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Abstract

Gradient boosting of prediction rules is an
efficient approach to learn potentially inter-
pretable yet accurate probabilistic models.
However, actual interpretability requires to
limit the number and size of the generated
rules, and existing boosting variants are not
designed for this purpose. Though corrective
boosting refits all rule weights in each itera-
tion to minimise prediction risk, the included
rule conditions tend to be sub-optimal, be-
cause commonly used objective functions fail
to anticipate this refitting. Here, we address
this issue by a new objective function that
measures the angle between the risk gradi-
ent vector and the projection of the condition
output vector onto the orthogonal comple-
ment of the already selected conditions. This
approach correctly approximates the ideal up-
date of adding the risk gradient itself to the
model and favours the inclusion of more gen-
eral and thus shorter rules. As we demon-
strate using a wide range of prediction tasks,
this significantly improves the comprehensibil-
ity /accuracy trade-off of the fitted ensemble.
Additionally, we show how objective values
for related rule conditions can be computed
incrementally to avoid any substantial com-
putational overhead of the new method.

1 INTRODUCTION

Additive rule ensembles describe a target variable
through a linear combination of conjunctions of thresh-
old functions on individual input variables. These mod-
els, also called “rule sets”, combine an interpretable syn-
tax with high modelling flexibility. Thus, they are a use-
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Figure 1: Risk/complexity trade-offs achieved by dif-
ferent rule ensemble learners for used_cars. Proposed
approach (COB, red) reaches risk 0.135 with ensemble
of complexity 27, measured as number of rules plus
their total length, as opposed to 46 for best alternative.

ful alternative to employing opaque models with post-
hoc explanations (e.g., Strumbelj and Kononenko, 2010;
Ribeiro et al., 2016), which can be misleading (Rudin,
2019; Kumar et al., 2021). Indeed, like simple gener-
alized linear models (GLMs, McCullagh and Nelder,
2019) and generalized additive models (GAMs, Hastie
and Tibshirani, 1990; Lou et al., 2013), additive rule
ensembles are “modular” and “simulatable” (Murdoch
et al., 2019), i.e., they allow the interpretation of one
term (rule) at a time, and the output of each term
can be computed by a human interpreter “in her head”.
However, in contrast to those simpler models, rule
ensembles can also model interaction effects of an ar-
bitrary number of input coordinates. In fact, they
can be regarded as a generalization of tree and forest
models by representing each tree leaf through a rule.
Though, given the motivation of interpretability, we are
interested in finding much smaller rule ensembles than
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those typically defined by a forest. In other words, the
goal in rule ensemble learning really is to optimize the
trade-off between accuracy and complexity (see Fig. 1).

Algorithms for learning additive rule ensembles range
from computationally inexpensive generate-and-select
approaches (Friedman and Popescu, 2008; Lakkaraju
et al., 2016; Bénard et al., 2021), over more expen-
sive minimum-description length and Bayesian ap-
proaches (Wang et al., 2017), to expensive full-fledged
discrete optimization methods (Dash et al., 2018; Wei
et al., 2019). Within this range of options, methods
based on gradient boosting (Friedman, 2001) are of
special interest because of their good accuracy relative
to their cost and their flexibility to adapt to various
response variable types and loss functions. These meth-
ods identify one rule condition at a time by optimizing
an objective function that aims to approximate gradient
descent of the empirical risk in terms of the ensemble’s
prediction vector. Current boosting adaptions to rule
learning (Cohen and Singer, 1999; Dembczynski et al.,
2010; Boley et al., 2021) are, however, based on design
choices that compromise the risk/complexity trade-off
of the fitted rule ensembles. They use stagewise weight
updates where rules are not revised after they are added
to the ensemble, although re-optimizing all weights in
every iteration in a (totally) corrective update (Kivinen
and Warmuth, 1999; Shalev-Shwartz et al., 2010) can
achieve a smaller risk for the same ensemble complexity.
Interestingly, fixing this issue is not as straightforward
as simply switching to a corrective update, because
current boosting objective functions do not anticipate
weight corrections, and, as we show here, this can lead
to highly sub-optimal choices and in particular does
not guarantee to find the rule condition that best ap-
proximates the inclusion of the risk gradient itself to
the multi-dimensional weight search.

Here we investigate a new objective function that pro-
vides this guarantee and leads to consistent gains in the
risk reduction per added rule. This function is based
on considering only the part of a rule body orthogonal
to the already selected rules, which takes into account
that the predictions for previously covered training
examples can be adjusted during weight correction. In
addition to providing this refined objective function, we
also derive a corresponding algorithm for incrementally
evaluating sequences of related rule conditions, which
is crucial for efficiently optimizing the objective func-
tion in each boosting round, whether through greedy
or branch-and-bound search. As we demonstrate on a
wide range of datasets, the resulting rule boosting algo-
rithm significantly outperforms the previous boosting
variants in terms of risk/complexity trade-off, which
can be attributed to a better risk reduction per rule as
well as an affinity to select more general rules. At the

same time, the computational cost remains comparable
to previous objective functions. We present these main
technical contributions in Sec. 3 and their empirical
evaluation in Sec. 4 and provide a concluding discussion
in Sec. 5. To start, we briefly recall gradient boosting
for rule ensembles in Sec. 2.

2 RULE BOOSTING

Additive rule ensembles are probabilistic models
that describe the mean of a target variable Y con-
ditional on an input variable X as E[Y | X = x| =
w(f(x)) where pn: R — R is an inverse link or mean
function and f: R? — R is an affine linear combina-
tion of k£ Boolean query functions. That is,

k
Fx) =B+ Bigi(x) (1)

=1

where each ¢;: RY — {0,1} is a product g¢;(x) =
Pi1(X)pi2(X) ... pic, (x) of propositions p; ;(x) =
1(sz; > t) with s € {£1} and t € R. Each term
in (1) can be interpreted as an IF-THEN rule where
the binary queries ¢; define the rule antecedents (condi-
tions), and the weights 3 = (31,..., 8) € R* define
the rule consequents, i.e., the output of rule 7 for input
x € R? is j3; if x satisfies the antecedent, i.e., ¢;(x) = 1
(and 0 otherwise). The offset weight By conceptually
describes the output of a background rule with a
trivial condition that is satisfied for all data points.

We are concerned with the trade-off of two proper-
ties of an additive rule ensemble f: its complexity
C(f)y =k+ Zle ¢;, which approximates the cogni-
tive effort required to parse all rules, and its pre-
diction risk E[I(f(X),Y)], which measures its ac-
curacy with respect to some positive loss function
I(f(x),y) for new random data sampled with respect
to the joint distribution of X and Y. Here we con-
sider loss functions that can be derived as deviance
function, i.e., shifted negative log likelihood (such that
I(n=1(y),y) = 0), when interpreting the rule ensemble
output as natural parameter of an exponential family
model of the target variable. This guarantees that
the loss function is strictly convex and twice differen-
tiable (McCullagh and Nelder, 2019, p.33). Specifi-
cally, we consider the cases of Y | X being normally
distributed and p(a) = a resulting in the squared loss
lsqe(f(z4),yi) = (f(z:) —y;)?, Bernoulli distributed and
w(a) = 1/(1 + exp(—a)) resulting in the logistic loss
log (f(24),y:) = log(1 + exp(—y; f(x;))), and Poission
distributed and p(a) = exp(a) resulting in the Poisson
loss lpoi (f(%4), ¥i) = yilogyi—yi f (i) —yit+exp(f(@i)).

Gradient boosting Gradient boosting methods are
iterative fitting schemes for additive models based on
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minimizing the (regularized) empirical risk Ry(f) =
S U(f(xi), yi)/n+A||B]|?/n taken over a training set
{(x1,91)s -+, (Xn,yn)}. In the context of rule learning,
these methods produce a sequence of rule ensembles
FO @ f®) starting with an empty f© = g,
where Sy = argmin{R(18)}, and for 1 <t < k,

FO) = Bo+ Beaqu(X) + - + Br.eqi(x)
q; = argmax{obj(q; f*~V): ¢ € 0},

where query ¢; is chosen to maximize some objective
obj: R™ — R that is defined on the query output
vector q = (¢(z1),...,q(z,)) and that additionally
depends on the previous model, in particular its output
vector f;_1 = (f¢V(xy),..., f*V(x,)). Specifically,
the original gradient boosting scheme (Friedman, 2001)
performs an approximate gradient descent in the model
output space by choosing

objg(a) = lg"al/lal , (2)
B = [Bi—1; argergin Ry(fOY + Ba)l, (3)

where g is the gradient vector of the unregular-
ized empirical risk function with components g; =
Ol(f(x;),y:)/0f(x;). We refer to (2) as gradient
boosting objective and to (3) as stagewise weight
update, because it fits the final prediction function in
“stages” corresponding to each term.

