
A/B Testing and Best-arm Identification for Linear Bandits with
Robustness to Non-stationarity

Zhihan Xiong*

University of Washington
Romain Camilleri*

University of Washington
Maryam Fazel

University of Washington

Lalit Jain
University of Washington

Kevin Jamieson
University of Washington

{zhihanx,camilr,mfazel,lalitj,jamieson}@uw.edu *denotes equal contribution

Abstract

We investigate the fixed-budget best-arm
identification (BAI) problem for linear ban-
dits in a potentially non-stationary environ-
ment. Given a finite arm set X ⊂ Rd, a
fixed budget T , and an unpredictable se-
quence of parameters {θt}Tt=1, an algorithm
will aim to correctly identify the best arm
x∗ := argmaxx∈X x⊤∑T

t=1 θt with probabil-
ity as high as possible. Prior work has ad-
dressed the stationary setting where θt = θ1
for all t and demonstrated that the error prob-
ability decreases as exp(−T/ρ∗) for a problem-
dependent constant ρ∗. But in many real-
world A/B/n multivariate testing scenarios
that motivate our work, the environment is
non-stationary and an algorithm expecting a
stationary setting can easily fail. For robust
identification, it is well-known that if arms are
chosen randomly and non-adaptively from a
G-optimal design over X at each time then the
error probability decreases as exp(−T∆2

(1)/d),

where ∆(1) = minx ̸=x∗(x∗ − x)⊤ 1
T

∑T
t=1 θt.

As there exist environments where ∆2
(1)/d≪

1/ρ∗, we are motivated to propose a novel al-
gorithm P1-RAGE that aims to obtain the best
of both worlds: robustness to non-stationarity
and fast rates of identification in benign set-
tings. We characterize the error probability of
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P1-RAGE and demonstrate empirically that
the algorithm indeed never performs worse
than G-optimal design but compares favor-
ably to the best algorithms in the stationary
setting.

Keywords: fixed-budget best-arm identi-
fication, non-stationary linear bandits, A/B
testing, robust algorithms.

1 INTRODUCTION

Data-driven decision-making and A/B testing enable
businesses to evaluate strategies using real-time cus-
tomer data, offering insights into customer tendencies.
As the use of these methods has increased, these tech-
nologies are being utilized to determine problems with
smaller effect sizes, while also targeting smaller audi-
ences. These two competing trends of smaller effect
sizes and smaller sample sizes make it increasingly chal-
lenging to obtain statistical significance and correct
inference since the absolute number of observations
is limited. Consequently, there is a rising trend in
using adaptive sampling like multi-armed bandits to
obtain the same statistical insights using fewer total
observations.

However, using adaptive experimentation schemes can
come with many pitfalls. Most algorithms that are
effective in practice (e.g., Thompson Sampling) are
developed with the assumption that the environment
is stationary and that rewards from treatments are
stochastic. However in practice this is far from the
case. Non-stationarity can be introduced from a vari-
ety of sources such as user populations that change from
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hour to hour, customer preferences which vary over the
course of a year, changes in one part of a platform that
lead to latency and higher bounceback, site-wide promo-
tions and sales, interference from competitors, macroe-
conomic shifts, and many other disruptions. Many of
these issues are often totally unobservable, and there-
fore cannot be controlled, modeled, or accounted for by
an experimenter. Under such an environment, it is also
possible for the underlying performance of treatments
to wildly change, and as a result, the treatment that is
best performing on any given day may change. This
makes the concept of “the best-performing arm” poorly
defined.

Instead, in time-varying settings, the goal of an experi-
menter is to identify the “counterfactual best treatment”
at the end of the experimentation period. That is, the
treatment that would have received the highest to-
tal reward had received all the samples. However, in
the absence of being able to predict or model time-
variation, predicting precisely how a treatment would
behave at every time point, at which time at most
one treatment can be evaluated, is impossible. For-
tunately, randomization is a powerful tool to provide
the next best thing: unbiased estimates of how a treat-
ment would behave as if it had been used at every
time in the past. These methods are well-understood
in the causal-inference and online learning literature
and are commonly known as inverse-propensity score
(IPS) estimators. The idea is simple: consider a se-
quence of evaluations from n treatments at each time
{xt}Tt=1 ⊂ Rn. Note that a procedure can only observe
at most one treatment per time denoted as It ∈ [n],
which is drawn from a distribution pt over the n treat-
ments. Then X̂i =

1
T

∑T
t=1

1{It=i}
pt,i

xt,i is an unbiased

estimator of the cumulative gain 1
T

∑T
t=1 xt,i by

E
[
1{It = i}

pt,i
xt,i

]
=

n∑
j=1

P(It = j)
1{j = i}

pt,i
xt,i

=

n∑
j=1

pt,j
1{j = i}

pt,i
xt,i = xt,i,

(1)

as long as mint,i pt,i > 0. Of course, there is
no free lunch, and the variance of X̂i behaves like
1
T 2

∑T
t=1 1/pt,i. Intuitively, to maximize efficiency of

the samples we do take for inference, we should try to
minimize the probabilities on poor performing treat-
ments and prioritize mass for the high performing treat-
ments. However, if the treatment performances vary
over time, it can be challenging to determine how one
might do this optimally. Fortunately, Abbasi-Yadkori
et al. [2018] proposes a novel solution to defining these
probabilities in a dynamic way that achieves a “Best

of Both Worlds” (BOBW) guarantee, which is an algo-
rithm called P1 that manages to achieve near-optimal
rates regardless of whether the environment is stochas-
tic or arbitrarily non-stationary (adversarial). This
seminal work is the gold standard for A/B testing in
unpredictable non-stationary settings.

If the number of treatments is small (<10 in practice),
BOBW provides a robust solution for practitioners.
However, there are many situations that practitioners
are interested in for which the number of treatments is
very large and intractable for traditional A/B testing.
For example, multivariate testing Hill et al. [2017] aims
to identify not just a single best item, but a set or
bundle of items, such as the best 6 pieces of content to
highlight on a home screen. Given n possibilities, this
results in

(
n
6

)
total distinct treatments for the A / B

test! Given this combinatorial explosion, practitioners
have made structural parametric assumptions, such as
the expected value of a set of items behaves like

θ(0) +

n∑
i=1

θ
(1)
i αi +

n∑
i=2

∑
j<i

θ
(2)
i,j αiαj ,

where α ∈ {0, 1}n with
∑

i αi = 6 indicates whether
an item was included in the set or not. Note that
these sums can be succinctly written as ⟨x, θ⟩ for
θ = (θ(0), θ(1), θ(2))⊤ ∈ R1+n+(n2) and an appropri-
ate x ∈ {0, 1}1+n+(n2). This can reduce the overall
number of unknowns, and dimension, to just O(n2)
versus O(n6). But now the vectors x ∈ X , each associ-
ated with a particular bundle, are overlapping and can
share information. A similar situation arises if we have
features or covariates that describe each possible treat-
ment. For example, a particular song comes with lots
of metadata including artist, genre, beats per minute,
etc. which can encode the useful properties about the
song.

In these kinds of scenario—whether it be multivariate
testing or items with feature descriptions—we would
like to perform adaptive experimentation in the pres-
ence of time-variation. Recall that without covariates,
we have solutions like P1 that are near-optimal for
time-variation. And without time-variation, there are
many methods that take covariates into account and
are known to be near-optimal. This work aims to de-
velop an algorithmic framework for handling covariates
with time variation.

The remainder of the paper is organized as follows.
We discuss the related work in Section 2 and presents
detailed problem formulations in Section 3. In Sec-
tion 4, we propose a simple algorithm for general non-
stationary environments and then in Section 5, we
propose a robust algorithm that can simultaneously
tackle stationary and non-stationary environments. Ex-
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periment results are presented in Section 6 and our
conclusions in Section 7.

2 RELATED WORK

The problem of identifying the best arm in linear ban-
dits is a well-established and extensively researched
problem. [Soare et al., 2014, Karnin, 2016, Xu et al.,
2018, Fiez et al., 2019, Katz-Samuels et al., 2020, De-
genne et al., 2020, Jedra and Proutiere, 2020, Wagen-
maker and Foster, 2023]. Notably, Katz-Samuels et al.
[2020], Azizi et al. [2021], Yang and Tan [2021] focus
on the fixed-budget setting and are closely related to
our paper. One notable limitation of these algorithms
is their reliance on (unrealistic) stationary settings,
which leads to their critical failure when applied in non-
stationary scenarios. This motivated increasing interest
in studying models for non-stationarity in bandits prob-
lems and algorithms agnostic to non-stationary settings,
which we review next.

Models for non-stationarity in bandits. A rea-
sonable approach in bandit problems with distribution
shifts is to provide tight models for unknown variations
in the reward distribution. Most literature in this set-
ting focuses on minimizing the dynamic regret, which
compares the reward obtained against the reward of
the best arm in each round t. Garivier and Moulines
[2011] demonstrates that existing methods such as Auer
et al. [2002] could achieve a dynamic regret of Õ(

√
LT )

when L, the number of distribution shifts, is known.
Then, Auer et al. [2019] makes a significant advance-
ment by introducing an adaptive approach with the
same dynamic regret but without the knowledge of L.
More recently, Chen et al. [2019], Wei and Luo [2021]
establish analogous results in the contextual bandits
settings. Measures of non-stationarity other than L
are also considered. In particular, Chen et al. [2019]
measures the non-stationarity by total variation and
Suk and Kpotufe [2022] proposes the novel notion of
severe shifts. Note importantly that while this exten-
sive body of work focuses on building tight models of
non-stationarity and developing regret minimization
algorithms tuned to them, our work is agnostic to such
models.

