necessary data. We assume a server and n
clients, of which s are chosen randomly to be sampled
in a round. The training data is distributed among
clients so that each has access to a fixed 1/n partition.

We track the accuracy of the server’s model on an
unseen validation dataset. We measure loss and accu-
racy of the model with respect to simulation time.We
update the both client and server models following
QuAFL, and then increase the server time by sit. The
server then waits for another interval of server wait-
ing time (swt) to make its next call. Unless otherwise
stated, all communication is quantized using the lat-
tice quantizer of Davies et al. (2021), which is simply
implemented via a random rotation followed by direct
quantization/dequantization.

We run two timing experiments: uniform experiments
assume all clients take the same amount of time for
a gradient step; non-uniform timing experiments dif-
ferentiate between fast or slow clients. Specifically,
the length of each client step is taken to be a ran-
dom variable X ∼ exp(λ), where λ is 1/2 for fast
clients and 1/8 for slow clients; the expected runtime
E(X) would be 2 and 8, respectively. In each exper-
iment, we assumed 30% of clients to be slow. Unless
otherwise noted, we employ the unweighted version of
QuAFL, meaning that clients set their weighting pa-
rameter to ηi = 1 in the algorithm. All code is avail-
able at https://github.com/ShayanTalaei/QuAFL.

Results. Figure 1 examines the impact of the num-
ber of sampled peers s when training ResNet18 on the

https://github.com/ShayanTalaei/QuAFL

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

2000 4000 6000 8000 10000
Time

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
Lo

ss
FedBuff (20,5,10) sit: 3
QuAFL (20,5,10,lattice:14) swt: 5 sit: 1.312

Figure 5: Experiment in which the average time per client
per local step is uniformly random between 2 and 9, showing
superior performance relative to FedBuff, which becomes un-
stable when both data and client speeds are heterogeneous
(ResNet20/CIFAR10).

1000 2000 3000 4000 5000
Time

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Lo
ss

FedNova (20,5,10) sit: 3
QuAFL (20,5,10,lattice:14) swt: 8 sit: 1.312

Figure 6: Comparison with FedNova in the same setup as
Figure 5. FedNova can handle different client speeds, but
is synchronous, therefore there are many idle clients during
training, leading to slower convergence vs time.

(non-i.i.d) CelebA dataset, where 30% of clients are
slow. Observe that convergence speed clearly follows
the ordering of the number of peers s, confirming our
analysis. Interestingly, timings in this experiment lead
to a 27% probability that a slow client will not have
taken any steps when interacting with the server, i.e.
its progress Yi is zero. This shows that QuAFL is ro-
bust to such slow clients, although their proportion
impacts convergence.

In Figure 2 we examine the convergence of FedAvg and
QuAFL in simulated execution time, in a system with
20 clients, out of which 25% are slow. (The Baseline is
a single slow node that performs an optimization step
per round.) Here, it is evident that non-blocking com-
munication in QuAFL leads to faster convergence in
terms of wall-clock time. The figure also shows better
convergence for the weighted version of QuAFL, where
agents set ηi according to speed.

In Figure 3, we examine the impact of different types
of averaging on the convergence of the basic QuAFL
pattern, on the non-i.i.d. CelebA dataset, with n =
100 clients. We clearly observe that the variant where
averaging is applied both at the server and at the client
performs the best.

In Figure 4, we compare QuAFL with FedBuff, a
SOTA asynchronous FL protocol (Nguyen et al., 2022)
and FedAvg in a non-i.i.d. experiment, in which the
clients’ data is created in a heterogeneous way. The
experiment consists of 20 clients, of which 5 of them
are slow ones, and the rest are fast ones. The task
is CIFAR10 classification, in which slow clients have
access to three specific classes and the rest have the
other classes. FedAvg has to wait for the slow clients
to perform all of their local steps, and therefore in the
same amount of time as others, it performs a small
number of global steps. FedBuff is asynchronous and

does not have to wait for slow clients, however, the
fast clients contribute more often to the optimization,
and the algorithm observes the seven classes from fast
clients compared more frequently, relative to the three
classes from slow clients. QuAFL on the other hand
is asynchronous and balances the imbalance between
different clients. As you can see in the figure, QuAFL
outperforms both models in this comparison.

Figures 5 and 6 provide comparisons with FedBuff and
FedNova, in a setup where both client speeds and client
data are heterogenous. QuAFL provides faster conver-
gence vs. time relative to FedBuff since it can handle
heterogenous client speeds, whereas in FedBuff conver-
gence is biased towards faster clients, leading to loss
spikes; FedNova does not have this problem, but is
synchronous and thus incurs slow-downs due to delays
required for all clients to synchronize at every round.
We present additional results in the Appendix, specif-
ically higher node counts (up to 300), full-convergence
experiments, as well as other tasks.

5 CONCLUSION AND
LIMITATIONS

We have provided the first variant of FedAvg which
incorporates both asynchronous and compressed com-
munication, and have shown that this algorithm can
still provide good convergence guarantees in a setting
with heterogeneous data and client speeds. Our anal-
ysis is extensible to more complex federated optimiz-
ers, such as gradient tracking, e.g. (Haddadpour et al.,
2021), controlled averaging (Karimireddy et al., 2020),
heterogeneous clients (Diao et al., 2021) or variance-
reduced variants (Gorbunov et al., 2021). In future
work, we plan to investigate the limitation of our anal-
ysis in terms of the relationship between time T and
the number of nodes n, applications to additional fed-
erated optimizers, as well as larger-scale deployments.

Communication-Efficient Federated Learning With Data and Client Heterogeneity

References

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vo-
jnovic, M. (2017). QSGD: Communication-efficient
SGD via gradient quantization and encoding. In
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D.,
Ingerman, A., Ivanov, V., Kiddon, C., Konečný, J.,
Mazzocchi, S., McMahan, B., Van Overveldt, T.,
Petrou, D., Ramage, D., and Roselander, J. (2019).
Towards federated learning at scale: System design.
In Proceedings of Machine Learning and Systems,
volume 1, pages 374–388.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečnỳ,
J., McMahan, H. B., Smith, V., and Talwalkar, A.
(2018). Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097.

Cannelli, L., Facchinei, F., Kungurtsev, V., and Scu-
tari, G. (2020). Asynchronous parallel algorithms
for nonconvex optimization. Mathematical Program-
ming, 184(1):121–154.

Chen, M., Shlezinger, N., Poor, H. V., Eldar, Y. C.,
and Cui, S. (2021). Communication-efficient feder-
ated learning. Proceedings of the National Academy
of Sciences, 118(17).

Cutkosky, A. and Orabona, F. (2019). Momentum-
based variance reduction in non-convex SGD. In
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Davies, P., Gurunanthan, V., Moshrefi, N., Ashkboos,
S., and Alistarh, D. (2021). New bounds for dis-
tributed mean estimation and variance reduction.
In International Conference on Learning Represen-
tations (ICLR).

Diao, E., Ding, J., and Tarokh, V. (2021). HeteroFL:
Computation and communication efficient federated
learning for heterogeneous clients. In International
Conference on Learning Representations (ICLR).

Gorbunov, E., Burlachenko, K. P., Li, Z., and
Richtárik, P. (2021). MARINA: Faster non-convex
distributed learning with compression. In Interna-
tional Conference on Machine Learning (ICML).

Haddadpour, F., Kamani, M. M., Mokhtari, A., and
Mahdavi, M. (2021). Federated learning with com-
pression: Unified analysis and sharp guarantees. In
International Conference on Artificial Intelligence
and Statistics (AISTATS).

Haddadpour, F. and Mahdavi, M. (2019). On the con-
vergence of local descent methods in federated learn-
ing. arXiv preprint arXiv:1910.14425.

He, K., Zhang, X., Ren, S., and Sun, J. (2016).
Deep residual learning for image recognition. In

IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

Jhunjhunwala, D., Gadhikar, A., Joshi, G., and El-
dar, Y. C. (2021). Adaptive quantization of model
updates for communication-efficient federated learn-
ing. In ICASSP 2021-2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

Jin, R., Huang, Y., He, X., Dai, H., and Wu, T.
(2020). Stochastic-sign SGD for federated learn-
ing with theoretical guarantees. arXiv preprint
arXiv:2002.10940.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A.,
Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles,
Z., Cormode, G., Cummings, R., et al. (2021). Ad-
vances and open problems in federated learning.
Foundations and Trends® in Machine Learning,
14(1–2):1–210.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S.,
Stich, S., and Suresh, A. T. (2020). SCAFFOLD:
Stochastic controlled averaging for federated learn-
ing. In International Conference on Machine Learn-
ing (ICML).

Karimireddy, S. P., Rebjock, Q., Stich, S., and Jaggi,
M. (2019). Error feedback fixes signSGD and other
gradient compression schemes. In International
Conference on Machine Learning (ICML).

Koloskova, A., Stich, S. U., and Jaggi, M. (2022).
Sharper convergence guarantees for asynchronous
SGD for distributed and federated learning. In Con-
ference on Neural Information Processing Systems
(NeurIPS).

Konečnỳ, J., McMahan, H. B., Yu, F. X., Richtárik,
P., Suresh, A. T., and Bacon, D. (2016). Federated
learning: Strategies for improving communication
efficiency. arXiv preprint arXiv:1610.05492.

Krizhevsky, A. and Hinton, G. (2009). Learning mul-
tiple layers of features from tiny images.

LeCun, Y. and Cortes, C. (2010).
MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V.
(2020). Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Mag-
azine, 37(3):50–60.

Li, Z. and Richtárik, P. (2021). CANITA: Faster rates
for distributed convex optimization with communi-
cation compression. In Conference on Neural Infor-
mation Processing Systems (NeurIPS).

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. In International
Conference on Computer Vision (ICCV).

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Lu, Y. and De Sa, C. (2020). Moniqua: Modulo quan-
tized communication in decentralized SGD. In Inter-
national Conference on Machine Learning (ICML).

McMahan, B., Moore, E., Ramage, D., Hampson,
S., and y Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentral-
ized data. In International Conference on Artificial
Intelligence and Statistics (AISTATS).

Mishchenko, K., Bach, F., Even, M., and Woodworth,
B. E. (2022). Asynchronous SGD beats minibatch
SGD under arbitrary delays. In Conference on Neu-
ral Information Processing Systems (NeurIPS).

Mishchenko, K., Gorbunov, E., Takáč, M., and
Richtárik, P. (2019). Distributed learning with
compressed gradient differences. arXiv preprint
arXiv:1901.09269.

Nadiradze, G., Sabour, A., Davies, P., Li, S., and Al-
istarh, D. (2021). Asynchronous decentralized SGD
with quantized and local updates. In Conference on
Neural Information Processing Systems (NeurIPS).