One popular variant of this scheme chooses queries
that correspond to a direction in output space with
maximum rate of change in risk according to its first
order approximation (Mason et al., 1999). This results
in the gradient sum objective

objes(a) = g7 ql (4)

which is guaranteed (Dembczynski et al., 2010, Thm. 1)
to select rules as least as general as the gradient boost-
ing objective in terms of the number of selected data
points ||q|l1. This increased generality, however, can
come at the expense of a reduced risk reduction when
choosing 3, because the output correction of data
points with large gradient elements has to be toned
down to avoid over-correction of other selected data
points with small gradient elements. Another vari-
ant (Chen and Guestrin, 2016; Boley et al., 2021)
minimizes the second order approximation to Ry via
the extreme boosting objective and corresponding
closed-form weight updates

obj (@) = [g"al/vhTq+ A (5)
By =18,_1;—q"g/(d"h+ \)], (6)

where h = diag(Vfc(x)R(f)) is the diagonal vector of

the unregularized risk Hessian again with respect to the

output vector f. Note that this approach is well-defined
for our loss functions derived from exponential family
response models, which guarantee defined and positive
h. In particular for the squared loss, it is equivalent to
standard gradient boosting, because the second order
approximation is exact for lsq; and h is constant.

While the closed-form solution of the weight-updates (6)
reduces the update cost by some amount, it can be
highly sub-optimal whenever the second order approx-
imation is loose as, e.g., is the case with the Poisson
loss. Especially if one aims for small interpretable rule
ensembles and correspondingly wants to minimize the
risk for each ensemble size, it appears sensible to choose
3 that minimize the actual empirical risk. The most
consequent realization of this idea is given by correc-
tive boosting® (Kivinen and Warmuth, 1999; Shalev-
Shwartz et al., 2010) where the component-wise weight
updates (3) are replaced by a full joint re-optimization
of the weights of all selected queries, i.e.,

B, = argmin{R,(Q:3): B € R'} , (7

where Q; = [qu, - - ., Q¢ is the n Xt query matrix with
the output vectors of all selected queries as columns.
Given that our loss function [ and therefore the empir-
ical risk Ry are convex, the additional computational
cost for solving (7) instead of (3) is negligible rela-
tive to the cost of query optimization, especially when
targeting small ensembles sizes k.

Single rule optimization While the rule optimiza-
tion literature can be broadly divided into branch-and-
bound and greedy (or more generally beam) search (see
Fiirnkranz, 1999), these approaches are actually closely
related: in a typical breadth-first-search implementa-
tion, both searches start with search level 0 containing
only the trivial query ¢(x) = 1. Then, for l =1,2,...
they generate search level [ as all augmentations

q'(%0) = q(x0)1(s20,; < 523 ;) (8)

for all ¢ in search level [ — 1 filtered by, especially for
branch-and-bound, a non-redundancy check? and a
bound check bnd(g) > obj(¢*) where ¢* denotes the
best query encountered so far. Restricting each search
level to contain only the top w candidates for some finite
search width w results in beam search with w =1
corresponding to the standard greedy search. In the
case of unrestricted level size (w = 00), corresponding

'In the literature, the update (7) is often referred to
as “totally corrective” or “fully corrective” whenever the
unqualified term ‘“corrective boosting” is already used to
refer to the standard stagewise update (3) .

2In efficient implementations this non-redundancy check
ensures that each query output vector q is at most enqueued
once through exploitation of a closure system formed by
the queries (see Boley et al. (2021) and references therein).
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to branch-and-bound, finding the optimal query is
guaranteed if bnd(q) is an upper bound to the objective
value of all possible subsequent augmentations to ¢. In
this case the bound is called admissible. For instance,
the selectability unaware bounding function

bnd(g) = max{obj(q'): ' < q.q" € {0,1}"} , (9)

where q < ' refers to the component-wise less or
equals relation, is admissible, because it relaxes the
problem of finding the best extension of ¢ propositions
to finding the best subset of the data points selected by
g (Morishita and Sese, 2000; Grosskreutz et al., 2008).

In any search scheme like the one sketched above, a
substantial computational cost is incurred for evaluat-
ing the objective function values of a large number of
candidate queries, many of which are closely related.
Hence, efficient implementations rely on fast incremen-
tal computations of as many of those objective values
as possible. Specifically, they reduce the candidate
generation and bounding to the following prefix value
problem: for a given ordered sub-selection of m data
points o: {1,...,m} — {1,...,n}, compute all

{obj(e,(1)y +--+esu): 1 <i<m}  (10)

where we denote by e; the i-th standard unit vector.
The key is to solve this problem in time O(m) instead of
the O(m?) resulting from separate computation of obj
for all ¢ € {1,...,m}. For candidate generation, it can
then be solved once per input variable j and s € {£1},
setting o to order {1,...,n} according to sz;;, to
compute the objective values of all ¢ = g1 (sxo,; > x; ;)
in time O(n). This results in O(dn) cost for computing
all refinements (8) instead of O(dn?) incurred with
separate computation. For bound computation, the
problem is solved twice per candidate ¢ to compute
the selectability unaware bounding function (9) with a
prefix greedy optimization (Lemmerich et al., 2016;
Boley et al., 2017). Here, o describes the sub-selection
of the m = 17q data points selected by ¢, and the
order varies based on the objective function. For objgy,,
correct computation of (9) is achieved by ordering
with respect to sg;. For obj,,, correct computation is
achieved by ordering with respect to the ratio sg;/h;
(Boley et al., 2021).

3 ORTHOGONAL GRADIENT
BOOSTING

Using the corrective weights updates (7) turns boosting
into a form of forward variable selection for linear
models. However, in contrast to conventional variable
selection where all variables are given explicitly, we
still have to identify a good query ¢; in each boosting
iteration, and it turns out that finding the appropriate

query is more complicated with the corrective update
than with the stagewise update (3).

3.1 Best Geometric Approximations

To be more precise, assume we are adding to the ensem-
ble a basis function with output vector v in boosting
round ¢, and let us denote by ASY = f;,_; +span{v} the
affine weight optimization subspace of the stagewise
update (3) and by ASY = range[Q;_1; v] the weight op-
timization subspace of the corrective weight update (7).
Moreover, let Ay, be some family of weight optimization
spaces such as either of the two defined above, and let
f € R™ be some target vector, e.g., in our case, the
empirical risk minimizer in the optimization space Ag
given by the risk gradient itself. We define the best
geometric approximation to f with respect to the
query language Q as the projection of f onto the space
Aq resulting in the smallest error among all ¢ € Q, i.e.,

fo = argmin{||f — f'||: f' € Aq,q € Q} .

In the case of a stagewise update space AV, it is easy
to show that for any f =f;,_; + av € AEU the squared
projection error for a given ¢ € Q is a decreasing
function of the angle between q and v:

. 2 _ 2 2 (qTV)2>
in v — el = o? (V2 = ) )
Since objgy,(q) is proportional to the cosine between
q and g, maximizing it thus identifies the ¢ € Q with
the best geometric approximation to any target vector
fe AEU. Consequently, for the ideal gradient descent
update at round ¢, i.e.,

fOP = argmin{R\(f'): £’ € A3V} |

the best geometric approximation f'SD is an element
of AEU, where q denotes the output vector of a query
that maximizes obj,;,. Moreover, as the final output
vector fy}, is found via line search in this affine subspace,
its risk is no greater than that of the best geometric
approximation, i.e., Ry (fzn) < RA(fSP).