Agnostic non-stationary bandits (Best of both
worlds). Bubeck and Slivkins [2012], Seldin and
Slivkins [2014], Seldin and Lugosi [2017], Auer and
Chiang [2016], Abbasi-Yadkori et al. [2018], Lee et al.
[2021] focus on the “best of both worlds” (BOBW)
problem: design a bandit algorithm that agnostically
achieves optimal performance in both stationary and
non-stationary scenarios, even without prior knowledge
of the environment. While most BOBW work focus on
regret minimization goals, Abbasi-Yadkori et al. [2018]

focuses on BOBW for best-arm identification. In this
work, as in Abbasi-Yadkori et al. [2018], we focus on
the agnostic setting.

A/B testing. As discussed in the introduction, our
work is closely related to non-stationary A/B testing.
In settings with non-stationarity and adaptive sam-
ple allocations, non-stationarity can lead to Simpson’s
paradox if the sample means are used to estimate arm
means Kohavi and Longbotham [2011]. It is common in
large-scale industrial platforms to assume that means
vary smoothly Wu et al. [2022], or that the differences
between them are constant; i.e., all arms are subject to
the same random exogeneous shock Optimizely [2023].
The recent work Qin and Russo [2022] models time-
variation as arising from confounding due to a context
distribution and aims to find the arm with the best re-
ward on average under this context distribution. Their
goal is similar to ours, but, unlike them, we do not
assume a context distribution.

3 PRELIMINARIES

Notation. Let [a : b] = {a, a+ 1, . . . , b} for a, b ∈ N
with b > a and [a] = {1, . . . , a}. For a vector x ∈ Rd

and symmetric positive semi-definite (PSD) matrix A ∈
Sd+, we use ∥x∥A =

√
x⊤Ax to denote the Mahalanobis

norm. For a finite set X ⊂ Rd and distribution λ ∈ △X
over X , we use A(λ) = Ex∼λ

[
xx⊤] to denote the

covariance matrix under λ.

3.1 Linear Bandits Problem Formulation

General stationary/non-stationary environ-
ments. In this paper, we assume a standard
stationary/non-stationary linear bandits model with
fixed horizon T . In particular, let X ⊂ Rd be a finite
arm set with |X | = K such that span(X ) = Rd. At
each time t = 1, . . . , T , the learner will pick some arm
xt ∈ X and receive some noisy reward rt = x⊤

t θt + ϵt,
where ϵt ∈ [−1, 1] is some independent zero-mean noise.
All parameters {θt}Tt=1 are chosen and fixed by the envi-
ronment before the game starts.1 The ultimate goal of
the learner is to find the optimal arm argmaxx∈X x⊤θT ,
where θT = 1

T

∑T
t=1 θt is the average parameter. This

protocol is summarized in Figure 1.

For simplicity, we further assume that ∀t ∈ [T ], ∀x ∈ X ,
x⊤θt ∈ [−1, 1] and the optimal arm argmaxx∈X x⊤θT
is unique. Meanwhile, similar to Abbasi-Yadkori et al.
[2018], we use the subscript (k) to denote the index
of k-th best arm in X , which means to have x⊤

(1)θT >

1Theoretically, this non-stationary setting has no es-
sential difference with the adversarial setting. We choose
this non-stationary setting mainly to keep our presentation
concise.
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Input: time horizon, T ; arm set, X ⊂ Rd

For t = 1, . . . , T
The learner plays arm xt ∈ X
The learner receives reward rt = x⊤

t θt + ϵt,
where ϵt is independent zero-mean noise

The learner recommends arm xJT

Figure 1: General protocol of fixed-budget best-arm
identification (BAI) for linear bandits.

x⊤
(2)θT ≥ · · · ≥ x⊤

(K)θT . For each arm k ∈ [K], we
define its gap ∆k as

∆k =

{
(x(1) − xk)

⊤θT if k ̸= (1),

(x(1) − x(2))
⊤θT if k = (1).

That is,we have ∆(1) = ∆(2) ≤ ∆(3) ≤ · · · ≤ ∆(K). As
a slight abuse of notation, for unindexed arm x ∈ X ,
we will use ∆x to denote the gap of x. The perfor-
mance of the learner is measured by its error prob-
ability PθT

(JT ̸= (1)), where JT is the index of the
learner’s recommendation and the probability measure
is taken over the randomness inside the learner and the
reward noise. Finally, we note that when the setting
is stationary, we simply have θ1 = · · · = θT = θ∗ and
everything else is then defined accordingly.
Remark 1 (Comparison to the adversarial setting). The
traditional oblivious adversarial setting can be viewed
as a special case of our non-stationary setting, in which
we simply pick ϵt = 0 for all t [Abbasi-Yadkori et al.,
2018].

3.2 BAI for Linear Bandits in Stationary
Environments

In this section, we briefly review the well-studied best-
arm identification problem for linear bandits in station-
ary settings. This problem’s complexity, first proposed
in Soare et al. [2014], is defined as

ρ∗(θ) = HLB(θ) = inf
λ∈△X

max
x̸=x(1)

∥∥x− x(1)

∥∥2
A(λ)−1

∆2
x

, (2)

where the optimal arm index (1) and gaps ∆k are de-
fined based on the input parameter θ. As discussed in
Soare et al. [2014], this complexity is approximately
equal to the number of samples required (up to logarith-
mic terms) to find the best arm by running an oracle
algorithm. Later in Fiez et al. [2019], this complexity is
proved to be the optimal sample complexity that a BAI
algorithm can possibly achieve in a fixed-confidence set-
ting. Recently, Katz-Samuels et al. [2020] proposes algo-
rithm Peace in fixed-budget setting that achieves error

probability Pθ (JT ̸= (1)) ≤ Õ
(
exp

(
− T

ρ∗(θ) log(d)

))
.2

4 BAI FOR LINEAR BANDITS IN
GENERAL NON-STATIONARY
ENVIRONMENTS

In this section, we present a simple algorithm G-BAI for
the general non-stationary environment and analyze
its theoretical guarantee. The algorithm is based on
the G-optimal design, which refers to the distribution
λ∗ ∈ △X such that

λ∗ = arginf
λ∈△X

max
x∈X
∥x∥2A(λ)−1 . (3)

Intuitively, G-optimal design allows us to estimate
unknown parameter θt uniformly well over all directions
of the arms in X [Soare et al., 2014]. which is suitable
for addressing non-stationarity since θt may change
arbitrarily and each x ∈ X may become the optimal
at time t. Meanwhile, to make sure the estimation of
θt is unbiased in a non-stationary environment, we use
an IPS estimator.

Therefore, briefly speaking, at each time t, G-BAI sim-
ply samples xt based on G-optimal design and estimate
θt through an IPS estimator, whose details are summa-
rized in Algorithm 1.3

Algorithm 1 G-optimal Best-arm Identification (G-
BAI)

Require: budget, T ∈ N; arm set X ⊂ Rd

1: Compute G-optimal design λ∗ based on Eq. (3)
2: for t = 1, 2, . . . , T do
3: Sample xt ∼ λ∗ and receive reward rt
4: end for
5: Estimate θ̂T ← 1

T

∑T
t=1 Ex∼λ∗

[
xx⊤]−1

xtrt

6: return argmaxx∈X x⊤θ̂T

By the famous Kiefer-Wolfowitz theorem, an im-
portant property of the G-optimal design is that
maxx∈X ∥x∥2A(λ∗)−1 = d [Lattimore and Szepesvári,
2020]. With this property, the variance of estimator
θ̂t can be easily controlled. We can then bound the
error probability of G-BAI by this fact and the result
is summarized in the following theorem.

2Rigorously speaking, the error probability of Peace
contains another complexity term called γ∗(θ), which is
defined as the minimum of a Gaussian width term. However,
as argued in Katz-Samuels et al. [2020], γ∗(θ) is roughly in
a same order of ρ∗(θ).

3We can see θ̂T exactly becomes the more commonly-
seen IPS estimator examined in Eq. (1) if we apply it to
the multi-armed bandits setting, in which we have K = d
arms and X = {11, . . . , ed}.
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Theorem 1 (Error probability of G-BAI). Fix time
horizon T , arm set X ⊂ Rd with |X | = K and arbitrary
unknown parameters {θt}Tt=1. If we run Algorithm 1 in
this non-stationary environment and obtain xJT

, then
it holds that

PθT
(JT ̸= (1)) ≤ K exp

(
− T

12HG-BAI
(
θT
)) ,

where HG-BAI
(
θT
)
=

d

∆2
(1)

.

The proof of Theorem 1 is deferred to Appendix B.
Here, we briefly compare this result with the one in
multi-armed bandits, which can be treated as a special
case of linear bandits by taking X = {e1, . . . , eK} to
be the canonical vectors (standard basis) with K = d.

