
A Neural Architecture Predictor based on GNN-Enhanced
Transformer

Xunzhi Xiang Kun Jing Jungang Xu
School of Computer Science and Technology, University of Chinese Academy of Sciences, China

xiangxunzhi21@mails.ucas.ac.cn

Abstract

Neural architecture performance predictor is
an efficient approach for architecture estima-
tion in Neural Architecture Search (NAS).
However, existing predictors based on Graph
Neural Networks (GNNs) are deficient in
modeling long-range interactions between
operation nodes and prone to the prob-
lem of over-smoothing. Furthermore, some
Transformer-based predictors use simple po-
sition encodings to improve performance via
self-attention mechanism, but they fail to
fully exploit the subgraph structure informa-
tion of the graph. To solve this problem,
we propose a novel method to enhance the
graph representation of neural architectures
by combining GNNs and Transformer blocks.
We evaluate the effectiveness of our predic-
tor on NAS-Bench-101 and NAS-bench-201
benchmarks, the discovered architecture on
DARTS search space achieves an accuracy
of 97.61% on CIFAR-10 dataset, which out-
performs traditional position encoding meth-
ods such as adjacency and Laplacian matri-
ces. The code of our work is available at
https://github.com/GNET.

1 INTRODUCTION

Neural Architecture Search (NAS) has recently at-
tracted considerable attention for automatically de-
signing neural architectures (Liu et al., 2019; Fang
et al., 2020). Early researchers evaluate the neural
architecture through standard training. Due to the
low cost, the predictor-based NAS methods (White

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

et al., 2021; Luo et al., 2018, 2020; Li et al., 2020b;
Ning et al., 2020) have become popular. Performance
predictor evaluation strategy is implemented through
neural networks, mapping the architecture space to ab-
solute or relative performance values. How to encode
discrete architectures into continuous feature represen-
tations determines the performance ceiling of the pre-
dictor.
The neural architecture performance predictor is first
applied to PNAS (Liu et al., 2018). Recent works focus
on using different coding methods to represent neural
architectures. Some methods represent a neural ar-
chitecture as a computational graph, predicting archi-
tecture performance through Graph Neural Networks
(GNNs) (Chen et al., 2021; Wen et al., 2020; Li et al.,
2020a; Shi et al., 2020) . Recently, Transformer-based
models (Vaswani et al., 2017; Devlin et al., 2019) that
have proved to be successful in Natural Language Pro-
cessing (NLP) offer the potential to further improve
prediction performance. TNASP (Lu et al., 2021)
adopts Transformer to encode neural network for the
first time and achieves better performance compared
to some existing methods. However, both GNN-based
and Transformer-based predictors have shortcomings.
With many different message-passing strategies (Kipf
and Welling, 2017; Velickovic et al., 2018; Hamilton
et al., 2017) having been proposed, some critical lim-
itations are uncovered in this class of GNNs. For
example, Graph neural networks are prone to over-
smoothing (Li et al., 2018; Chen et al., 2020; Oono
and Suzuki, 2020) or oversquashing (Alon and Yahav,
2021) as the number of layers deepens and lack the
ability to model over long distances. In the meantime,
simple connection embeddings of the adjacency matrix
in the Transformer-based predictor do not fully utilize
the structural information of the neural architecture.
Inspired by GNN-Transformer hybrid networks (Ram-
pásek et al., 2022; Mialon et al., 2021; Dwivedi and
Bresson, 2020; Rong et al., 2020), we propose a novel
architecture encoding method: A Neural Architec-
ture Predictor based on GNN-Enhanced Transformer