However, when using the corrective update in combina-
tion with an ideal basis function with an output fully
aligned with g, the target vector becomes

fO0 = argmin{R\(f): f' € AJV} . (12)

In this case, all previously discussed objective functions
fail to identify the best geometric approximation in gen-
eral, resulting in a large excess risk. For the standard
gradient boosting objective, this is demonstrated in
the example in Fig. 2. Here, obj,, identifies in round 2
a query resulting with or without weight correction in
an output vector £ = £ with (unregularized) risk
24/9, whereas the best geometric approximation to the
target vector f'gD has a risk of only 1/9.
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Figure 2:
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Left. Regression example with three data points with target values y = (—10,—6,5) and output

vectors fg, = (—8,—8,5) with risk 24/9 and f,g, = (—10.3, —5.6,4.7) with risk 1/9 of two-rule ensembles produced
by corrective weight updates with obj,;, and obj,y,, respectively. Middle. Approximations to target subspace
(blue) spanned by q; = (1,1,0) and —g = (—2,2,5). The subspace (green) spanned by q3 = (0,1,1) and q; is a
better approximation than the subspace (orange) spanned by g2 = (0,0,1) and q;. However, the latter is selected
by standard gradient boosting (objgb), because qs and —g form a smaller angle than q3 and —g. Right. After
projection onto orthogonal complement of qi, angle between q3 and —g is smaller than that between q2 and —g
and is thus selected by orthogonal gradient boosting objective (0bj,gy,)-

3.2 Objective for Corrective Boosting

The intuitive reason for the gradient boosting objective
failing to identify the correct query in Fig. 2 is that
selecting x5 in addition to x3 is not beneficial for the
overall risk reduction if we are only allowed to set the
weight for the newly selected query. This is because
then this weight has to be a compromise between the
two different magnitudes of correction required for xo,
which only needs a small positive correction, and z3,
which needs a large positive correction. If we, however,
are allowed to change the weight of the previously
selected query this consideration changes, because we
can now balance an over-correction for zo by adjusting
the weight of the first rule. While on first glance it
seems unclear how much of such re-balancing can be
applied without harming the overall risk, it turns out
that this is captured by a simple criterion based on the
norm of the part of the newly selected query that is
orthogonal to the already selected ones (see SI for all
proofs).

Proposition 1. Let f“P = argmin{R,\(f') : f' €
range[Q;—_1; g]} be the output vector of the ideal cor-
rective gradient descent update in round ¢ and

q = argmax|gTql/|lqL|| (13)
qeEQ

where for v. € R"™ we denote by v, its projec-
tion onto the orthogonal complement of range Q;_1.
Then the output vector f;, = argmin{Ry(f') : f' €
range[Q:—1;q|} dominates the optimal geometric ap-
proximation to f with respect to Q, i.e., Rx(f;) <
RA(FSCD).

The right hand side of Eq. (13) is undefined for redun-

dant query vectors q that lie in range Q and therefore
have ||q.|| = 0. Therefore we add a small positive
value € to the denominator, which can be considered an
alternative regularization parameter. With this we
define the orthogonal gradient boosting objective
function as

objogn(9) = lgTal/(laLl +e) - (14)

This function measures the cosine of the angle between
the gradient vector and the orthogonal projection of
a candidate query vector q. This is in contrast to the
standard gradient boosting objective, which considers
the angle of the unprojected query vector instead. In
the example in Fig. 2 we can observe that this difference
leads to successfully identifying the best approximating
subspace, as guaranteed by Prop. 1. In that example,
this corresponds to a factor of 24 improvement over
the empirical risk produced by the gradient boosting
objective function. In fact, the potential advantage
of orthogonal gradient boosting is unbounded relative
to both the gradient boosting and the gradient sum
objective function.

Proposition 2. There is one-dimensional input data
X € R°*! and a sequence of output data, y(™ € R,

such that lim,, R(();"b) =0 but

i R =l R = oo

where RI™ = Ry( f,53)) is the risk of the three-element
rule ensemble f, trained on (X,y(™)) using obj, and
the corrective weight update.

Proof sketch. We define X as (1,2,3,4,5) and y(™ =

(= — €ms Qumy, —3Cm — €y U+ €y 200, + €5, ), Where
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Algorithm 1 Corrective Orthogonal Boosting

Algorithm 2 OGB Base Learner

Input: dataset (x;,;)7,, number of rules &
o; = argsort({z; j: 1 <i<n})forje{l,. . . p}
fO = By = argmin{Ry(1): B € R}
fort=1to k do
g — (A(F0D(x,), ya) 0D (1)),
q: = ogb _baselearner(g;, O¢)
qQ, 1L =9— OtOth
o =q:1/|lq:1| and Oy = [O4—1; 04
By =argmingg, s 5ere Ba(Bo + 2251 Bia5)
FOC) =Bo+ Baar () + -+ + Braar(")
Output: (@, ... fk)

Qm, €m € Ry are two arbitrary sequences with o, —
oo and €, — 0. With this we have for the risk of the
generated rule ensembles

Rg;’” > 2 (602, + 20mem + €2,) /5
R =302, /2

R =3¢ /5
implying the claimed limits. U

3.3 Efficient Implementation

To develop an efficient optimization algorithm for
the orthogonal gradient boosting objective, we re-
call that projections q; on the orthogonal comple-
ment of range Q can be naively computed via q; =
qa- Q((QTQ)*(QTq)) where we placed the paren-
theses to emphasize that only matrix-vector products
are involved in the computation—at least once the
inverse of the Gram matrix Q7 Q is computed. This
approach allows to compute projections, and thus ob-
jective values, in time O(nt + t?) per candidate query
after an initial preprocessing per boosting round of cost
O(t?n + t3).

In a first step, this naive approach can be improved
by maintaining an orthonormal basis of the range of
the query matrix throughout the boosting rounds, re-
sulting in a Gram-Schmidt-type procedure. Since the
projections q; of the selected query output vectors
already form an orthogonal basis of range Q this only
requires normalization with negligible additional cost.
Formally, by storing o, = q;1/||q..|| in all boosting
rounds ¢, subsequent projections can be computed via
At+1,1 = Qe+1 — 0,(0{ qs41) where O; = [01,...,0].
This reduces the computational complexity per candi-
date query to O(tn) without additional preprocessing.

As mentioned in Sec. 2, to achieve an acceptable scala-
bility with n, we need to reduce this complexity further
for evaluating sequences of related queries, as required

Input: data (x;)!,, grad. g, orthonorm. O € R™*
gL < g—00"g
p <+ argsort(g,)
Uiy @, I <= (0,1,{1,...n})
B < empty priority queue with size limit w
enqueue(B, (v, g, I+))
while not empty(B) do
B’ < empty priority queue with size limit w
for (v,q,I) € B do
@' < filter(p, I)
by + maxprefix values(g,, O, ¢’)
b_ + maxprefix values(g , O, inverted(¢’))
if max{b,,b_} < w, or redundant(q,I) then
continue
for je{1,...,d} do
for s € {-1,1} do
o « filter(o;, I)
if s = —1 then o « inverted(o)
v = prefix_values(g,,0,0)
forie {1,...,|o|} do
q'(%0) < q(x0)1(s70,5 < 5T0(s),;)
if v/ > v, then
Vs, Qs <— V', ¢
enqueue(B’, (v', ¢, {o(1),...,0(i)}))
B+« B
Output: g.

by candidate generation and bounding. In particular
we need to solve the prefix value problem (10), which
translates for our objective function to computing;:

lgla®/(aPl +o: 1<i<t)  (15)

given an ordered sub-selection ¢ where q(°) = 0 and
q® = q"Y + e,(;). The following proof shows how
the computational complexity for solving (15) can be
substantially reduced compared to the direct approach
above. It uses an incremental computation of projec-
tions that works directly on the available orthonormal
basis vectors o instead of computing matrix-vector

Algorithm 3 Incremental Prefix Values

Input: proj. grad. g, orthon. O € R™!, order o
G,Nl,...,Nt(—(0,0,...,O)
foriec{1,...,|0|} do
G(—G—ng_ﬁ(i)
for ke {1,...,t} do
Nj, < Ni, + Ok, o (i)

vi = |G|/ ( 2= M +€>

Output: (vq,...,v;)
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products or, even worse, the whole projection matrix.

Proposition 3. Given a gradient vector g € R", an
orthonormal basis 01,...,0, € R™ of the subspace
spanned by the queries of the first ¢ rules, and a sub-
selection of | candidate points o: [I] — [n], the prefix
value problem (15) can be solved in time O(#l).

Proof sketch. We can write the objective value of prefix
7 in terms of incrementally computable quantities:

gTa™] _ lgTa")|

laPll+e  /la®2 ~ o[ +e
_ gTa®] _

Va2~ Sh_, lloxof a2 + ¢

In particular, the ¢ sequences of norms ||oxof q(¥|| can
be computed in time O(I) via cumulative summation
of the k-th basis vector elements in the given order:

lorof a V| = llow]l Y ofes| = > oror)
j=1 j=1
O

This result implies that the computational complex-
ity of maximizing the objective function in boosting
iteration t depends linearly on ¢, which introduces an
asymptotic overhead of a factor of k over the previous
objective functions when running boosting for k itera-
tions. However, as we will discuss below, in practice for
finite k we typically find a much smaller overhead, e.g.,
of around 2 for most data sets when running 10 itera-
tions. This is due to additive preprocessing costs that
are common to all objective functions and the tendency
to select more general rules compared to GB/XGB.