In particular, Abbasi-Yadkori et al. [2018] shows that in
multi-armed bandits setting, a simple uniform sampling
algorithm reaches complexity HUNIF

(
θT
)
= K

∆2
(1)

and it
is optimal in non-stationary environments. Meanwhile,
based on Theorem 1, we can see the complexity of G-
BAI is HG-BAI

(
θT
)
= d

∆2
(1)

, which is exactly HUNIF(θT )

if we treat multi-armed bandits as a special case of
linear bandits since d = K. Furthermore, if we di-
rectly apply G-BAI to multi-armed bandits, meaning to
use X = {e1, . . . , eK}, then λ∗ is exactly the uniform
distribution over X . That is, in multi-armed bandits,
G-BAI exactly recovers the optimal complexity in non-
stationary environments, which shows that G-BAI is
minimax optimal for linear bandits.

5 A ROBUST ALGORITHM FOR
STATIONARY/NON-
STATIONARY ENVIRONMENTS

In this section, we present and analyze a new robust
linear bandits BAI algorithm called P1-RAGE, which
performs comparable to G-BAI in non-stationary en-
vironments but much better than it in stationary en-
vironments. We will show that it attains good error
probability in both stationary and non-stationary en-
vironments simultaneously, without knowing a priori
which environment it will encounter. We first discuss
some intuitions behind the algorithm design.

Stationary environments. The development of our
algorithm P1-RAGE is largely inspired by the high-level
idea of the robust algorithm P1, proposed in Abbasi-
Yadkori et al. [2018], and the allocation strategy of
RAGE, proposed in Fiez et al. [2019]. In particular,
as discussed in Abbasi-Yadkori et al. [2018], in multi-
armed bandits, to minimize the error probability in sta-
tionary environment, we need to control the estimation
variance of the optimal arm well enough. Therefore, at

each time step, algorithm P1 pulls the current estimated
best arm with the highest probability (unnormalized
“probability one”), then subsequently the second best
arm with second highest probability (unnormalized
“probability half”) and so on. We can notice that it
actually matches the allocation strategy of the succes-
sive halving algorithm in Karnin et al. [2013], which is
proved to be near-optimal for BAI in stationary multi-
armed bandits. Therefore, we design our probability
allocation based on the allocation strategy of RAGE,
which is proven to be near-optimal for fixed-confidence
BAI in stationary linear bandits [Fiez et al., 2019]. In
particular, with the estimated parameter θ̂t, we first
find the estimated best arms x̂∗

t = argmaxx∈X x⊤θ̂t.
Then, we use a subroutine to repeatedly and virtually
eliminate arms with estimated gaps larger than certain
threshold and compute XY-allocation of the (virtually)
remaining arms.4 Then, we average over the allocation
probabilities computed during each iteration.

Non-stationary environments. Finally, to address
the potential non-stationarity in environments, we uni-
formly mix the allocation probability computed above
with a G-optimal design. With such a mixture, the
variance over all arms can be controlled well and thus
the algorithm will be robust for both stationary and
non-stationary environments. The details of P1-RAGE
are summarized in Algorithm 2 and the subroutine
to compute the allocation probability, called RAGE-
Elimination, is summarized in Algorithm 3.

Algorithm 2 P1-RAGE

1: Input: budget, T ∈ N; arm set X ⊂ Rd; maximum
number of virtual phases, m

2: Compute G-optimal design λ∗ based on Eq. (3)
and initialize λ1 = λ∗

3: for t = 1, 2, . . . , T do
4: Sample xt ∼ λt and receive reward rt
5: Estimate θ̂t ← 1

t

∑t
s=1 Ex∼λs

[
xx⊤]−1

xsrs

6: Update λt+1 ←RAGE-Elimination(θ̂t,m)
// {Call Algorithm 3}

7: end for
8: return argmaxx∈X x⊤θ̂T

We bound the error probability of P1-RAGE under both
stationary and non-stationary settings in the following
theorem and its proof is deferred to Appendix C.

Theorem 2 (Error Probability of P1-RAGE). Fix arm
set X ⊂ Rd with |X | = K and budget T . For a sta-
tionary environment with unknown parameter θ, if
m ≥ i0 =

⌈
log2

(
1/∆(1)

)⌉
+ 1, then there exists ab-

solute constant c > 0 such that the error probability of

4The elimination is virtual because no samples are col-
lected during the elimination subroutine.
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Algorithm 3 RAGE-Elimination

1: Input: arm set X ⊂ Rd; current estimate θ̂t; max-
imum number of virtual phases, m

2: Find x̂∗
t ← argmaxx∈X x⊤θ̂t

3: Initialize X (0)
t ← X and i← 0

4: while |X (i)
t | > 1 and i ≤ m do

5: λ
(i)
t ← arginfλ∈△X

max
x,x′∈X (i)

t
∥x− x′∥2A(λ)−1

6: X (i+1)
t ←

{
x ∈ X (i)

t

∣∣∣ θ̂⊤t (x̂∗
t − x) ≤ 2−i

}
7: i← i+ 1
8: end while
9: return (λ̄t + λ∗)/2, where λ̄t =

1
i

∑i−1
i′=0 λ

(i′)
t

P1-RAGE satisfies

Pθ (JT ̸= (1)) ≤ 2i0KT exp

(
− cT

HP1-RAGE(θ)

)
,

HP1-RAGE(θ) =
mi0
∆(1)

inf
λ∈△X

max
x ̸=x(1)

∥∥x− x(1)

∥∥2
A(λ)−1

∆x

+
m
√
d

∆(1)
inf

λ∈△X
max
x ̸=x(1)

∥∥x− x(1)

∥∥
A(λ)−1 .

(4)

For a non-stationary environment with unknown pa-
rameter {θt}Tt=1, there exists absolute constant c′ > 0
such that the error probability of P1-RAGE satisfies

PθT
(JT ̸= (1)) ≤ K exp

(
−
c′T∆2

(1)

d

)
.

We can immediately see that in non-stationary environ-
ments, the error probability of P1-RAGE matches (up
to a constant) with G-BAI, showing that P1-RAGE
is minimax optimal for linear bandits under non-
stationarity. On the other hand, because of the 1

∆(1)

factor, we can see that in stationary environments,
HP1-RAGE(θ) ≳ HLB(θ) (defined in Eq. (2)), which
implies that P1-RAGE is suboptimal in stationary set-
tings. However, this should be expected since even
for multi-armed bandits, as proved in Abbasi-Yadkori
et al. [2018], it is impossible for an algorithm to achieve
HLB(θ) while being robust to non-stationarity, let alone
linear bandits.

Nevertheless, when applying Theorem 2 to multi-armed
bandits (X = {e1, . . . , eK}), as long as we choose m ≈
i0, we can show that (Corollary 1 in Appendix C)

HP1-RAGE(θ) = Õ

(
1

∆(1)

max
k∈[K]

k

∆(k)

)
= Õ (HBOB(θ)) ,

where HBOB(θ) is the best-of-both-worlds complexity
proposed in Abbasi-Yadkori et al. [2018]. In particular,

Abbasi-Yadkori et al. [2018] proves that HBOB(θ) is the
best complexity that any algorithm can possibly achieve
if it is constrained to be robust to non-stationarity.
That is, again, our algorithm P1-RAGE retains the near-
optimal complexity for stationary multi-armed bandits
if it is constrained to be robust in non-stationary envi-
ronments.
Remark 2. Here, we do not elaborate the proof details
of Theorem 2 mainly because we do not recognize
them as widely applicable techniques. However, we
do want to emphasize that this proof is by no means
a simple extension of the analysis of the algorithm
P1 in Abbasi-Yadkori et al. [2018]. In particular, our
proof uses a different set of virtual events based on the
estimated gaps. Meanwhile, the analysis of subroutine
RAGE-Elimination is intricately tailored to the unique
characteristics of being a virtual elimination strategy,
which is not presented in neither RAGE nor P1 [Abbasi-
Yadkori et al., 2018, Fiez et al., 2019].

Theoretical limitations of P1-RAGE. De-
spite being near-optimal in multi-armed bandits,
HP1-RAGE(θ) includes an extra low-order term
m

√
d

∆(1)
infλ∈△X maxx̸=x(1)

∥∥x− x(1)

∥∥
A(λ)−1 . This term

appears because the Bernstein’s inequality requires
a bound of the estimator’s magnitude, which can be
removed if the concentration bound only scales with
the estimator’s variance. Although this can often be
accomplished by using Catoni’s robust mean estimator
[Wei et al., 2020], it requires a concrete confidence level
to be specified before estimation, which is not feasible
in our fixed budget setting. Finding an approach to
circumvent this difficulty and remove this extra term,
or alternatively, demonstrate that it is necessary, is an
open question.
Remark 3. The question of whether the extra term
is removable naturally relates the instance-dependent
lower bound of this problem. However, proving an
instance-dependent lower bound for our setting requires
constructing both stationary and non-stationary coun-
terexamples. This task is thereby more challenging com-
pared to proving an instance-dependent lower bound
for the fixed-budget best-arm identification problem in
linear bandits within a purely stationary setting, an
open question that persists (see Yang and Tan [2022]
for a minimax lower bound). We thus leave establishing
such instance-dependent lower bounds for future work.