Nguyen, J., Malik, K., Zhan, H., Yousefpour, A., Rab-
bat, M., Malek, M., and Huba, D. (2022). Federated
learning with buffered asynchronous aggregation. In
International Conference on Artificial Intelligence
and Statistics (AISTATS).

Philippenko, C. and Dieuleveut, A. (2020). Bidirec-
tional compression in heterogeneous settings for dis-
tributed or federated learning with partial participa-
tion: tight convergence guarantees. arXiv preprint
arXiv:2006.14591.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z.,
Rush, K., Konečný, J., Kumar, S., and McMahan,
H. B. (2021). Adaptive federated optimization. In
International Conference on Learning Representa-
tions (ICLR).

Reisizadeh, A., Mokhtari, A., Hassani, H., Jad-
babaie, A., and Pedarsani, R. (2020). FedPAQ: A
communication-efficient federated learning method
with periodic averaging and quantization. In In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS).

Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D.
(2014). 1-bit stochastic gradient descent and its
application to data-parallel distributed training of
speech DNNs. In Fifteenth annual conference of the
international speech communication association.

Stich, S. U. (2019). Local SGD converges fast and
communicates little. In International Conference on
Learning Representations (ICLR).

Tong, Q., Liang, G., and Bi, J. (2020). Effective fed-
erated adaptive gradient methods with non-iid de-
centralized data. arXiv preprint arXiv:2009.06557.

Tyurin, A. and Richtárik, P. (2023). DASHA: Dis-
tributed nonconvex optimization with communica-
tion compression and optimal oracle complexity. In
International Conference on Learning Representa-
tions (ICLR).

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor,
H. V. (2020). Tackling the objective inconsistency
problem in heterogeneous federated optimization. In
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Wang, Y., Lin, L., and Chen, J. (2022).
Communication-efficient adaptive federated learn-
ing. In International Conference on Machine
Learning (ICML).

Wu, W., He, L., Lin, W., Mao, R., Maple, C., and
Jarvis, S. (2020). SAFA: a semi-asynchronous pro-
tocol for fast federated learning with low overhead.
IEEE Transactions on Computers, 70(5):655–668.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint
arXiv:1708.07747.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

Communication-Efficient Federated Learning With Data and Client Heterogeneity

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [No]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [No]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Communication-Efficient Federated Learning With Data and Client
Heterogeneity:

Supplementary Materials

A Experimental setup

In this section, we describe our experimental setup in detail. We begin by defining the hyper-parameters which
control the behavior of QuAFL and FedAvg. Then, we proceed by carefully describing the way in which we
simulated each of the algorithms. Finally, we detail the datasets, tasks, and models used for our experiments.
The experiments in this section are done with the non-weighted version of the QuAFL.

A.1 Hyper-parameters

We first define our hyper-parameters; in the later sections, we will examine their impact on algorithm behavior
through ablation studies.

n: Number of the clients.

s: Number of clients interacting with the server at each step.

K: In QuAFL, this is the maximum number of allowed local steps by each client between two server calls. In
FedAvg, this is the number of local steps performed by each client upon each server call.

b: Number of bits used to send a coordinate after quantization.

swt: Server waiting time, i.e. the amount of time that server waits between two consecutive calls.

sit: Server interaction time, i.e. the amount of time that server needs to send and receive necessary data (ex-
cluding computation time).

Communication-Efficient Federated Learning With Data and Client Heterogeneity

A.2 Simulation

We attempt to simulate a realistic FL deployment scenario, as follows. We assume a server and n clients, each
of which initially has a model copy. The training dataset is distributed among the clients so that each of them
has access to 1/n of the training data. We track the performance of each algorithm by evaluating the server’s
model, on an unseen validation dataset. We measure loss and accuracy of the model with respect to simulation
time, server steps, and total local steps performed by clients. These setups so far were common between QuAFL
and FedAvg. In the following, we are going to describe their specifications and differences.

QuAFL: Upon each server call, the server chooses s clients uniformly at random. It then sends its model to
those clients and asks for their current local models. (Recall that clients send their model immediately to
the server.) Each of the clients will have taken a maximum of K local steps by the time it is contacted by
the server. The server then replaces its model with a carefully-computed average over the received models
and its current model. This process increases time on the server by the server interaction time (sit). The
server then waits for another interval of server waiting time (swt) to make its next call. The s receiving
clients replace their model with the weighted average between their current model and the received server’s
model. Since each client performs local steps from its last interaction time until the current server time,
nodes are effectively executing asynchronously. Moreover, note that communication is compressed, as all
the models get encoded in their source and decoded in their destination.

Quantization: To have a lightweight but efficient communication between clients and the server, we use
the well-known lattice quantization (Davies et al., 2021). Using this method, we send b instead of 32
bits for each scalar dimension. Informally, each 32-bit number maps to one of the 2b quantized levels
and can be sent using b bits only. The encoded number can then be decoded to a sufficiently close
number at the destination, following the quantization protocol.

FedAvg: In the beginning of each round, server chooses s clients randomly, and sends its current model to
them. Each of those clients receives the model, uncompressed, and performs exactly K local steps using
this model as the starting point, and then sends back the resulting model to the server. The server then
computes the average of the received models and adopts it as its model. By this synchronous structure, in
each round, the server must wait for the slowest client to complete its local steps plus an extra sit for the
communication time. After completing each round, the server starts the next call immediately, that means
swt = 0 in FedAvg.

Timing Experiments. We differentiate between two types of timing experiments. Uniform timing experiments,
presented in the paper body, assume all clients take the same amount of time for a gradient step. However, in
real-world setups, different devices may require different amounts of time to perform a single local step. This is
one of the main disadvantages of synchronous federated optimization algorithms. To demonstrate how this fact
affects the experiments, in our Non-uniform timing experiments we differentiate clients to be either fast or slow.
The length of each local step can be characterized as a memoryless time event. Therefore, the length of each
local step can be defined by a random variable X ∼ exponential(λ). The parameter λ is 1/2 for fast clients and
1/8 for slow clients; the expected runtime E(X) would be 2 and 8, respectively. In each timing experiment, we
assumed only one fourth of clients to be slow.

A.3 Datasets and Models

We used Pytorch to manage the training process in our algorithm. We have trained neural networks for image
classification tasks on three well-known datasets, MNIST, Fashion MNIST, and CIFAR-10. For all the
datasets, we used the default train/test split of the dataset for our training/validation dataset. In the following,
we describe the model architecture and the training hyper-parameters used to train on each of these datasets.

MNIST: We used SGD optimizer with constant lr = 0.5 in all the training process. We used a two-layer MLP
architecture with (784,32,10) nodes in its layers respectively. We used batch size 128 in each client’s SGD
step.

Fashion MNIST: Although this dataset has the same sample size and number of classes as MNIST, obtaining
competitive performance on it requires a more complicated architecture. Therefore, we used a CNN model

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

0 10 20 30 40 50 60 70 80
Server steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
Lo

ss
QuAFL (40,10,5,lattice: 12) swt: 10
QuAFL (40,10,10,lattice: 12) swt: 10
QuAFL (40,10,20,lattice: 12) swt: 10

Figure 7: Impact of the maximum number of local steps
K ∈ {5, 10, 20} on the QuAFL algorithm / Fashion MNIST.

0 20 40 60 80 100 120
Server steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

QuAFL (40,4,10,lattice: 12) swt: 10
QuAFL (40,8,10,lattice: 12) swt: 10
QuAFL (40,16,10,lattice: 12) swt: 10

Figure 8: Impact of the number of interacting peers s ∈
{4, 8, 16} on the convergence of the algorithm.

0 25 50 75 100 125 150 175 200
Server steps

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

QuAFL (40,10,10,lattice: 12) swt: 1
QuAFL (40,10,10,lattice: 12) swt: 5
QuAFL (40,10,10,lattice: 12) swt: 10
QuAFL (40,10,10,lattice: 12) swt: 20

Figure 9: Impact of the server contact frequency (controlled
via server timeout swt) on the convergence of the algorithm.

0 200 400 600 800
Server steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Fed-Avg (40,10,10) sit: 3
QuAFL (40,10,10,lattice: 12) swt: 1 sit: 1.125
Baseline

Figure 10: Convergence comparison relative to total num-
ber of rounds, between QuAFL, FedAvg, and the sequential
baseline.

to train on this model and demonstrated the performance of our algorithm in a non-convex task. To optimize
the models, we used Adam optimizer with constant lr = 0.001 and batch size 100.

CIFAR-10: To load this dataset, we used data augmentation and normalization. For this task, we trained
ResNet20 models. Moreover, the SGD optimizer with constant lr = 0.03 is used to in the training process.
The batch size 64/200 is used for training/validation.

A.4 Results on Fashion MNIST (FMNIST)

We begin by validating our earlier results, presented in the paper body, for the slightly more complex FMNIST
dataset, and on a convolutional model.

In Figures 7 and 8 we examine the impact of the parameters K and s, respectively, on the total number of
interaction rounds at the server, to reach a certain training loss. As expected, we notice that higher K and s
improve the convergence behavior of the algorithm. In Figures 9 we examine the impact of the server waiting
time on the convergence of the algorithm relative to the number of server rounds. Again, we notice that a
higher server waiting time improves convergence, as it allows the server to take advantage of additional local
steps performed at the clients, as predicted by our analysis. (Higher swt means higher average number of steps
completed H.)

Next, we examine the convergence, again in terms of number of optimization “rounds” at the server, between the
sequential Baseline, FedAvg, and QuAFL. As expected, the Baseline is faster to converge than FedAvg, which in
turn is faster than QuAFL in this measure. Specifically, the difference between QuAFL and the other algorithms
comes because of the fact that, in our algorithm, nodes operate on old variants of the model at every step, which
slows down convergence. Next, we examine convergence in terms of actual time, in the heterogeneous setting in
which 25% of the clients are slow.

In Figure 11, we observe the validation accuracy ensured by various algorithms relative to the simulated execution
time, whereas in Figure 12 we observe the training loss versus the same metric. (We assume that, in Baseline,

Communication-Efficient Federated Learning With Data and Client Heterogeneity

0 500 1000 1500 2000
Time

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Fed-Avg (40,10,10) sit: 3
QuAFL (40,10,10,lattice: 12) swt: 1 sit: 1.125
Baseline

Figure 11: Time vs. accuracy for various algorithm vari-
ants, on Fashion MNIST.

0 500 1000 1500 2000
Time

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Lo
ss

Fed-Avg (40,10,10) sit: 3
QuAFL (40,10,10,lattice: 12) swt: 1 sit: 1.125
Baseline

Figure 12: Timing vs. loss for various algorithm variants,
on Fashion MNIST.