We close this section with pseudocodes that summarize
the main ideas of orthogonal gradient boosting, starting
with the high level algorithm (Alg. 1), followed by the
base learner for the query optimization at each boosting
round (Alg. 2), and closing with the fast incremental
objective function computation (Alg. 3). This specific
version of Alg. 2 uses breadth-first-search for ease of
exposition. Other search orders can be implemented.
Moreover, it uses the following operations and notations
for ordered sub-collections of data point indices o :
{1,...,m} — {1,...n}, which can be represented by
integer arrays of length m. The cardinality symbol
refers to the size of the represented sub-collection, i.e.,
|o| = m . The operation filter(o, I) refers to the order
(0(i): 1 < i <lo|,0(i) € I), which can be computed
in time O(m) assuming I is given as a Boolean array.
Finally, inverted (o) refers to the inverted order o’(7) =
o(m —i+1). For beam search the priority queue limit

Table 1: Datasets with size n, dimensions d, and type:
classification (T), Poisson (*), ordinary regression ()

DATASET d n DATASET d n DATASET d n
SHIPS™ 4 34 |BrEASTT 30 569 |GENDERT 20 3168
GDP 1 35 |ric-tac-ToEt 27 958 |prciTs5T 64 3915
SMOKING® 2 36 |TITaNicT 7 1043 |FRIEDMAN3 4 5000
coviD vic* 4 85 |INSURANCE 6 1338 |DEMOGRAPH. 13 6876
BICYCLE™ 4 122 |BanknoTET 4 1372 |TEL. cHURNT 18 7043
rist 4 150 |WAGE 5 1379 |FRIEDMAN2 4 10000
wineT 13178 [mBM HRT 321470 |macict 6 16327
covip”® 2 225 |RED WINE 111599 |VIDEOGAME 5 27820
HAPPINESS 8 315 |LIFE EXPECT. 211649 |SUICIDE RATE 5 27820
Livert 6 345 |UsED caRs 4 1770 |apurrt 1130162
DIABETES 10442 |MOBILE PRICE 20 2000

BOSTON 13506 |FRIEDMANL 102000

w has to be set to some finite positive integer, where
w = 1 yields the standard greedy algorithm as special
case. The setting w = oo leads to branch-and-bound,
for which the red lines implement the bounding part.
Importantly, the computed bounding function based
on a prefix greedy optimization with respect to the
gradient order is just a heuristic for obj,,. Therefore,
one might want to omit it for beam search. However,
we find in extensive numerical experiments (see SI) that
this approach leads to a 3/4-approximation algorithm
with high probability.

4 EMPIRICAL EVALUATION

In this section, we present empirical results compar-
ing the proposed corrective orthogonal gradient boost-
ing (COB) to the standard gradient boosting algo-
rithms (Dembczyriski et al., 2010) using greedy opti-
mization of obj,, (SGB) and obj,, (SGS) with stage-
wise weight update, to extreme gradient boosting (Bo-
ley et al., 2021) using branch-and-bound optimisation
of obj,,, With stagewise weight update (SXB), and
finally to SIRUS (Bénard et al., 2021) as the state-of-
the-art generate-and-filter approach. We investigate
the risk/complexity trade-off, the affinity to select gen-
eral rules, as well as the computational complexity.
The datasets used are those of Boley et al. (2021) aug-
mented by three additional classification datasets from
the UCI machine learning repository and, to introduce
a novel modelling task to the rule learning literature,
five counting regression datasets from public sources.
This results in a total of 34 datasets (13 for classifi-
cation, 16 for regression, and 5 for counting/Poisson
regression, see Tab. 1). The experiment code and fur-
ther information about the datasets are available on
GitHub (https://github.com/fyan102/FCOGB).

All algorithms were run five times on all datasets using
5 random 80/20 train/test splits to calculate robust
estimates of all considered metrics. For each boosting
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Figure 3: Method log risks across complexity levels
(top) and log test risks across datasets (bottom).

variant, we consider ensembles with £ = 1,2, ... rules
until the complexity exceeds 50. For each ensemble size
k (and each training split) a separate regularization
parameter value )\ is found via an internal five-fold
cross-validation as

argmin{Rcv(fik)) :A=10%a € {-2,-1,0,1,2}}

Note that with this procedure, the ensemble complex-
ity is not necessarily monotone with the number of
rules, i.e., because typically \; > Ag for [ > k. For
SIRUS, we consider different ensembles by varying the
minimum occurrence frequency pg of a rule (in trees of
the random forest) required to be added to the ensem-
ble, incrementally decreasing py until complexity 50 is
exceeded.

Complexity versus risk We firstly compare the
complexity/risk trade-off of SGB, SGS, SXB and COB.
Fig. 3 compares the log risks in terms of the com-
plexity of rule ensembles generated by all methods.
The log risks are used such that their difference indi-
cate risk ratios between methods, as log(Ra/Rp) =
log(Ra) —log(Rp). Here, normalization is performed
by the risk of the rule ensemble with a single empty
“offset” rule. The top part compares the risks per com-
plexity level averaged across all datasets. One can see
that, for almost all complexity levels, COB has the
smallest average training and test risks for all but the
smallest complexity levels, where it is only beaten by
SIRUS. On the other hand, SIRUS is not competitive
for complexity levels greater than 15. The bottom part
of Fig. 3 compares the risk per dataset averaged across
all considered cognitive complexity levels from 1 to 50.
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Figure 4: Comparison of risks with different complexity
levels between Stepwise Gradient Boosting (SGB), Cor-
rective Gradient Boosting (CGB), COB using Greedy
search and COB using Branch-and-bound search. The
colours represent the complexity of the rule ensembles.
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Figure 5: Coverage rate of the rules generated by Gra-
dient Boosting, XGBoost, Gradient Sum versus OGB.
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Figure 6: Running time ratio of SXB and COB (top)
and naive and efficient opt. of COB (bottom).

COB generates rules which have the smallest test risks
for 23 out of 34 datasets (and the smallest training risks
for 26 out of 34 datasets, see Fig. 9 in SI). Moreover,
COB occasionally outperforms the second-best algo-
rithm by a wide margin (tic-tac-toe, banknote, insur-
ance, friedman2, used cars, smoking). One-sided paired
t-tests at significance level 0.05 (Bonferroni-corrected
for 8 hypotheses, 4 for training risks and 4 for test
risks) reveal that COB significantly outperforms all
other methods for a random dataset by a margin of at
least 0.001 average training risk and testing risk.
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Ablation study After seeing that the developed rule
learning approach yields overall significant advantages,
we next investigate the necessity of its individual compo-
nents. Fig. 4 compares the risk of various intermediate
variants of COB for all investigated datasets and repre-
sentative complexity levels. As can be seen, applying
just corrective weights updates does not substantially
improve standard gradient boosting with stagewise up-
dates and greedy rule optimization, with only 57.7% of
the considered ensembles improved. Correspondingly,
a ones-sided paired t-test at significance level 0.05 does
not reject the null hypothesis that the expected risks
differ at all, i.e., without a margin, between these two
methods (for a random dataset and complexity level).
In contrast, using the orthogonal objective function
0bjogp In conjunction with corrective updates improves
the risk values in 78.9% of the cases (compared to using
objg, With corrective update), and optimizing obj,gy,
with branch-and-bound search instead of greedy search
improves the performance further (63.4% of ensembles
are improved). Both improvements are significant, i.e.,
two further one-sided paired t-tests at significance level
0.05, with Bonferroni correction for three tests, reject
the null hypotheses that the difference in expected risks
are less than 0.001. In terms of the ensemble sizes there
are no clear patterns in terms of the number of wins and
losses per step. However, we can observe that larger
differences tend to be attained on larger ensembles.

Effect on Condition Complexity The objective
functions primarily affect the risk / complexity trade-
off through the number of rules required to reach a
certain complexity level. However, as a secondary ef-
fect, they might differ in their propensity to select
complex queries with many propositions. While con-
dition complexity is not directly measured by any of
the investigated objective functions, it is related to
the number of data points selected or “covered” by the
query, because simpler queries tend to cover more data
points. Here we assess the differences in coverage
rate, ||q||1/n, as follows: for each alternative objec-

tive obj,;; we fit rule ensembles filtt) fort=1,...,30
for all considered datasets (using stagewise updates).
For each t, we then compare the coverage rate of the
next condition (gy1) produced by obj,; to the one
produced by obj,,, based on the same previous model

fa(dtt) . Importantly, we use branch-and-bound for all the
objectives to avoid confounding through sub-optimal
greedy solutions. As shown in Fig. 5, 91.0% of condi-
tions identified by obj,,, cover more data points than
those identified by obj,,,, and similarly 78.6% of the
0bjogp, conditions cover more data points than those
generated by objg,. In contrast, only 46.1% of condi-
tions identified by obj,,, cover more data points than
the gradient sum objective obj,,. These results are

aligned with the theoretical expectation in terms of
the influence of the coverage on the objective values
where gradient sum is completely unaffected, whereas
orthogonal gradient boosting has a denominator that
tends to grow with coverage albeit less than the one of
gradient boosting.

