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Abstract

We study the problem of identifying the
unknown intervention targets in structural
causal models where we have access to het-
erogeneous data collected from multiple envi-
ronments. The unknown intervention targets
are the set of endogenous variables whose cor-
responding exogenous noises change across
the environments. We propose a two-phase
approach which in the first phase recovers the
exogenous noises corresponding to unknown
intervention targets whose distributions have
changed across environments. In the second
phase, the recovered noises are matched with
the corresponding endogenous variables. For
the recovery phase, we provide sufficient con-
ditions for learning these exogenous noises up
to some component-wise invertible transfor-
mation. For the matching phase, under the
causal sufficiency assumption, we show that
the proposed method uniquely identifies the
intervention targets. In the presence of latent
confounders, the intervention targets among
the observed variables cannot be determined
uniquely. We provide a candidate interven-
tion target set which is a superset of the true
intervention targets. Our approach improves
upon the state of the art as the returned can-
didate set is always a subset of the target set
returned by previous work. Moreover, we do
not require restrictive assumptions such as
linearity of the causal model or performing
invariance tests to learn whether a distribu-
tion is changing across environments which
could be highly sample inefficient. Our exper-
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imental results show the effectiveness of our
proposed algorithm in practice.

1 INTRODUCTION

Causal relationships among a set of variables in a sys-
tem can be modeled by a structural causal model (SCM)
where each variable is a function of its direct causes and
some exogenous noise. An intervention on a variable
can be considered as modifying its causal mechanism,
i.e., changing the conditional probability distribution
of the intervened variable given its direct causes. In
randomized control trials, randomized interventions on
a target variable are utilized to estimate the causal
effect of the target. However, in some applications, we
may not have full control in terms of which variables
are intervened on. For instance, in recovering causal
protein-signaling networks from single-cell data (Sachs
et al., 2005; Ness et al., 2017), drugs are injected into
cells to inhibit or activate some signaling proteins, and
gene expression levels are measured. In these experi-
ments, the intervention targets are unknown. Moreover,
in some cases, an intervention is done by an unknown
source and we must locate the source of the inter-
vention in the system. As an example, microservices
systems in cloud clusters are vulnerable to faults such
as equipment failures or adversarial attacks. It is cru-
cial to locate the root cause of faulty operation in the
system by identifying the source of fault/intervention
(Aggarwal et al., 2021; Budhathoki et al., 2022; Ikram
et al., 2022). In these examples, the collected data
is often heterogeneous and is gathered from multiple
domains/environments where the causal mechanisms
of some of the variables are changing across the envi-
ronments.

In this paper, we consider the problem of learning
the unknown intervention targets from a collection
of interventional distributions obtained from multiple
environments. This problem is closely related to learn-
ing an equivalence class of all causal graphs consistent
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with the collected interventional data. The latter prob-
lem has been studied in several work (see the related
work in Section 5), and some of the proposed methods
also provide some information about the locations of
intervention targets as a byproduct of the returned
equivalence class. These previous methods have sev-
eral drawbacks such as being limited to linear systems,
requiring a huge number of conditional and invariance
tests, or lacking the ability to handle latent confounders
in the systems (see Section 5 for more details).

We propose Locating Intervention Target (LIT) algo-
rithm which returns the observed variables that are
intervention targets. LIT has two main phases: the re-
covery phase and the matching phase. In the recovery
phase, through a contrastive-learning approach, the
exogenous noises corresponding to intervention targets
are recovered up to some permutation and component-
wise invertible transformation1. In the matching phase,
the recovered exogenous noises are matched to their
corresponding observed variables (if any)2 by perform-
ing conditional independence (CI) tests. The main
contributions of this paper are:

• For the recovery phase, we provide identifiability
results for recovering the exogenous noises whose
distributions change across the environments. In
particular, in nonlinear causal models with exogenous
noises from an exponential family, the recovery is
possible under some mild invertibility assumption
(Assumption 1(a)) for causally sufficient systems (i.e.,
there are no latent confounders). For systems with
latent confounders, under some further assumptions
(Assumption 1(b)), we show that the recovery is still
possible (Proposition 1).

• For the matching phase, we prove that LIT algorithm
recovers the true intervention targets for causally
sufficient systems using the recovered exogenous
noises (Theorem 1). LIT algorithm requires merely
quadratic number of CI tests. In comparison, previ-
ous work of (Jaber et al., 2020) required an exponen-
tial number of CI/invariance tests with respect to
number of variables in the system. In the presence
of latent confounders, we show that LIT algorithm
returns a superset of true intervention targets and
present a graphical characterization of the output of
recovery (Theorem 2). Unlike previous work, LIT
algorithm allows latent confounders to change across
environments. Moreover, for the setting studied in

1In the paper, whenever we say that some exogenous
noises can be recovered, it means that they are recovered
up to some permutation and component-wise invertible
transformation.

2It is noteworthy that a recovered exogenous noise may
correspond to a latent variable. In that case, it should not
be matched with any observed variable.

the literature (i.e., when latent confounders do not
change across environments), our recovery output
is more informative than the state-of-the-art (see
Remark 3 for more details).

• Our experimental results show that LIT outperforms
previous work in recovering intervention targets in
the presence of latent confounders as well as when
the underlying SCM is nonlinear.

2 PRELIMINARIES

In this section, we present the notations used in the
paper as well as some necessary background. Upper
case letters denote random variables and bold letters
indicate sets of random variables. For ease of notation,
we also denote the vectorized form of a set of random
variables by bold letters. We show the cardinality of
set X by |X|. We also denote the set {1, · · · , n} by [n].

Structural Causal Models. A structural causal
model (SCM) M is a 4-tuple ⟨N,X,F , P (N)⟩ where
N is the set of exogenous noises and X is the set
of endogenous variables. F represents a collection of
functions F = {fi} such that each endogenous variable
Xi ∈ X is determined by Xi := fi(PAi, Ni) where
PAi ⊆ X is the set of parents of Xi and Ni ∈ N is its
corresponding exogenous noise. It is assumed that {Ni}
are jointly independent. In a given SCM, we may only
observe a subset of endogenous variables. Thus, we
partition X into two disjoint subsets O and L, where O
is the set of observed and L is the set of latent variables.
Under the causal sufficiency assumption, we observe
all the endogenous variables, i.e., L = ∅.

The graph G of an SCM is constructed by considering
one vertex for each Xi and drawing directed edges from
each parent in PAi to Xj . We assume that the graph
G is a directed acyclic graph (DAG), i.e., it contains
no directed cycle. We say Xj is an ancestor of Xi if
there exists a direct path from Xj to Xi. In graph G,
we denote the set of ancestors and children of Xi by
AnG(Xi) and ChG(Xi), respectively. We also consider
each variable Xi ∈ X as its own ancestor. The CI
relations can be read from the causal graph using a
graphical criterion known as d-separation (Pearl, 1988).
For disjoint subsets of variables U,V,W, we denote the
CI relation of U from V given W by U ⊥⊥ V|W. The
analogous d-separation statement, U is d-separated
from V given W in graph G, is written as (U ⊥
⊥ V|W)G. In the presence of latent confounders, the
causal relationships are often represented by a maximal
ancestral graph (MAG). See (Richardson and Spirtes,
2002) for the definitions of MAGs and inducing paths.

Soft Intervention. We consider soft interventions
on a subset of variables such as W ⊆ X of the form



Yuqin Yang, Saber Salehkaleybar, Negar Kiyavash

obtained by replacing structural assignment Xi :=
fi(PAi, Ni) with Xi := fi(PAi, N

′
i) for all Xi ∈ W.

N ′
i is the new exogenous noise corresponding to Xi.

Note that in the definition of soft intervention, neither
the set of parents nor causal mechanisms {fi} change.
In some applications, this operation is more realistic
than hard interventions, where intervened variables
are forced to take a fixed value (Varici et al., 2022).
For instance, in molecular biology, the effect of added
chemicals to a cell cannot be set to some constant value
(Eaton and Murphy, 2007), or in control theory, for
the task of system identification (Ljung, 1998), a math-
ematical model describing the underlying dynamical
system is identified by applying certain inputs without
changing the dynamics of the system. Another example
is adversarial attacks in cloud systems. A third-party
attacker can send corrupted data to the servers in a
data center but it might not alter the protocols of
communications among them. In this sense, the soft
intervention considered is weaker than allowing changes
in causal mechanisms inside a system. It is noteworthy
that the definition of soft intervention in this paper
was also considered in the literature of causal discovery
with multiple environments such as in (Ghassami et al.,
2017) or in the field of domain adaptation where the
causal mechanism is shared across domains (Teshima
et al., 2020).

3 METHODOLOGY

3.1 Problem Definition

We consider a multi-environment setting comprised
of D environments E = {E1, ..., ED}. The underlying
causal DAG and the functional mechanism for generat-
ing the variables from their parents remain the same
across all environments while the distributions of exoge-
nous noises may vary due to some unknown soft inter-
ventions. In particular, we have access to a collection
of joint distributions over O, P = {p1(O), · · · , pD(O)}
from D environments. We also denote pi(N) as the
joint distribution over the set of exogenous noises N in
environment Ei. Let T be the set of variables whose
exogenous noises are changing across environments, i.e.,
T := {Xi|∃d, d′ ∈ [D], pd(Ni) ̸= pd′(Ni), 1 ≤ i ≤ n}.
These are the variables that are intervened on by
some external stimuli and we seek to learn them. Let
NT := {Ni|Xi ∈ T} be the set of exogenous noises
whose distributions are changing across the environ-
ments, and TO = T∩O be the set of observed variables
that are intervened on. Similarly, denote the set of in-
tervention targets in the latent part by TL = T ∩ L.
Note that under causal sufficiency, TO = T. Our goal
is to locate interventions, i.e., recover the unknown
observable targets of interventions TO from merely the

observational distributions P over the multiple envi-
ronments.

In the following, we present our method for learning the
intervention targets, which has two main phases: the
recovery phase and the matching phase. In Section 3.2,
we present the recovery phase, which is to recover the
set of exogenous noises whose distributions are changing
across the environments (up to some permutation and
component-wise invertible transformations). Next, we
present the matching phase in Section 3.3, where we
match the recovered noises with the corresponding
variables in X in order to learn TO.

3.2 Recovery Phase

For a given SCMM, due to the assumption that the
causal graph is a DAG, each observed variable Xi ∈
X can be written as Xi = gi(N) where function gi
only depends on exogenous noises corresponding to the
ancestors of Xi. We collect all these equations in the
vector form X = gM(N) where gM : Rn → Rn and
n = |X| is the number of variables in the system. We
call function gM, the “mixing function” of SCMM.

As we have access to a collection of distributions in
P, we will exploit the heterogeneity in data to recover
the exogenous noises in NT. Specifically, we utilize a
contrastive learning approach. We observe auxiliary
variable U indicating the index of the environment,
and train a nonlinear regression model with universal
approximation capability3 for the supervised learning
task (Please refer to Appendix A for more details). We
consider an exponential family for the distributions of
the exogenous noises (see Appendix A for the defini-
tion). To ensure that the noises in NT can be recovered,
we require the following assumption:

Assumption 1. For a given SCM M, we assume
that either: (a) the corresponding mixing function gM
is invertible, or (b) there exists an invertible function
g̃ : R|O| → R|O| such that g̃(O) = (NT,V) where
V ∈ R|O|−|T| is a random vector satisfying V ⊥⊥ U
and NT ⊥⊥ V|U .

Assumption 1(a) is standard in contrastive learning
algorithms under the causal sufficiency assumption. It
is satisfied for all acyclic linear SCMs and nonlinear
additive noise models. To extend the results to the
latent confounder setting, we added Assumption 1(b).
In particular, vector V is the recovered part that is
invariant across the environments and is independent of
NT given the index of the environment. It corresponds

3Universal approximation capability refers to the ability
to approximate any Borel measurable function to any de-
sired degree of accuracy. See (Hornik et al., 1989) for more
detail.
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to a function of exogenous noises whose distributions
do not change across the environments.

Proposition 1. Assume that min(D − 1, |O|) ≥ |T|
(Recall that D is the number of environments and O
and L are the set of observed and latent variables in
the system, respectively). By utilizing the contrastive-
learning approach, the exogenous noises in NT can be
recovered up to some permutation and component-wise
strictly monotonic transformations with measure one in
the following two settings: 1) L = ∅ under Assumption
1(a). 2) L ̸= ∅ under Assumption 1(b).