A Neural Architecture Predictor based on GNN-Enhanced Transformer

M
LP

 D
ec

od
er

Node 
EmbeddingO

pe
ra

tio
n

en
co

di
ng

Tr
an

sf
or

m
er

 E
nc

od
er

B
lo

ck

Po
si

tio
n

en
co

di
ng

Connection 
Embedding

0
3
1
2
4

0
3
1
2
4

0
0
0
0
0

1
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
1
1
1
0

0
0
0
0
0

1
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
1
1
1
0

+

Previous work

Node 
EmbeddingO

pe
ra

tio
n

en
co

di
ng

Tr
an

sf
or

m
er

 E
nc

od
er

B
lo

ck

Po
si

tio
n

en
co

di
ng

Connection 
Embedding

0
3
1
2
4

0
0
0
0
0

1
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
1
1
1
0

+

Previous work

Node 
EmbeddingO

pe
ra

tio
n

en
co

di
ng

Tr
an

sf
or

m
er

 F
us

e 
B

lo
ck

Connect
features

M
LP

 D
ec

od
er

GNN
Enhancer

0
3
1
2
4

0
3
1
2
4

Node
features

3x3

1x1

pool

1x1

3x3In

3x3

1x1

pool

1x1

3x3In

Our work

Po
si

tio
n

en
co

di
ng

Connection 
Embedding

0
0
0
0
0

1
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
1
1
1
0

0
0
0
0
0

1
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
1
1
1
0

Extra
features

Tr
an

sf
or

m
er

 E
nc

od
er

B
lo

ck

Sc
or

e

Node 
EmbeddingO

pe
ra

tio
n

en
co

di
ng

Tr
an

sf
or

m
er

 F
us

e 
B

lo
ck

Connect
features

M
LP

 D
ec

od
er

GNN
Enhancer

0
3
1
2
4

Node
features

3x3

1x1

pool

1x1

3x3In

Our work

Po
si

tio
n

en
co

di
ng

Connection 
Embedding

0
0
0
0
0

1
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
1
1
1
0

Extra
features

Tr
an

sf
or

m
er

 E
nc

od
er

B
lo

ck

Sc
or

e
Sc

or
e

x N

Figure 1: Previous Transformer-based NAS predictor
and GNET.

(GNET). As shown in Figure 1, previous works use
node embedding and connection embedding to trans-
form node operations and adjacency matrices to obtain
node and connection features respectively and then fol-
low the approach of transformer to add the two fea-
tures to form a token for calculation. Different from
them, we propose a feature fusion block based on this
approach, which uses GNN to generate additional ar-
chitectural information instead of simple matrix cod-
ing to enhance graph representation. The improve-
ments of our work mainly includes two parts: one is
the design of feature fusion methods, and the other
is the design of feature selection methods. We adopt
two feature fusion methods, one is based on Cross-
Attention, another is based on Structure-Aware. The
Cross-Attention based method is generally used for
feature fusion between different modalities. We be-
lieve that GNN has strong enough ability to represent
graph nodes and connections, which can be served as
a separate modal sequence for information exchange
with Self-Attention sequences. The Structure-Aware
based method is first applied in SAT (Chen et al.,
2022), which is mainly used to solve the problem that
most current methods only encode the positional re-
lationships between nodes without explicitly encoding
the structural relationships. The same convolution or
pooling operation may play a significant role in differ-
ent subgraph structures. There are also two methods
for feature selection. One method is to input node fea-
tures as a separate feature sequence for feature fusion;
Another method is to input connection features as a
sequence of individual features into fuse block for fea-
ture fusion. After experiments, the method of using
Cross-Attention to fuse connection features and GNN
features achieves the best results, which outperforms

the current state-of-the-art method.
We verify the performance of our predictor on NAS-
bench-101 (Ying et al., 2019) and NAS-bench-201
(Dong and Yang, 2020), using Kendall’s tau as the per-
formance testing standard. The experimental results
demonstrate that it is feasible and effective to enhance
neural architecture representations by using GNNs, re-
sulting in a stronger predictor. Besides, we combine
the predictor with evolutionary algorithms and con-
duct a real architecture search on the DARTS search
space, the discovered architecture can achieve compet-
itive results on CIFAR-10.
Our contributions are summarized as follows:

• We propose a method to combine GNN with
Transformer network and design a feature fusion
module to produce a more powerful neural archi-
tecture predictor.