Figure 13: Time vs. accuracy for n=300 clients, s=30 peers
on Fashion MNIST.

Figure 14: Timing vs. loss for n=300 clients, s=30 peers
on Fashion MNIST.

Figure 15: Full convergence result for n = 20 clients and
s = 5 on F-MNIST. All methods eventually reach the se-
quential ∼ 91% top-1 accuracy on this task, but QuAFL is
the fastest to do so in terms of wall-clock time.

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Figure 16: Impact of maximum local steps K ∈ {3, 9, 15}
on the QuAFL algorithm, on ResNet20/CIFAR-10.

200 400 600 800 1000 1200 1400 1600
Server steps

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Lo
ss

QuAFL (20,3,10,lattice: 12) swt: 5 sit: 1
QuAFL (20,6,10,lattice: 12) swt: 5 sit: 1
QuAFL (20,10,10,lattice: 12) swt: 5 sit: 1

Figure 17: Impact of the number of interacting peers s ∈
{3, 6, 10} on the convergence of the algorithm.

500 1000 1500 2000 2500 3000
Server steps

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Lo
ss

QuAFL (20,5,10,lattice: 12) swt: 5 sit: 1
QuAFL (20,5,10,lattice: 16) swt: 5 sit: 1
QuAFL (20,5,10,no quantization: 32) swt: 5

Figure 18: Impact of the number of bits for quantization
b ∈ {12, 16, 32} on the convergence of the algorithm.

200 400 600 800 1000
Server steps

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Lo
ss

QuAFL (20,5,10,lattice: 14) swt: 4 sit: 1
QuAFL (20,5,10,lattice: 14) swt: 8 sit: 1
QuAFL (20,5,10,lattice: 14) swt: 12 sit: 1
QuAFL (20,5,10,lattice: 14) swt: 16 sit: 1

Figure 19: Impact of the server contact frequency (con-
trolled via server timeout swt) on the convergence of the
algorithm.

a single node acts as both the client and the server, and that this node is slow, i.e. has higher per-step times.)
To further support the robustness of our algorithm in regimes with large number of clients, we conducted an
experiment with n = 300 clients and s = 30 peers interacting with the server at each step. The validation accuracy
and loss versus time regarding the mentioned experiment plotted in Figure 13 and Figure 14 respectively. We
observe that, importantly, if time is taken into account rather than the number of server rounds, QuAFL can
provide notable speedups in these metrics. This is specifically because of its asynchronous communication patters,
which allow it to complete rounds faster, without having to always wait for the slow nodes to complete their local
computation. While this behaviour is simulated, we believe that this reflects the algorithm’s practical potential.
Finally, Figure 15 shows that all methods can reach the maximum accuracy for this dataset/model combination
(for the SGD baseline, this occurs later), although QuAFL is the fastest to do so in terms of wall-clock time.

A.5 Results on CIFAR-10

We now present results for a standard image classification task on the CIFAR-10 dataset, using a ResNet20
model (He et al., 2016).

Figures 16 and 17 show the decrease in training loss versus the number of server steps (or rounds) for different
values of K and s respectively. As our theory suggests, increasing K and s leads to an improvement in the
convergence rate of the system. Figure 18 demonstrates the impact of the number of quantization bits b, on the
convergence behaviour of the algorithm. According to the definition of b, increasing the number of quantization
bits improves the communication accuracy. Thus, as it can be seen in the graph, higher values of b enhance the
convergence relative to the number of server steps. Finally, Figure 19 shows the impact of the server interaction
frequency, again controlled via the timeout parameter swt, on the algorithm’s convergence. It is apparent that a
very high interaction frequency can slow the algorithm down, by not allowing it to take advantage of the clients’
local steps.

In Figures 20 and 21, we examine the validation accuracy and loss, respectively, ensured by various algorithms
versus the simulated execution time. (As in the F-MNIST experiments, we assumed the Baseline to be a single

Communication-Efficient Federated Learning With Data and Client Heterogeneity

0 2500 5000 7500 10000 12500 15000 17500 20000
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice: 14) sit: 1.312 swt: 5
Baseline

Figure 20: Time vs. validation accuracy for various algo-
rithm variants.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Lo
ss

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice: 14) sit: 1.312 swt: 5
Baseline

Figure 21: Timing versus validation loss for various algo-
rithm variants.

1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

1.2

1.3

1.4

1.5

1.6

1.7

Lo
ss

QuAFL (20,5,5,lattice:14) swt: 5 sit: 1.312
QuAFL (20,5,5,qsgd:14) swt: 5 sit: 0.375

Figure 22: Loss comparison of QuAFL with lattice quanti-
zation vs QSGD

1000 1500 2000 2500 3000 3500 4000 4500 5000
Time

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

QuAFL (20,5,5,lattice:14) swt: 5 sit: 1.312
QuAFL (20,5,5,qsgd:14) swt: 5 sit: 0.375

Figure 23: Accuracy comparison of QuAFL with lattice
quantization vs QSGD

0 2000 4000 6000 8000 10000
Time

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

QuAFL (40,10,10,lattice:14) swt: 1 sit: 1.312
QuAFL (40,10,10) swt: 1 sit: 3.0
FedBuff (40,10,10) sit: 3
FedBuff (40,10,10,qsgd:14) sit: 0.375

Figure 24: QuAFL vs. SOTA asynchronous FL
algorithm FedBuff with and without Quantization
(ResNet20/CIFAR10).

0 2000 4000 6000 8000 10000
Time

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

QuAFL (40,10,10,lattice:14) swt: 1 sit: 1.312
QuAFL (40,10,10) swt: 1 sit: 3.0
FedBuff (40,10,10) sit: 3
FedBuff (40,10,10,qsgd:14) sit: 0.375

Figure 25: Accuracy curves for Figure 24. Convergence of
QuAFL vs. SOTA asynchronous FL algorithm FedBuff with
and without Quantization.

500 1000 1500 2000 2500 3000
Time

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Lo
ss

Fed-Avg (20,5,10) sit: 3
QuAFL (20,5,10,lattice:14) swt: 5 sit: 1.312 weighted

Figure 26: Comparison of QuAFL vs FedAVG on
ResNet20/CIFAR10, with 5 slow clients and 15 fast clients
with error bars.

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

slow node that performs an optimization step per round.) Again, the asynchronous nature of QuAFL provides
a faster convergence rate than its synchronous counterparts; which can be clearly seen in the mentioned figures.

As discussed earlier, using standard quantization techniques such as QSGD, is not theoretically justified, because
in that case, the error would be proportional to the norm of the models, which can be unbounded. Therefore,
there is no guarantee that these quantization techniques will always work. To show this experimentally, we ran
an experiment on CIFAR10 with lr = 0.07. As shown in Figure 22 and 23, QuAFL with lattice quantization
works well in this setting, while QSGD quantization hurts the convergence. This experiment verifies our choice
of lattice quantization.

In Figure 24, we compare QuAFL convergence (with and without quantization) relative to FedBuff, in terms of
execution time. We have tuned each variant independently, and have also added QSGD quantization to FedBuff.
(FedBuff is incompatible with lattice quantization, since nodes do not have a decoding key.) We observe that
QuAFL converges faster, even with quantization: this is because QuAFL takes into account partial progress
by slow clients, whereas in FedBuff slower clients constantly contribute less significantly to the server updates.
Moreover, we observe that quantization significantly increases the variance of FedBuff.

Figure 25 shows the accuracy comparison of the experiment of Figure 24. This figure shows that the accuracy
follows the same pattern as the loss. Finally, as we mentioned before we omitted error bars in our experiments
as the variance is low. We show one experiment in Figure 26 with error bars to confirm this.

B The Complete Analysis

B.1 Overview and Notation

Recall that Xt denotes the model of the server at step t, and Xi is the local model of client i after its last
interaction with the server. Also, h̃i is the sum of local gradient steps for model Xi since its last interaction
with the server.
For the convergence analysis, local steps of the clients that are not selected by the server don’t have any effect
on the server or other clients. Therefore we do not need to assume that clients are doing their local steps
asynchronous, and we can assume that all clients run their local gradient steps after the server contacts them.
The only thing that we should consider is the randomness of the server selecting the clients, and the fact that
the server can contact nodes before they have finished their K steps. For this purpose, we assume that their
number of steps is a random number Hi

t with mean Hi.
To show the analysis in this setting, we introduce new notations that consider the server round. To this end, we
use Xi

t as the value of Xi when the server is running its tth iteration, And h̃i,t for the sum of local steps at this
time. We show each local step q with a superscript. Formally, we have

h̃0
i,t = 0.

and for 1 ≤ q ≤ Hi
t let:

h̃q
i,t = g̃i(X

i
t −

q−1∑
s=0

ηh̃s
i,t),

and

h̃i,t =

Hi
t∑

q=0

h̃q
i,t

Further , for 1 ≤ q ≤ Hi
t , let

hq
i,t = E[g̃i(Xi

t −
q−1∑
s=0

ηh̃s
i,t)] = ∇f(Xi

t −
q−1∑
s=0

ηh̃s
i,t)

be the expected value of h̃q
i,t taken over the randomness of the stochastic gradient g̃i. Also, we have:

hi,t =

Hi
t∑

q=0

hq
i,t

Communication-Efficient Federated Learning With Data and Client Heterogeneity

B.2 Properties of Local Steps

Lemma B.1. For any agent i and step t

E∥hq
i,t∥

2 ≤ σ2

K2
+ 8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2.

Proof.

E∥hq
i,t∥

2≤E

∥∥∥∥∥(∇fi(X
i
t −

q−1∑
s=0

ηh̃s
i,t)−∇fi(µt)

)
+∇fi(µt)

∥∥∥∥∥
2

≤2E

∥∥∥∥∥∇fi(X
i
t −

q−1∑
s=0

ηh̃s
i,t)−∇fi(µt)

∥∥∥∥∥
2

+ 2E∥∇fi(µt)∥2

≤4L2E∥Xi
t − µt∥2 + 4η2L2q

q−1∑
s=0

E∥h̃s
i,t∥2 + 2E∥∇fi(µt)∥2

≤4L2E∥Xi
t − µt∥2 + 4η2L2q

q−1∑
s=0

(E∥hs
i,t∥2 + σ2) + 2E∥∇fi(µt)∥2

the rest of the proof is done by induction, and assuming η < 1
4LK2 .

Lemma B.2. For any step t, we have that

n∑
i=1

η2i E∥h̃i,t∥2 ≤ 2nK((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2.