Please refer to Appendix A for a detailed description of
the contrastive learning approach and extra discussions
about when Assumption 1 is satisfied.

Remark 1. Note that the assumption on the number
of environments D is required for recovering the noises
in NT without any prior knowledge of fi’s functional
form. We can relax the assumptions on the number of
environments by adding restrictions on fi (or equiva-
lently on gM). For example, for piecewise linear gM,
under additional assumptions on the exogenous noises,
we can recover NT from merely two environments in
causally sufficient cases, based on the results in (Kivva
et al., 2022).

3.3 Matching Phase

Throughout the matching phase, we assume that the
exogenous noises in NT are recovered up to some per-
mutation and component-wise invertible transforma-
tions. Denote the recovered noise corresponding to the
noise Ni ∈ NT as Ñi (i.e., Ñi is an invertible trans-
formation of Ni), and denote the collection of all the
recovered noises as ÑT. Note that we cannot learn
the correspondence of the recovered noises to the true
noises due to permutation indeterminacy according to
Proposition 1. However, since a variable Xi is in T if
and only if its exogenous noise Ni ∈ NT, we can re-
cover the intervention targets by matching the observed
variables to the recovered noises.4

In the rest of this section, we will show how to use
ÑT from the recovery phase to learn the intervention
targets. In particular, in Section 3.3.1, we define a
new notion of faithfulness called T-faithfulness based
on an augmented graph. In Section 3.3.2, we study

4Due to the permutation indeterminacy, there exists a
one-to-one mapping σ that maps each noise in NT to a
distinct noise in ÑT. For notation simplicity, we denote
σ(Ni) ∈ ÑT as Ñi for each Ni ∈ NT. The matching phase
aims to match each recovered noise to its corresponding
observed variable (if such a variable exists). Note that
a recovered noise may correspond to a latent confounder.
Further, an observed variable does not correspond to any
recovered noise if it is not in the intervention target set.

causally sufficient models. We present the conditions
and the algorithm for recovering the intervention tar-
gets, and show that the intervention target set T can
be uniquely identified with quadratic number of CI
tests. In Section 3.3.3, we study the model with latent
confounders. We show that by adding and changing
some of the conditions in the causally sufficient case,
the intervention targets TO can be identified up to its
superset called candidate intervention target set, which
is defined through an auxiliary graph (see Definition 1)
constructed from the true model.

3.3.1 T-faithfulness Assumption

For a given SCM M with the causal graph G and
intervention targets T, we construct an augmented
graph GT as follows. For each variable Xi ∈ TO

with corresponding exogenous noise Ni (recall that
TO and TL are the sets of intervention targets in the
observed and latent variables, respectively), we add
vertex Ni and edge Ni → Xi to GT. Further, for
each latent confounder Xl ∈ TL with corresponding
recovered noise Nl, we replace Xl with Nl since Xl can
be recovered up to an invertible transformation. We
denote the set of noises corresponding to the variables
in TL by NTL

. Following this construction, variables
in GT consist of all changing noises in NT, and all
variables in X \TL.

It can be shown that the joint distribution p(X \
TL,NT) satisfies Markov property with respect to
graph GT (see Appendix B.1). However, in order to
infer the graphical properties of the augmented graph
from only observed variables O and the recovered noises
ÑT, we need a form of faithfulness.

Assumption 2 (T-faithfulness). The model is T-
faithful to the augmented graph GT, in the sense that
for any noise Ni ∈ NT, observed variable Xk ∈ O, and
disjoint sets W1 ⊆ O\{Xk}, W2 ⊆ NT \{Ni}: (Ni ⊥
⊥ Xk|W1,W2)GT

if and only if Ñi ⊥⊥ Xk|W1,W̃2,
where Ñl is an arbitrary invertible transformation of
Nl for any Nl ∈ NT, and W̃2 = {Ñj |Nj ∈W2}.

Assumption 2 implies that for any changing exogenous
noise Ni ∈ NT and observed variable Xk, the recovered
noise Ñi is (marginally or conditionally) dependent on
Xk if and only if Ni and Xk are d-connected in GT.
Therefore, given observed variables and the recovered
noises, we can construct the indicator set Ii := {Ñj ∈
ÑT|Ñj ⊥̸⊥ Xi} for each variable Xi in O, which is
the set of recovered noises that are dependent on Xi.
Under Assumption 2, the indicator set Ii corresponds
to all the noises in NT that are ancestors of Xi in
GT, i.e., AnGT

(Xi) ∩NT. Define I as the collection
of sets {Ii|i ∈ [n]}. In the following, we show how
to identify the intervention targets by matching the
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recovered noises with the observed variables, based on
the indicator sets and limited number of extra CI tests.

3.3.2 Matching Phase under Causal
Sufficiency

For each variable Xi, define the possible parent set Si

as the set of variables whose indicator set is a strict
subset of Ii, i.e., Si := {Xj |Ij ⊊ Ii, 1 ≤ j ≤ n}. Define
the residual set Ni as the set of noises in Ii that do not
belong to any indicator set of the variables in Si, i.e.
Ii \ ∪j:Xj∈Si

Ij . Si includes a subset of the ancestors
of Xi, and no descendants of Xi are included in Si.
Further, Ni represent the recovered noises in Xi that
do not affect Xi through variables in Si. Under the
causal sufficiency assumption, |Ni| is either 0 or 1 (see
Appendix D.3). The following proposition provides the
conditions for checking whether a variable Xi is in the
intervention target set or not given the indicator sets
I and Si. Equipped with this proposition, we devise
LIT Algorithm (Algorithm 1) which recovers T under
the causal sufficiency assumption.
Proposition 2. Under causal sufficiency and Assump-
tion 2, for each variable Xi, the following statements
hold:

(I) Xi ̸∈ T if the residual set Ni = ∅.

(II) Xi ∈ T if Ni ̸= ∅ and Ii is unique in I.

(III) If Ni ̸= ∅ and Ii is not unique, let Xi =
{Xi1 , · · · , Xip}, p ≥ 2, be the set of all variables
with the same indicator set as Xi, including Xi

itself.5 Suppose Ni = {Ñl} for some Ñl ∈ ÑT.
Then, the variable Xik satisfying the following
condition is the only variable from Xi that is in
T, i.e., Xik ∈ T if and only if all other vari-
ables in Xi are independent of Ñl conditioned
on Xik and Si.

Ñl ⊥⊥ Xij |{Xik} ∪ Si, ∀j ∈ [p] \ {k}. (C1)

Recall that an observed variable is in the intervention
target set T if and only if its corresponding exogenous
noise is recovered in ÑT. The statement in (I) holds
because if Xi ∈ T, then Ñi cannot appear in Ij for any
non-descendant Xj of Xi. When Ni ̸= ∅, this means
that the only noise Ñl ∈ Ni is either the exogenous
noise of Xi, or the exogenous noise of some ancestor
of Xi whose indicator set is the same as Ii. We can
then use conditions (II) and (III) to further distinguish

5As all the variables in Xi have the same indicator set,
their corresponding possible parent sets Sik and residual
sets Nik are also equal. In the statement of the proposition,
we use Ii, Si, Ni to denote the indicator set, possible
parent set and residual set corresponding to any variable
in {Xi1 , · · · , Xip}.

Algorithm 1: LIT algorithm

1 Obtain ÑT and I; U← X; K← ∅;
2 for Xi ∈ X do
3 if Ni = ∅ then U← U\{Xi};
4 else if (A) holds then U← U\{Xi}; // only

with latent confounder
5 else if Ii is unique then K← K ∪ {Xi},

U← U\{Xi};
6 Partition U to disjoint subsets U1, · · · ,Ur

according to the indicator sets;
7 for Ui ∈ {U1, · · · ,Ur} do
8 KUi

← Find Xik ∈ Ui satisfying (C1) under
causal sufficiency (resp. remove the subset of
variables in Ui satisfying (C2) in the presence
of latent confounders);

9 K← K ∪KUi ;

10 return K

between these two cases. If there are no other variables
with the same indicator set (i.e., Ii is unique), then
Xi ∈ T. Otherwise, among the variables with the
same indicator set, there is only one variable Xik that
corresponds to Ñl and belongs to the intervention target
set, and the rest are descendants of Xik . Herein, we
use (C1) to find such Xik , as given Xik and Si, Ñl

becomes independent from Xij for all j ̸= k under
T-faithfulness assumption. Please refer to Appendix
B.2 for an example explaining how the aforementioned
three conditions can be used to recover T.

Based on Proposition 2, we propose LIT algorithm (see
Algorithm 1) which returns a candidate intervention set
K. Specifically, we first check if a variable can be added
to or excluded from K according to (I) and (II). We
then partition the remaining variables in U into disjoint
subsets (which correspond to the collection of all Xi in
(III)), and find the candidate in each set (denoted by
KUi

) using condition (III). Note that LIT algorithm
only requires quadratic number of CI tests: O(n|T|) for
constructing the indicator set, and at most O(n2|T|)
for checking (C1). This is a significant reduction from
the exponential number of independence/invariance
tests with respect to n in the literature (Jaber et al.,
2020; Mooij et al., 2020).

Theorem 1. Under causal sufficiency and T-
faithfulness assumption (Assumption 2), Algorithm 1
uniquely identifies the intervention target set T, i.e.,
K = T.

Remark 2. We show that there is a connection be-
tween our approach here for learning the intervention
targets and an existing algorithm for the task of causal
discovery in linear SCMs with deterministic relations
(Yang et al., 2022a). This allows us to design a more
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efficient algorithm for recovering the set T. Specifically,
conditions (I)-(III) can be checked along with the parti-
tioning of the sets U (line 6) without computing Si for
every Xi. Please see Appendix C for more details.

3.3.3 Matching Phase in the Presence of
Latent Confounders

We extend our results from causally sufficient case to
the case where latent confounders are present. Unlike
previous work (Jaber et al., 2020; Varici et al., 2022),
we allow latent confounders to be in T. In this case,
an exogenous noise in NT may correspond to either
an observed variable or a latent confounder, and the
task is to recover the observed variables that are in the
intervention target set, i.e., TO. Unlike the causally
sufficient case, TO is not always uniquely identifiable.
However, by modifying the LIT algorithm according to
the conditions in Proposition 3 below, the algorithm
can recover a superset K of TO. Proposition 3 provides
conditions for finding variables that do not belong to
TO. In particular, compared with Proposition 2, the
statement in (I) still holds, while condition (III) is
replaced by condition (III-L). Further, the statement
in (II) does not hold anymore, and we have one extra
condition (IV) for excluding variables from TO.

Proposition 3. In the presence of latent confounders,
under Assumption 2, for each observed variable Xi, the
following statements hold:

(I) Xi ̸∈ TO if the residual set Ni = ∅.

(IV) Xi ̸∈ TO if Ni ̸= ∅ and every recovered noise
in the residual set Ni belongs to at least one
other indicator set Ijl for some Xjl ∈ O, where
Ijl is not a superset of Ii:

∀Ñl ∈ Ni, ∃jl s.t. Ñl ∈ Ijl , and Ii ̸⊆ Ijl . (A)

(III-L) If Ni ≠ ∅ and condition (A) does not hold, let
Xi = {Xi1 , · · · , Xip} be the set of all variables
with the same indicator set as Xi, including Xi

itself. Then for each j ∈ [p], Xij ̸∈ TO if it
is independent of some recovered noise Ñl in
Ni, conditioned on certain subsets of observed
variables in Xi, Si and all other recovered noises
in Ii:

∃K ⊆ [p] \ {j}, ∃S ⊆ Si, ∃Ñl ∈ Ni s.t.

Ñl ⊥⊥ Xij |
(
∪k′∈KXik′

)
∪ S ∪

(
Ii \ {Ñl}

)
.

(C2)

The statement in (IV) holds because if Xi ∈ TO, then
its corresponding exogenous noise Ñi must be in Ni.
Any variable (such asXjl) that is dependent on Ñi must

Previous work
(Jaber et al. (2020))

LIT Algorithm
(Theorem 2)

True interven-
tion target

Figure 1: Comparison of the recovery outputs when
latent confounders are not in T. The dashed circle
represents the theoretical limitation of the recovery of T.
It may include observed variables that are theoretically
indistinguishable from the true intervention targets due
to the presence of latent confounders.

be a descendant ofXi, and hence have Ii ⊆ Ijl . For (III-
L), similar to the argument for condition (III), there is
at most one variable (say Xik) in Xi that belongs to
TO. Moreover, if Xik ∈ TO, then all other variables
in Xi are its descendants. The recovered noises in Ni

cannot be conditionally independent of Xik , as they
correspond to eitherXik or some latent confounder that
is a parent of Xik . Therefore, if an observed variable
Xij ∈ Xi is conditionally independent of a recovered
noise in Ni given some other variables in the system,
then it cannot be an intervention target. Note that
under the causal sufficiency assumption, Xik and Si are
sufficient for the conditioning set. Therefore condition
(III-L) reduces to (III). When latent confounders are
present, Xik and Si may not be sufficient. However,
condition (III-L) states that in order to perform such a
CI test, it suffices to consider subsets of Xi\{Xij} and
Si in the conditioning set as their union contains all
the ancestors of Xij among the observed variables.