Computation time Finally, we investigate the com-
putational overhead for generating rule ensembles with
the proposed COB method with branch-and-bound
search. Here, we use XGB as primary benchmark, be-
cause it uses the same more expensive search. Further,
we investigate the effect of the efficient incremental
computation of obj,,, via Alg. 3 to assess its necessity.
For both comparisons, we consider the time it takes for
each test dataset to compute the largest rule ensemble
generated in the main experiment (the one that exceeds
complexity 50). The top of Fig 6. compares the effi-
cient implementation of COB to XGB. We can see that
the costs are in the same order of magnitude for almost
all datasets. For 17 of the 34 datasets the overhead is
within a factor of 2. For all but one extreme case (wine,
overhead factor 26) the overhead is within a factor of 5.
Comparing the two implementations of COB, the bot-
tom of Fig. 6 the efficient implementation uses less than
half of the time of the naive implementation for 24 out
of 34 datasets. Particularly, for the datasets gender and
magic, the efficient implementation improves the time
more than 50-fold. Overall, the results confirm that
branch-and-bound search is a practical algorithm in
absolute terms: For 23 benchmark dataset, COB trains
a model of complexity of 50 within one minute. Most
of the other experiments run within 15 minutes except
one dataset (telco churn) which require longer running
time. See SI C for further details and comparisons.

5 CONCLUSION

The proposed fully corrective orthogonal boosting ap-
proach is a worthwhile alternative to previously pub-
lished boosting variants for rule learning, especially
when targeting a beneficial risk-complexity trade-off
and an overall small number of rules. The present work
provided a relatively detailed theoretical analysis of
the newly developed rule objective function. However,
some interesting questions were left open. While the
presorting-based approach to the bounding function
performs extremely well in synthetic experiments, a
theoretical approximation guarantee for this algorithm
has yet to be derived. Another interesting direction for
future work is the extension of the introduced approx-
imating subspace paradigm to the extreme gradient
boosting approach, which, due to the utilization of
higher order information, should principally be able to
produce even better risk-complexity trade-offs.
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A FULL PROOFS AND ADDITIONAL FORMAL STATEMENT'S

Proposition 1. Let fP = argmin{R)(f’): f’ € range[Q;_1;g]} be the output vector of the ideal corrective
gradient descent update in round ¢ and

q = argmax |gql/|la. (13)
qeEQ

where for v € R™ we denote by v its projection onto the orthogonal complement of range Q;—;. Then the
output vector f; = argmin{ R (f'): f’ € range[Q;_1;q]} dominates the optimal geometric approximation to f
with respect to Q, i.e., Rx(f;) < RA(f5P).

Proof. Let Q = Q;_; and f = [Q; gla and f = [Q; g8 for some arbitrary coefficient vectors o, 3 € R?. Denoting
by v the projection of v € R™ onto the column space of Q and its orthogonal complement by v, we can

decompose the squared norm of the difference f — f as

Q; gla - [Q; d)8]1°

Q;g) +gila—[Q;q) +q.]8|?
Qigyla+ g — [QiqylB + Brar]?
Q;gjla — [Q;q)IBI° + llarg — Bl

If —£]* =

where the last step follows from the Pythagorean theorem and the fact that ayg, — 8;q. is an element from the
orthogonal complement of range[Q; g| = range[Q; q;] = range Q. The equality of these ranges also implies that
B1,--.,Bt—1 can, for all choices of §;, be chosen such that the left term of the error decomposition is 0. Setting
v = B¢/ ay, it follows for the squared projection error of f onto range[Q, q] that

in ||f — f||> = mi — Bihy|]?
ﬁrrélﬁg\\ [ /grgRgIIatgL Bih |

2 . 2
—Hglgat\\gl YLl

= min of (g [I* — 2yalgL +*llavl?)
vER?
and plugging in the minimizing v = q¥'g, /|qL ||

— a*(lg.ll - (gTaL)*/llal?) .

from which, noting that g7'q, = g’ q, it follows that a query that maximizes |g q|/|/q. || minimizes the projection
error. Hence, by choosing f = fSP the ideal corrective gradient descent update, we have that fS’CD € range[Q; q]
and by definition of f; we have Ry(f;) < Ry (f’SCD) as required. O

Proposition 2. There is one-dimensional input data X € R>*! and a sequence of output data, y™ € R®, such
that lim,, .o B = 0 but
m—o0 g,
- (m) — (m) _

where R(™ = Ro(f*(‘g)) is the risk of the three-element rule ensemble f, trained on (X,y(™) using obj, and the
corrective weight update.

Proof. We define X as (1,2,3,4,5) and y™) = (= —€m, G, —30m — €m s Qo +€ms 200, +€m ), Where oy, €, € R
are two arbitrary sequences with a;;, — 0o and €, — 0. We calculate the values of obj,,0bjy, and obj,, for all
possible queries to select the first, second and the third queries, as shown in Table 2 and Table 3. We use the
query vectors to represent the queries in this proof.

For the gradient sum objective, according to Table 2, the first query identified is either the one with outputs

qg) = (1,1,1,0,0) or the one with output qg)/ = (0,0,0,1,1) for the five data points. In the first case,

the weight of the query is Bg) = (—am — 26,/3). The gradient vector after adding this rule is gé? =
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Table 2: Calculation of the objective functions for the first and the second query in proof of Proposition 2

1ST QUERY 2ND QUERY
q ||q” Objgs(q) Objgb(q) || H ‘ngé?‘ Objgs(q) Objgs(q) Ob' ( ) Ob' ( )
q'g?|  objyg(a) a4 ar ‘ T c()lg{&‘ 1sT CASE  2ND case O Jebld Jogh\d
(170707070) 1 Qm, + €m Qm + €m (17070»070) 1 Qm + €m 6m/3 Qm + €m Qm + €m Qm + €m
2€em
(0,1,0,0,0) 1 am m (0,1,0,0,0) 1 am 20 + % am am om
0,0,1,0,0) 1 3am + €m 3o + em 0,0,0,0,0) O 0 200, + cm 3am + €m 0 0
3
(0,0,0,1,0) 1 Om +€m  am+em | (0,0,0,1,0) 1 Qm + €m  Qm + €m QTM Qm + €m  Qm + €m
Qm
(0,0,0,0,1) 1 20m + €m  20m +€m | (0,0,0,0,1) 1  20m +€m 20m +€m - 20tm + €m  20tm + €m
(1,1,0,0,0) v2 €m em/vV2 | (1,1,0,0,0) V2 em  20m+em/3  €m em/V2  em/V?2
2 m m
,1,1,0, Qm + €m g 0,1,0,0,0 1 Qm €m/3 20m + €m  am/V2 Qm
0,1,1,0,0) v2 | 2 7
2¢m  Taum m m
0,0,1,1,0) v2 |  2am Vam | (0,0.0,1,0) 1 am+em am— o LOmo o Om e e
3 2 V2
3am + 2€m 3013777, + 25177, 3am + 26m.
0,0,0,1,1) V2 [3am + 26 ————"| (0,0,0,1,1) V2 3ctm + 2€m 3am + 2em 0
( ) ok ) S
Om €Em €m €m
(1,1,1,0,0) V3 |3am + 2em —75 (1,1,0,0,0) 2 €m 0 3Qm + 2€m 7 7
Qm, de,,  Dam 200m + €m  20tm + €m
(0717171:0) \/g Am —= (07170,1,0) \/i 200m + €m Qm + — ——+ €m
V3 3 2 V3 V2
(0,0,1,1,1) V3 em (0,0,0,1,1) V2 3aum + 2 4 ey S0 T 2€m Sam + 2em
y Yy Ly by €m sy Yy Yy Ly Qm €m Om e (677 €m
V3 3 V3 V2
€m Tom am am
171717170 2 200m + €m O+ — 171707170 \/g Qm Qm + €m + 2em e =
2 2 2 V3
m m 7 m 4 m m
0L,1,1,1) 2 | amten S 1 (0,1,0,1,1) /3 dam + 26m 30m - - 20+ em 200m + e o
2 V3
3am + €m  3am + €m
(1,1,1,1,1) /5 0 0 (1,1,0,1,1) 2  3Bom +em 3am + 2€em 3am + 2em Q \/56 e} . €