Parameter choice of P1-RAGE. Although P1-RAGE
requires a user-specified parameter m ≥

⌈
log(1/∆(1))

⌉
+

1 to bound the total number of virtual phases, it is not
difficult to choose a reasonable value for this parameter
in a practical implementation. On the one hand, since
its dependence on ∆−1

(1) is only logarithmic, taking some
moderate value such as m = 25 should safely satisfy
m ≥ i0 for most practical scenarios; on the other hand,
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in most real-world applications, a sub-optimal arm
should always be acceptable as long as its gap is small
enough. Indeed, if we take ϵ to be the largest acceptable
sub-optimality gap and take m ≥ ⌈log(1/ϵ)⌉+ 1, then
P1-RAGE will output arm xJT

that satisfies ∆JT
≤

max
{
ϵ,∆(1)

}
with high probability in pure stationary

environments (Corollary 2 in Appendix C). That is, the
output arm will either be an optimal arm if ϵ ≤ ∆(1)

or an arm with an acceptable suboptimality gap ϵ
otherwise.

6 EXPERIMENTS

In this section, we present our experiment results on
several stationary/non-stationary environments. Since
to the best of our knowledge, we are the first to pro-
pose best-arm identification algorithms that tackle non-
stationarity in linear bandits, the algorithms from other
works that we compare with are all specifically designed
for stationary environments. In particular, we will com-
pare our algorithms with Peace, which is the first fixed-
budget algorithm for linear bandits and also inspires
our algorithmic design [Katz-Samuels et al., 2020], and
OD-LinBAI, which is the most recent algorithm of this
kind and is claimed to be minimax optimal [Yang and
Tan, 2022].

Meanwhile, we also examine two additional heuristically
designed algorithms for non-stationary environments.
The first one is P1-Peace, which has the same design
spirit as P1-RAGE but uses a different Peace-based
virtual elimination subroutine; the second one is Mixed-
Peace, which is a naive mixture of Peace and the G-
optimal design. In particular, while P1-RAGE/P1-Peace
combines G-optimal design with what RAGE/Peace
would sample in a full run, Mixed-Peace simply mixes
G-optimal design with what Peace in a stationary en-
vironment samples at each time step. The details of
these two additional algorithms are summarized in Al-
gorithm 4 and 6 in Appendix A.1, respectively. More
implementation details and additional experiments can
be found in Appendix D.5

Stationary benchmark example. First, as a sanity
check, we consider the famous stationary benchmark
example proposed in Soare et al. [2014]. In particular,
we have X = {e1, . . . , ed, x′}, where x′ = cos(ω)e1 +
sin(ω)e2 with some small ω > 0, and θT = θ∗ = 2e1
so that x(1) = e1. An efficient algorithm should pick
e2 frequently to reduce the variance in the direction of
e1 − x′. In this example, we pick d = 10 and ω = 0.1.

The results are shown in Figure 2. We can see that
both our algorithms, P1-RAGE and P1-Peace, perform

5Code repository is available at https://github.com/
FFTypeZero/bobw_linear.
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Figure 2: Each error probability is estimated through
at least 2× 104 independent trials. The vertical axis
is on log scale and the shaded area represents the 95%
confidence interval.

better than G-BAI and comparably with Peace, showing
that our algorithms maintain good performance in
stationary environments. Meanwhile, we also notice
that Mixed-Peace has performance only comparable
to G-BAI, showing that naively mixing the allocation
strategy with the G-optimal design can downgrade the
performance in stationary environments.

Non-stationary multivariate testing example.
We consider a multivariate testing example from Fiez
et al. [2019], which is also similar to the one dis-
cussed in Introduction. Considering a webpage with
D distinct slots and suppose each slot has two content
choices, where we represent each layout as an element
w ∈ W = {−1, 1}D. We hope to maximize the click-
through rate and we assume it linearly depends on a
layout-determined arm x ∈ X in a form of

x⊤θ∗ = θ∗0 + α1

D∑
j=1

θ∗jwj + α2

D−1∑
k=1

D∑
ℓ=k+1

θ∗k,ℓwkwℓ.

Here θ∗0 is the common bias, θ∗j is the weight of j-th
slot and θ∗k,ℓ is the weight of the interaction between
k-th and ℓ-th slots. Because of the periodic nature
of people’s life cycle, it is very likely that the real-
world weights will periodically change. Therefore, to
construct a non-stationary environment, we randomly
oscillate the weights with scale s and period L to get

θt,i = θ∗i + sI ∥θ∗∥∞ sin

(
2πt

L
+ ϕi

)
,

where I ∼ Unif({0, 1}), ϕi ∼ Unif([0, 2π]).

https://github.com/FFTypeZero/bobw_linear
https://github.com/FFTypeZero/bobw_linear
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Figure 3: Each error probability is estimated through 1000 repeated trials. The bottom two plots give the
minimum gap ∆(1) of each instance as a function of oscillation scale s and oscillation period L.

Here, in the first series of instances, we fix L = 900
and take values s ∈ {0, 1, . . . , 9}, and in the second
series of instances, we fix s = 2 and take values L ∈
{300, 600, . . . , 3000}. Finally, we take α1 = 1, α2 = 0.5,
sample each component of θ∗ uniformly in [−0.1, 0.1]
and guarantee that θT has the same optimal arm as
θ∗. We take T = 104 for all settings and the results are
shown in Figure 3.

From the plots, we can see that the error probabilities
of Peace and OD-LinBAI, algorithms designed for sta-
tionary environments, can range from near 0 to 1 in
different non-stationary environments, which is quite
unstable. Meanwhile, we can see that the performance
of the other four algorithms, which all in certain way
contain a G-optimal design, is relatively much more
stable.6 Furthermore, among these four algorithms, we
can see that our algorithms P1-RAGE and P1-Peace
consistently outperform (never worse than) G-BAI and

6All algorithms fluctuate in the upper right plot
mainly because the minimum gaps also have large fluc-
tuation.

Mixed-Peace.

Non-stationary click-through example. To create
an instance using real-world data, we use the Yahoo!
Webscope Dataset R6A [Yahoo!, 2011].7 This dataset
contains a fraction of user click log of Yahoo!’s news
article from May 1st, 2009 to May 10th, 2009. For
each click, we take the outer product between user and
article features to get a vector in R36 and then we run
a principle component analysis to get arm set Z ⊂ R24.
To create a non-stationary example, we take data from
May 1st to May 7th and for each day’s data, we fit
a ridge regression with regularization 0.01, obtaining
θ∗1 , . . . , θ

∗
7 , which can be used to simulate user’s weekly

periodic behavior. Suppose we receive L visits each
day, then, we can define a non-stationary environment
where each period consists of θ∗1 , . . . , θ∗1 , . . . , θ∗7 , . . . , θ∗7
and each θ∗i repeats for L times. Finally, we form
our arm set X by picking the optimal arm from Z
plus 23 randomly picked arms with gap at least 0.05

7https://webscope.sandbox.yahoo.com/

https://webscope.sandbox.yahoo.com/
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so that span(X ) = R24. We take T = 2.1 × 104 and
the results are shown in Figure 4. Again, we can see
that the performance of Peace and OD-LinBAI is very
unstable and the performance of P1-RAGE and P1-
Peace consistently outperforms the other two naive
G-optimal-design-based algorithms, G-BAI and Mixed-
Peace.
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Figure 4: Each error probability is estimated through
1000 independent trials. The vertical axis is on log scale
and the shaded area represents the 95% confidence
interval.

7 CONCLUSIONS AND FUTURE
WORK

To the best of our knowledge, in this paper, we present
the first two novel robust linear bandits algorithm
for fixed-budget best-arm identification, P1-RAGE and
P1-Peace, that tackle stationary and non-stationary
environments simultaneously while being agnostic to
the environment. Theoretically, we prove error prob-
ability bounds of P1-RAGE in both stationary and
non-stationary environments. Empirically, we show
that in stationary settings, both P1-RAGE and P1-
Peace perform comparably with algorithms designed
for such environments, and in non-stationary settings,
they consistently outperform naive algorithms based
on G-optimal design.

Finally, several questions still remain open. Is the extra
term in HP1-RAGE(θ), as discussed in Section 5, neces-
sary? What is the optimal complexity for this mixed
stationary/non-stationary settings? Answering these
questions can serve as promising future directions.
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A ADDITIONAL ALGORITHMS IN IMPLEMENTATION

A.1 A Peace-based Robust Algorithm

In this section, we briefly explain how we design P1-Peace based on intuition similar to P1-RAGE and make it
computationally efficient. First, we propose another subroutine, called Peace-Elimination, based on the elimination
strategy in Peace Katz-Samuels et al. [2020], which has the same spirit as RAGE. Similar to RAGE-Elimination,
Peace-Elimination also repeatedly computes XY-allocation, but (virtually) eliminate arms so that the value of the
remaining arms’ optimal XY-design is halved. In addition, in P1-Peace, we only update the sampling distribution
λt after a period of time. The intuition is that if the environment is stationary, then we do not need to update
our allocation probability frequently just like RAGE and Peace; if the environment is non-stationary, then the
non-stationarity is handled by the mixed G-optimal design λ∗, which is fixed from the very beginning. Therefore,
updating λt in a low frequency should not severely harm the performance. The new algorithm and elimination
subroutine are summarized in Algorithm 4 and 5.