• We propose two methods for feature fusion:
Cross-Attention-based method and Structure-
Aware-based methods and two methods for
feature selection: Node-based method and
Connection-based method.

• We compare our predictor with others though ex-
periments, and experimental resutls demonstrate
the superiority of our approach on different NAS
benchmarks.

2 RELATED WORK

2.1 GNN-based Neural Architecture
Predictors

Most of works regard the network architecture as a
stack of two repeated sub-architectures (Normal cell
and Reduction cell) and each cell is a DAG that con-
sists of an ordered sequence of N vertices. Neural Pre-
dictor (Wen et al., 2020) encodes each node in the ar-
chitecture using the average of two modified GCN lay-
ers. GMAE (Jing et al., 2022) uses graph reconstruc-
tion as the pretext task to learn the Architecture Rep-
resentation Information. DCLP (Zheng et al., 2023)
combines GNN and contrastive learning with curricu-
lum learning guidance to explore the full use of the
information contained in unlabeled data.
Although each of these methods has made improve-
ments, they are still limited by the performance ceil-
ing of GNN. For example, the computational cost in
these methods increases quadratically with the size of
the adjacency matrix. And due to the lack of long-
distance modeling ability, GNN is overly dependent
on increasing the number of layers to enhance graph
information interaction. Therefore, in our proposed



Xunzhi Xiang, Kun Jing, Jungang Xu

method, we combine Self-Attention module to make
up this deficiency.

2.2 Transformer-based Neural Architecture
Predictors

The Transformer-based model, initially introduced in
the field of Natural Language Processing (NLP), is
designed to capture global dependencies and enable
parallel computation through the implementation of
the Multi-Head Self-Attention (MHSA) mechanism.
For modeling neural networks, CATE (Yan et al.,
2021) employs a pairwise pre-training scheme to learn
computation-aware encodings using Transformers with
cross-attention. TNASP performs feature embedding
for adjacency matrix and node operation respectively,
and then concatenates them together as the input of
Transformer block.
We believe that embedding the Laplacian matrix sim-
ply cannot make full use of the structural information
of neural architecture. In our method, we uses GNNs
to extract additional features, and fuses this features
with Transformer sequences to enhance the represen-
tation of neural architectures. Experimental results
demonstrate the superiority of our method.

3 METHOD

3.1 Formal Problem Definition

The primary objective of Neural Architecture Search
(NAS) is to identify an optimal neural network archi-
tecture tailored for a specific task. This process initi-
ates with a predefined set of operations, from which a
plethora of candidate architectures are generated via a
systematic search strategy. Subsequently, these can-
didate architectures undergo training and validation
processes to ascertain their performance metrics. How-
ever, the necessity to train each potential architecture
from the ground up presents a substantial demand
for time and computational resources. In this con-
text, developing efficient and precise evaluation strate-
gies is crucial for enhancing the expediency of NAS
algorithms. Within this framework, predictor-based
NAS methods emerge as a pivotal innovation. These
methods employ performance predictors, which are de-
signed to swiftly estimate the accuracy of various ar-
chitectures, thereby obviating the need for exhaustive
training of each architecture to determine its perfor-
mance.
Previous work (Lu et al., 2021) proposes the first appli-
cation of Transformer to encode discrete neural archi-
tectures into continuous feature representations, which

can be formulated as:

e = Transformer(A, k) (1)

where A ∈ RN×N denotes the adjacency matrix,
representing the directed acyclic connections between
nodes. N denotes the number of the nodes. k ∈ RN×C

denotes the feature matrix, encapsulating the charac-
teristics of the nodes, C denotes the output dimension
of the embedding layer. Our method is based on this
basis and combines Transformer and GNN to obtain
better results.