Based on Proposition 3, we update the LIT algorithm in
the presence of latent confounders. We check condition
(IV) in line 4, and replace condition (III) by (III-L) in
line 8. We keep line 5 in the latent case. In fact, if Xi is
not ruled out by conditions (I) and (IV), it is added to
K if Ii is unique as it cannot be ruled out by condition
(III-L) either. However, the uniqueness of the indicator
set does not necessarily imply that the variable belongs
to TO. Lastly, note that under the causal sufficiency
assumption, condition (IV) is automatically satisfied,
and condition (III-L) reduces to condition (III). Hence
the algorithm remains consistent with the causally
sufficient case.

Example 1. Consider an SCM whose corresponding
causal graph is depicted in Figure 2(a). It includes three
observed variables X1, X2, X3 and a latent confounder
XH , where T = {X1, X2} (shown in red). Suppose
we recovered two noises Ñ1, Ñ2 that correspond to X1,
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Figure 2: (a) The causal graph of the SCM considered in Example 2. (b) The corresponding auxiliary graph
according to Definition 1. (c) The MAG of the augmented graph defined in (Jaber et al., 2020), which indicates
the output of their algorithm. (d) The causal graph of an alternative SCM that has the same auxiliary graph.

X2, respectively. We have I1 = {Ñ1} and I2 = I3 =
{Ñ1, Ñ2}. Following the LIT algorithm, we find that
I1 is unique and conditions (I) and (IV) do not hold
for X1. Therefore X1 ∈ K. Further, Ñ2 ⊥⊥ X3|X1, X2,
and Ñ2 ̸⊥⊥ X2|S for all S ∈ {∅, {X1}, {X3}, {X1, X3}}.
Therefore X2 ∈ K, X3 ̸∈ K according to condition
(III-L). In conclusion, we have K = {X1, X2}. Please
note that K could be a strict superset of TO in some
cases (see Example 2).

In the following, we provide a theoretical analysis of the
candidate intervention target set K returned by LIT
algorithm in the presence of latent confounders. In par-
ticular, we show that K contains the true intervention
targets in the observed variables (i.e., TO). Further,
we provide a graphical characterization of what other
types of variables are also included in the set K, using
the notion of auxiliary graph which is defined as follows.

Definition 1 (Auxiliary graph). For each observed
variable Xi, denote I0(Xi) as AnGT

(Xi) ∩NT. Given
an SCM and its corresponding augmented graph GT,
the auxiliary graph Aux(GT) is constructed from GT

as follows:

(a) For each Xi ∈ TO with its corresponding ex-
ogenous noise Ni, add the edge Ni → Xj if (i)
there is an inducing path between them relative to
L \TL in GT (i.e., there is an edge between Ni

and Xj in the MAG corresponding to GT) , and
(ii) I0(Xi) = I0(Xj).

(b) (i) For each Ñl ∈ ÑTL
(noise that corresponds to

a variable in TL) and each of its child Xi, keep
the edge Ñl → Xi if for any other child Xj of
Ñl in GT, I0(Xi) ⊆ I0(Xj). Otherwise remove
the edge Ñl → Xi. (ii) For any remaining edge
Ñl → Xi, add (remove) the edge Ñl → Xk if
there is an (no) inducing path between Xk and all
(some) parents of Xi in ÑTL

relative to L \ TL

in GT, and I0(Xk) = I0(Xi).

Recall from Section 3.3.1 that under Assumption 2,

AnGT
(Xi) ∩ NT can be recovered by Ii. Therefore

we use I0(Xi) to represent the true value of Ii which
does not depend on the recovery output. Further, it
is noteworthy that while part (b)(ii) in Definition 1
includes both adding and removing of the edges, the
addition or removal of edges in the step is independent
of the order of the edge selection Ñl → Xi.
Theorem 2. In the presence of latent confounders
and Assumption 2, the candidate intervention target
set K returned by LIT algorithm is the set of observed
variables that are children of NT in Aux(GT), i.e.,
K = ∪Ni∈NT

ChAux(GT)(Ni).

Theorem 2 gives a graphical characterization of the
recovered candidate intervention set K. In particular,
according to Definition 1, TO is a subset of K. This is
because the edge from Xi ∈ TO to its corresponding
exogenous noise Ni in GT is not removed. This means
that LIT algorithm returns a superset of TO. Further,
two other types of variables are added to K according
to the conditions in part (a) and part (b) of Definition
1, respectively.
Remark 3. We can draw the following observations
from Theorem 2. First, under the causal sufficiency as-
sumption, Theorem 2 implies that TO can be uniquely
identified. This is because no edges are added to
Aux(GT) compared with GT according to Definition
1. Second, if all latent variables are not intervention
targets (i.e., T = TO), then our identifiability result
is stronger than the existing results in (Jaber et al.,
2020; Varici et al., 2022). In particular, Jaber et al.
(2020) and Varici et al. (2022) showed that in this case,
TO can only be identified up to the neighbors of NT

in the MAG corresponding to GT. We improve their
results by adding part (a)(ii) in Definition 1, due to the
recovery of ÑT. See Figure 1 for a diagram comparing
the recovery outputs and Example 2 below.
Example 2. Consider the same example as in Example
1. Following the results in (Jaber et al., 2020; Varici
et al., 2022), the MAG of the augmented graph defined
in (Jaber et al., 2020) is shown in Figure 2(c). The
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Figure 3: Comparison of LIT algorithm with previous work in locating intervention targets.

recovery output of their algorithms is {X1, X2, X3} as
all the observed variables are the neighbor of the F -node
defined in their work. On the contrary, LIT algorithm
has a more accurate recovery of the intervention targets.
Specifically, the auxiliary graph is shown in Figure 2(b).
The edge from N1 to X3 is not added since I1 ̸= I3
(which violates part (a)(ii) in Definition 1), and the
edge from N2 to X3 is not added because there is no
inducing path (which violates part (a)(i)). Therefore
K = {X1, X2}, which is the same as the output in
Example 1. Lastly, note that K is not always equal to
TO. Consider the causal graph in Figure 2(d) where
T = {XH1 , X2}. Its corresponding auxiliary graph is
exactly the one in Figure 2(b). However, TO = {X2} ⊊
{X1, X2} = K, and we cannot distinguish whether X1

or XH1
is the intervention target.

Remark 4. We note that LIT algorithm is capable of
identifying intervention targets for each environment
through extra invariance tests. In particular, for each
pair of environments, we can conduct an invariance test
on the samples of recovered noise in two environments.

4 EXPERIMENTS

We evaluated the performance of LIT algorithm on
randomly generated models.6 Specifically, we consid-
ered the following three settings for data generation,
and each with number of environments D = {8, 16, 32}:
(1) Linear Gaussian model under causal sufficiency as-
sumption; (2) Nonlinear model under causal sufficiency
assumption; (3) Linear Gaussian model in the presence
of latent confounders. We considered the following ap-
proaches in our empirical studies: 1- LIT (our proposed
method); 2- PreDITEr algorithm (Varici et al., 2022),
which allows for latent confounders (that are not in T)
but assumes the model is linear; 3- UT-IGSP algorithm
(Squires et al., 2020), which works for both linear and
nonlinear SCMs but under causal sufficiency; 4- CITE

6Our code is available at: https://github.com/
Yuqin-Yang/LIT.

algorithm in (Varici et al., 2021), which only works for
linear SCMs under causal sufficiency; 5- FCI-JCI123
algorithm in (Mooij et al., 2020), which allows for both
latent confounders as well as nonlinearity in the model.

We repeated each setting for 40 times, and reported
the average F1-score in recovering TO for each setting.
The results are shown in Figure 3. (Full experimen-
tal results can be found in Appendix E.) Note that
FCI-JCI is executable only under the first two settings
with D = 8 due to huge run times. The results of
other algorithms for D = 8 and D = 16 are provided
in Appendix E. In the first setting, as we expected,
PreDITEr and CITE have the best performances as
they are designed specifically for linear Gaussian SCMs.
UT-IGSP and LIT algorithm have decent performances,
while FCI-JCI123 does not perform well. In the second
setting, LIT and CITE can both recover the interven-
tion targets with high accuracy. On the contrary, the
performance of PreDITEr becomes worse as it is not
designed for nonlinear models. Finally, in the third
setting, in the presence of latent confounders, the per-
formance of UT-IGSP and CITE becomes much worse
because they cannot handle any latent confounders.
Meanwhile, LIT outperforms baseline algorithms for
various numbers of variables in the system. Note that
the best F1-score that can be achieved by any algo-
rithm is strictly less than one as there are observed
variables that are theoretically indistinguishable from
the true intervention targets. Lastly, we note that LIT
algorithm significantly reduces the number of CI tests
performed: LIT algorithm takes at most 80 CI tests
while PreDITER requires up to 30000 PDE estimates.
See Appendix E for more details.

5 COMPARISON TO PREVIOUS
WORK

Learning causal structures in multi-environment setting
with unknown target interventions has been the focus
of several recent work. Under the causal sufficiency

https://github.com/Yuqin-Yang/LIT
https://github.com/Yuqin-Yang/LIT
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assumption, Ghassami et al. (2017) considered linear
SCMs in multi-environment setting and showed that
the intervention targets can be recovered by checking
whether the variances of residuals pertaining to cer-
tain linear regressions change across the environments.
Squires et al. (2020) proposed an algorithm to recover
an interventional Markov equivalence class (I-MEC)
from a collection of interventional distributions with
unknown intervention targets. The proposed algorithm
greedily searches over the space of permutations to
minimize a score function. In computing the score
function, it is required to perform invariance tests to
check whether pairs of distributions are equal which
is in general sample inefficient in practice. Brouillard
et al. (2020) proposed a causal discovery algorithm
that recovers the intervention targets by finding the
optimal solution of an appropriately defined score func-
tion. In both (Squires et al., 2020; Brouillard et al.,
2020), no interventions are allowed in the observational
environment and therefore the algorithm must know
which environment pertains to the observation-only
setting. More recently, Perry et al. (2022) proposed
a score-based approach based on sparse mechanism
shift hypothesis and showed that it can recover the
true causal graph up to an I-MEC. However, it has
the same drawback of performing invariance tests as
in (Squires et al., 2020).

In the presence of latent confounders, Jaber et al.
(2020) defined Ψ-Markov property which connects the
collection of interventional distributions in the multi-
environment setting to a pair of a causal graph and
set of intervention targets. Moreover, they proposed
a sound and complete algorithm to learn the equiva-
lence class of all pairs of graphs and intervention targets
that are consistent with the interventional distributions.
The proposed algorithm can be used to learn a superset
of variables that are intervened between any pair of
environments. If there is no latent confounder in the
system, this algorithm recovers the true intervention
targets. Similar to (Squires et al., 2020), the proposed
algorithm requires performing invariance tests to check
whether pairs of distributions are equal across environ-
ments. Moreover, it needs an exponentially growing
number of conditional independence and invariance
tests as the number of variables increases. Mooij et al.
(2020) proposed a causal modeling framework that con-
siders an auxiliary context variable for each environ-
ment and applies standard causal discovery algorithms
(such as FCI) to learn the causal relationships among
context variables and system variables. They provided
graphical conditions to read off the intervention targets
from the output of their algorithm.

All the aforementioned work learns the causal structure
up to an equivalence class and identifies a candidate

intervention set as a byproduct of the output of the
causal discovery task. Very recently, Varici et al. (2021,
2022) proposed two methods to learn merely interven-
tion targets (rather than recovering the causal struc-
ture) in linear Gaussian SCMs with or without latent
confounders. Their methods are more scalable than
previous work as they do not perform extensive CI
tests. Moreover, the identifiability result in recovering
intervention targets is exactly the same as (Jaber et al.,
2020). Note that all the previous work (Jaber et al.,
2020; Mooij et al., 2020; Varici et al., 2022) assume
that if latent confounders exist, none of them is in the
intervention target set. We relax this assumption and
allow latent confounders to be among the intervention
targets.