For convenience of presentation, for arm set Z ⊂ Rd and distribution λ ∈ △X , we define

ρ(Z, λ) = max
x,x′∈Z

∥x− x′∥2A(λ)−1 . (5)

Algorithm 4 P1-Peace

1: Input: budget, T ∈ N; arm set X ⊂ Rd

2: Compute epoch length R←
⌊

T
log2(infλ∈△X ρ(X ,λ))

⌋
3: Compute G-optimal design λ∗ based on equation (3) and initialize λ1 = λ∗

4: for t = 1, 2, . . . , T do
5: Sample xt ∼ λt and receive reward rt
6: Estimate θ̂t ← 1

t

∑t
s=1 Ex∼λs

[
xx⊤]−1

xsrs
7: λt+1 ← λt

8: if t− 1 = cR for some integer c then
9: Update λt+1 ←Peace-Elimination(θ̂t)

10: end if
11: end for
12: return argmaxx∈X x⊤θ̂T

Algorithm 5 Peace-Elimination

1: Input: arm set X ⊂ Rd; current estimate θ̂t
2: Find index (̂k)t such that x⊤

(̂1)t
θ̂t ≥ x⊤

(̂2)t
θ̂t ≥ · · · ≥ x⊤

(̂K)t
θ̂t

3: Initialize X (0)
t ← X and i← 0

4: while |X (i)
t | > 1 do

5: Compute λ
(i)
t ← arginfλ∈△X

ρ(X (i)
t , λ)

6: Find the largest index ki such that

inf
λ∈△X

ρ
(
{x

(̂1)t
, . . . , x

(̂ki)t
}
)
≤ 1

2
· inf
λ∈△X

ρ(X (i)
t , λ)

7: Update X (i+1)
t ←

{
x
(̂1)t

, . . . , x
(̂ki)t

}
8: i← i+ 1
9: end while

10: return (λ̄t + λ∗)/2, where λ̄t =
1
i

∑i−1
i′=0 λ

(i′)
t
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A.2 A Naive Baseline Mixed Algorithm

In this section, we present a naive mixture of Peace and the G-optimal design, called Mixed-Peace, which
eliminates arms and computes design λk during each epoch exactly the same as Peace. The only differences are
that Mixed-Peace uses IPS estimator and when pulling an arm, it will pull an arm by following xt ∼ (λk + λ∗)/2,
where λ∗ is the G-optimal design defined in equation (3). Its details are summarized in Algorithm 6.

Algorithm 6 Mixed-Peace

1: Input: budget, T ∈ N; arm set X ⊂ Rd

2: Initialize R← ⌈log2 (infλ∈△X ρ(X , λ))⌉, N ←
⌊
T
R

⌋
, X0 ← X , θ̂0 ← 0 and t← 1

3: Compute G-optimal design λ∗ using equation (3)
4: for r = 0, . . . , R do
5: Find λr ← (arginfλ∈△X

ρ(Xr, λ) + λ∗)/2
6: while t ≤ min {T, (r + 1)N} do
7: Sample xt ∼ λr and receive reward rt
8: Estimate θ̂t ← t−1

t
· θ̂t−1 +

1
t
· Ex∼λr

[
xx⊤]−1

xtrt
9: t← t+ 1

10: end while
11: if |Xr| > 1 then
12: Reindex Xr such that x⊤

1 θ̂t ≥ x⊤
2 θ̂t ≥ · · · ≥ x⊤

nr
θ̂t, where nr = |Xr|

13: Find the largest index kr such that

inf
λ∈△X

ρ({x1, . . . , xkr
} , λ) ≤ 1

2
· inf
λ∈△X

ρ(Xr, λ)

14: Update Xr+1 ← {x1, . . . , xkr
}

15: end if
16: end forreturn argmaxx∈X x⊤θ̂T

B ERROR PROBABILITY OF ALGORITHM 1 IN NON-STATIONARY
ENVIRONMENTS

Theorem 1 (Error probability of G-BAI). Fix time horizon T , arm set X ⊂ Rd with |X | = K and arbitrary
unknown parameters {θt}Tt=1. If we run Algorithm 1 in this non-stationary environment and obtain xJT

, then it
holds that

PθT
(JT ̸= (1)) ≤ K exp

(
− T

12HG-BAI
(
θT
)) , where HG-BAI

(
θT
)
=

d

∆2
(1)

.

Proof. Based on the recommendation rule xJT
= argmaxx∈X x⊤θ̂T , we have

P (JT ̸= (1)) =P
(
∃k ∈ [2 : K] s.t. x⊤

(k)θ̂T ≥ x⊤
(1)θ̂T

)
≤P
(
∃k ∈ [2 : K] s.t. x⊤

(k)θ̂T − x⊤
(k)θT ≥

∆(k)

2
or x⊤

(1)θ̂T − x⊤
(1)θT ≤ −

∆(1)

2

)
≤P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
+

K∑
k=2

P
(
x⊤
(k)θ̂T − x⊤

(k)θT ≥
∆(k)

2

)
. (6)

The above terms can be bounded by Bernstein’s inequality. In particular, for the first term, we have

P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
= P

(
T∑

t=1

x⊤
(1)

(
A(λ∗)−1xtrt − θt

)
≤ −

T∆(1)

2

)
.
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Since IPS estimator is unbiased, x⊤
(1) (A(λ∗)−1xtrt − θt) is a zero-mean random variable. Based on our bounded

reward assumption, we have∣∣x⊤
(1)

(
A(λ∗)−1xtrt − θt

)∣∣ ≤ ∣∣x⊤
(1)A(λ∗)−1xt

∣∣+ 2 ≤
∥∥x(1)

∥∥
A(λ∗)−1 ∥xt∥A(λ∗)−1 + 2 ≤ d+ 2 ≤ 3d,

where we use the property of G-optimal design maxx∈X ∥x∥2A(λ∗)−1 ≤ d. We can similarly bound its variance by

E
[(
x⊤
(1)

(
A(λ∗)−1xtrt − θt

))2] ≤E [(x⊤
(1)A(λ∗)−1xt

)2]
=x⊤

(1)A(λ∗)−1E
[
xtx

⊤
t

]
A(λ∗)−1x(1)

=x⊤
(1)A(λ∗)−1A(λ∗)A(λ∗)−1x(1) (Since xt ∼ λ∗ by algorithm)

=
∥∥x(1)

∥∥2
A(λ∗)−1 ≤ d

Thus, by Bernstein’s inequality, we have

P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
≤ exp

(
−

T 2∆2
(1)/8

Td+ Td∆(1)/2

)
≤ exp

(
−
T∆2

(1)

12d

)
,

where the last inequality uses the assumption that ∆(1) ≤ 1. By similarly applying Bernstein’s inequality to other
terms in (6), we can then have

P
(
JT ̸= x(1)

)
≤P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
+

K∑
k=2

P
(
x⊤
(k)θ̂T − x⊤

(k)θT ≥
∆(k)

2

)

≤
K∑

k=1

exp

(
−
T∆2

(k)

12d

)

≤K exp

(
−
T∆2

(1)

12d

)
.

C ERROR PROBABILITY OF ALGORITHM 2

C.1 Stationary Environments

We first prove an error probability of Algorithm 2 in stationary environments that contains unspecified parameters
from the virtual phases. Without loss of generality, assume that the arms x1, . . . , xK are ordered such that
θ⊤x1 > θ⊤x2 ≥ · · · ≥ θ⊤xK and ∆1 = ∆2 ≤ ∆3 ≤ · · · ≤ ∆K .

Throughout this section, we will the following definitions: i0 = ⌈log2(1/∆1)⌉+ 1, Ai = {x ∈ X | ∆x ≤ 2 · 2−i},
ī(k) = max {i ∈ [i0 − 1] | ∆k ≤ 2−i} and

f(Ai) = min
λ∈△X

max
x,x′∈Ai

∥x− x′∥2A(λ)−1 .

Theorem 3. Let D = {a ∈ [0, 1]i0+1 | 0 = a0 < a1 ≤ a2 ≤ . . . ≤ ai0 = 1}. Then, if m ≥ i0, The error probability
of Algorithm 2 in a stationary environment with parameter θ is bounded as

Pθ (JT ̸= 1) ≤2i0KT exp

(
− T

HP1-RAGE(θ)

)
,

HP1-RAGE(θ) =min
a∈D

max
k∈[K]

48m
∑ī(k)

i′=1(ai′ − ai′−1)f(Ai′−2) + 8(m
√
df(X ) + 1)aī(k)∆k

3a2
ī(k)

∆2
k

. (7)

Proof. With 0 = n0 < n1 ≤ n2 ≤ . . . ≤ ni0 = T .8 we define the event ξi with i ≥ 1 as follows: after ni samples
all the arms with true gap smaller than 2 · 2−i are estimated with precision 2−i/2, which is

ξi = {∀t ≥ ni,∀k ∈ [K] s.t. ∆k ≤ 2 · 2−i =⇒ |∆k − ∆̂
(t)
k | < 2−i/2},

8We do not specify the values of n1, . . . , ni0−1 for now.
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where ∆̂
(t)
k = (x1 − xk)

⊤θ̂(t) for k > 1 and ∆̂
(t)
1 = (x1 − x2)

⊤θ̂(t). We first show how these events {ξi}i0i=1 relate
the correctness of Algorithm 2.