3.2 Overall Framework

Figure 2 shows the overall framework of our proposed
method called GNET. Firstly, we encode the discrete
architecture into continuous feature vectors: node em-
bedding and connection embedding are used to encode
the node operations and node connection of the archi-
tecture into node features and connection features, re-
spectively. Unlike TNASP, we do not simply concate-
nates two vectors but input them into the fuse block
for specific feature fusion. Afterward, we use GNN
to encode the directed acyclic graph corresponding to
the architecture and extract additional features for fu-
sion with previous features. Finally, we use a simple
decoder composed of fully connected layers and activa-
tion layers to obtain the final architecture score. Due
to the page size limitation, Figure 2 shows only the
best one of our methods, the rest will be given in the
supplementary material.

3.3 GNN Predictor Enhancer

To enhance the expression of neural architecture in
Transformer, we use GNN as a predictor enhancer to
introduce additional information and feed it into the
fusion block. GNN takes a DAG as input, embeds
candidate operations at all vertices in the DAG with an
embedding layer, and then processes the embeddings
using a series of GNN layers by message passing along
the edges.
We try different graph neural networks and find GAT
is the optimal one through experiments. For each K-
head GAT layer, it can be formulated as follows:

h′
i =

K

∥
k−1

σ(
∑

j∈Ni∪{i}

αk
ij · ωkhj) (2)

akij =
exp(LReLU(aT [ωkhi∥ωkhj ]))∑

k∈Ni∪{i} exp(LReLU(aT [ωkhi∥ωkhk]))
(3)

where h′
i and hi are the old and new features of node

vi, ∥ denotes concatenation, αk
ij are normalized atten-



A Neural Architecture Predictor based on GNN-Enhanced Transformer

Node 
Embedding

Connection 
Embedding

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Se
pa

ra
te

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Se
pa

ra
te

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

x N
In

3x3 1x1

pool 1x1

3x3

In

3x3 1x1

pool 1x1

3x3

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar C
ro

ss
-A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

C
on

ca
t

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar C
ro

ss
-A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

C
on

ca
t

e1

e2

Encoder Decoder

Figure 2: The overall framework of GNET. GNET mainly consists of an encoder and a decoder. The encoder is
mainly composed of Feature Select block, Feature Fusion block and Transformer block. The decoder is a single
linear projection followed by a SoftMax function.

tion coefficients computed by the k-th attention mech-
anism and ·T denotes transposition, ωk is the corre-
sponding input linear transformation’s weight matrix,
Ni denotes the neighbor of node vi.

3.4 Feature-fusion Method

One of the two feature fusion methods in the fuse block
we propose is based on Cross-Attention. The attention
mechanism can be abstractly summarized as:

Attention(q, k, v) = fsim(q, k)v (4)

where fsim(q, k)v is a function used to compute the
similarity scores between queries(q) and keys(k). The
output of the attention mechanism is the weighted sum
of values(v) based on similarity scores.
In our model, both Multi-head Self-Attention (MSA)
and Multi-head Cross-Attention (MCA) are used,
where MSA is adopted in the encoder after MCA to
model the intra-relationship of operations sequence.
MCA is used to fuse extra structure information gen-
erated by GNN and node representation information
generated by MSA. The above two attention mod-
ules use Softmax() as the similarity scoring function,
which can be formulated as:

CR(f1, f2) = δ(
φq(ψ(f1, G))φk(f2)T√

dk
)φv(f2) (5)

ψ(x,G) = GNNl
G(x) (6)

where f1 and f2 are the inputs of the fuse block,
φq,φk,φv ∈ RC×C are learnt parameter matrics,

GNNl
G denotes an arbitrary GNN model with l layers

applied to graph G with node features, δ is Softmax
activation function.
Another method is based on Structure-Aware. Self-
Attention in the Transformer can only capture the at-
tributed similarity between a pair of nodes. The prob-
lem of this method is that it cannot distinguish nodes
that have different substructures but share identical
operational characteristics. In order to also incorpo-
rate the structural similarity between nodes, we adopt
a more generalized calculation method that addition-
ally consider the local substructures around each node.
A straightforward way to extract local structural infor-
mation at node u is to apply any existing GNN model
to the input graph with node features X and take the
output as the subgraph representation of node u. This
process can be formulated as:

ST(f1, f2) = δ(
φq(ψ(f1, G))φk(ψ(f2, G)T√

dk
)φv(f2) (7)

ψ(x,G) = GNNl
G(x) (8)

where f1 and f2 are the inputs of the fuse block,
φq,φk,φv ∈ RC×C are learnt parameter matrics,
GNNl

G denotes an arbitrary GNN model with l lay-
ers applied to graph G with node features.