6 CONCLUSION

We addressed the problem of identifying unknown in-
tervention targets in a multi-environment setting. In
particular, we considered the case when latent con-
founders are allowed to be in the intervention target
set. This may happen when we can only partially ob-
serve the system variables. For instance, this is the
case in genomics data, where it might be the case that
not all affected genes or proteins are measured (Verny
et al., 2017). Existing approaches such as ψ-FCI and
PreDITEr do not allow for changing latent confounders
and lack theoretical guarantees in such scenarios. Our
two-phase algorithm recovers the exogenous noises and
matches them with corresponding endogenous variables.
Under the causal sufficiency assumption, our algorithm
uniquely identifies the intervention targets. In the
presence of latent confounders, we provided a candi-
date intervention target set which is more informative
than previous work. Experiment results support the
advantages of the proposed algorithm in identifying
intervention targets. Our simulations showed existing
methods might misinterpret changes in observed vari-
ables influenced by these latent confounders, leading
to lower precision. In contrast, our method effectively
handles latent confounders in intervention targets. As
a future work, in the recovery phase, it is an interesting
direction to strengthen the identifiability result of non-
linear SCM with latent variables which would broaden
the applicability of our method to more complex sys-
tems.
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Supplementary Material

A FURTHER DISCUSSION ON THE RECOVERY PHASE

A.1 Detailed Description about Contrastive Learning Approach and Nonlinear ICA

Nonlinear ICA refers to an instance of unsupervised learning, where the goal is to learn the independent compo-
nents/features that generate multi-dimensional observed data. In particular, suppose that X = (X1, · · · , Xn), is
a n-dimensional vector that is generated from n independent components N = (N1, · · · , Nn). Let g : Rn → Rn

be a smooth and invertible function transforming the latent components (aka sources) to the observed data, i.e.,
X = g(N). Function g is called the “mixing function”. The goal in nonlinear ICA is to recover the inverse function
g−1 and also the latent components in N.

We briefly describe the general approach in recent advances in nonlinear ICA (Hyvarinen et al., 2019; Khemakhem
et al., 2020; Sorrenson et al., 2020) for the case where no additional assumptions are made about the class of
mixing functions. The main idea is to exploit non-stationarity in the data to recover the independent components.
In particular, each component Ni depends on some auxiliary variable U and it is independent of other components
given U , i.e., log p(N|U) =

∑
i qi(Ni|U), where qis are some functions. The auxiliary variable U could be an

index of a time segment or the index of some environments where we obtained samples from variables in X. In
this formulation, the distributions of components can change across the environments or time segments. It is
often assumed that the distribution of each Ni given U is a member of the exponential family.
Definition 2. A random variable Ni belongs to the exponential family of order one given a random variable U if
its conditional probability distribution function (pdf) can be written as: p(Ni|U) = Qi(Ni)

Zi(U) exp (λi(U)q̃i(Ni)) where
Qi, Zi, λis, and q̃is are some scalar-valued functions.
Example 3. For q̃i(Ni) = −N2

i /2, and Qi(Ni) = 1, the above conditional pdf reduces to Gaussian whose variance
is changing across the environments.

The general approach to exploit non-stationarity in data is to use contrastive learning to transform the unsupervised
learning problem in nonlinear ICA to a supervised learning task. Specifically, a classifier is trained to discriminate
samples of a real dataset from their randomized version, i.e., X̃ = (X, U) versus X̃′ = (X, U ′), where U ′ is drawn
randomly from the distribution of U , which in practice can be obtained by randomized permutations of the
samples of U .

In this approach, a nonlinear regression model is trained with the following form: r(X, U) = h(X)Tv(U) + a(X) +
b(U) where h(X) : Rn → Rn, v(U) : R→ Rn, and a, b are some scalar-valued functions. The model classifies a
sample coming from the real data set with probability 1/(1 + exp(−r(X, U))). It has been shown in several work
such as in (Hyvarinen et al., 2019; Khemakhem et al., 2020) that if all the components are changed enough across
the environments, then the independent components can be recovered from h(X) up to some permutation and
component-wise nonlinear transformation.

How constrastive learning approach above is applied in our work. As we have access to a collection of
distributions in P , we will exploit the heterogeneity in data to recover the exogenous noises in NT. Let auxiliary
variable U denote the index of the environment and assume that the exogenous noises belong to the exponential
family in Definition 2. Moreover, assume that λi’s corresponding to any Ni ∈ NT are randomly generated across
the environments and q̃i(Ni)s are strictly monotonic functions of |Ni|. We utilize a contrastive learning approach
similar to what we discussed above. We train the nonlinear regression model r(O, U) = h(O)Tv(U)+a(O)+ b(U)
with universal approximation capability for the supervised learning task of discriminating (O, U) from (O, U ′)
where h(O) : R|O| → R|O|, v(U) : R→ R|O|, and a(O), b(U) are some scalar-valued functions.

A.2 Additional Discussion on Assumption 1

Assumption 1(a). We provide two examples on when Assumption 1(a) is satisfied. Note that Assumption 1(a)
requires that |O| = n = |X|, which indicates that the model is causally sufficient.
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First, for linear SCMs, the structural equations can be written in vector form as X = BX+N where B is n× n
matrix. Rewrite this equation as X = (I −B)−1N. Therefore, the corresponding mixing function is given by
(I−B)−1 and the above assumption is satisfied if and only if I−B is invertible, which is already satisfied when
the causal graph is a DAG.

Second, for nonlinear SCMs, the invertibility of the mixing function is satisfied when the model is an additive
noise model, which can be written as Xi = fi(Pai) +Ni. In this case, the inverse function that maps N to O can
be constructed according to the following equation: Ni = Xi − fi(Pai). Note that the invertibility of the mixing
function does not depend on fi. This result can be generalized into the following remark:

Remark 5. For a nonlinear SCM Xi = fi(Pai, Ni), Assumption 1(a) is satisfied if the model is acyclic, fi is
continuous, and the partial derivative ∂fi/∂Ni is strictly negative or positive for all Xi ∈ X and any values of
Pai.

We note that the condition in Remark 3 can be satisfied when fi in the data generating model is designed as a
multi-layer perceptron with ReLU activation function, where all model weights are strictly positive.

Assumption 1(b). For Assumption 1(b), we note that if the SCM is a linear non-Gaussian model, i.e., linear
SCM with non-Gaussian exogenous noises, and latent confounders are present, then Assumption 1(b) implies
that: (1) All intervention targets must be observed variables, i.e., T ⊆ O; and (2) Latent variables cannot have
children in T. In other words, T can only include observed variables that do not have latent parents. Please see
Appendix D.2 for the proof. However, we observed experimentally that if the SCM is linear Gaussian within each
environment, then we can recover the noises in NT while allowing latent confounders to be in T using linear ICA
methods.

B FURTHER DISCUSSION ON THE MATCHING PHASE

B.1 Markov Property in the Augmented Graph GT

For the given SCM M, we construct an augmented version M̃T as follows. We add ÑT to the set of endogenous
variables in M and remove NT from the set of exogenous noises. Moreover, for any Xi ∈ T, we change its
structural assignment as follows: Xi := f̃i(PAi, Ñi) = fi(PAi, gi(Ñi)) where Ñi is the corresponding recovered
noise in ÑT, f̃i is the new causal mechanism of Xi relating it to its new set of parents PAi ∪ {Ñi} and gi is
an invertible function such that Ni = gi(Ñi). For the variables that are not in T, we keep their corresponding
structural assignments unchanged. Please note that with this construction, the joint distribution over X entailed
by SCM M̃T is exactly the same as the one entailed by original SCM M. With the exact same argument in the
proof of Theorem 1.4.1 in (Pearl, 2009), it can be shown that the distribution p(X, ÑT) entailed by SCM M̃T

satisfies the local Markov property as the value of each observed variable is uniquely determined given the values
of its parts and the corresponding exogenous noise. Moreover, in causal DAGs, the local Markov property implies
the Global Markov property (Geiger and Pearl, 1990). Hence, the joint distribution p(X, ÑT) satisfies Markov
property with respect to its corresponding causal graph, GT.

In the presence of latent confounders, we modify M̃T as follows. For any Xl ∈ TL, we consider it as an observed
variable and replace its structural assignment with Xl := Ñl′ where Ñl′ is the corresponding recovered noise.
Moreover, for any other assignment that Xl appears, we replace it with gl(Xl). Similar to the causally sufficient
case, the distribution p(X, ÑT) entailed by SCM M̃T satisfies the local Markov property since the value of each
observed variable is still uniquely determined given the values of its parents and the corresponding exogenous
noise.
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B.2 Example Explaining the Conditions under the Causal Sufficiency Assumption

The following example illustrates how the the conditions in Proposition 2 can be used to recover T.
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Figure 4: An example of SCM: Inter-
vention targets T = {X1, X2, X5} are
shown by red circles.

Example 4. Figure 4 depicts the augmented graph of an SCM in which
T = {X1, X2, X5} (indicated by red circles). In the recovery phase, we
recover three noises Ñ1, Ñ2, Ñ5, which are invertible translations of N1,
N2, N5, respectively. Note that we do not know the correspondence
of the noises to the variables as there are permutation indeterminacy.
The indicator sets for all the variables are: I1 = {Ñ1}, I2 = {Ñ2},
I3 = {Ñ1, Ñ2}, I4 = ∅, I5 = I6 = I7 = {Ñ1, Ñ2, Ñ5}. For X1 and X2,
the condition in (II) is satisfied. Thus, they are in T. As for X3 and
X4, the condition in (I) holds and therefore they are not in T. For the
variables in {X5, X6, X7}, the condition in (III) holds and the only
variable satisfying the condition in (C1) is X5 as Ñ5 is independent
of X6 and X7 given S5 ∪ {X5} where S5 = {X1, X2, X3, X4}.

C EFFICIENT ALGORITHM BASED ON MIXING MATRIX

We show that the problem of locating the intervention targets in the causally sufficient systems can be reduced to
the problem of causal discovery on linear SCMs with deterministic relations (Yang et al., 2022a,b). This allows
us to design a more efficient algorithm based on existing causal discovery algorithms for linear SCMs. In the
following, we first show that there is a connection between the indicator set I and the mixing matrix of a linear
SCM. Next, we present an alternative algorithm of LIT under causal sufficiency based on existing algorithms, and
analyze its computational complexity. Lastly, we extend the algorithm to the case with latent confounders.

To show these connection between the two problems, we define a mapping ϕ from the set of SCMs with soft
interventions and the set of linear SCMs with deterministic relations, where for each SCMM with intervention
target set T, ϕ(M,T) is constructed as follows. Each variable X inM is mapped to a non-deterministic variable,
denoted by ϕ(X), if X ∈ T, and is mapped to a deterministic variable if it is not in T. Further, for each pair of
variables (Xi, Xj) inM, ϕ(Xi) is a parent of ϕ(Xj) in ϕ(M) with coefficient 1 if and only if Xi is a parent of Xj

in M. The following proposition states that the indicator set of M is the same as the support of the mixing
matrix of ϕ(M,T).
Proposition 4. For a given SCM M with intervention target set T, we denote the (i, j)-th entry of the mixing
matrix of ϕ(M,T) as wij. Then for all i ∈ [n] and j ∈ [|T|], wij ̸= 0 if and only if j ∈ Ii.
Remark 6. Proposition 4 implies that if the underlying model is linear Gaussian, then under Assumption 2, the
indicator set can be obtained from the recovered mixing matrix in linear ICA.
Example 5. Consider SCM M over a collider structure: X1 → X3 ← X2, where X1 and X2 are intervention
targets with corresponding exogenous noises Ñ1 and Ñ2, respectively. The indicator sets are: I1 = {1}, I2 = {2},
and I3 = {1, 2}. Under the mapping ϕ,M is mapped to the linear SCMM′ over the same collider structure, where
ϕ(X3) is a deterministic variable, and ϕ(X1), ϕ(X2) are non-deterministic. The mixing matrix corresponding to
M′ is W = [1 0; 0 1; 1 1], where for all i = 1, 2, 3, Ii represents the support of the i-th row of W.