(—€m /3,20 + 26 /3, =20t — €m /3, m + €m, 20, + €,). The second query selected is qg) =(0,1,1,1,1)
according to the objective values calculated in Table 2. After adding this query, the corrected weight vector
is Bg) = (=Tam/4 — 5€m /4,90, /8 + Ten/8), and the gradient vector is gg) = ((Bam + €m)/4, (13am +
3€m) /8, —(19a, + 5€m) /8, —(am — €m) /8, (Tatm + €,)/8). Then, we calculate the values of obj,.(q) in Table 3,
and the third query selected is qé?s’) = (0,0,1,1,0). The corrected weight vector is ﬁg’) = (—(Tam+5€m) /4, (19, +
9€:m)/8, —(5m + €r)/2). The output vector of the rule ensemble is

1 0 0 —(7C¥m + 5€m)/4
1 1 0 (5evm —€m)/8
m m 1 m m m m
el R el K et 1 R B
0 1 1 —(am_5€m)/8
0 1 0 (19¢;, + 9¢)/8

The gradient vector is ggs’) = ((Baum + €m)/4, Bam + €m)/8, — (90, + 3€m) /8, (9t + 3€m) /8, — (3t + €)/8).
The empirical risk after adding three rules into the rule ensemble is

3
R = < Bam + €m)?.

In the second case ( qéé)/ = (0,0,0,1,1)), the weight of the first query is 3c.,/2 + €,,, and the gradient
vector is gf_g) = (—Qm — €m, Um, —3Qm — €m, —Qn /2, @ /2). The second query selected is qg) =(1,1,1,1,0).
The corrected weight vector is (2ay, + 9€m, —au, — 4€,,/7). The gradient vector after adding two rules is

g2 = (=3€ /7, 200m + dem /T, —20m — 3¢/7,2¢/7, —2¢/7). The third query selected is gt2 = (0,1,0,0,0). The
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Table 3: Calculation of the objective functions for the third query in proof of Proposition 2

obj,(a obj,(a . .
q lall qL sl ’quffgh‘ ‘ngS,) 1ST’°’C&S)E 2NDgC(AS)E objg (@) 0bjogy(q)
(1, 0,0,0, 0) 1 (1, 0,0,0, 0) 1 Qm + €m  Qm + €m (3am + 6m)/4 36m/7 Qm + €m  QAm + €
2 1 1 2 am+ 26m 130t + 3€m 4em, am + 2€m
0,1,0,0,0) 1 0,-,0,—=, —= - — m — 20m m —_—
( sy 4y Uy Uy ) ( 737 ) 37 3> 3 3 o4 3 « - « \/6
19am + H5em 3€m
(0,0,1,0,0) 1 (0,0,0,0,0) 0 0 — =3 20, - 0 0
(00010) 1 0 102 1 2 O — €Em Om Qm — €Em 2€m Qm m — €m
B 373 3 3 3 2 8 7 2 V6
1 12 2 20m + €m Qm TOm + €m 2€m Qm 200m + €m
0,0,0,0,1) 1 0,—-,0,—=, = - — — _— — — _—
( ) ( 3 3 3> 3 3 2 8 2 NG
2 1 1 5 day, + Sem 19a,, + 5em €m €m 4y, + Sem
1,1,0,0,0 2 (1,-5,0,—=, —= - — m _ m+ — _
( b b 7 ) ) f ( 737 ) 3’ 3) 3 3 6 8 a + 7 \/i \/ﬁ
2 1 1 2 o+ 26em 30m + €m €m Qm Qm + 2€m
0,1,1,0,0 2 (0,50, —= —= - — m _ — — _
( b b b ) ) f ( 737 ) 37 3) 3 3 a 4 7 \/5 \/6
1 2 1 2 Qm — €m Qm SO + €m €m m Qm — €m
0,0,1,1,0 2 (0,—=,0, =, —= - — —_— —  20m + — — _—
( b 7 bl ) ) \/7 ( b 37 ’37 3) 3 3 2 2 a + 7 2»\/§ \/6
2 11 2 am+ 2€m 3am + €m am + 2€m
1,1 2 ——,0,-, = - — _ _—
(0,0,0,1,1) v2 (0, 303 3> 3 3 0 I 0 0 NG
2 1 1 5 4o, + 5em 2€m €m 40y, + Hem
1,1,1,0,0 3 (1,50, —,—2 - — m 0 — — _—
1 1 2 2 20m + €m O TOm + €m 3€m Qm 200m + €m
0,1,1,1,0 3 0,-,0, -, —= - — — _ — _
(”7’)\[(’3”3’ 3) 3 3 2 8 7 243 NG
2 11 2 om + 26em 13am + 3em 3€m Qm + 2€m
0,0,1,1,1 3 0,—=,0, -, = - — _ m+ —— 0 _
( b 7 b ) ) f ( b 37 b 3’ 3) 3 3 8 a 7 \/6
1 1 2 5 bam +4em am Om — €Em Om  €m DOy + dém
1,1,1,1 2 1,-,0,-,—— - ———— —+€m _—
(7 s Ly 70) (7370737 3) 3 3 2 + € 3 0 1 5 T
(0,1,1,1,1) 2 (0,0,0,0,0) 0 0 Qi 0 €e/7 am/2 0
(1,1,1,1,1) v/5  (1,0,0,0,0) 1 m + €m em  (Bam +em)/d 2¢/7 em/VD  Qm tem

corrected weight vector is ((12au, + Tenm ) /5, —(9m + 4€m) /5, 2(Tayy, + 2€,,)/5). The output vector of the rule

ensemble is

0 1
0 1
12a, + 7€, 9, + 4€,, 2
— 5 |75 |5
1 1
1 0
The empirical risk after adding three rules is
m 2

For gradient boosting objective, the first query selected is qgo) = (0,0,1,0,0) according to Table 2. Its weight is

1) _
gb

query selected by the gradient boosting objective is qﬁ)) =

—3ay, — €. The gradient after adding this rule is g

(=30t — €m, 30m /2 + €,). The gradient becomes gﬁ)) = (—Qm — €m, A, 0, —, /2, y, /2) after adding the second

(1,0,0,0,0).
€m)- The output vector of the rule ensemble is

rule. Then, according to Table 3, the third query selected by gradient boosting objective is q

(Tam + 2€m)

(60[3” + 20,€m + efn) .

The corrected weight vector is (=3, — €m, 3m /2 + €my —Qy —
0 0 1
0 0 0
3oy,
—(Bam +e€em) | 1] + (2 + em> O —(m+em) |0
0 1 0
0 1 0

cocoor~o
I

_(9am + 4€’m)/5
U
— (9t + den) /5
3(am + €m)/5
(120t + 7€m) /5

—Qy — €y

0

—3ay, —

€m

3o /2 + €m
3o /2 + €em

(3) _
gb T

(—m — €my @m, 0, Ay + €, 20t + €5,). The second

(0,0,0,1,1). The weight vector after correction is



Fan Yang, Pierre Le Bodic, Michael Kamp, Mario Boley

GS GB CcOB
2qt=1 L] E [ ) ] °
[} L4 o [ J Y [
0 T T T T T T T T T
> 2 4 6 2 4 6 2 4 6
@ [ J [
24 4 4
[ J [ J [
2{t=2 < ot .
0 1 T T - T L S — 1 T 2 T T T
> 2 4 6 2 4 6 2 4 6
[ ] [ °
—2 4 4
[} [} [
2qt=3 o - [ - ®
[ ] [ J ] [ ] ® ]
> 0 IR INE ; & 113 I
o ] X 1 I‘- X l‘----x---
1
-2 1 4 4
L Y
[ J [ J [

Figure 7: Visualisation of the generating of rules by different objective functions (in column) in each iteration
(row) for the dataset used in proof of Proposition 2. The solid lines show the output of rule ensembles in each
iteration. The dashed lines show the output of the rule generated in each iteration.

The gradient vector is gso) = (0, m, 0, —; /2, @, /2). The empirical risk after adding three rules into the

ensemble is )
Ry’ =3a7,/2.