Proof. Using lemma B.1

n∑
i=1

η2i E∥h̃i,t∥2 =

n∑
i=1

η2i

K∑
h=0

Pr[Hi
t = h]E∥

h∑
q=1

h̃q
i,t∥

2

≤
n∑

i=1

η2i

K∑
h=1

Pr[Hi
t = h]h

h∑
q=1

E∥h̃q
i,t∥

2

≤ nK(
1

n

n∑
i=1

η2i)σ
2 +

n∑
i=1

η2i

K∑
h=1

Pr[Hi
t = h]h

h∑
q=1

E∥hq
i,t∥

2

≤ nK(
1

n

n∑
i=1

η2i)σ
2 +

n∑
i=1

η2iK
2

(
σ2

K2
+ 8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2
)

≤ 2nK(
1

n

n∑
i=1

η2i)σ
2 +

n∑
i=1

η2iK
2

(
8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2
)

≤ 2nK(
1

n

n∑
i=1

η2i)σ
2 + 8L2K2E[Φt] + 4nK2G2 + 4nK2B2E∥∇f(µt)∥2.

Lemma B.3. For any local step 1 ≤ q, and agent 1 ≤ i ≤ n and step t

E∥∇fi(µt)− hq
i,t∥

2 ≤ 4L2η2q2σ2 + 4L2E∥Xi
t − µt∥2 + 8L2η2q2E∥∇fi(µt)∥2.

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Proof.

E∥∇fi(µt)− hq
i,t∥

2 = E∥∇fi(µt)−∇fi(X
i
t −

q−1∑
s=0

ηh̃s
i,t)∥2

≤L2E∥µt −Xi
t +

q−1∑
s=0

ηh̃s
i,t∥2

≤2L2E∥Xi
t − µt∥2 + 2L2η2E∥

q−1∑
s=0

h̃s
i,t∥2

≤2L2E∥Xi
t − µt∥2 + 2L2η2q

q−1∑
s=0

E∥h̃s
i,t∥2

Lemma (B.1)

≤ 2L2E∥Xi
t − µt∥2 + 2L2η2q2

(
2σ2 + 8L2E∥Xi

t − µt∥2

+ 4E∥∇fi(µt)∥2
)

= 4L2η2q2σ2 + (2L2 + 16L4η2q2)E∥Xi
t − µt∥2

+ 8L2η2q2E∥∇fi(µt)∥2

≤ 4L2η2q2σ2 + 4L2E∥Xi
t − µt∥2 + 8L2η2q2E∥∇fi(µt)∥2

and the last inequality comes from η < 1
4LK .

Lemma B.4. For any time step t

n∑
i=1

E⟨∇f(µt),−ηihi,t⟩ ≤ 4KL2E[Φt] + (−3Hminn

4
+ 8B2L2η2K3n)E∥∇f(µt)∥2

+ 4nL2η2K3(σ2 + 2G2).

Proof.

n∑
i=1

E⟨∇f(µt),−ηihi,t⟩ =
n∑

i=1

K∑
h=1

Pr[Hi
t = h]E⟨∇f(µt),−ηi

h∑
q=1

hq
i,t⟩+

n∑
i=1

Pr[Hi
t = 0]E⟨∇f(µt), 0⟩

=

n∑
i=1

ηi

K∑
h=1

Pr[Hi
t = h]

h∑
q=1

(
E⟨∇f(µt),∇fi(µt)− hq

i,t⟩ − E⟨∇f(µt),∇fi(µt)⟩
)

Using Young’s inequality we can upper bound E⟨∇f(µt),∇fi(µt)− hq
i,t⟩ by

E∥∇f(µt)∥2

4
+ E

∥∥∥∇fi(µt)− hq
i,t

∥∥∥2.
Plugging this in the above inequality we get:

Communication-Efficient Federated Learning With Data and Client Heterogeneity

n∑
i=1

E⟨∇f(µt),−ηihi,t⟩

≤
n∑

i=1

ηi

K∑
h=1

Pr[Hi
t = h]

h∑
q=1

(
E∥∇f(µt)− hq

i,t∥
2 +

E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
Lemma B.3

≤
n∑

i=1

ηi

K∑
h=1

Pr[Hi
t = h]

h∑
q=1

(
4L2η2q2σ2 + 4L2E∥Xi

t − µt∥2 + 8L2η2q2E∥∇fi(µt)∥2

+
E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
≤

n∑
i=1

ηi

K∑
h=1

Pr[Hi
t = h]h

(
4L2η2h2σ2 + 4L2E∥Xi

t − µt∥2 + 8L2η2h2E∥∇fi(µt)∥2

+
E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
≤

n∑
i=1

ηiHi

(
4L2η2K2σ2 + 4L2E∥Xi

t − µt∥2 + 8L2η2K2E∥∇fi(µt)∥2

+
E∥∇f(µt)∥2

4
− E⟨∇f(µt),∇fi(µt)⟩

)
≤ 4KL2E[Φt] + 4nL2η2K3((

1

n

n∑
i=1

η2i)σ
2 + 2G2) + (8B2nL2η2K3 +

Hminn

4
−Hminn)E∥∇f(µt)∥2

)

Where in the last step we used that for each i, ηiHi = Hmin, and
∑n

i=1
fi(x)
n = f(x), for any vector x.

Discussion. In the analysis, especially in this lemma, the value of ηiHis should be the same for all clients.
However, we don’t need them to be fixed in different rounds. Therefore, it is possible to extend the result to
the case that clients’ speeds would change, and they have different expected numbers of local steps in different
rounds. Accordingly, the algorithm sets different values for ηtis. The final result would depend on the average
number of local steps of each client during the whole training.

B.3 Upper Bounding Potential Functions

We proceed by proving the lemma 3.4 which upper bounds the expected change in potential:

Lemma 3.4. For any time step t we have:

E[Φt+1] ≤
(
1− 1

4n

)
E[Φt] + 8sη2

n∑
i=1

E∥h̃i,t∥2 + 16n(R2 + 7)2γ2.

Proof. First we bound change in potential ∆t = Φt+1 − Φt for some fixed time step t > 0.

For this, let ∆S
t be the change in potential when set S of agents wake up. for i ∈ S define Si

t and St as follows:

Si
t = − s

s+ 1
ηηih̃i,t +

Q(Xt)−Xt

s+ 1

St = − 1

s+ 1
ηηi
∑
i∈S

h̃i,t +
1

s+ 1

∑
i∈S

(Q(Xi
t − ηηih̃i,t)− (Xi

t − ηηih̃i,t))

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

We have that:

Xi
t+1 =

sXi
t +Xt

s+ 1
+ Si

t

Xt+1 =

∑
i∈S Xi

t +Xt

s+ 1
+ St

µt+1 = µt +

∑
j∈S Sj

t + St

n+ 1

This gives us that for i ∈ S:

Xi
t+1 − µt+1 =

sXi
t +Xt

s+ 1
+ Si

t −
∑

j∈S Sj
t + St

n+ 1
− µt

Xt+1 − µt+1 =

∑
i∈S Xi

t +Xt

s+ 1
+ St −

∑
j∈S Sj

t + St

n+ 1
− µt

For k ̸∈ S we get that

Xk
t+1 − µt+1 = Xk

t −
∑

j∈S Sj
t + St

n+ 1
− µt.

Hence:

∆S
t =

∑
i∈S

(∥∥∥sXi
t +Xt

s+ 1
+ Si

t −
∑

j∈S Sj
t + St

n+ 1
− µt

∥∥∥2 − ∥∥∥Xi
t − µt

∥∥∥2)
+
∥∥∥∑i∈S Xi

t +Xt

s+ 1
+ St −

∑
j∈S Sj

t + St

n+ 1
− µt

∥∥∥2 − ∥∥∥Xt − µt

∥∥∥2
+
∑
k ̸∈S

(∥∥∥Xk
t −

∑
j∈S Sj

t + St

n+ 1
− µt

∥∥∥2 − ∥∥∥Xk
t − µt

∥∥∥2)

=
∑
i∈S

(∥∥∥sXi
t +Xt

s+ 1
− µt

∥∥∥2 + ∥∥∥Si
t +

∑
j∈S Sj

t + St

n+ 1

∥∥∥2
+ 2
〈sXi

t +Xt

s+ 1
− µt, S

i
t −

∑
j∈S Sj

t + St

n+ 1

〉
−
∥∥∥Xi

t − µt

∥∥∥2)
+
(∥∥∥∑i∈S Xi

t +Xt

s+ 1
− µt

∥∥∥2 + ∥∥∥St −
∑

j∈S Sj
t + St

n+ 1

∥∥∥2
+ 2
〈∑

i∈S Xi
t +Xt

s+ 1
− µt, St −

∑
j∈S Sj

t + St

n+ 1

〉
−
∥∥∥Xt − µt

∥∥∥2)
+
∑
k ̸∈S

2
〈
Xk

t − µt,−
∑

j∈S Sj
t + St

n+ 1

〉
+
∑
k ̸∈S

∥∥∥∑j∈S Sj
t + St

n+ 1

∥∥∥2

Observe that:

n∑
k=0

〈
Xk

t − µt,−
∑

j∈S Sj
t + St

n+ 1

〉
= 0.

Communication-Efficient Federated Learning With Data and Client Heterogeneity

After combining the above two equations, we get that:

∆S
t =

∑
i∈S

(∥∥∥s(Xi
t − µt) + (Xt − µt)

s+ 1

∥∥∥2 − s

s+ 1

∥∥∥Xi
t − µt

∥∥∥2 − 1

s+ 1

∥∥∥Xt − µt

∥∥∥2)
+
(∥∥∥∑i∈S(X

i
t − µt) + (Xt − µt)

s+ 1

∥∥∥2 −∑
i∈S

1

s+ 1

∥∥∥Xi
t − µt

∥∥∥2 − 1

s+ 1

∥∥∥Xt − µt

∥∥∥2)
+
∑
i∈S

(∥∥∥Si
t −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2
〈sXi

t +Xt

s+ 1
− µt, S

i
t

〉)
+
∥∥∥St −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2
〈∑

i∈S Xi
t +Xt

s+ 1
− µt, St

〉
+
∑
k ̸∈S

∥∥∥∑j∈S Sj
t + St

n+ 1

∥∥∥2

By simplifying the above, we get:

∆S
t =

−s

(s+ 1)2

∑
i∈S

∥Xi
t −Xt∥2 −

1

(s+ 1)2

∑
i∈S

∥Xi
t −Xt∥2 −

1

(s+ 1)2

∑
i,j∈S

∥Xi
t −Xj

t ∥2)

+
∑
i∈S

∥∥∥Si
t −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2s

s+ 1

∑
i∈S

〈
Xi

t − µt, S
i
t

〉
+

2

s+ 1

∑
i∈S

〈
Xt − µt, S

i
t

〉
+
∥∥∥St −

∑
j∈S Sj

t + St

n+ 1

∥∥∥2 + 2

s+ 1

∑
i∈S

〈
Xi

t − µt, St

〉
+

2

s+ 1

〈
Xt − µt, St

〉
+
∑
k ̸∈S

∥∥∥∑j∈S Sj
t + St

n+ 1

∥∥∥2

Let α be a parameter we will fix later:

〈
Xi

t − µt, S
i
t

〉 Young

≤ α
∥∥∥Xi

t − µt

∥∥∥2 +
∥∥∥Si

t

∥∥∥2
4α

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Finally, we get that

∆S
t ≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 + 2

∑
i∈S

∥∥∥Si
t

∥∥∥2 + 2s(s+ 1)

(n+ 1)2

∑
j∈S

∥∥∥Sj
t

∥∥∥2 + 2s(s+ 1)

(n+ 1)2

∥∥∥St

∥∥∥2

+
∑
i∈S

2sα

s+ 1

∥∥∥Xi
t − µt

∥∥∥2 +∑
i∈S

s
∥∥∥Si

t

∥∥∥2
2α(s+ 1)

+
∑
i∈S

2α

s+ 1

∥∥∥Xt − µt∥2 +
∑
i∈S

∥∥∥Si
t

∥∥∥2
2α(s+ 1)

+ 2
∥∥∥St

∥∥∥2 + 2(s+ 1)

(n+ 1)2

∑
j∈S

∥∥∥Sj
t

∥∥∥2 + 2(s+ 1)

(n+ 1)2

∥∥∥St

∥∥∥2 +∑
i∈S

2α

s+ 1

∥∥∥Xi
t − µt∥2 +

∑
i∈S

∥∥∥St

∥∥∥2
2α(s+ 1)

+
2α

s+ 1

∥∥∥Xt − µt∥2 +

∥∥∥St

∥∥∥2
2α(s+ 1)

+
∑
j∈S

(n− s)(s+ 1)

(n+ 1)2

∥∥∥Sj
t

∥∥∥2 + (n− s)(s+ 1)

(n+ 1)2

∥∥∥St

∥∥∥2
=

−1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 + (2 +

2(s+ 1)2

(n+ 1)2
+

1

2α
+

(n− s)(s+ 1)

(n+ 1)2
)
∑
j∈S

∥∥∥Sj
t

∥∥∥2+
(2 +

2(s+ 1)2

(n+ 1)2
+

1

2α
+

(n− s)(s+ 1)

(n+ 1)2
)
∥∥∥St

∥∥∥2 +∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 + (4 +

1

2α
)
∑
i∈S

∥∥∥Si
t

∥∥∥2+
(4 +

1

2α
)
∥∥∥St

∥∥∥2 +∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2

Using definitions of Si
t and St, Cauchy-Schwarz inequality and properties of quantization we get that

∥Si
t∥2 ≤ 2s2

(s+ 1)2
η2η2i ∥h̃i,t∥2 +

2(R2 + 7)2γ2

(s+ 1)2
.

∥St∥2 ≤ 2s

(s+ 1)2
η2η2i

∑
i∈S

∥h̃i,t∥2 +
2s2(R2 + 7)2γ2

(s+ 1)2

Next, we plug this in the previous inequality:

∆S
t ≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 +

∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)
2s2 + 2s

(s+ 1)2
η2η2i ∥h̃i,t∥2 +

(2s2 + 2s)(R2 + 7)2γ2

(s+ 1)2

≤ −1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 +

∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)(η2

∑
i∈S

η2i ∥h̃i,t∥2 + 2(R2 + 7)2γ2)

Next, we calculate the probability of choosing the set S and upper bound ∆t in expectation, for this we define

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Et as expectation conditioned on the entire history up to and including step t

Et[∆t] =
∑
S

1(
n
s

)Et[∆
S
t]

≤
∑
S

1(
n
s

)(−1

s+ 1

∑
i∈S

∥Xi
t −Xt∥2 +

∑
i∈S

2α
∥∥∥Xi

t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)(η2

∑
i∈S

η2i ∥h̃i,t∥2 + 2(R2 + 7)2γ2)

)

=
−
(
n−1
s−1

)
(s+ 1)

(
n
s

) ∑
i

∥Xi
t −Xt∥2 +

∑
i

2α
(
n−1
s−1

)(
n
s

) ∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (4 +

1

2α
)(η2

(
n−1
s−1

)(
n
s

) ∑
i

η2i ∥h̃i,t∥2 + 2(R2 + 7)2γ2)

≤ −
∑
i

s∥Xi
t − µt∥2

(s+ 1)n
+
∑
i

2
sα

n

∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xt − µt

∥∥∥2
+ (8 +

1

α
)(R2 + 7)2γ2 +

∑
i

s

n
(4 +

1

2α
)η2η2i Et∥h̃i,t∥2

≤ (
−s

(s+ 1)n
+ 2α)Φt + (8 +

1

α
)(R2 + 7)2γ2 +

∑
i

s

n
(4 +

1

2α
)η2η2i Et∥h̃i,t∥2

By setting α = 3s−1
n(8s+8) ≥

1
8n , we get that:

Et[∆t] ≤ − 1

4n
Φt + 16n(R2 + 7)2γ2 +

∑
i

8sη2η2i Et∥h̃i,t∥2.

Next we remove the conditioning , and use the definitions of ∆i and Si
t (for Si

t we also use upper bound which
come from the properties of quantization).

E[Et[Φt+1]] = E[∆t +Φt] ≤ (1− 1

4n
)E[Φt] + 16n(R2 + 7)2γ2 + 8sη2

∑
i

η2i E∥h̃i,t∥2

Lemma B.5. For any time step t we have:

E[Φt+1] ≤ (1− 1

5n
)E[Φt] + 16n(R2 + 7)2γ2 + 16nsKη2((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2

Proof. By combining Lemma 3.4 and B.2 we have:

E[Φt+1] ≤ (1− 1

4n
)E[Φt] + 16n(R2 + 7)2γ2+

8sη2
(
2nK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2

)
= (1− 1

4n
+ 64sL2K2η2)E[Φt] + 16n(R2 + 7)2γ2+

16nsKη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2

≤ (1− 1

5n
)E[Φt] + 16n(R2 + 7)2γ2+

16nsKη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Lemma B.6. For the sum of potential functions in all T steps we have:

T∑
t=0

E[Φt] ≤ 80Tn2(R2 + 7)2γ2 + 80Tn2sKη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 160B2n2sK2η2

T−1∑
t=0

E∥∇f(µt)∥2

Proof.

T−1∑
t=0

E[Φt+1] ≤
T−1∑
t=0

(
(1− 1

5n
)E[Φt] + 16n(R2 + 7)2γ2+

16nsKη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32B2nsK2η2E∥∇f(µt)∥2

)

≤ (1− 1

5n
)

T−1∑
t=0

E[Φt] + 16Tn(R2 + 7)2γ2 + 16TnsKη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 32B2nsK2η2
T−1∑
t=0

E∥∇f(µt)∥2

T∑
t=0

E[Φt] ≤ 5n
(
16Tn(R2 + 7)2γ2 + 16TnsKη2((

1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 32B2nsK2η2
T−1∑
t=0

E∥∇f(µt)∥2
)

= 80Tn2(R2 + 7)2γ2 + 80Tn2sKη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2

Lemma B.7. For any step t, we have that

n∑
i=1

η2i E∥
k−1∑
s=0

h̃s
i,t∥2 ≤ 2nK(

1

n

n∑
i=1

η2i)σ
2 + 8L2K2E[Φt] + 4nK2G2 + 4nK2B2E∥∇f(µt)∥2

Proof. Using lemma B.1

n∑
i=1

η2i E∥
k−1∑
s=0

h̃s
i,t∥2 ≤ nK(

1

n

n∑
i=1

η2i)σ
2 +

n∑
i=1

η2i E∥
k−1∑
q=0

hq
i,t∥

2

≤ nK(
1

n

n∑
i=1

η2i)σ
2 +K

n∑
i=1

η2i

k−1∑
q=0

E∥hq
i,t∥

2

≤ nK(
1

n

n∑
i=1

η2i)σ
2 +K

n∑
i=1

η2i

k−1∑
q=0

(
η2i σ

2

K2
+ 8L2E∥Xi

t − µt∥2 + 4E∥∇fi(µt)∥2
)

≤ 2nK(
1

n

n∑
i=1

η2i)σ
2 +

n∑
i=1

(
8K2L2E∥Xi

t − µt∥2 + 4K2E∥∇fi(µt)∥2
)

≤ 2nK(
1

n

n∑
i=1

η2i)σ
2 + 8L2K2E[Φt] + 4nK2G2 + 4nK2B2E∥∇f(µt)∥2.

Communication-Efficient Federated Learning With Data and Client Heterogeneity

For the following lemmas we define parameter ζi,k as it is equal to 1 if the client i did its kth step and otherwise
is Zero.

Lemma B.8. For any step t

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t −

k−1∑
s=0

ηh̃s
i,t)−

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2

≤ K((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

K2L2

n
E[Φt] + 2K2B2E∥∇f(µt)∥2.

Proof.

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t −

k−1∑
s=0

ηh̃s
i,t)−

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2

≤ E
[
sK
∑
i∈S

η2i

K∑
k=0

ζ2i,k∥∇fi(X
i
t −

k−1∑
s=0

ηh̃s
i,t)−∇fi(X

i
t)∥2

]

≤ E
[
sKL2

∑
i∈S

η2i

K∑
k=0

∥Xi
t −

k−1∑
s=0

ηh̃s
i,t −Xi

t∥2
]

≤ E
[
sKL2η2

∑
i∈S

η2i

K∑
k=0

∥
k−1∑
s=0

h̃s
i,t∥2

]
=

s2KL2η2

n

K∑
k=0

n∑
i=1

η2i E∥
k−1∑
s=0

h̃s
i,t∥2

≤ s2K2L2η2

n
(2nK(

1

n

n∑
i=1

η2i)σ
2 + 8L2K2E[Φt] + 4nK2G2 + 4nK2B2E∥∇f(µt)∥2)

= 2s2K3L2η2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

8s2K4L4η2

n
E[Φt] + 4s2K4L2η2B2E∥∇f(µt)∥2

≤ K((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

K2L2

n
E[Φt] + 2K2B2E∥∇f(µt)∥2

Lemma B.9. For any step t

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(X
i
t)−∇fi(µt))∥2 ≤ s2K2L2

n
E[Φt]

Proof.

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(X
i
t)−∇fi(µt))∥2 ≤ sKE

[∑
i∈S

K∑
k=0

ζ2i,k∥∇fi(X
i
t)−∇fi(µt)∥2]

≤ s2K2

n

n∑
i=1

E∥∇fi(X
i
t)−∇fi(µt)∥2

≤ s2K2L2

n

n∑
i=1

E∥Xi
t − µt∥2 =

s2K2L2

n
E[Φt]

Lemma B.10. For any step t

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(µt)−∇f(µt))∥2 ≤ 2sK2G2 + 4sK2B2E∥∇f(µt)∥2

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Proof.