Proposition 4 implies that any recovery algorithm for linear SCMs with deterministic relations, that are based on
the mixing matrix, can be applied to our problem. In particular, Yang et al. (2022a) considered the problem of
causal discovery on linear SCMs with measurement error, which can be considered as a special case of deterministic
relations. They proposed AOG recovery algorithm, where the input is the mixing matrix, and the output is a
partition of the variables into distinct sets such that variables in the same set has the same row support. Note
that the conditions in (I) and (II) in Proposition 2 is purely based on indicator set, and the condition (III) is
based on partitioning variables based on the indicator set.

We devise a more efficient version of the LIT algorithm in Algorithm 2 which utilizes AOG recovery algorithm.
Specifically, instead of iterating over all variables, Algorithm 2 iterates over the recovered noises, which corresponds
to the non-empty residual sets Ni in Proposition 2. (Recall that |Ni| = 1 if it is not empty.) During each
iteration, the algorithm finds a row Xi with only one non-zero entry and has the smallest corresponding value in
n. Note that this entry corresponds to the noise in Ni, and for any variable Xj that has the same support on the
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Algorithm 2: Locating interventions target (LIT) algorithm under causal sufficiency.

1 Obtain ÑT and I from data. Rewrite I into the matrix form, where each row represents an indicator set.
Denote it as I.

2 Calculate the number of non-zero entries in each row of I. Denote the vector of these numbers as n, where
each entry in n corresponds to a row in I.

3 Initialize Ĩ = I, K← ∅.
4 Remove all rows in Ĩ with no non-zero entry.
5 while Ĩ is not empty do
6 Find a row in Ĩ that contains only one non-zero entry, and has the smallest corresponding value in n.

If there are multiple such rows, randomly select one. Denote the selected row as w, and its
corresponding value in n as n0.

7 Consider the rows in Ĩ with the same support (non-zero entry) as w, including w itself. Denote the set
of variables that correspond to these rows as ZI .

8 Denote the set of variables in ZI with the same corresponding value as n0 in n as ZJ .
9 if ZJ has only one element then

10 Add the variable that corresponds to w to K.
11 else
12 Find the only variable Xik in ZJ that satisfies (C1); K← K ∪ {Xik}.
13 Remove from Ĩ the rows corresponding to the variables in ZI , and the column containing the

corresponding non-zero entries in these rows.

14 return K

submatrix as Xi, if the number in n corresponding to Xj is larger than the number corresponding to Xi, then Ii
is unique and Xi satisfies condition (II). Moreover, Ii is a strict subset of Ij and thus Xi ∈ Sj . Please note that
Xj satisfies the condition in (I) since the union of the indicator sets for Xi and a subset of selected variables
in the previous loops is equal to Ij . Therefore, Xj should be excluded from T. Otherwise, if the number in n
corresponding to Xj is equal to the number corresponding to Xi, then Ii = Ij , and we need to use (C1) to find
the variable in K.

To show that Algorithm 2 is a more efficient version of Algorithm 1, note that the first step of Algorithm 1 is
to compute Si for all observed variables Xi. Since Si involves pairwise comparison of the indicator sets, the
time complexity of this step is Θ(n2|T |), where n is the number of observed variables, and |T| is the number of
recovered exogenous noises. On the contrary, Algorithm 2 does not need to calculate all Si. It is only needed when
we need to check (C1). Since all variables in Xi have the same indicator set, finding Si takes at most Θ(n|T|2).
It can be shown that the time complexity for Algorithm 1 is Θ(n2|T|), as the conditions in (I) and (II) are hard
to check and each takes Θ(n2|T|) time. On the contrary, the time complexity for Algorithm 2 is Θ(n|T|2).

Lastly, we can extend Algorithm 1 to the case in the presence of latent confounders. The new algorithm is shown
in Algorithm 3. In particular, in order to check (IV), we count the number of non-zero entries in each column,
and check (IV) in lines 8-11, which is also a condition that is purely based on the indicator sets.

D PROOFS

D.1 Proof of Proposition 1

We first prove the statement of proposition for the case of L = ∅. With infinite samples and a model with universal
approximation capability, after training, the regression model will equal the difference of the log-densities in the
two classes:

r(X, U) = log p(N, U) + log |Jg(X)| − log p(N)− log p(U)− log |Jg(X)|
= log p(N|U)− log p(N)

=
∑
i

logQi(Ni)− logZi(U) + q̃i(Ni)λi(U)− log p(N).
(1)
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Algorithm 3: LIT algorithm in the presence of latent confounders.

1 Obtain ÑT and I from data and rewrite I into the matrix form I.
2 Calculate the number of non-zero entries in each row and each column of I. Denote the vector of these

numbers as n and m, where each entry in n corresponds to a row in I, and each entry in m corresponds
to a column in I.

3 Initialize Ĩ = I, K← ∅.
4 Remove all rows in Ĩ with all entry being zero.
5 while Ĩ is not empty do
6 Find a row in Ĩ that contains the fewest number of non-zero entry, and has the smallest corresponding

value in n. If there are multiple such rows, randomly select one. Denote the selected row as w, the
variable corresponding to this row as Xw, and the corresponding value in n as n0.

7 Consider the rows in Ĩ with the same support (non-zero entry) as w, including w itself. Denote the set
of variables that correspond to these rows as ZI , and the the noise terms corresponding to the
support of w as NI .

8 Denote the set of variables in ZI with corresponding value n0 in n as ZJ , and the set of noise terms in
NI with the smallest corresponding value in m as NJ .

9 Randomly select one noise term Nm in NJ . Consider the submatrix of I where the rows correspond to
the (column) support of Nm, and the columns correspond to the (row) support of Xw.

10 if This submatrix includes any zero entry then
11 pass
12 else
13 if |ZJ | > 1 then
14 Find the set of variables in ZJ that satisfy (C2). Denote it as ZK .
15 ZJ ← ZJ \ ZK .

16 K← K ∪ ZJ .

17 Remove from Ĩ the rows corresponding to the variables in ZI , and the columns corresponding to the
noise terms in NI .

18 return K

If we consider the form of r(X, U) = h(X)Tv(U) + a(X) + b(U) for r(X, U), we can set the functions h(X), v(U),
a(X), and b(U) such that it is equal to the right hand side of above equation. In particular, we can have the
following equality∑

i

hi(X)vi(U) + a(X) + b(U) =
∑
i

logQi(Ni)− logZi(U) +
∑
i

q̃i(Ni)λi(U)− log p(N), (2)

with the following possible solution:

hi(X) = q̃i(Ni), vi(U) = λi(U), a(X) =
∑
i

logQi(Ni)− log p(N), b(U) = −
∑
i

logZi(U). (3)

The random variable U is equal to d, if the sample is drawn from the environment Ed where 1 ≤ d ≤ D.
Let P be D × n matrix where d-th row is equal to [λ1(d), · · · , λn(d)]. We collect q̃is in the vector q̃(N) =
[q̃1(N1), · · · , q̃n(Nn)]

T . We also define the matrix V where d-th row is equal to [v1(d), · · · , vn(d)]. Finally, we
collect −

∑
i logZi(U)− b(U) for different values of U in a vector Z. Based on these definitions, we have:

Vh(X) = Pq̃(N) + Z+ 1

(∑
i

logQi(Ni)− log p(N)− a(X)

)
, (4)

where 1 is a D × 1 vector of all ones. If from both sides of the above equation, we subtract the first row from the
others,

V′h(X) = P′q̃(N) + Z′, (5)

where V′,P′, and Z′ denote the resulting matrices after subtraction corresponding to V,P, and Z, respectively.
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The columns corresponding to exogenous noises that are not changing across environments are zeros in P′. Thus,
we can remove these columns from P′ and also the corresponding entries in q̃(N). We denote the resulting matrix
and vector by P′′ and q̃(NT), respectively. Hence, we can rewrite the above equation as follows:

V′h(X) = P′′q̃(NT) + Z′. (6)

As λi(U)s are generated randomly across the environments and D ≥ |T|+1, P′′ is full column rank with measure
one. Therefore, we have:

q̃(NT) = (P′′)†V′h(X)− Z′′, (7)

where (P′′)† is pseudo-inverse of matrix P′′ and Z′′ = (P′′)†Z′. Since we know that the entries of q̃(NT) are
linearly independent, (P′′)†V′ is full row rank. Moreover, qi(Ni)s are non-Gaussian as they are bounded from
above to ensure integrability. Thus, we can recover q̃(NT) from h(X) by solving an under-complete linear ICA
problem.

Now, let us assume that there are some latent variables in the system, i.e., L ̸= ∅. As we know that there exists
an invertible function g̃ such that g̃(O) = (NT,V), we have:

r(O, U) = log p(O, U)− log p(O)− log p(U)

= log p(O|U)− log p(O)

= log p(NT,V|U) + log |Jg̃(O)| − log p(NT,V)− log |Jg̃(O)|
= log p(NT|U)− log p(NT),

(8)

where the third equality is due to the existence of invertible function g̃ and the last equality is according to the
assumptions that NT ⊥⊥ V|U , V ⊥⊥ U . Please note that these two assumptions imply that NT ⊥⊥ V. Similar to
the causally sufficient case, based on the form of r(O, U), we can write the following equation:∑

j

hj(O)vj(U) + a(O) + b(U) =
∑

i:Xi∈T

logQi(Ni)− logZi(U) + q̃i(Ni)λi(U)− log p(NT). (9)

where h(O) : R|O| → R|O|. Let M be D × |T| matrix where d-th row is equal to [λ1(d), · · · , λ|T|(d)]. We collect
q̃is in the vector q̃(NT). We also define the matrix W where d-th row is equal to [v1(d), · · · , v|O|(d)]. Finally, we
collect −

∑
i:Xi∈T logZi(U)− b(U) for different values of U in a vector Z. Based on these definitions, we have:

Wh(O) = Mq̃(NT) + Z+ 1

( ∑
i:Xi∈T

logQi(Ni)− log p(NT)− a(O)

)
, (10)

where 1 is a D × 1 vector of all ones.

Now, if from both sides of the above equation, we subtract the first row from the others, we have

W′h(O) = M′q̃(NT) + Z′, (11)

where V′,L′, and Z′ denote the resulting matrices after subtraction corresponding to W,M, and Z, respectively.

As λi(U)s are generated randomly across the environments and D ≥ |T|+1, M′ is full column rank with measure
one. Therefore, we have:

q̃(NT) = (M′)†W′h(O)− Z′′, (12)

where (M′)† is pseudo-inverse of matrix M′ and Z′′ = (M′)†Z′. Since we know that the entries of q̃(NT) are
linearly independent, (M′′)†W′ is full row rank. Moreover, qi(Ni)s are non-Gaussian as they are bounded from
above to ensure integrability. Thus, we can recover q̃(NT) from h(O) by solving an under-complete linear ICA
problem.

So far, we showed that the recovery phase can be performed up to some component-wise nonlinear transformation
(not necessarily an invertible one). However, similar to Corollary 2 in (Hyvarinen and Morioka, 2016), it can be
shown that from q̃(NT) and the observed vector O, the exogenous noises in NT can be recovered up to some
strictly monotonic transformation if each function q̃i(Ni) is a strictly monotonic function of |Ni|.
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D.2 Regarding Assumption 1(b) in Linear non-Gaussian Models

In the following we prove that, in the linear non-Gaussian model (i.e., linear SCM with non-Gaussian exogenous
noises) with the causal graph G, if L ̸= ∅, then the conditions in Proposition 1 imply that: (i) T ⊆ O; (ii) For
each latent variable Hi ∈ L, ChG(Hi) ∩T = ∅, i.e., Hi cannot have children in T where ChG(Hi) is the children
of Hi.

The linear SCM has the following matrix form:

L = NL; O = AO+A′L+NO, (13)

where NL and NO represent the vector of exogenous noises associated with latent and observed variables,
respectively. We also denote the exogenous noises whose distributions are not changing across the environments
by NTc . A represents the direct causal relationships among observed variables and A′ represents the direct
causal relations from latent to observed variables. Note that if we permute the variables such that X = [L,O],
then the adjacency matrix B after the same (row and column) permutation is [0,0;A′,A]. Under the acyclicity
assumption, A can be permuted into a strictly lower triangular matrix. Following (13), O can be written as a
linear combination of the noise terms in (NL,NO):

O = [D C]

[
NL

NO

]
, (14)

where D = (I −A)−1A′ and C = (I −A)−1. Denote W = [D C], which represents the total causal effects
(i.e., sum of product of path coefficients) among variables (Spirtes et al., 2000). If all exogenous noises are
non-Gaussian and no two columns of W are linearly dependent of each other, then W can be recovered up to
permutation and scaling of the columns using overcomplete ICA. Given that some variables in X belong to T, we
can rewrite (14) as follows:

O = [WT WTc ]

[
NT

NTc

]
, (15)

where WT and WTc represent the submatrix of W that correspond to the exogenous noises in NT and NTc ,
respectively.