In the first iteration, the orthogonal boosting objective selects the same query as the gradient boosting, since their
objective values are the same, so their weights, outputs, gradients are also the same. We calculate the orthogonal
projections q , their lengths ||q || and the objective values obj,,,(q) as Table 2. The second query selected is

qu)b =(0,1,1,1,1), and the weight vector after correction is (—(13ay, + 5€)/3, (4 + 2€)/3). The gradient

vector after adding the first two rules is g%} = (—(am + €m), —(am + €m) /3,0, —(tm — €m)/3, (20m + €m)/3).

ogh T

According to Table 3, the third query selected by the orthogonal boosting objective is qg‘;)b =(1,1,1,1,0). The
weight vector is now (—4ay, — 7€n /5, 20y, + 6€,, /5, —auy, — 4€,,/5). The output vector of the rule ensemble is

0 0 1 — i — dem /5

0 1 1 O + 2 /5

T€m 6€m den, m m
_(mm+§3)],+(mm+§3)],_(%ﬁ.;) =] Bam— o
0 1 1 Qm + 2€,,/5
0 1 0 20y, + 6e,, /5

The gradient vector is g(go = (—€m/5, —2€1,/5,0,3€,,/5, —€m /5). The empirical risk after adding three rules into
the ensemble is
Rc(gb) =3¢2 /5.
Since o, — oo and €, — 0,
. (m) _ 1: 2 _
n}gnoo Ry = n}l_r)IlOOS (Bt + €m)° /8 = 00,
or

lim R = lim 2 (602, + 2amen + €,) /5 = 00,
m—0o0 m— o0
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lim RGY = lim 302,/2 = o
m— o0

m—o0

and
lim R = lim 3¢2,/5=0.
m—0o0

m—0o0
The rules generated by each objective function in each step is visualised as Figure 7.
O

Proposition 3. Given a gradient vector g € R™, an orthonormal basis 01, ...,0; € R™ of the subspace spanned by
the queries of the first ¢ rules, and a sub-selection of | candidate points o: [I] = [n], the prefix value problem (15)
can be solved in time O(#l).

Proof. To see the claim, we first rewrite the objective value for the i-th prefix as

gTa® _ |gla"|
lall ¢ /la@ - a2+

The value of ||q(?||? is trivially given as [I(q())| = i, and g”q’ can be easily computed for all i € [I] in time
O(n) via cumulative summation. Finally we can reduce the problem of computing the (squared) norms of the [
projected prefixes to computing the ¢ (squared) norms of the prefixes on the subspaces given by the individual
orthonormal basis vectors via

laf”|? =

Z loxoi a”||* .

Each of these ¢ sequences of (squared) norms can be computed in time O(n) by rewriting

loxoTq|| = [0l Ze H
[
— Jloxll > oF e,
j=1
7
=1 oroi
j=1

where the last equality shows how an O(n)-computation is achieved via cumulative summation of the k-th basis
vector elements in the order given by o. O

Proposition 4. Let g be the gradient vector after the application of the weight correction step (7) for selected
queries qy, . .., q¢. If the regularisation parameter is 0, then g L span{qi,...,q:}.

Proof. After the weight correction step 3 is a stationary point of R(Q(+)), i.e., we have for all 5 € [t]

OR(QB) ~~0Ua]Byi) ~~ dUalB.y) o
0= E = E i e —q; 8 -
ap; 9pB; i=1 o da; B ve
ﬁ—/

gi

=1

O

Proposition 5. Let Q = [q1,...,q:-1] € R™*(t=1) be the selected query matrix and g the corresponding
gradient vector after full weight correction, and let us denote by q = q1 + q) the orthogonal decomposition of q
with respect to range Q. Then we have for a maximizer q* of the orthogonal gradient boosting objective

objog, (¢) = IgTal/(lla.ll +e):
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a) For e — 0, span{qi,...,q¢+—1,q*} is the best approximation to span{qi,...,q;—1,8}.

)
b) For € — oo, q* maximizes obj,, and any maximizer of obj,, maximizes objgf,-
c) For e =0 and ||q| > 0, the ratio (objogb(q)/objgb(q))2 is equal to 14 (||qy I/ llacl)?.
)

d) The objective value obj,,(g) is upper bounded by [|g_ |-

l9T 4l

- o ! gl
minimises the minimum distance from all

Proof. a) If € = 0, then obj,,(q) — If q* is a maximizer of obj,,, then as shown in Lemma 4.1, q*

f € span{qi,---,q;-1,8}

to the subspace of

Span{qh -1, q*}
Therefore, the subspace spanned by [q1,- - ,q:—1,q*] is the best approximation to the subspace spanned by
[qla e 7qt—1>g]'

(e)

b) Let g and ¢ be any two queries and denote by objOgb

(q) the obj,,,-value of ¢ for a specific e. Then

lim € <0bj(()2b(Q1) - Obj(();)b(‘12)>

E— 0O
i ( lgTaul 97 qz| )
= 11m e€ n — n

evoo \ [l [[+€  lag|+e
_ ( 9T au l97 qa| )
= um T AL

evoo \ [lag|[/e+1  lag|/e+1

=lgTa1] — 9T az|
:Objgs (Q1) - Objgs(qQ)

Thus for large enough ¢, the signs of objg;)b(ql) — obj((;o,)b (q2) and obj,s(q1) — obj,s(g2) agree. Therefore, a
query ¢ is a obj,.-maximizer, i.e., 0bj,(q) > obj,(¢) for all ¢ € Q, if and only if ¢ is a obj,,,-maximizer,

i.e., 0Djogp,(q) > 0bjogp,(q") for all ¢' € Q.

c) If e=0and ||g.|| > 0, then

lgTal®
(objogb<q>>2 ol lal?
objgp, (q) lgTal?  llacl?
lall?
_ layll* + llaLl?
la. 2

lay | \?
o
d) If we divide the numerator and denominator of obj,.,(q) with ||qyot||, then we can get

: lglal
Ob.]ogb(q) = m

lgTa.l
_lad]

1+
ol
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T
lg1al < lgLllllaLll

< = |lgL| so,
||q¢|| ||QL||

according to the Cauchy—Schwarz inequality,

Objogb (Q) < M

€
14—
o]

as ||q_ || is upper bounded by the number of data points n,

gLl

Objogb(q) S €
14—
n

Objogb(q) < ||gJ_ H

B GREEDY APPROXIMATION TO BOUNDING FUNCTION
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Figure 8: The approximation rates for different number of existing rules (left) and data points (right) with 99%
success rate.

The branch-and-bound search described in Section 3.3 requires an efficient way of calculating the value of
bnd(q) = max{obj(q’) : I(d') C I(q),d’ € {0,1}"}, where I(q) = {i : q(z;) = 1,1 < i < n}. It is too expensive
to enumerate all possible q's as there are 2™ cases in the worst case. One solution to this problem is that we can
relax the constraint q’ € {0,1}" to ¢’ € [0,1]™ and it can be solved by quadratic programming. However, this
would render the branch-and-bound search computationally very expensive. Instead, we investigate here using
greedy approximations to identifying the optimal point sets. This does not yield an admissible bounding function,
and thus does not guarantee to identify the optimal query, but can still lead to good approximation ratios in
practice and is computationally inexpensive.

In particular, we are investigating two greedy variants: the fast prefix greedy approach described in the main
text, and a slower full greedy approach that works as follows. Given a query '~ < q, we need to find the data
point selected by q which maximise the objective function, and use it with q'*=1) to form a q'(t).

T (/(t—1) +e;
igt) = arg max g (q )

ier(q) -1y (@D +e;) | +€
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Table 4: The ratio of instances (15 data points and 5 existing rules) which reaches certain approximation rates.

Approx. rate  €=0.001 e=0.1 e=1
75% 100.00% 100.00%  100.00%
80%  99.66%  99.71% 100.00%
85%  96.21%  98.05%  99.93%
90%  88.11%  90.80%  99.34%
95%  65.54%  70.15%  92.43%
100%  33.20%  36.87%  63.28%
0 g
. o o
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Figure 9: Comparison of log training risks over different datasets. The datasets are ordered by the training risks

of COB.

where 0 < t < |I(q)], ¢'® = 0 and 'V = ¢/~ +e,. We use the maximum value of obj(q'®) as the bounding
value for query q. The computation time complexity level of this approach is O(n?) for each query.

We now investigate how the number of existing rules and number of data points affect the approximation ratios
achieved by both greedy approaches. To analyse the impact of number of existing rules, we fix the number of
data points as 15, and we vary the number of existing rules from 1 to 10. To show the trend of the approximation
ratios in terms of number of data points, we make the number of existing queries as 5, and the numbers of data
points are from 10 to 20. For each pair of number of data points and number of existing rules, we generate 2000
groups of initial queries and initial gradient vectors. In each initial query, the output of each data point has a
probability of 0.5 being 1 and 0. The initial gradient vector is generated by a standard normal distribution whose
dimension is the same as the number of data points, and then it is projected onto the subspace orthogonal to the
existing queries. We test these 2000 instances to see the difference between the approximation of bnd(q) obtained
by the full greedy approach, the pre-sorting greedy approach, and the actual optimal objective values (obtained
by a brute-force approach). We choose three different values of e: 0.001, 0.1 and 1.

Figure 8 shows the approximation rate in terms of number of existing rules and number of data points. For
the presorting greedy approach, if there are more rules existing, the approximation is closer to the true value.
Although the approximation rate is decreasing slightly with more number of data points, there is still a trend that
the decreasing is getting smaller when the size of dataset is increasing. The full greedy approach approximates
the true bounding function better than the presorting greedy approach. However, since the fully greedy approach
costs more time than the presorting greedy, it is still reasonable to use the presorting greedy approach to get
higher efficiency.