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(µt)−∇f(µt))∥2 = E
[∑
i∈S

η2i (

K∑
k=0

ζi,k)
2∥(∇fi(µt)−∇f(µt))∥2

]

+ E
[∑
i ̸=j∈S

ηiηj(

K∑
k=0

ζi,k)(

K∑
k=0

ζj,k)⟨∇fi(µt)−∇f(µt),∇fi(µt)−∇f(µt)⟩
]

= E
[∑
i∈S

η2i (

K∑
k=0

ζi,k)
2∥(∇fi(µt)−∇f(µt))∥2

]

+ E
[∑
i ̸=j∈S

ηiηjE[(
K∑

k=0

ζi,k)]E[(
K∑

k=0

ζj,k)]⟨∇fi(µt)−∇f(µt),∇fi(µt)−∇f(µt)⟩
]

= E
[∑
i∈S

η2i (

K∑
k=0

ζi,k)
2∥(∇fi(µt)−∇f(µt))∥2

]
+ E

[∑
i̸=j∈S

ηiHiηjHj⟨∇fi(µt)−∇f(µt),∇fi(µt)−∇f(µt)⟩
]

= E
[∑
i∈S

η2i (

K∑
k=0

ζi,k)
2∥(∇fi(µt)−∇f(µt))∥2

]
+H2

minE
[∑
i ̸=j∈S

⟨∇fi(µt)−∇f(µt),∇fi(µt)−∇f(µt)⟩
]

≤
(
n−1
s−1

)(
n
s

) n∑
i=1

E
[
(

K∑
k=0

ζi,k)
2∥(∇fi(µt)−∇f(µt))∥2

]
+H2

min

(
n−2
s−2

)(
n
s

) ∑
i ̸=j

E
[
⟨∇fi(µt)−∇f(µt),∇fi(µt)−∇f(µt)⟩

]

=
s

n

n∑
i=1

E
[
(

K∑
k=0

ζi,k)
2∥(∇fi(µt)−∇f(µt))∥2

]
−H2

min

(
n−2
s−2

)(
n
s

) n∑
i=1

E
[
∥(∇fi(µt)−∇f(µt))∥2

]
=

sK2

n

n∑
i=1

E∥(∇fi(µt)−∇f(µt))∥2 ≤ 2sK2

n

n∑
i=1

E∥∇fi(µt)∥2 + 2sK2E∥∇f(µt)∥2

≤ 2sK2(G2 +B2E∥∇f(µt)∥2) + 2sK2E∥∇f(µt)∥2 ≤ 2sK2G2 + 4sK2B2E∥∇f(µt)∥2

Lemma B.11. For any step t

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2 ≤ 3s2K2L2

n
E[Φt] + 3sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 15s2K2B2E∥∇f(µt)∥2

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Proof.

E∥
∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2 = E∥

∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(X
i
t)−∇fi(µt) +∇fi(µt)−∇f(µt) +∇f(µt))∥2

≤ 3E∥
∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(X
i
t)−∇fi(µt))∥2 + 3E∥

∑
i∈S

ηi

K∑
k=0

ζi,k(∇fi(µt)−∇f(µt))∥2

+ 3s2K2E∥∇f(µt))∥2

≤ 3s2K2L2

n
E[Φt] + 6sK2G2 + 12sK2B2E∥∇f(µt)∥2 + 3s2K2E∥∇f(µt))∥2

≤ 3s2K2L2

n
E[Φt] + 6sK2G2 + 15s2K2B2E∥∇f(µt)∥2

≤ 3s2K2L2

n
E[Φt] + 3sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 15s2K2B2E∥∇f(µt)∥2

Lemma B.12. For any step t

E∥
∑
i∈S

ηihi,t∥2 ≤ 8s2K2L2

n
E[Φt] + 8sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32s2K2B2E∥∇f(µt)∥2

Proof.

E∥
∑
i∈S

ηihi,t∥2 = E∥
∑
i∈S

ηi

K∑
k=0

ζi,kh
k
i,t∥2 = E∥

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t −

k−1∑
s=0

ηh̃s
i,t)∥2

= E∥
∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t −

k−1∑
s=0

ηh̃s
i,t)−

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t) +

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2

≤ 2E∥
∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t −

k−1∑
s=0

ηh̃s
i,t)−

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2 + 2E∥

∑
i∈S

ηi

K∑
k=0

ζi,k∇fi(X
i
t)∥2

≤ 2K((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

2K2L2

n
E[Φt] + 2K2B2E∥∇f(µt)∥2)

+
6s2K2L2

n
E[Φt] + 6sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 30s2K2B2E∥∇f(µt)∥2

≤ 8s2K2L2

n
E[Φt] + 8sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32s2K2B2E∥∇f(µt)∥2

Lemma B.13. For any step t

E∥
∑
i∈S

ηi(h̃i,t − hi,t)∥2 ≤ sK(
1

n

n∑
i=1

η2i)σ
2

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Proof.

E∥
∑
i∈S

ηi(h̃i,t − hi,t)∥2 = E∥
∑
i∈S

ηi

K∑
k=0

ζi,k(h̃
k
i,t − hk

i,t)∥2 = E
[∑
i∈S

η2i

K∑
k=0

ζ2i,k∥(h̃k
i,t − hk

i,t)∥2
]

+ E
[∑
i,j∈S,(i,k) ̸=(j,k′)

ηiηjζi,kζj,k′⟨h̃k
i,t − hk

i,t, h̃
k′

j,t − hk′

j,t⟩
]

= E
[∑
i∈S

η2i

K∑
k=0

ζ2i,k∥(h̃k
i,t − hk

i,t)∥2
]
≤ sK(

1

n

n∑
i=1

η2i)σ
2

Lemma 3.6. For any step t

E∥
∑
i∈S

ηih̃i,t∥2 ≤ 16s2K2L2

n
E[Φt] + 18sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 64s2K2B2E∥∇f(µt)∥2

Proof.

E∥
∑
i∈S

ηih̃i,t∥2 ≤ 2E∥
∑
i∈S

ηihi,t∥2 + 2E∥
∑
i∈S

ηi(h̃i,t − hi,t)∥2

≤ 2
(8s2K2L2

n
E[Φt] + 8sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 32s2K2B2E∥∇f(µt)∥2

)
+ 2sK(

1

n

n∑
i=1

η2i)σ
2

≤ 16s2K2L2

n
E[Φt] + 18sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 64s2K2B2E∥∇f(µt)∥2

Lemma B.14. For any step t

E∥µt+1 − µt∥2 ≤ 2η2

(n+ 1)2
E∥
∑
i∈S

ηih̃i,t∥2 +
2(R2 + 7)2γ2

(n+ 1)2

Proof.

E∥µt+1 − µt∥2 =
1

(n+ 1)2
E∥ − η

∑
i∈S

ηih̃i,t +
Q(Xt)−Xt

s+ 1

+
1

s+ 1

∑
i∈S

(Q(Xi
t − ηηih̃i,t)− (Xi

t − ηηih̃i,t))∥2

≤ 2

(n+ 1)2
E∥ − η

∑
i∈S

ηih̃i,t∥2 +
2

(n+ 1)2
E∥Q(Xt)−Xt

s+ 1

+
1

s+ 1

∑
i∈S

(Q(Xi
t − ηηih̃i,t)− (Xi

t − ηηih̃i,t))∥2

≤ 2

(n+ 1)2
E∥ − η

∑
i∈S

ηih̃i,t∥2 +
2

(n+ 1)2

(1

s+ 1
E
∥∥∥Q(Xt)−Xt

∥∥∥2
+

1

s+ 1

∑
i∈S

E
∥∥∥(Q(Xi

t − ηηih̃i,t)− (Xi
t − ηηih̃i,t))

∥∥∥2)
≤ 2η2

(n+ 1)2
E∥
∑
i∈S

ηih̃i,t∥2 +
2(R2 + 7)2γ2

(n+ 1)2

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Lemma B.15. For any step t

E∥µt+1 − µt∥2 ≤ 32η2s2K2L2

n(n+ 1)2
E[Φt] +

36sKη2

(n+ 1)2
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
128η2s2K2B2

(n+ 1)2
E∥∇f(µt)∥2 +

2(R2 + 7)2γ2

(n+ 1)2

Proof.

E∥µt+1 − µt∥2 ≤ 2η2

(n+ 1)2
E∥
∑
i∈S

η2i h̃i,t∥2 +
2(R2 + 7)2γ2

(n+ 1)2

≤ 2η2

(n+ 1)2

(16s2K2L2

n
E[Φt] + 18sK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 64s2K2B2E∥∇f(µt)∥2

)
+

2(R2 + 7)2γ2

(n+ 1)2

≤ 32η2s2K2L2

n(n+ 1)2
E[Φt] +

36sKη2

(n+ 1)2
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
128η2s2K2B2

(n+ 1)2
E∥∇f(µt)∥2 +

2(R2 + 7)2γ2

(n+ 1)2

B.4 Convergence

Theorem B.16. For learning rate η = n+1
sHmin

√
T
, Algorithm 1 converges at rate:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(f(µ0)− f∗)√
T

+
800nKL2(R2 + 7)2γ2

Hmin
+

6KL((1n
∑n

i=1 η
2
i)σ

2 + 2KG2)

H2
min

√
T

+
808n(n+ 1)2K2L2

sH3
minT

((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

2(R2 + 7)2γ2L
√
T

(n+ 1)2sHmin

Proof. Let Et denote expectation conditioned on the entire history up to and including step t. By L-smoothness
we have that

Et[f(µt+1)] ≤ f(µt) + Et⟨∇f(µt), µt+1 − µt⟩+
L

2
Et∥µt+1 − µt∥2. (2)

First we look at Et⟨∇f(µt), µt+1 − µt⟩ = ⟨∇f(µt),Et[µt+1 − µt]⟩. If set S is chosen at step t+ 1, We have that

µt+1 − µt =
1

n+ 1
(−η

∑
i∈S

ηih̃i,t +
Q(Xt)−Xt

s+ 1
+

1

s+ 1

∑
i∈S

(Q(Xi
t − ηηih̃i,t)−Xi

t − ηηih̃i,t)))

Thus, in this case:

Et[µt+1 − µt] = − η

n+ 1

∑
i∈S

ηihi,t.