If the conditions in Proposition 1 hold, then there exists an invertible matrix G, such that

GO = [GWT GWTc ]

[
NT

NTc

]
=

[
NT

V

]
. (16)

Partition G into [G1;G2], where G1 ∈ R|T|×n represent the first |T| rows of G, and G2 ∈ R(n−|T|)×n represent
the remaining rows. Therefore, according to (16), we have

G1WTNT +G1WTcNTc = NT. (17)

We first show that if all noises in NT and NTc are mutually independent and non-Gaussian, then (17) implies
that G1WT = I, and G1WTc = 0. This is because for each noise Ni ∈ NT, i ∈ [|T|], according to (17), Ni can
be written as a linear combination of exogenous noises in NT ∪NTc . Since all noises are mutually independent
and non-Gaussian, according to Darmois-Skitovitch theorem (Darmois, 1953; Skitovitch, 1953), the coefficient of
any Nj , j ̸= i on Ni must be zero. Otherwise Nj and Ni are independent, but

For each exogenous noise N ∈ NT ∪NTc , denote its corresponding column vector in W in (15) as wN . Then
G1WT = I, G1WTc = 0 is equivalent to: For each exogenous noise N and its corresponding column vector wN ,
G1wN = 0 if N ∈ NTc , and G1wN = eN if N ∈ NT, where eN is the basis (one-hot) vector where the entry
corresponding to N is one and the rest are zero. Further, for each latent variable Hi ∈ L, we have

wNHi
=

∑
j:Xj∈ChG(H)

a′jiwNXj
,

where a′ji represent the (j, i)-th entry of matrix A′ in (13). This is because for any observed variable X ∈ O, the
total causal effect of Hi on X can be written as summation of the total causal effect from each child of Hi to X
multiplied by the direct causal effect from Hi to this child (i.e., a′ji). Therefore, we have

G1wNHi
=

∑
j:Xj∈ChG(Hi)

a′jiG1wNXj
. (18)
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Since G1wN corresponds to either zero vector or basis vector, and different noises in NT correspond to different
basis vectors, (18) implies that G1wNHi

= 0, and G1wNXj
= 0 for all latent variable Hi ∈ L, and all

Xj ∈ ChG(Hi). This means that T only includes observed variables that do not have latent parents.

D.3 Proof of Proposition 2

Consider any recovered noise Ñi ∈ ÑT. Without loss of generality, suppose that Ñi corresponds to Xi. We
first show that Ñi only depends on the descendants of Xi. First, for any node Xj ∈ Des(Xi), the path
Ni → Xi → · · · → Xj in the augmented graph GT is not blocked without conditioning on any other variable and
hence Ñi ⊥̸⊥ Xj . Moreover, for any Xj which is a non-descendent of Xi, there is always a collider on any path
between Xj and Ni and thus it is blocked. Hence, we have: Ñi⊥⊥ Xj .
Remark 7. Based on what we proved above, we can imply that Ii contains only the noises in ÑT whose
corresponding variables are ancestors of Xi in GT.
Remark 8. For any two variables Xi, Xj, if we have Ij ⊊ Ii , then Xj cannot be a descendent of Xi. Since if
Xj is a descendent of Xi, then based on Remark 7, we can conclude that Ii ⊆ Ij which violates our assumption.

Now, we prove the three statements in the proposition based on the above two remarks:

(I) By contradiction, suppose that Xi is in T. If for a variable Xj , we have Ij ⊊ Ii, then based on Remark 8, it
cannot be a descendent of Xi. Now if the condition in (I) satisfies, then there exists a set such as Ij , where j ∈ Si,
such that i ∈ Ij . But according to Remark 7, this means that Xj is a descendant of Xi which is a contradiction.

(II) As the condition in (I) is not satisfied, there exists Ñk′ ∈ Ni = Ii\ ∪j:Xj∈Si
Ij . Suppose that Ñk′ corresponds

to Xk. Based on Remark 7, Xk should be an ancestor of Xi. Moreover, we have Ik ⊆ Ii. As Ii is unique, then
Ik ⊊ Ii and Xk ∈ Si. But this is in contradiction with the assumption k′ ∈ Ii\ ∪j:Xj∈Si Ij and the proof is
complete.

(III) As the indicator sets do not satisfy the condition in (I), Ni = Ii1\ ∪j∈Si1
Ij is not empty. Suppose that

Ñk′ ∈ Ni and Ñk′ corresponds to Xk. We know that Xk should be in the set Xi = {Xi1 , · · · , Xip}. Otherwise,
based on Remark 7, Ik ⊆ Ii1 . Now, if Ik ⊊ Ii1 , then Xk ∈ Si1 which is a contradiction. Thus, Ik should be equal
to Ii but in that case Xk is in the set Xi. Thus, we can conclude that at least one of the variables in this set
is in T. Please note that at most one of the variable in Xi can be in T. Otherwise, the variables in this set
cannot have the same indicator set. Therefore, exactly one of the variables in Xi is in T and we can obtain
the corresponding recovered noise, which is the only recovered noise in Ni. Without loss of generality, suppose
that Xi1 ∈ T. Then, based on Remark 7, other variables in {Xi2 , · · · , Xip} should be descendant of Xi1 . The
set Si1 contains the ancestors of Xi1 . Thus, it also includes parents of Xi1 . Now, for any path between Ni1

and Xij in the augmented graph GT, j ≥ 2, if it is outgoing from node Xi1 , then it is blocked by Xi1 . If it is
in-going toward Xi1 , then it is blocked by a parent of Xi1 which is inside the set Si1 . Thus, we can imply that
Ñi1 ⊥⊥ Xij |{Xi1} ∪ Si1 , for all 2 ≤ j ≤ p under Assumption 2. Please note that the variables in {Xi2 , · · · , Xip}
cannot satisfy the condition in (III) as they cannot block the path Ni1 → Xi1 by any set Sij for j ≥ 2 and the
proof is complete.

D.4 Proof of Theorem 1

It can be easily seen that for any variable Xi ∈ X, only one of the conditions in (I)-(III) in Proposition 2 is
satisfied. Moreover, these conditions cover all possible cases regarding the relation of the set ∪j:Xj∈Si

Ij and Ii
and also the uniqueness of Ii in I. Furthermore, in either case, we know definitely whether Xi is in T or not.
Thus, the intervention target T can be identified uniquely by checking these three conditions for any variable
Xi ∈ X and the proof is complete.

D.5 Proof of Proposition 3

The proof of the three statements in the proposition are as follows.

(I) The same proof of (I) in Proposition 2 in Appendix D.3 can be applied here.

(IV) By contradiction, suppose Xi ∈ TO. Then its corresponding exogenous noise Ñi must be in Ni. There are
two cases: (1) Ñi does not belong to any other indicator set. (2) Ñi belongs to another indicator set Ijl for some
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Xjl ̸= Xi. Then Xjl must be a descendant of Xi, hence Ii ⊆ Ijl under Assumption 2. Therefore both cases
contradict the condition in (IV).

(III-L) Similar to the proof of (III) in Appendix D.3, each noise in Ni corresponds to either a latent confounder,
or an observed variable in Xi. Further, at most one noise corresponds to a variable in Xi.

We first present the following remark:

Remark 9. Any root variable in Xi (i.e., variable with no parent in Xi) must be a child of all recovered noises in
Ni in the augmented graph GT. (Recall that in the definition of GT, all latent variables in TL are replaced by
their corresponding exogenous noise.)

To prove Remark 9, suppose Xik is a root variable in Xi. Then for any noise Ñl ∈ Ni, and its corresponding
variable Xl, there are only two possible cases: (1) Xl ∈ Xi, (2) Xl ∈ TL, and it is not a parent of any observed
variable in Si. For case (1), since Xik is a root variable, Xl must be Xik , otherwise Xik has a parent in Xi.
Similarly, for case (2), Xl must be a parent of Xik , hence Nl is a direct parent of Xjk .

In the following we prove (III-L) by contradiction. Suppose Xij ∈ TO. Then all other variables in Xi are
descendants of Xij , and Xij is the only root variable in Xi. Then according to Remark 9, for each recovered
noise Ñl ∈ Ni, there will be an edge from the corresponding noise Nl to Xij in GT, no matter whether Xl is an
observed variable (i.e., Xl = Xij ) or a latent confounder. This edge cannot be blocked by any other variables or
noises, and it implies that Condition (C2) cannot be satisfied for Xij , which leads to contradiction.

Lastly, we describe why (II) does not necessarily hold any more. This is because Xk in the proof of (II) may be a
latent variable (i.e., in TL). In this case, Ik is not observable, and Xk ̸∈ Si. However, if we are given the prior
knowledge that TL = ∅, then (II) still holds.

D.6 Proof of Theorem 2

To better distinguish between intervention targets in TO and in TL, we use Ñhi to represent the exogenous noise
corresponding to Xi for all Xi ∈ TL. For ease of notation, we denote the true noises Nj in the auxilary graph as
Ñj in the following proof, since there is a one-on-one correspondence between them.

D.6.1 Proof of Sufficiency

We show that if an observed variable Xi is a child of some noise Ñj ∈ ÑT in Aux(GT), then it is included in the
output K of the LIT algorithm. We consider each of the following four cases:

(i) Xi ∈ T.

(ii) Xi ̸∈ T, and Ñj is the exogenous noise of some observed variable Xj .

(iii) Xi ̸∈ T, Ñj is the exogenous noise of some latent confounder Hj , and Hj is a parent of Xi in G.

(iv) Xi ̸∈ T, Ñj is the exogenous noise of some latent confounder Hj , and Hj is not a parent of Xi in G.

In the following we show that, under each of these four cases, Xi is included in the output K. That is, Xi

violates the condition in (I), violates the condition in (IV), and either satisfies the condition in (II) or violates
(C2) in (III-L). Note that the conditions in (II) and in (III-L) only depends on the uniqueness of the indicator set,
therefore we do not need to check (II).

Case (i). If Xi ∈ T, then its corresponding exogenous noise Ñi satisfies i ∈ Ñi. Therefore the condition in (I)
Proposition 2 is not satisfied. Further, any observed variable Xjl with i ∈ Ijl must be a descendant of Xi, and
hence satisfies Ii ⊆ Ijl . Therefore the condition in (IV) is not satisfied. Lastly, if there are no other variables that
have the same indicator set, then Xi ∈ K according to (II). Otherwise, all other variables that have the same
indicator set as Ii must be descendants of Xi (because of Ñi), hence Xi is a child of any recovered noise in Ni

(according to Remark 9). Therefore there does not exist l such that (C2) holds, which means that Xi ∈ K.

Case (ii). If Xi ̸∈ T and Ñj is the exogenous noise of some observed variable Xj , then Ij = Ii, and there is at
least one inducing path from Ñj to Xi. This means that any variable Xk ∈ Si is not a descendant of Ñj in GT,
which implies that j ∈ Ii but not in ∪j′:Xj′∈Si

Ij′ . Therefore the condition in (I) is not satisfied. Next, note that



Yuqin Yang, Saber Salehkaleybar, Negar Kiyavash

j ∈ Ni = Nj , Ii = Ij , and (A) in (IV) does not hold for Xj (explained in Case (i)). Therefore (A) in (IV) does
not hold for Xi either.

Lastly, note that there is at least one other variable (Xj) that has the same indicator set as Xi, and Xj is a root
variable in Xi (following the same argument as in Case (i)). Therefore Xj is directly connected to all recovered
noises in Ni. Since Ñj is only directly connected to Xj , this means that if there is an inducing path from Ñj to
Xi, then for any l ∈ Ni, by changing the first edge on this path from Ñj → Xj to Ñl → Xj , the new path is also
an inducing path from Ñl to Xi. Therefore there does not exist l such that (C2) holds, which means that Xi ∈ K.

Case (iii). If Xi ̸∈ T, Ñj is the exogenous noise of latent confounder Hj , and Hj is a parent of Xi in G, then
according to Definition 1, for all other children Xk of Hj , we have Ii ⊆ Ik. This immediately implies that the
condition in (IV) is not satisfied. This also implies that for any variable Xk′ ∈ Si, j ̸∈ Ik′ . Therefore, we have
j ∈ Ii but not in ∪j′:Xj′∈Si

Ij′ , which means that the condition in (I) is not satisfied. Lastly, if Ii is unique, then
Xi ∈ K. Otherwise, since there is an inducing path from all recovered noises in Ni to Xi, there does not exist l
such that (C2) holds. Therefore Xi ∈ K.