C ADDITIONAL DETAILS OF EMPIRICAL EVALUATION

All experiments in this paper are conducted on a computer with CPU ‘Intel(R) Core(TM) i5-10300H CPU @
2.50GHz’ and memory of 24G.

To further show the difference between the proposed corrective orthogonal boosting and the other methods, we
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Figure 10: The distribution of computation times across all test datasets to reach complexity level 50 for different
algorithms. GS and GB are using greedy search, while XGB and COB are using branch-and-bound.

provide additional details of empirical evaluation. Table 5 shows the normalised average training risk, test risk
and computation time of the rule ensembles generated by SIRUS, SGS, SGB, SXB and COB using greedy search
and branch-and-bound search over complexity levels from 1 to 50 for the 34 datasets used in the experiments of
this paper. In Table 5, we bold the lowest training and test risks for each dataset, and the texts with red colours
indicate the COB approach using greedy search or branch-and-bound search have lower risks than all the other
methods. Figure 9 compares the normalised average logged training risks over complexity levels from 1 to 50 for
different datasets. According to Fig. 9 and Table 5, COB generates lower training risks than the other algorithms
for 26 out of 34 datasets.

For the COB with greedy search, there are 29 out of 34 datasets whose training risks are lower than the other
methods. However, it has only 15 out of 34 datasets whose test risks are lower than other methods. Therefore,
using branch-and-bound search generates better rule ensembles than greedy search. The One-sided T-test at
significance level 0.05 with Bonferroni-correction for 8 hypotheses (4 for training and 4 for test) also shows the
same results with the branch-and-bound search: the COB using greedy search generates rule ensembles with
significantly less risk than the other methods by at least 0.001 of the normalised training and test risks.

Figure 10 shows the box plot of the running time for generating rule ensembles with complexity level 50 spent
by different algorithms on the 34 datasets. Although the overall running time of COB is higher than the other
methods, they are still at the same scale.

Furthermore, Figure 11 shows more comparisons of the risk / complexity tradeoff for SIRUS, gradient sum,
gradient boosting, XGBoost and Orthogonal Gradient Boosting for 6 datasets. We compare the rule ensembles
generated by COB with complexity around 20 and the first method whose risk value is compatitive with the
COB rule ensemble.
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Table 5: Comparison of normalised risks and computation times for rule ensembles, averaged over cognitive
complexities between 1 and 50, using SIRUS(SRS), Gradient Sum(SGS), Gradient boosting (SGB), XGBoost
(SXB) and COB (using greedy search and branch-and-bound search), for benchmark datasets of classification
(upper), regression (middle) and Poisson regression problems (lower).

DATASET d n TRAIN RISKS TEST RISKS COMPUTATION TIMES

SRS SGS SGB SXB COBg COBg SRS SGS SGB SXB COBg COBp SRS SGS SGB SXB COBp
TITANIC 7 1043 .895 .653 .656 .646 .639 .616 .894 .695 .707 .711 .713 .717 7.077 2.624 9.858 10.21 25.71
TIC-TAC-TOE 27 958 .892 .555 .641 .577 .650 .492 .885 .596 .682 .629 .721 .566 12.593.97110.34 6.09 13.99
IRIS 4 150 .685 .261 .261 .332 .192 .251 .745 .521 .440 .459 .531 .424 11.020.7751.099 1.453 2.487
BREAST 30 569 .569 .277 .310 .314 .290 .304 .627 .269 .362 .338 .383 .349 11.48 6.744 74.43 74.83 239.2
WINE 13 178 .578 .216 .250 .192 .191 .183 .621 .346 .431 .409 .483 .265 9.456 1.5304.432 2.154 55.183
IBM HR 32 1470 .980 .567 .560 .571 .558 .558 .974 .640 .645 .636 .652 .621 11.1517.2410.99 12.92 12.03
TELCO CHURN 18 7043 .944 .679 .682 .678 .664 .668 .945 .663 .677 .665 .650 .660 50.8340.01 1883 1485 3039
GENDER 20 3168 .566 .230 .230 .249 .224 .224 .570 .243 .247 .263 .246 .246 22.4222.73 25.49 24.27 32.95
BANKNOTE 4 1372 .854 .304 .267 .290 .253 .228 .858 .311 .268 .299 .264 .229 8.9336.298 5.648 7.060 8.444
LIVER 6 345 .908 .815 .834 .814 .802 .834 .917 .879 .927 .873 .940 .891 9.7341.99799.72124.1 193.9
MAGIC 10 19020 .906 .718 .708 .710 .707 .707 .903 .698 .693 .693 .688 .688 1.364 75.14 89.18 101.9 352.2
ADULT 11 30162 .804 .594 .599 .588 .575 .576 .802 .603 .615 .601 .589 .589 2.169 121.0 136.7 146.0 728.3
DIGITSH 64 3915 .248 .332 .312 .344 .329 .315 .262 .329 .314 .341 .320 .315 52.60110.872.74101.5 97.4
INSURANCE 6 1338 .169 .130 .142 .144 .120 .123 .177 .132 .145 .147 .127 .128 14.06 7.507 15.94 12.98 39.53
FRIEDMAN1 10 2000 .180 .089 .074 .068 .067 .068 .165 .091 .077 .075 .070 .072 16.792.514 4.302 3.171 6.915
FRIEDMAN2 4 10000 .082 .133 .119 .115 .770 .075 .082 .135 .120 .115 .077 .077 47.3311.7917.56 13.18 28.4
FRIEDMAN3 4 5000 .093 .045 .042 .042 .041 .041 .092 .048 .047 .046 .045 .045 29.866.243 10.61 8.559 17.65
WAGE 5 1379 .427 .370 .362 .359 .352 .354 .341 .358 .405 .411 .368 .365 14.18 5.60512.12 13.17 25.19
DEMOGRAPHICS 13 6876 .219 .214 .214 .214 .212 .212 .209 .216 .217 .217 .214 .215 38.24 36.80 29.40 33.04 72.42
GDP 1 35 .063 .020 .020 .020 .024 .020 .059 .020 .020 .020 .027 .020 7.974 .261 .351 .282 .488
USED CARS 4 1770 .373 .139 .123 .132 .113 .121 .427 .171 .131 .141 .116 .130 15.008.371 12.109.484 20.27
DIABETES 10 442 .156 .138 .142 .139 .132 .134 .188 .141 .141 .147 .136 .149 10.502.204 3.574 3.920 7.591
BOSTON 13 506 .101 .086 .087 .086 .080 .082 .105 .079 .087 .089 .088 .087 10.96 3.0556.731 5.285 10.44
HAPPINESS 8 315 .109 .031 .031 .031 .029 .029 .109 .033 .039 .039 .035 .033 6.3441.16011.3711.31 26.43

LIFE EXPECT. 21 1649 .109 .026 .026 .026 .026 .026 .110 .027 .027 .027 .026 .026 21.4416.16 58.43 63.82 131.2
MOBILE PRICEs 20 2000 .148 .131 .137 .137 .122 .126 .140 .134 .143 .143 .126 .132 33.81 15.03 367.7 442.5 815.4
SUICIDE RATE 5 27820 .547 .543 .540 .540 .540 .532 .514 .521 .521 .521 .519 .512 52.35109.6 117.1 139.6 644.6
VIDEOGAME 6 16327 .895 .953 .953 .953 .953 .953 .850 .720.720.720 .720 .720 1.17141.91 34.3845.90 119.1
RED WINE 11 1599 .072 .034 .035 .034 .034 .034 .073 .035 .036 .036 .035 .035 19.949.149 15.3221.99 35.34
COVID VIC 4 85 NA .153 .121 .132 .105 .086 NA .182.100 .133 .104 .086 NA .523 .600 .628 .854
CoVID 2 225 NA .344 .371 .891 .343 .321 NA .459 .411 .741 .417 .395 NA .701 .690 .682 1.143
BICYCLE 4 122 NA .317 .324 .337 .296 .275 NA .366 .478 .457 .529 .320 NA .695 1.1031.105 2.124

4

2

SHIPS 34 NA .174 .181 .146 .125 .168 NA .197 .203 .199 .464 .155 NA .235 .296 .311 .448
SMOKING 36 NA .127 .128 .163 .078 .072 NA .136 .250 .322 .121 .084 NA .266 .256 .208 .301
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Figure 11: Risk/complexity curves of proposed approach (red) compared to alternatives for magic, banknotes,
adult, insurance, friedman 2 and smoking. Annotated rule ensembles have equivalent risk but substantially
reduced complexity for the proposed method.
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