Where we used unbiasedness of quantization and stochastic gradients. We would like to note that even though we
do condition on the entire history up to and including step t and this includes conditioning on Xi

t , the algorithm

has not yet used h̃i,t (it does not count towards computation of µt), thus we can safely use all properties of
stochastic gradients. Hence, we can proceed by taking into the account that each set of agents S is chosen as
initiator with probability 1

(ns)
:

Et[µt+1 − µt] =
∑
S

1(
n
s

) ∑
i∈S

− η

n+ 1
ηihi,t = − sη

n(n+ 1)

n∑
i=1

ηihi,t.

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

and subsequently

Et⟨∇f(µt), µt+1 − µt⟩ =
n∑

i=1

sη

n(n+ 1)
Et⟨∇f(µt),−ηihi,t⟩.

Hence, we can rewrite (2) as:

Et[f(µt+1)] ≤ f(µt) +

n∑
i=1

sη

n(n+ 1)
Et⟨∇f(µt),−ηihi,t⟩+

L

2
Et∥µt+1 − µt∥2.

Next, we remove the conditioning

E[(µt+1)] = E[Et[f(µt+1)]] ≤ E[f(µt)] +

n∑
i=1

sη

n(n+ 1)
E⟨∇f(µt),−ηihi,t⟩

+
L

2
E∥µt+1 − µt∥2.

This allows us to use Lemmas B.15 and B.4:

E[f(µt+1)]− E[f(µt)] ≤
sη

n(n+ 1)

(
4KL2E[Φt] + (−3Hminn

4
+ 8B2L2η2K3n)E∥∇f(µt)∥2

+ 4nL2η2K3((
1

n

n∑
i=1

η2i)σ
2 + 2G2)

)

+
L

2

(
36sKη2((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

(n+ 1)2
+

32s2L2K2η2E[Φt]

n(n+ 1)2

+
128B2s2K2η2E∥∇f(µt)∥2

(n+ 1)2
+

2(R2 + 7)2γ2

(n+ 1)2

)
=
(4ηsKL2

n(n+ 1)
+

32s2K2L3η2

n(n+ 1)2
)
E[Φt]

+
(4sL2η3K3

n+ 1
+

18sKη2L

(n+ 1)2
)
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

(R2 + 7)2γ2L

(n+ 1)2

+
(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

64B2s2K2Lη2

(n+ 1)2
)
E∥∇f(µt)∥2

By simplifying the above inequality we get:

E[f(µt+1)]− E[f(µt)] ≤
5ηsKL2E[Φt]

n(n+ 1)
+
(4sL2η3K3

n+ 1
+

18sKη2L

(n+ 1)2
)
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
(R2 + 7)2γ2L

(n+ 1)2
+
(−3ηsHmin

4(n+ 1)
+

8B2L2η3sK3

n+ 1

+
64B2s2K2Lη2

(n+ 1)2
)
E∥∇f(µt)∥2

by summing the above inequality for t = 0 to t = T − 1, we get that

E[f(µT)]− f(µ0) ≤
5ηsKL2

n(n+ 1)

T−1∑
t=0

E[Φt] +
(4sL2η3K3T

n+ 1
+

18sKη2LT

(n+ 1)2
)
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
(−3ηsHmin

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

64B2s2K2Lη2

(n+ 1)2
) T−1∑

t=0

E∥∇f(µt)∥2

+
(R2 + 7)2γ2LT

(n+ 1)2

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Further, we use Lemma B.6:

E[f(µT)]− f(µ0) ≤
5ηsKL2

n(n+ 1)

(
80Tn2(R2 + 7)2γ2 + 80Tn2sKη2((

1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2
)

+
(4sL2η3K3T

n+ 1
+

18sKη2LT

(n+ 1)2
)
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

(R2 + 7)2γ2LT

(n+ 1)2
+

(−3ηsH

4(n+ 1)
+

8B2L2η3sK3

n+ 1
+

64B2s2K2Lη2

(n+ 1)2
) T−1∑

t=0

E∥∇f(µt)∥2

≤ 400ηsnKL2T (R2 + 7)2γ2

n+ 1
+

404Tns2K2L2η3((1n
∑n

i=1 η
2
i)σ

2 + 2KG2)

n+ 1

+
18sKη2LT ((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

(n+ 1)2
+

(R2 + 7)2γ2LT

(n+ 1)2

+
(−3ηsHmin

4(n+ 1)
+

8B2L2η3sK3

n+ 1

+
64B2s2K2Lη2

(n+ 1)2
+

800B2ns2K3η3L2

n+ 1

) T−1∑
t=0

E∥∇f(µt)∥2

by assuming η < 1
100B

√
nsk2L

we get:

E[f(µT)]− f(µ0) ≤
400ηsnKL2T (R2 + 7)2γ2

n+ 1
+

+ (
18sKη2LT

(n+ 1)2
+

404Tns2K2L2η3

n+ 1
)((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

(R2 + 7)2γ2LT

(n+ 1)2

+
−ηsHmin

2(n+ 1)

T−1∑
t=0

E∥∇f(µt)∥2

Next, we regroup terms, multiply both sides by 2(n+1)
ηsHminT

and use the fact that f(µT) ≥ f∗:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(n+ 1)(f(µ0)− f∗)

sHminηT
+

800nKL2(R2 + 7)2γ2

H
+

+ (
36KηL

Hmin(n+ 1)
+

808nsK2L2η2

Hmin
)((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

2(R2 + 7)2γ2L

(n+ 1)sHminη

Finally, we set η = n+1
Hmin

√
sT

:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(f(µ0)− f∗)√
sT

+
800nKL2(R2 + 7)2γ2

Hmin
+

36KL((1n
∑n

i=1 η
2
i)σ

2 + 2KG2)

H2
min

√
sT

(3)

+
808n(n+ 1)2K2L2

H3
minT

((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

2(R2 + 7)2γ2L
√
T√

s(n+ 1)2
(4)

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Lemma B.17. For quantization parameters (R2 +7)2γ2 = (n+1)2

sH2
minT

((1n
∑n

i=1 η
2
i)σ

2 +2KG2 + f(µ0)−f∗
L) we have:

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 4(f(µ0)− f∗)√
sT

+
36KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+
1608n(n+ 1)2K2L2((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H3
minT

+
800n(n+ 1)2KL(f(µ0)− f∗)

sH3
minT

Proof.

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 2(f(µ0)− f∗)√
sT

+
800nKL2(R2 + 7)2γ2

Hmin
+

36KL((1n
∑n

i=1 η
2
i)σ

2 + 2KG2)

H2
min

√
sT

+
808n(n+ 1)2K2L2

H3T
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

2(R2 + 7)2γ2L
√
T√

s(n+ 1)2

=
2(f(µ0)− f∗)√

sT
+

800nKL2(n+ 1)2

sH3
minT

((
1

n

n∑
i=1

η2i)σ
2 + 2KG2 +

f(µ0)− f∗
L

)

+
36KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+
808n(n+ 1)2K2L2

H3
minT

((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
2L

s
√
sH2

min

√
T
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2 +

f(µ0)− f∗
L

)

≤ 4(f(µ0)− f∗)√
sT

+
36KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+
1608n(n+ 1)2K2L2((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H3
minT

+
800n(n+ 1)2KL(f(µ0)− f∗)

sH3
minT

Lemma B.18. We have:

5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

∑
i

E∥h̃i,t∥2 ≤ 1000Tn3s(R2 + 7)2γ2

+ 10000B2n3s3H2
minK

2LT (R2 + 7)2γ2

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Proof.

5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

∑
i

E∥h̃i,t∥2

≤ 5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

(
2nK((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 8L2K2E[Φt] + 4nK2B2E∥∇f(µt)∥2

)
≤ 5s

T−1∑
t=0

E[Φt] + 6nTη2K((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 24η2L2K2

T−1∑
t=0

E[Φt]

+ 12nB2η2K2
T−1∑
t=0

E∥∇f(µt)∥2

≤ 6s

T−1∑
t=0

E[Φt] + 6nTη2K((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 12B2nη2K2

T−1∑
t=0

E∥∇f(µt)∥2

≤ 6s
(
80Tn2(R2 + 7)2γ2 + 80Tn2sKη2((

1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 160B2n2sK2η2
T−1∑
t=0

E∥∇f(µt)∥2
)

+ 6nTη2K((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) + 12B2nη2K2

T−1∑
t=0

E∥∇f(µt)∥2

≤ 480Tn2s(R2 + 7)2γ2 + (480Tn2s2Kη2 + 6nTη2K)((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ (960n2s2K2B2η2 + 12B2nη2K2)

T−1∑
t=0

E∥∇f(µt)∥2

≤ 480Tn2s(R2 + 7)2γ2 + 486Tn2s2Kη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 1000B2n2s2K2η2
T−1∑
t=0

E∥∇f(µt)∥2

≤ 480Tn2s(R2 + 7)2γ2 + 486Tn2s2Kη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 1000B2n2s2K2η2
(2(n+ 1)(f(µ0)− f∗)

sHminη
+

800TnKL2(R2 + 7)2γ2

Hmin
+

+ (
36TKηL

Hmin(n+ 1)
+

808TnsK2L2η2

Hmin
)((

1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

2T (R2 + 7)2γ2L

(n+ 1)sHminη

)

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

≤ 480Tn2s(R2 + 7)2γ2 + 486Tn2s2Kη2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
2000B2n2(n+ 1)sK2η(f(µ0)− f∗)

Hmin
+

800000TB2n3s2K3η2L2(R2 + 7)2γ2

Hmin
+

+ (
36000TB2n2s2K3η3L

Hmin(n+ 1)
+

808000TB2n3s3K4η4L2

Hmin
)((

1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+
4000TB2nsK2ηL(R2 + 7)2γ2

Hmin

≤ 1000Tn3s(R2 + 7)2γ2 +
2000B2n2(n+ 1)2sK2

√
T

(f(µ0)− f∗)

+
10000Tn3(n+ 1)2s2KL

T
((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

Therefore we have

5s

T−1∑
t=0

E[Φt] + 3η2
T−1∑
t=0

∑
i

E∥h̃i,t∥2 ≤ 1000Tn3s(R2 + 7)2γ2

+ 10000B2n3(n+ 1)2s2K2L(
f(µ0)− f∗)

L
+ (

1

n

n∑
i=1

η2i)σ
2 + 2KG2)

= 1000Tn3s(R2 + 7)2γ2 + 10000B2n3s3H2
minK

2LT (R2 + 7)2γ2

Lemma B.19. Let T ≥ O(n3), then for quantization parameters R = 2 + T
3
d and γ2 =

(n+1)2((1
n

∑n
i=1 η2

i)σ
2+2KG2+

f(µ0)−f∗)
L

sH2
minT (R2+7)2

we have that the probability of quantization never failing during the entire

run of the Algorithm 1 is at least 1−O
(
1
T

)
.