Case (iv). If Xi ̸∈ T, Ñj is the exogenous noise of latent confounder Hj , and Hj is not a parent of Xi in G, then
according to Definition 1, there exists some Xk such that Hj is directly connected to Xk, and Ik = Ii. Further,
there is an inducing path from Ñj to Xi. Note that all children of Ñj after part (b) have the same indicator set,
which is the same as Ii. Therefore the condition in (I) does not hold. Further, since the condition in (A) does
not hold for Xk (explained in Case (iii)) and Ik = Ii, the condition in (A) does not hold for Xi either. Lastly,
since there is an inducing path from all recovered noises in Ni to Xi, there does not exist l such that (C2) holds.
Therefore Xi ∈ K.

Conclusion: We show that if an observed variable Xi belongs to ∪Ñi∈ÑT
ChAux(GT)(Ñi), i.e., it is a child of

some noise Ñj ∈ ÑT in Aux(GT), then it is included in the output K of the LIT algorithm.

D.6.2 Proof of Necessity

We show that if an observed variable Xi is included in the output K of the LIT algorithm, then it must be a
child of some noise Ñj ∈ ÑT. That is, if Xi violates the condition in (I) (i.e., Ni ≠ ∅), and the condition in (IV),
and either:

(i) Ii is unique, or

(ii) Ii is not unique, and among all variables with the same indicator set, the condition in (C2) does not hold
for Xi,

then it must be a child of some noise Ñj ∈ ÑT.

Case (i). If Ii is unique. This implies that any recovered noise Ñj ∈ Ni is a parent of Xi in GT. This is because
otherwise the child of Ñj is a ancestor of Xi but does not belong to Si. Hence it has the same indicator set as Ii,
which violates the uniqueness of Ii.

Consider all these recovered noises Ñj ∈ Ni. If there exists Ñj such that Xi is the only child of Ñj , then Ñj is
the exogenous noise of Xi, i.e., Xi ∈ TO, which is a subset of ∪Ñi∈ÑT

ChAux(GT)(Ñi). Otherwise, if all noises Ñj

has at least two children, then all of them correspond to the exogenous noises of latent confounders. Since the
condition in (IV) is violated, there exist l ∈ Ni such that for all jl with l ∈ Ijl , Ii ⊆ Ijl . This implies that the
indicator set of any other child of Ñl in GT must be a (strict) superset of Xi. Therefore the edge Ñl → Xi is
kept according to part (b)(i) of Definition 1, i.e., Xi is the child of Ñl in Aux(GT).

Case (ii). If Ii is not unique. This means that Xi is not a singleton. Consider the root variables in Xi. Note that
following the induced causal order induced on Xi, there is at least one root variable. If Xi is a root variable, then
according to Remark 9, all recovered noises in Ni is a parent of Xi in GT. In this case we can apply the same
proof as in Case (i) to show that Xi is a child of some Ñj in Aux(GT). That is, if there exists Ñj such that Xi is
the only child of Ñj , then Xi ∈ TO. Otherwise, if all noises Ñj has at least two children, then since the condition
in (IV) is violated, part (b)(i) in Definition 1 is satisfied, and there is an inducing path from all recovered noises
in Ni to Xi (because a direct connection is an inducing path). Therefore Xi is the child of all Ñj in Aux(GT).

Next, we consider the case if Xi is not a root variable. If there exists Ñj ∈ Ni such that it has only one direct
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child Xk in GT, then Xk is a root variable in Xi. Since (C2) does not hold for Xi, this means that Ñj is not
independent of Xi, conditioned on all observed ancestors of Xi in GT (i.e., AnGT

(Xi) \ ({Xi} ∪ (L\T))). This is
because all observed ancestors of Xi in GT must belong to one of the three following cases: observed variable
whose indicator set is a strict subset of Ii (i.e., belongs to Si), observed variable whose indicator set is the same as
Ii (i.e., belongs to Xi), and the recovered exogenous noise of a latent confounder (i.e., belongs to ∪l′∈Ii1\{j} Ñl′).

In the following we show that the path that cannot be blocked by these observed ancestors is an inducing
path. Suppose the path Ñj → Xk −− Vk1

−− Vk2
· · ·Xi is not blocked, where {Vkm

} are variables in GT, and −−
represents either ← or →. Note that Xk is an ancestor of Xi thus it is in the condition set. Therefore Xk is a
collider on this path, and we have the edge Xk ← Vk1 . This means that Vk1 is a non-collider on this path and an
ancestor of Xi in GT. Since the path is active, Vk1 is a latent confounder that is not changing across environments
(i.e., belongs to L \T). Therefore there is an edge Vk1

→ Vk2
. Next consider Vk2

. If Vk2
is a non-collider and is

not in the conditioning set (i.e., not an ancestor of Xi), then there is an edge Vk2
→ Vk3

. Since Vk2
is not an

ancestor of Xi, neither is Vk3
. Therefore Vk3

is also a non-collider and we have Vk3
→ Vk4

. Repeat the same
analysis on Vkm

for all m = 4, 5, · · · , the path is Ñj → Xk ← Vk1
→ Vk2

→ Vk3
→ · · · → Xi. This violates the

claim that Vk2 is not an ancestor of Xi. Therefore, Vk2 is a collider and is in the conditioning set (i.e., an ancestor
of Xi). Then we have the edge Vk2 ← Vk3 , and following the same analysis in Vk1 on Vk3 , we have Vk3 ∈ L \T
and is a confounder. Repeat the same analysis on Vkm

for all m = 3, 4, 5, · · · , we have that variables Vkm
are

either confounders in L \T, or colliders that are ancestors of Xi. Therefore this path is an inducing path from
Ñj to Xi. According to part (a) in Definition 1, Xi is the child of Ñj in Aux(GT).

Next, we consider the case when each recovered noise Ñj ∈ Ni has at least two children in GT. Similar to the
above argument, there is at least one root variable Xk in Xi that is an ancestor of Xi. This means that Ik = Ii,
and the edge cannot be removed in part (b)(ii) in Definition 1. Further, for each recovered noise Ñj ∈ Ni, since
(C2) does not hold for Xi, Ñj is not independent of Xi, conditioned on all observed ancestors of Xi in GT. This
means that there is a path from Ñj to Xi that is not blocked by the observed ancestors. Similar to the argument
above, suppose the path Ñj → Vk1 −− Vk2 · · ·Xi is not blocked. If Vk1 is a non-collider and is not an observed
ancestor of Xi (i.e., not in the conditioning set), then there is an edge Vk1 → Vk2 , and Vk2 is not an ancestor of
Xi either. This means that Vk2

is also a non-collider and there is an edge Vk2
→ Vk3

. Repeat the same analysis
on Vkm

for all m = 3, 4, 5, · · · , the path is Ñj → Vk1
→ Vk2

→ Vk3
→ · · · → Xi. This violates the claim that Vk2

is not an ancestor of Xi. Therefore, Vk1
is a collider and is an ancestor of Xi. Then we can repeat the same

analysis as above to conclude that this path is an inducing path. Therefore, there is an inducing path from each
recovered noise Ñj ∈ Ni to Xi, hence Xi is a child of Ñj in Aux(GT), according to part (b)(ii) in Definition 1.

Conclusion: We show that if an observed variable Xi is included in the output K of the LIT algorithm, then it
must be a child of some recovered noise in Aux(GT), hence belongs to ∪Ñi∈ÑT

ChAux(GT)(Ñi).

D.7 Proof of Remark 3

Regarding the equivalency between the condition (C2) and the condition (C1) under causal sufficiency assumption,
note that under causal sufficiency assumption, the condition in (C2) can be rewritten as follows:

(III-L) Let Xi = {Xi1 , · · · , Xip}, for some p ≥ 2, be a set of all variables whose corresponding indicator sets are
the same as Xi and Ni ̸= ∅. Then for each j ∈ [p], Xij ̸∈ K if and only if the following condition holds:

∃K ⊆ [p] \ {j}, ∃S ⊆ Si1 , s.t. Ñl ⊥⊥ Xij |
(
∪k′∈KXik′

)
∪ S. (C2)

Please note that Ni only contains Ñl (otherwise, at least two variables are descendants of each other which
is impossible) under causal sufficiency assumption and each recovered noise only has one children (i.e., their
corresponding intervention target) and cannot block any path. Moreover, for any Xij , the set K = {ik} and
S = Si1 is enough to guarantee that Ñl ⊥⊥ Xij |Xik ∪ Si1 where Xik ∈ T and Ñl is its corresponding recovered
noise. Thus, all Xij s, j ̸= k are excluded from K. Moreover, Xik is added to K as Ñl is the direct parent of Xik

and cannot be d-separated by a subset of observed variables and recovered noises.

About comparing our result with Jaber et al. (2020) In the case that TO = T, the augmented graph in Jaber
et al. (2020) is constructed as follows (which we show it by G′

T). For any pairs of environments such as Ei and
Ej , a node denoted by Fij is added to the original graph, and it is connected to all variables in TO. Please note
that in our setting, all variables in T are changing across the environments and all Fijs are directly connected to
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TO. The candidate set in Jaber et al. (2020) is the neighbors of F -nodes in the MAG of the augmented graph.
Now, based on Theorem 2, it is just needed to show that if some Ñi is a parent of some Xj in Aux(GT), then
some F -node is also connected to Xj in MAG of G′

T. If Xj is TO, this is trivial as it should be connected to
some recovered noise in Aux(GT) and also to some F -node in the MAG of G′

T. Thus, suppose that the Xi ̸∈ TO.
In that case, based on part (a)(i) of Definition 1, there should be an inducing path between Ñi and Xj relative to
L in GT. This path starts from Ñi and goes directly to its corresponding observed variable in TO (without loss
of generality, let us say Xi) and continues until getting to Xj in the augmented graph GT. Note that since there
are no changing latent variables, this path only involves variables in O and L. Therefore we can construct the
same path on the original graph G. We denote the part of this path in the original graph by P . Now, in G′

T, due
to symmetry among F -nodes, consider any of them. This node is connected to Xi as Xi ∈ T. Now, the path
starting from the F -node and then going directly to Xi and continues based on P until reaching Xj is also an
inducing path in G′

T. This shows that our identifiability result is stronger than the one in Jaber et al. (2020)
when TO = T, because of part (a)(ii) in Definition 1.

E EXPERIMENT DETAILS

E.1 Simulation Settings

Data Generating Mechanism. We evaluated the performance of LIT algorithm on randomly generated
synthetic models. 7 Specifically, we considered each of the three settings below for data generating mechanism:

(1) Linear Gaussian model under causal sufficiency assumption: We randomly generated a directed acyclic
graph with n variables, where each edge is connected with probability 1.5/(n− 1). Further, we randomly
selected ⌊(n+ 1)/2⌋ variables to be the intervention targets set T, and collected data from D environments.
For each variable Xi ∈ T, in the first half of the environment, we sampled the variance of corresponding
exogenous Gaussian noise in each environment from the uniform distribution on [1, 5]. In the second half
of the environments, we sampled the variance from the uniform distribution on [5, 9]. For each variable
Xi ∈ X \T, we sampled the corresponding noise variance from the uniform distribution on [1, 3] (note that
this is the same across all environments). The coefficients (edge weights) in the linear SCM are randomly
sampled from the uniform distribution on [0.5, 1]. We generated 5000 number of samples in each environment.

(2) Nonlinear model under causal sufficiency assumption: The generating mechanisms for the causal graph,
the intervention targets and the noise variances are the same as Setting (1). We used Laplace noise as the
exogenous noises. For each variable Xi, the function fi(·) is a multi-layer perception (MLP) with one hidden
layer, where the weights and biases are randomly selected between 0.5 and 1, and the activation function is
LeakyReLU with negative slope k = 0.2. Recall from Appendix A that the data generating model satisfies
Assumption 1(a). We generated 3000 number of samples in each environment.

(3) Linear Gaussian model in the presence of latent confounders: We randomly generated a directed acyclic graph
with n variables, where ⌊n/2⌋ variables are latent variables, and each edge is connected with probability
1.5/(n− 1). We ensured that each latent variable has at least two observed children. Further, we randomly
select ⌊n/2⌋ variables to be the intervention target set T, where 80% of the latent variables are in T. We
used Gaussian noise as the exogenous noises, and the selection of the noise variances are the same as Setting
(1). We generated 5000 number of samples in each environment.