Correctness. If
⋂i0

i=1 ξi holds then the algorithm successfully identifies the best arm. Indeed, if we assume it
does not, then there must exist non-optimal arm k0 such that ∆̂

(T )
k0

< 0. As
⋂i0

i=1 ξi holds, for some i′ ≤ i0, it
holds that 2−i′ < ∆k0

≤ 2 · 2−i′ and then |∆k0
− ∆̂

(T )
k0
| < 2−i′/2. Therefore, we have 2−i′ < ∆k0

≤ ∆k0
− ∆̂

(T )
k0
≤

|∆k0
− ∆̂

(T )
k0
| ≤ 2−i′/2, which is a contradiction.

Thus, the error probability is upper bounded by P
(⋃i0

i=1 ξ
c
i

)
, which gives us

P (JT ̸= 1) ≤P

(
i0⋃
i=1

ξci

)
= P

(
i0⋃
i=1

(
ξci \

i−1⋃
j=1

ξcj

))
≤

i0∑
i=1

P

(
ξci \

i−1⋃
j=1

ξcj

)

=

i0∑
i=1

P

(
ξci ∩

(
i−1⋃
j=1

ξcj

)c)
=

i0∑
i=1

P

(
ξci ∩

(
i−1⋂
j=1

ξj

))

≤
i0∑
i=1

P

(
ξci

∣∣∣∣∣
i−1⋂
j=1

ξj

)
.

Bernstein’s inequality. Now, we just need to find an upper bound of P
(
ξci

∣∣∣⋂i−1
j=1 ξj

)
. Assume ∃t ≥ ni,∃k ∈

[K] s.t. ∆k ≤ 2 · 2−i.9 Then, we have

P(|∆k − ∆̂
(t)
k | ≥ 2−i/2)

=P(|(θ − θ̂t)
⊤(x1 − xk)| ≥ 2−i/2) (8)

=P

(∣∣∣∣∣
t∑

s=1

(
θ −A(λs)

−1xsrs
)⊤

(x1 − xk)

∣∣∣∣∣ ≥ 2−it/2

)
(a)
≤2 exp

− 2−2it2/8

2
∑t

s=1 ∥x1 − xk∥2A(λ̄s)−1 +
(√

dmaxs∈[1:t] ∥x1 − xk∥A(λ̄s)−1 + 1
)
t2−i/3


(By Bernstein’s inequality for martingale differences Freedman [1975])

≤2 exp
(
−2−2it2/8

term I

)
,

where term I =2

i∑
i′=1

ni′∑
s=ni′−1+1

∥x1 − xk∥2A(λ̄s)−1 + 2

t∑
s=ni+1

∥x1 − xk∥2A(λ̄s)−1

+

(√
d max

s∈[1:t]
∥x1 − xk∥A(λ̄s)−1 + 1

)
· t2

−i

3
.

Here, to use Bernstein’s inequality for martingale differences in the inequality (a) above, we need to bound the
variance and magnitude of (θ −A(λs)

−1xsrs)
⊤
(x1 − xk) condition on λs.10 In particular, we have∣∣∣(θ −A(λs)

−1xsrs
)⊤

(x1 − xk)
∣∣∣ ≤ ∣∣(x1 − xk)

⊤A(λs)
−1xs

∣∣+∆k

≤∥x1 − xk∥A(λs)−1 ∥xs∥A(λs)−1 + 2

≤2
√
d ∥x1 − xk∥A(λ̄s)−1 + 2.

(Since λs = (λ̄s + λ∗)/2 and λ 7→ ∥x1 − xk∥2A(λ)−1 is convex in λ)

9Otherwise, ξi is vacuously true and P (ξci ) = 0.
10Since IPS estimator is unbiased and λs is determined by the history prior to time s, we have

E
[(
θ −A(λs)

−1xsrs
)⊤

(x1 − xk) | Hs−1

]
= 0, which implies that it is a martingale difference sequence.
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E
[((

θ −A(λs)
−1xsrs

)⊤
(x1 − xk)

)2
| λs

]
≤E

[(
(x1 − xk)

⊤A(λs)
−1xs

)2 | λs

]
=(x1 − xk)

⊤A(λs)
−1E

[
xsx

⊤
s | λs

]
A(λs)

−1(x1 − xk)

= ∥x1 − xk∥2A(λs)−1

≤2 ∥x1 − xk∥2A(λ̄s)−1 . (Since λs = (λ̄s + λ∗)/2)

Single-term error probability. Now, we need to use the property of the subroutine RAGE-Elimination (Line
3 of Algorithm 2) that generates λs. That is, by Lemma 3, since xk ∈ Ai ⊆ Ai′ for i′ ≤ i and m ≥ i0, for
s ∈ [ni′−1 + 1, ni′ ], we have ∥x1 − xk∥2A(λ̄s)−1 ≤ m infλ∈△X maxx,x′∈Ai′−2

∥x− x′∥2A(λ)−1

def
= mf(Ai′−2). Thus, we

have

P(|∆k − ∆̂
(t)
k | ≥ 2−i/2)

≤2 exp

(
− 2−2it2/8

2m
∑i

i′=1(ni′ − ni′−1)f(Ai′−2) + 2m(t− ni)f(Ai−1) + (m
√
df(X ) + 1)t2−i/3

)

≤2 exp

(
− 2−2in2

i /8

2m
∑i

i′=1(ni′ − ni′−1)f(Ai′−2) + (m
√

df(X ) + 1)ni2−i/3

)
,

where the last inequality above holds because of t ≥ ni and a simple fact that t 7→ t2

at+b
is an increasing function

when t ≥ 0 if a > 0 and b > 0.

Final error probability. Then, with the union bound over all t ≥ ni and k ∈ [K], it holds for any 0 < n1 ≤
n2 . . . ≤ ni ≤ T that

P

(
ξci

∣∣∣∣∣
i−1⋂
j=1

ξj

)
≤ 2KT exp

(
− 2−2in2

i /8

2m
∑i

i′=1(ni′ − ni′−1)f(Ai′−2) + (m
√

df(X ) + 1)ni2−i/3

)

≤ 2KT max
k∈[K]

exp

(
−

3n2
ī(k)

∆2
k

48m
∑ī(k)

i′=1(ni′ − ni′−1)f(Ai′−2) + 8(m
√
df(X ) + 1)nī(k)∆k

)
,

where ī(k) = max {i ∈ [i0 − 1] | ∆k ≤ 2−i}. Here, the last inequality use the same simple fact that t 7→ t2

at+b
is an

increasing function when t ≥ 0 if a > 0 and b > 0.

With values of 0 = n0 < n1 ≤ n2 ≤ · · · ≤ ni0 = T , we can define ai =
ni

T
, which implies 0 = a0 < a1 ≤ a2 ≤ · · · ≤

ai0 = 1. Since the choice of values a ∈ D is arbitrary, the final error probability can be bounded as

P (JT ̸= 1) ≤
i0∑
i=1

P

(
ξcj

∣∣∣∣∣
i−1⋂
j=1

ξj

)

≤ 2i0KT min
a∈D

max
k∈[K]

exp

(
−

3Ta2i(k)∆
2
k

48m
∑ī(k)

i′=1(ai′ − ai′−1)f(Ai′−2) + 8(m
√
df(X ) + 1)ai(k)∆k

)
,

which completes the proof

C.1.1 Properties of RAGE-Elimination

In this section, we prove some properties of the RAGE-Elimination algorithm that will be useful for proving
Theorem 3.

Lemma 1. Assume t ≥ ni. Then, under
⋂i−1

j=1 ξj, when running RAGE-Elimination (line 3 in Algorithm 2), it
holds that

X (i+1)
t ⊆

{
x ∈ X | ∆̂(t)

x ≤ 2−i
}
⊆ Ai.
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Proof. To show X (i+1)
t ⊆

{
x ∈ X | ∆̂(t)

x ≤ 2−i
}

, let x
(̂1)t

= argmaxx∈X

〈
θ̂t, x

〉
. Then, for some arm x, if we have〈

θ̂(t), x
(̂1)t
− x
〉
≤ 2−i, it holds that〈

θ̂(t), x1 − x
〉
=
〈
θ̂(t), x1 − x

(̂1)t

〉
︸ ︷︷ ︸

≤0

+
〈
θ̂(t), x

(̂1)t
− x
〉

︸ ︷︷ ︸
≤2−i

≤ 2−i,

which implies x ∈ {x ∈ X | ∆̂(t)
x ≤ 2−i}.

To show
{
x ∈ X | ∆̂(t)

x ≤ 2−i
}
⊆ Ai, let ∆̂

(t)
x ≤ 2−i for some x and assume for the sake of a contradiction that

∆x > 2 · 2−i. As ∆x > 2 · 2−i, there must exist ĩ ≤ i− 1 such that 2−ĩ < ∆x ≤ 2 · 2−ĩ. Then |∆x − ∆̂
(t)
x | < 2−ĩ/2

since event ξĩ holds. Meanwhile, we have ∆̂
(t)
x ≤ 2−i ≤ 2−ĩ/2 since ĩ ≤ i− 1. Now, this leads to the contradiction

2−ĩ/2 = 2−ĩ − 2−ĩ/2 ≤ ∆x − ∆̂(t)
x ≤ |∆x − ∆̂

(t)
j | < 2−ĩ/2.