Proof. Let Lt be the event that quantization does not fail during step t. Our goal is to show that Pr[∪T
t=1Lt] ≥

1 − O
(
1
T

)
. In order to do this, we first prove that Pr[¬Lt+1|L1,L2, ...,Lt] ≤ O

(
1
T 2

)
(O is with respect to T

here).

We need need to lower bound probability that :

∀i ∈ S :∥Xt −Xi
t∥2 ≤ (RRd

γ)2 (5)

∥Xt − (Xi
t − ηh̃i,t)∥2 ≤ (RRd

γ)2 (6)

∥Xt −Xi
t∥2 = O

(
γ2(poly(T))2

R2

)
(7)

∥Xt − (Xi
t − ηh̃i,t)∥2 = O

(
γ2(poly(T))2

R2

)
(8)

We would like to point out that these conditions are necessary for decoding to succeed, we ignore encoding since

it will be counted when someone will try to decode it. Since, R = 2+ T
3
d this means that (RRd

)2 ≥ 22T
3 ≥ T 30,

for large enough T . Hence, it is suffices to upper bound the probability that
∑

i∈S ∥Xt − Xi
t∥2 +

∑
i∈S ∥Xt −

(Xi
t − ηh̃i,t)∥2 ≥ T 30γ2. To prove this, we have:

∑
i∈S

∥Xt −Xi
t∥2 +

∑
i∈S

∥Xt − (Xi
t − ηh̃i,t)∥2 ≤

∑
i∈S

(5∥Xt − µt∥2

+ 5∥µt −Xi
t∥2 + 3η2∥h̃i,t∥2) ≤ 5sΦt + 3η2

∑
i

∥h̃i,t∥2

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Now, we use Markov’s inequality, and Lemma B.18:

Pr[5sΦt + 3η2∥h̃i,t∥2 ≥ T 30γ2|L1,L2, ...,Lt] ≤
E[5sΦt + 3η2

∑
i ∥h̃i,t∥2|L1,L2, ...,Lt]

T 30γ2

≤ 1000Tn3s(R2 + 7)2γ2 + 10000B2n3s3H2
minK

2LT (R2 + 7)2γ2

T 30γ2
≤ O(

1

T 2
)

Thus, the failure probability due to the models not being close enough for quantization to be applied is at most
O
(

1
T 2

)
. Conditioned on the event that ∥Xt −Xi

t∥ and ∥Xt − (Xi
t − ηh̃i,t)∥ are upper bounded by T 15γ (This is

what we actually lower bounded the probability for using Markov), we get that the probability of quantization
algorithm failing is at most

∑
i∈S

log log(
1

γ
∥Xt −Xi

t∥) ·O(R−d)

+
∑
i∈S

log log(
1

γ
∥Xt − (Xi

t − ηh̃i,t)∥) ·O(R−d)

≤ O

(
s log log T

T 3

)
≤ O

(
1

T 2

)
.

By the law of total probability (to remove conditioning) and the union bound we get that the total probability
of failure, either due to not being able to apply quantization or by failure of quantization algorithm itself is at
most O

(
1
T 2

)
. Finally we use chain rule to get that

Pr[∪T
t=1Lt] =

T∏
t=1

Pr[Lt| ∪t−1
s=0 Ls] =

T∏
t=1

(
1− Pr[¬Lt| ∪t−1

s=0 Ls]
)

≥ 1−
T∑

t=1

Pr[¬Lt| ∪t−1
s=0 Ls] ≥ 1−O

(
1

T

)
.

Lemma B.20. Let T ≥ O(n3), then for quantization parameters R = 2+T
3
d and γ2 = η2

(R2+7)2 ((
1
n

∑n
i=1 η

2
i)σ

2+

2KG2+ f(µ0)−f∗
L) we have that the expected number of bits used by Algorithm 1 per communication is O(d log(n)+

log(T)).

Proof. At step t+ 1, by Corollary 3.3, we know that the total number of bits used is at most

∑
i∈S

O
(
d log(

R

γ
∥Xi

t −Xt∥)
)
+O

(
d log(

R

γ
∥Xt − (Xi

t − ηh̃i,t)∥
)

By taking the randomness of agent interaction at step t+ 1 into the account, we get that the expected number

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

of bits used is at most:

∑
S

1(
n
s

) ∑
i∈S

(
O
(
d log(

R

γ
∥Xi

t −Xt∥)
)
+O

(
d log(

R

γ
∥Xt − (Xi

t − ηh̃i,t)∥
))

=
∑
i

s

n

(
O
(
d log(

R

γ
∥Xi

t −Xt∥)
)
+O

(
d log(

R

γ
∥Xt − (Xi

t − ηh̃i,t)∥
))

=≤
∑
i

s

n

(
O
(
d log(

R2

γ2
∥Xi

t −Xt∥2)
)
+O

(
d log(

R2

γ2
∥Xt − (Xi

t − ηh̃i,t)∥2
))

Jensen
≤ s

(
O
(
d log(

R2

γ2

∑
i

1

n
(∥Xi

t −Xt∥2 + ∥Xt − (Xi
t − ηh̃i,t)∥2)

))

≤s

(
O
(
d log(

R2

γ2

∑
i

1

n
(∥Xt − µt∥2 + ∥Xi

t − µt∥2 + η2∥h̃i,t∥2)
))

≤ s

(
O
(
d log(

R2

γ2
(Φt +

η2

n

∑
i

∥h̃i,t∥2)
))

So the expected number of bits per communication in all rounds is at most:

1

sT

T−1∑
t=0

s

(
O
(
d log(

R2

γ2
(Φt +

η2

n

∑
i

∥h̃i,t∥2)
))

≤

(
O
(
d log(

R2

γ2
(
1

T

T−1∑
t=0

Φt +
1

T

T−1∑
t=0

η2

n

∑
i

∥h̃i,t∥2)
))

Next, By Jensen inequality and Lemma B.18, We get that the expected number of bits used is at most,

O
(
dE
[
log(

R2

γ2
(
1

T

T−1∑
t=0

Φt +
1

T

T−1∑
t=0

η2

n

∑
i

∥h̃i,t∥2)
])

Jensen
≤ O

(
d log(

R2

γ2
(
1

T

T−1∑
t=0

E[Φt] +
1

T

T−1∑
t=0

η2

n

∑
i

E∥h̃i,t∥2)
)

≤ O
(
d log(

R2

γ2
(
1

T
(1000Tn3s(R2 + 7)2γ2 + 10000B2n3s3H2K2LT (R2 + 7)2γ2)))

)
≤ O

(
d log(R2(1000n3s(R2 + 7)2 + 10000B2n3s3H2K2L(R2 + 7)2))

)
= O(d log(n) + log(T))

Theorem 3.2. Assume the total number of steps T ≥ Ω(n3), the learning rate η = n+1
Hmin

√
sT

, and quantization

parameters R = 2 + T
3
d and γ2 = η2

(R2+7)2

(
(1n
∑n

i=1 η
2
i)σ

2 + 2KG2 + f(µ0)−f∗
L

)
. Let Hmin > 0 be the minimum

Hi. Then, with probability at least 1−O(1
T) we have that Algorithm 1 converges at the following rate

1

T

T−1∑
t=0

E∥∇f(µt)∥2 ≤ 4(f(µ0)− f∗)√
sT

+
36KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+

O

(
n3K2L2((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H3
minT

)
.

and uses O (sT (d log n+ log T)) expected communication bits in total.

Proof. The proof simply follows from combining Lemmas B.17, B.19 and B.20

Communication-Efficient Federated Learning With Data and Client Heterogeneity

Lemma B.21. For the convergence of the server, we have:

1

T

T−1∑
t=0

E∥∇f(Xt)∥2 ≤ 12(f(X0)− f∗)√
sT

+
108KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+ (
4824n(n+ 1)2K2L2

H3
minT

+
320n2(n+ 1)2KL2

H2
minT

)((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ (
2400n(n+ 1)2KL

sH3
minT

+
160n2(n+ 1)2L2

sH2
minT

)(f(X0)− f∗)

Hossein Zakerinia, Shayan Talaei, Giorgi Nadiradze, Dan Alistarh

Proof.

1

T

T−1∑
t=0

E∥∇f(Xt)∥2 ≤ 1

T

T−1∑
t=0

E∥∇f(Xt)−∇f(µt) +∇f(µt)∥2

≤ 2

T

T−1∑
t=0

E∥∇f(Xt)−∇f(µt)∥2 +
2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 2L2

T

T−1∑
t=0

E∥Xt − µt∥2 +
2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 2L2

T

T−1∑
t=0

E[Φt] +
2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 2L2
(
80n2(R2 + 7)2γ2 + 80n2sKη2((

1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ 160B2n2sK2η2
1

T

T−1∑
t=0

E∥∇f(µt)∥2
)
+

2

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 160n2L2(R2 + 7)2γ2 + 160n2sKL2η2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

3

T

T−1∑
t=0

∥∇f(µt)∥2

≤ 160n2L2(R2 + 7)2γ2 + 160n2sKL2η2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2) +

12(f(µ0)− f∗)√
sT

+
108KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+
4824n(n+ 1)2K2L2((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H3
minT

+
2400n(n+ 1)2KL(f(µ0)− f∗)

sH3
minT

≤ 160n2L2η2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2 +

f(µ0)− f∗
L

) + 160n2sKL2η2((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)+

12(f(µ0)− f∗)√
sT

+
108KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+
4824n(n+ 1)2K2L2((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H3
minT

+
2400n(n+ 1)2KL(f(µ0)− f∗)

sH3
minT

≤ 12(f(X0)− f∗)√
sT

+
108KL((1n

∑n
i=1 η

2
i)σ

2 + 2KG2)

H2
min

√
sT

+ (
4824n(n+ 1)2K2L2

H3
minT

+
320n2(n+ 1)2KL2

H2
minT

)((
1

n

n∑
i=1

η2i)σ
2 + 2KG2)

+ (
2400n(n+ 1)2KL

sH3
minT

+
160n2(n+ 1)2L2

sH2
minT

)(f(X0)− f∗)

Finally, the proof of Corollary 3.3 follows from combining Lemmas B.21, B.19 and B.20

	INTRODUCTION
	THE ALGORITHM
	System Overview
	Algorithm Description

	CONVERGENCE ANALYSIS
	Analytical Assumptions
	Main Results
	Overview of the Analysis

	EXPERIMENTAL RESULTS
	CONCLUSION AND LIMITATIONS
	Experimental setup
	Hyper-parameters
	Simulation
	Datasets and Models
	Results on Fashion MNIST (FMNIST)
	Results on CIFAR-10

	The Complete Analysis
	Overview and Notation
	Properties of Local Steps
	Upper Bounding Potential Functions
	Convergence