The number of environments D was set to {8, 16, 32} for all three settings.

Implementation of LIT Algorithm. For the recovering phase, in linear models (i.e., Setting (1) and (3)),
we used FastICA Hyvärinen et al. (2001) to recover the noises. We pruned the entries in the mixing matrix
with absolute value lass than 0.2, and consider the support of the pruned mixing matrix as the indicator set.
In nonlinear models (i.e., Setting (2)), we ran a contrastive-learning approach similar to TCL Hyvarinen and
Morioka (2016), where we trained a four-layer MLP for label classification, and then applied FastICA on the input
of the final layer to obtain ÑT (up to certain transformation). Note that we assume that we know the number of
non-Gaussian components in all three settings. For recovering the indicator set, for each pair of recovered noise
Ñj and observed variable Xi, we calculate the correlation between Ñj and Xi within each environment, and take
the sum over all environments as the overall correlation ρij . We put j ∈ Ii if and only if |ρij | ≥ 0.2.

7All numerical simulations are run on the CPU of an Apple Macbook Pro laptop with M1 Pro chip.



Learning Unknown Intervention Targets in Structural Causal Models from Heterogeneous Data

For the matching phase, for causally sufficient models (i.e., Setting (1) and (2)) we use Algorithm 2 to find
K. Regarding the CI test in (C1), for each variable Xik ∈ Xi[p] , we compute the sum of the partial correlation
between Ñl and Xij (conditioning on Xij and Si1) for all j ̸= k. We then consider the variable Xik with the
smallest of such sum as the intervention target. For the case with latent confounders (i.e., Setting (3)), we use
Algorithm 3 to find K. We use a relaxed version of condition (C2), where we only performed the test for S = Si1

and K = [p] \ {k} for each Xik . We use partial correlation test with significance level 0.15.

Baseline methods. We compared the performance of LIT algorithm with the following methods:

1. PreDITEr algorithm8 in (Varici et al., 2022). The algorithm returns the same candidate intervention set as in
(Jaber et al., 2020) in linear Gaussian SCMs. The algorithm allows for the presence of latent confounders
(that are not intervention targets), but assumes the model to be linear Gaussian.

2. UT-IGSP algorithm9 in (Spirtes et al., 2000). The algorithm works for both linear and nonlinear SCMs.
However, no latent confounders are allowed in the algorithm.

3. CITE algorithm10 in (Varici et al., 2021). This is the prior work of PreDITEr algorithm, which only works for
linear Gaussian SCMs under causal sufficiency.

4. FCI-JCI123 algorithm11 in (Mooij et al., 2020). The algorithm returns a subset of intervention targets in the
presence of latent confounders, where no latent variable can be in T. Further, the algorithm does not require
any assumption on the functional form.

We note that FCI-JCI123 algorithm is executable only under the first two settings with D = 8 due to huge
runtime. Therefore we only report FCI-JCI123 algorithm in these two setups. We fine-tuned all three algorithms
with different confidence thresholds (parameters), and report the performance of both algorithms with the best
performance (PreDITEr with threshold 0.05, UT-IGSP with threshold 0.005, CITE with threshold 0.5, and
FCI-JCI123 with threshold 0.2).

There exists some other related work such ψ-FCI algorithm in (Jaber et al., 2020) which returns a candidate
intervention in the presence of latent confounders or DCDI algorithm in (Brouillard et al., 2020) which returns an
interventional MEC under causal sufficiency assumption. Regarding ψ-FCI algorithm, the current implementation
is limited to discrete variables in graphs with a few variables. Moreover, the implementation of DCDI with
unknown intervention targets is merely for hard interventions. Thus, we did not compare with these algorithms
as their implementations cannot be used in our setting.

Metrics. We compared the recovered intervention targets K with the true intervention targets TO based on the
following metrics:

• Precision: The percentage of the element in K that is also in TO;

• Recall: The percentage of the element in TO that is correctly recovered in K;

• F1 Score: The harmonic mean of Precision and Recall.

Additionally, to evaluate how many CI/invariance tests can be reduced by LIT algorithm, we compared the number
of CI tests conducted by LIT algorithm, and the number of precision difference estimations (PDE estimates) in
PreDITEr algorithm and CITE algorithm, which are used to replace invariance tests in the algorithm (Varici
et al., 2022). We note that in linear SCMs (i.e., settings 1 and 3), as explained in Appendix C, the indicator set
I can be deduced from the recovered mixing matrix from linear ICA. Therefore we only reported the number of
CI tests in (C1) (resp. (C2)) in condition (III) (resp. (III-L)) for both settings.

E.2 Simulation Results

Linear Gaussian model under causal sufficiency assumption. We selected n = [5, 6, 7, 8, 9, 10, 11, 12] and
D = [8, 16, 32]. We repeated the simulation for 40 times for each n and D. We calculated the mean and the

8https://github.com/bvarici/uai2022-intervention-estimation-latents
9https://uhlerlab.github.io/causaldag/utigsp.html

10https://github.com/bvarici/intervention-estimation
11https://github.com/caus-am/jci

https://github.com/bvarici/uai2022-intervention-estimation-latents
https://uhlerlab.github.io/causaldag/utigsp.html
https://github.com/bvarici/intervention-estimation
https://github.com/caus-am/jci
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errorbar of the metrics, where the errorbar is defined as the 25% and 75% percentile among all 40 samples. The
plots are shown in Figure 5. The rows represent different number of environments D (32, 24, 8), and the columns
represent different metrics (F1 score, precision, recall). We observe that PreDITEr and CITE algorithm have the
best performance, where the F1 score is almost one. We note that this is because PreDITEr and CITE algorithm
are designed specifically for intervention target estimation in linear Gaussian SCMs, which utilizes the sample
covariance matrix in the recovery. Besides, UT-IGSP algorithm and LIT algorithm also have decent performances
in this setup. Lastly, we observe that the performance of FCI-JCI123 is significantly worse than the other three
methods. We note that the simulation results in Varici et al. (2022); Mooij et al. (2020) show that FCI-JCI has
comparable performance when the intervention affects the noise distribution to have a mean shift. However, in
our setting, the intervention only affects the noise distribution to have a changing variance (scale).

Nonlinear model under causal sufficiency assumption. We selected n = [5, 6, 7, 8, 9, 10, 11, 12] and
D = [8, 16, 32], and also repeated the simulation for 40 times for each n and D. The average of the metrics are
shown in Figure 6. We observe that the performance of PreDITEr algorithm is worse than in Figure 5. This
implies that the performance of PreDITEr algorithm depends heavily on the linear Gaussian assumption of the
underlying model. Further, LIT, CITE and UT-IGSP algorithms have similar performance, where LIT performs
better when the number of environment is large. This is because the number of environments has a significant
impact on the recovery of the noises in nonlinear ICA. Lastly, FCI-JCI123 still have the worst performance.

Linear Gaussian model in the presence of latent confounders. We selected n = [9, 10, 11, 12, 13, 14, 15]
and D = [8, 16, 32]. We repeated the simulation for 40 times for each n and D, and the average of the metrics are
shown in Figure 7. Note that there are no error bars for recall, because all three high values in recall, and the
25% percentile is the same as the 75% percentile (i.e., 1.0) for all three algorithms (i.e., the recall on at least 30
out of 40 randomly generated graphs are one).

We observe that LIT algorithm has the best performance among all three algorithms. In particular, all three
algorithms have high value in recall, and LIT algorithm has the highest precision. This means that all three
algorithms can recover the intervention target in TO. However, since CITE and UT-IGSP algorithm does not
allow for any latent confounders, and PreDITEr algorithm only allows for latent confounders that are not in T,
all three algorithms cannot distinguish between a changing latent confounder and a changing observed variable.
On the contrary, LIT algorithm can detect the changing latent confounders and thus have a better recovery of
the TO. Lastly, note that in this setting, the average F1-score of both algorithm is much less than one. This
is because there are intervention targets that cannot be uniquely recovered, such as the example described in
Example 1.

Number of conducted CI tests. We recorded the average number of CI tests conducted by our algorithm, and
the average number of PDE estimates by PreDITEr and CITE algorithm. The results for D = 32 and D = 16 are
shown in Table 1 and 2, respectively. The results show that LIT algorithm significantly reduces the number of CI
tests conducted, especially when D is large. Specifically, the total number of CI tests by LIT algorithm grows
quadratically as n increases and is less than 80, while the total number of PDE estimates depends can reach up
to 29,600.
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Table 1: Average number of CI tests in LIT / PDE estimates in PreDITEr and CITE for D = 32.

Linear, No latent 5 6 7 8 9 10 11 12

LIT 2.05 2.05 1.80 2.40 2.95 2.60 2.40 3.50
PreDITEr 2000.15 1931.88 3493.40 3592.63 5486.07 5533.10 9319.73 10404.25
CITE 332.13 350.05 763.83 870.38 1713.17 1692.85 3125.63 4139.15

Nonlinear, No latent 5 6 7 8 9 10 11 12

LIT 16.85 21.15 30.80 35.80 48.30 54.65 70.60 76.00
PreDITEr 2889.05 2753.53 5518.70 5374.68 12155.30 12430.90 29645.67 24483.03
CITE 527.58 751.27 1542.50 1824.65 3801.63 4569.25 11718.85 17736.65

Linear, Latent 9 10 11 12 13 14 15

LIT 1.55 0.95 1.75 1.05 1.05 1.00 0.85
PreDITEr 1583.78 1636.88 2515.13 2541.40 3269.72 3291.18 3016.45
CITE 547.77 648.23 939.23 1095.97 1665.63 1823.78 2809.60

Table 2: Average number of CI tests in LIT / PDE estimates in PreDITEr and CITE for D = 16

Linear, No latent 5 6 7 8 9 10 11 12

LIT 1.60 2.55 1.75 2.85 2.65 2.60 1.90 2.95
PreDITEr 483.85 475.75 893.65 774.38 1259.25 1392.58 2184.47 2216.75
CITE 160.38 205.93 363.48 432.77 655.30 829.27 1588.22 1735.85

Nonlinear, No latent 5 6 7 8 9 10 11 12

LIT 16.65 19.75 30.05 35.05 48.60 54.10 69.00 76.80
PreDITEr 667.45 693.02 1246.72 1346.83 2804.35 2915.47 6693.95 6379.43
CITE 242.03 336.43 669.25 859.40 2015.50 2226.18 4831.40 8201.63

Linear, Latent 9 10 11 12 13 14 15

LIT 1.40 1.00 1.25 0.75 0.75 0.85 1.05
PreDITEr 328.25 461.77 519.23 514.58 604.88 613.98 773.83
CITE 265.02 324.95 468.20 463.65 947.40 916.73 1436.65



Yuqin Yang, Saber Salehkaleybar, Negar Kiyavash

0.7

0.8

0.9

1.0
F1 Score

0.7

0.8

0.9

1.0
Precision

0.7

0.8

0.9

1.0

(a) D=32

Recall

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

(b) D=16

6 8 10 12
Total Number of Variables (n)

0.00

0.25

0.50

0.75

1.00

LIT PreDITEr UT-IGSP CITE FCI-JCI123

6 8 10 12
Total Number of Variables (n)

0.00

0.25

0.50

0.75

1.00

6 8 10 12
Total Number of Variables (n)

0.00

0.25

0.50

0.75

1.00

(c) D=8

Figure 5: Performance of the algorithms under Setting (1) (Linear Gaussian model under causal sufficiency
assumption). Error bars represents the 25% and 75% percentiles of the corresponding metrics. Note that for
D = 32, PreDITEr algorithm (orange line) overlaps with UT-IGSP algorithm (green line) and CITE algorithm
(red line) in recall, as both algorithms have 1.0 recall for all n.
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Figure 6: Performance of the algorithms under Setting (2) (Nonlinear model under causal sufficiency assumption).
Error bars represents the 25% and 75% percentiles of the corresponding metrics.
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Figure 7: Performance of the algorithms under Setting (3) (Linear Gaussian model in the presence of latent
confounders). Error bars represents the 25% and 75% percentiles of the corresponding metrics. Note that
PreDITEr algorithm (orange line) overlaps with UT-IGSP algorithm (green line) and CITE algorithm (red line)
in recall for D = 32. Further, the are no error bars for recall, because the 25% percentile is the same as the 75%
percentile (i.e., 1.0) for all three algorithms.