Thus, under
⋂i−1

j=1 ξj , we have{
x ∈ X | ∆̂(t)

x ≤ 2−i
}
⊆
{
x ∈ X | ∆x ≤ 2 · 2−i

}
= Ai.

Lemma 2. Assume t ≥ ni. Then, under
⋂i−1

j=1 ξj, when running RAGE-Elimination, if x ∈ Ai, then x ∈ X (i−1)
t .

Proof. If x ∈ Ai, then ⟨θ, x1 − x⟩ ≤ 2 · 2−i. Again, let x
(̂1)t

= argmaxx∈X

〈
θ̂t, x

〉
and we have〈

θ̂t, x̂
(t)
1 − x

〉
=
〈
θ̂t, x(̂1)t

− x1

〉
+
〈
θ̂t, x1 − x

〉
=
〈
θ̂t, x(̂1)t

− x1

〉
+
〈
θ̂t − θ, x1 − x

〉
+ ⟨θ, x1 − x⟩︸ ︷︷ ︸

≤2·2−i

≤
〈
θ̂t, x(̂1)t

− x1

〉
+ |∆̂(t)

x −∆x|+ 2 · 2−i

≤
〈
θ̂t, x(̂1)t

− x1

〉
+ 2−i + 2 · 2−i (Since ξi−1 holds)

=− ∆̂(t)
x
(̂1)t

+ 2−i + 2 · 2−i

≤2−i + 2−i + 2 · 2−i

=4 · 2−i.

The last inequality above holds because under
⋂i−1

j=1 ξj , by Lemma 1, we have x
(̂1)t
∈ Ai, meaning that |∆̂(t)

x
(̂1)t
−

∆x
(̂1)t

| < 2−i =⇒ ∆̂
(t)
x
(̂1)t

> ∆x
(̂1)t

− 2−i > −2−i.

Lemma 3. Assume t ≥ ni and
⋂i−1

j=1 ξj holds. When running RAGE-Elimination, If xk ∈ Ai, then

∥x1 − xk∥2A(λ̄t)−1 ≤ m min
λ∈△X

max
x,x′∈Ai−2

∥x− x′∥2A(λ)−1 .

Proof. By Lemma 2, we have x1, xk ∈ Ai =⇒ x1, xk ∈ X (i−1)
t , which means that

∣∣∣X (i−1)
t

∣∣∣ ≥ 2 and λ̄t =

1
it

∑it
i′=1 λ

(i′)
t for some it satisfying i− 1 ≤ it ≤ m. Thus, We have

∥x1 − xk∥2A(λ̄t)−1 ≤m ∥x1 − xk∥2A(λ(i−1)
t )

−1

≤m max
x,x′∈X (i−1)

t

∥x− x′∥2
A(λ(i−1)

t )
−1 (Since x1, xk ∈ X (t)

i−1)
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(i)
≤m min

λ∈△X
max

x,x′∈Ai−2

∥x− x′∥2A(λ)−1 .

Here, the above inequality (i) holds because by Lemma 1, we have X (i−1)
t ⊆ Ai−2 and by algorithm construction,

we have λ
(i−1)
t ∈ argminλ∈△X

max
x,x′∈X (i−1)

t
∥x− x′∥2A(λ)−1 .

C.1.2 Simplified Stationary Complexity and its Relation to Multi-armed Bandits

In this section, we simplify the complexity of Algorithm 2 obtained in Theorem 3 by appropriately choosing
values a ∈ D. In particular, we have the following theorem.

Theorem 4. For HP1-RAGE(θ) defined in equation (7), we have

HP1-RAGE(θ) ≤
1024mi0

∆1
inf

λ∈△X
max
x ̸=x1

∥x− x1∥2A(λ)−1

∆x
+

16m
√
d

3∆1
inf

λ∈△X
max
x ̸=x1

∥x− x1∥A(λ)−1 +
1

3∆1
.

Proof. For i ∈ {1, . . . , i0 − 1}, we take ai =
∆1

∆k̄(i)
, where k̄(i) = min

{
k ∈ [K] | ∆k ≥ 2−i

2

}
. Then, since ī(k) =

max {i ∈ [i0 − 1] | ∆k ≤ 2−i}, for any k ∈ [K], we have 2−ī(k)

2
≤ ∆k̄(̄i(k)) ≤ ∆k, which further implies

aī(k)∆k =
∆1

∆k̄(̄i(k))

·∆k ≥ ∆1.

Then, for HP1-RAGE(θ) (defined in equation (7)), we have

HP1-RAGE(θ) ≤ max
k∈[K]

{
16m

∑ī(k)
i′=1(ai′ − ai′−1)f(Ai′−2)

a2
ī(k)

∆2
k

+
8(m

√
df(X ) + 1)

3aī(k)∆k

}

≤ 16m

∆1

max
k∈[K]

f(A−1)

∆k̄(1)

+

ī(k)∑
i′=2

(
1

∆k̄(i′)

− 1

∆k̄(i′−1)

)
f(Ai′−2)

+
8(m

√
df(X ) + 1)

3∆1

.

(Since a0 = 0 by definition)

For the second term, using the definition of f(X ), we simply have

8(m
√

df(X ) + 1)

3∆1

=
8m
√
d

3∆1

inf
λ∈△X

max
x,x′∈X

∥x− x1 + x1 − x′∥A(λ)−1 +
1

3∆1

≤16m
√
d

3∆1

inf
λ∈△X

max
x̸=x1

∥x− x1∥A(λ)−1 +
1

3∆1

. (9)

For the first term, by fixing arm index k ∈ [K] and defining j ∈ argmaxℓ∈[̄i(k)]
f(Aℓ−2)

∆k̄(ℓ)
, we have

f(A−1)

∆k̄(1)

+

ī(k)∑
i′=2

(
1

∆k̄(i′)

− 1

∆k̄(i′−1)

)
f(Ai′−2)

=
f(Aī(k)−2)

∆k̄(̄i(k))

+

ī(k)−1∑
i′=1

f(Ai′−2)− f(Ai′−1)

∆k̄(i′)

(a)
≤ f(Aj−2)

∆k̄(j)

1 +

ī(k)−1∑
i′=1

f(Ai′−2)− f(Ai′−1)

f(Ai′−2)


≤ī(k)f(Aj−2)

∆k̄(j)

(Since f(Ai′−2) ≥ f(Ai′−1))

≤i0 max
ℓ∈[̄i(k)]

f(Aℓ−2)

∆k̄(ℓ)

(Since ī(k) ≤ i0 for any k ∈ [K])
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=i0 max
ℓ∈[̄i(k)]

inf
λ∈△X

max
x,x′∈Aℓ−2

∥x− x′∥2A(λ)−1

∆k̄(ℓ)

≤i0 inf
λ∈△X

max
ℓ∈[̄i(k)]

max
x,x′∈Aℓ−2

∥x− x′∥2A(λ)−1

∆k̄(ℓ)

(By the weak duality inequality)

≤64i0 inf
λ∈△X

max
ℓ∈[̄i(k)]

max
x∈Aℓ−2,x ̸=x1

∥x− x1∥2A(λ)−1

16∆k̄(ℓ)

(By reasoning similar to equation (9))

(b)
≤64i0 inf

λ∈△X
max

ℓ∈[̄i(k)]
max

x∈Aℓ−2,x̸=x1

∥x− x1∥2A(λ)−1

∆x

≤64i0 inf
λ∈△X

max
x ̸=x1

∥x− x1∥2A(λ)−1

∆x

.

Here, the inequality (a) above holds because f(Ai′−2) ≥ f(Ai′−1) and by definition of j, we have f(Aℓ−2)

∆k̄(ℓ)
≤

f(Aj−2)

∆k̄(j)
. The inequality (b) above holds because by definitions of k̄(ℓ) = min

{
k ∈ [K] | ∆k ≥ 2−i

2

}
and Aℓ−2 ={

x ∈ X | ∆x ≤ 2 · 2−(ℓ−2)
}
, we have 16∆k̄(ℓ) ≥ ∆x for any x ∈ Aℓ−2.

Therefore, by plugging the bound of both terms back, we have

HP1-RAGE(θ) ≤
1024mi0

∆1
inf

λ∈△X
max
x̸=x1

∥x− x1∥2A(λ)−1

∆x
+

16m
√
d

3∆1
inf

λ∈△X
max
x ̸=x1

∥x− x1∥A(λ)−1 +
1

3∆1
.

In the following corollary, we show that the above simplified complexity is in a same order (up to logarithmic
factors) of HBOB proposed in Abbasi-Yadkori et al. [2018].
Corollary 1. In multi-armed bandits, meaning d = K and X = {e1, . . . , eK}, for HP1-RAGE(θ) (defined in equation
(4)), if m = i0, we then have

HP1-RAGE(θ) ≤
2i0 (i0 log(2K) + 1)

∆(1)

max
k∈[K]

k

∆(k)

= 2i0 (i0 log(2K) + 1)HBOB(θ).

Proof. When in multi-armed bandits, for the first term in HP1-RAGE(θ), we have

inf
λ∈△X

max
x ̸=x(1)

∥∥x− x(1)

∥∥2
A(λ)−1

∆x

≤ 2

K∑
k=1

1

∆k

≤ 2 log(2K) max
k∈[K]

k

∆(k)

,

where the first inequality above comes from Soare et al. [2014] and the second inequality comes from Audibert
et al. [2010]. For the second term in HP1-RAGE(θ), we have

inf
λ∈△X

max
x ̸=x(1)

∥∥x− x(1)

∥∥
A(λ)−1

= inf
λ∈△X

max
k ̸=(1)

√
1

λ(1)

+
1

λk

=
√
2K,

which then gives us
√
K·

√
2K

∆(1)
≤ 2K

∆(1)∆(K)
≤ 2

∆(1)
maxk∈[K]

k
∆(k)

.

Finally, by plugging these inequalities back into HP1-RAGE(θ) (defined in equation (4)), we have

HP1-RAGE(θ) =
mi0
∆(1)

inf
λ∈△X

max
x ̸=x(1)

∥∥x− x(1)

∥∥2
A(λ)−1

∆x

+
m
√
d

∆(1)

inf
λ∈△X

max
x ̸=x(1)

∥∥x− x(1)

∥∥
A(λ)−1

≤2i20 log(2K)

∆(1)

max
k∈[K]

k

∆(k)

+
2i0
∆(1)

max
k∈[K]

k

∆(k)

=
2i0 (i0 log(2K) + 1)

∆(1)

max
k∈[K]

k

∆(k)

.
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C.1.3 Approximate BAI of Algorithm 2

Corollary 2. Fix arm set X ⊂ Rd with |X | = K and budget T . For a stationary environment with unknown
parameter θ, if m ≥ i0(ϵ) = ⌈log2 (1/ϵ)⌉+ 1 for some ϵ ≥ ∆1, then there exists absolute constant c > 0 such that
the error probability of P1-RAGE satisfies

Pθ (JT /∈ A(ϵ)) ≤ 2i0(ϵ)KT exp

(
− cT

HP1-RAGE(θ, ϵ)

)
,

where A(ϵ) = {x ∈ X | ∆x ≤ ϵ} and HP1-RAGE(θ, ϵ) is defined as replacing i0 by i0(ϵ) in HP1-RAGE(θ) (defined in
Eq. (7)).

Proof. The proof is the same as Theorem 2 through simply replacing i0 by i0(ϵ).

C.2 Non-stationary Environments

In this section, we prove the error probability of Algorithm 2 in general non-stationary environments.

Theorem 5. Fix time horizon T , arm set X ⊂ Rd with |X | = K and arbitrary unknown parameters {θt}Tt=1. If
we run Algorithm 2 in this non-stationary environment and obtain xJT

, then it holds that

PθT
(JT ̸= (1)) ≤ K exp

(
−
3T∆2

(1)

64d

)
.

Proof. The proof will basically resemble the one for Theorem 1. In particular, by the same reasoning to obtain
equation 6, we have

P (JT ̸= (1)) ≤ P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
+

K∑
k=2

P
(
x⊤
(k)θ̂T − x⊤

(k)θT ≥
∆(k)

2

)
,

where P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
= P

(
T∑

t=1

x⊤
(1)

(
A(λt)

−1xtrt − θt
)
≤ −

T∆(1)

2

)
.

Since λt =
λ̄t+λ∗

2
and λ 7→ ∥x∥2A(λ)−1 is convex in λ, to use the Berstein’s inequality for martingale differences

[Freedman, 1975], we have∣∣x⊤
(1)

(
A(λt)

−1xtrt − θt
)∣∣ ≤ 2

∥∥x(1)

∥∥
A(λ∗)−1 ∥xt∥A(λ∗)−1 + 2 ≤ 2d+ 2 ≤ 4d,

E
[(
x⊤
(1)

(
A(λt)

−1xtrt − θt
))2 | λt

]
=
∥∥x(1)

∥∥2
A(λt)−1 ≤ 2

∥∥x(1)

∥∥2
A(λ∗)−1 ≤ 2d.

Therefore, we have

P
(
x⊤
(1)θ̂T − x⊤

(1)θT ≤ −
∆(1)

2

)
≤ exp

(
−

T∆2
(1)/8

2d+ 2d∆(1)/3

)
≤ exp

(
−
3T∆2

(1)

64d

)
.

By applying the same inequality to other terms, we have

P (JT ̸= (1)) ≤ K exp

(
−
3T∆2

(1)

64d

)
.
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D IMPLEMENTATION DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we provide more implementation details and additional experiment results. Experiments are
executed through Python 3.10 and paralleled by a Mac M1 Pro chip with 6 cores.

First, we notice that an algorithm for stationary environments usually determines a batch of arms to pull at once
during each epoch, while in non-stationary environment, the order of pulling these arms will affect the rewards
it will receive. Therefore, when applying stationary algorithms (Peace and OD-LinBAI) into a non-stationary
environment, we use a random permutation to determine the order of pulling for each batch of arms.

When implementing P1-RAGE, to be computationally efficient, we update λt in the same frequency as P1-Peace,
which is summarized in Algorithm 4. We take m = 15 for P1-RAGE, which, based on Theorem 2, is valid as long
as ∆(1) ≥ 2−13 ≈ 1.22 × 10−4. Furthermore, when implementing Peace, for simplicity, we use infλ∈△X ρ(Z, λ),
defined in equation (5), to replace all γ(Z) used in Katz-Samuels et al. [2020]. Since the paper of OD-LinBAI
does not provide code, we implement it based on the pseudocode in Yang and Tan [2022]. Finally, we use
Frank-Wolfe algorithm with stepsize 1

2(i+2)
in i-th iteration to solve all optimization problems in a form of

infλ∈△X maxy∈Y ∥y∥2A(λ)−1 .

As for code snippets reference, we use part of the code from Katz-Samuels et al. [2020] to implement the rounding
procedure used in Peace11 and part of the code from Fiez et al. [2019] to generate the base stationary instance for
the multivariate testing example.12 We also use code from Xu et al. [2018] to preprocess the Yahoo! Webscope
dataset.13

D.1 Additional Experiments

Here, we provide experiment results on some additional examples to corroborate our theoretical findings.

Malicious non-stationary example Because of the nature of arm elimination, algorithms designed for
stationary environment can fail easily in some malicious non-stationary environments. Here, we pick the same X
as Soare et al. [2014]’s stationary benchmark example and set ω = 0.5. Then, we take

θt =


[
0 1 1 . . . 1

]⊤
for t = 1, . . . , T

3
,[

2 0 0 . . . 0
]⊤

for t = T
3
+ 1, . . . , T.

We can see that the overall best arm is still x(1) = e1. However, because of the θt in the first 1/3 rounds,
algorithms like Peace and OD-LinBAI will eliminate e1 in its initial phase; on the other hand, our algorithms will
be robust to this non-stationarity. Here, we take T = 104 and the results are shown in right plot of Figure 5.

Stationary multivariate testing example We also test the performance of these algorithms in multivariate
testing example when there is no non-stationarity, i.e. θt = θ∗ for all t. Here, we also take T = 104 and the
results are shown in Figure 6. We can see that our robust algorithm P1-RAGE again performs better than G-BAI
and comparably with Peace.

Non-stationary benchmark example In this example, we add non-stationarity to Soare et al. [2014]’s
stationary benchmark example in a more structured instead of malicious way. In particular, we keep the arm set
X the same, take ω = 0.5 and set

θt =
[
0.3 0 0 . . . −s sin

(
2πt
L

)
+ 0.5

]⊤
,

where s is the oscillation scale and L is the oscillation period, In the first series of instances, we fix L = 200 and take
values m ∈ {0, 1, . . . , 9}; in the second series of instances, we fix m = 1 and take values L ∈ {300, 600, . . . , 3000}.
All non-stationary instances have the same optimal arm as their stationary counterparts and we take T = 104 for

11No license information.
12Under MIT License.
13No license information.
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Experiments under Malicious Example

Figure 5: The error probabilities are estimated through 1000 repeated trials and the error bars represent 95%
confidence intervals.

G-BAI Peace P1-Peace P1-RAGE OD-LinBAI Mixed-Peace
0.00

0.01

0.02

0.03

0.04

0.05

er
ro

r
pr

ob
ab

ili
ty

Experiments under Stationary Multivariate Testing Example

Figure 6: The error probabilities are estimated through 104 repeated trials and the error bars represent 95%
confidence intervals.

all of these instances. The results are shown in Figure 7, from which we can see similar phenomenon as in Figure
3. In particular, algorithms designed for stationary environments, Peace and OD-LinBAI, are very unstable in face
of non-stationarity. Meanwhile, among the other four relatively robust algorithms, our algorithms P1-RAGE and
P1-Peace consistently outperform the other two.
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Figure 7: The vertical axis (error probability) is in log scale. The shaded area represents the 95% confidence
interval. Each error probability is estimated through 1000 repeated trials. The bottom two plots give the minimum
gap ∆(1) of each instance that algorithms run over
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