Xunzhi Xiang, Kun Jing, Jungang Xu

3.5 Node-based Fusion Transformer
Predictor

Our Neural Architecture Predictor model is built upon
the Transformer encoder architecture that consists of a
semantic embedding layer, N Transformer blocks and
N Fuse blocks stacked on top. Given a DAG G as the
input, we first get the operation feature e1 ∈ RN×C

by transforming the operation vector k with an em-
bedding matrix E ∈ RN×C .

e01 = E(k) (9)

In this method, we choose e1 as the input of fuse-block.
After the node features enter the fuse block, the out-
put obtained by fusing with the additional architecture
information generated by GNN is used as the input of
the next layer of Self-Attention. Finally, after process-
ing through Self-Attention, the output of MSA is used
as the input of the subsequent fuse-block. This process
can be described as:

fk
fuse = Fuse-Block(ek1 , ek1) (10)

fk
self = Self-Attention(fk

fuse) (11)

ek+1
1 = fk

self (12)
where k denotes the current number of layers,
Fuse-Block denotes one of the two fusion methods in-
troduced in Section 3.3.
Finally, we choose a simple linear projection as the
decoder, which decodes the vertex features provided
by Transformer and gets the performance score.

score = MLP(F ) (13)

where F denotes the output of the encoder.

3.6 Connection-based Fusion Transformer
Predictor

To further improve our method, we argue if we con-
catenate the connection features into node features
and map the given structure into a single sequence
as the input of Self-Attention, the ability to handle se-
quences in variable length and to model long-range de-
pendency will be fully utilized. Similar to the method
introduced in Section 3.4, we add a connection embed-
ding layer which maps the Laplacian matrix (L) to a
continuous position feature vector e2 ∈ RN×C . The
connection embedding layer consists of a simple MLP.
In this method, we choose e1 and e2 as the input of
fuse-block and concat the output of the fuse block with
the node features according to the channel. Following
the processing of concatenated features by the self-
attention mechanism, they are separated according to

the corresponding channels to obtain node features
and connection features respectively. This process can
be described as:

fk
fuse = Fuse-Block(ek1 , ek2) (14)

fk
self = Self-Attention(concat[ek1 , fk

fuse]) (15)

ek+1
1 , ek+1

2 = separate(fk
self ) (16)

where k denotes the current number of layers,
Fuse-Block denotes one of the two fusion methods in-
troduced in Section 3.3, concat denotes splicing node
features and connection features according to dimen-
sions. separate denotes separating node features and
connection features based on dimensions.

3.7 Loss Function

Loss Function of NAS-bench-101 and NAS-
bench-201 Since the neural architecture perfor-
mance predictor can be viewed as a regression model,
the straightforward idea is to use the mean squared
error (MSE) between the predicted outcome and the
actual outcome as the loss function.

MSE_loss(ŷ, y) =
n∑

i=1

(ŷi − yi)
2 (17)

However, MSE loss forces models to learn to predict
absolute performance rather than relative rankings,
which seems too strict to obtain accurate predictions.
Based on this observation, we performed processing
with MSE loss. We normalize the score of the architec-
ture of the dataset, which is beneficial to increase the
gap between the performance value of two networks
and increase their related ranking information.

Loss Function of NAS-bench-301 and DARTS
Due to the more complex search space of DARTS, it
is not possible to obtain the normalization verification
accuracy and testing accuracy of all architectures in
advance as NAS-bench-101 and NAS-bench-201. We
propose to use a ranking-based loss function to replace
the direct MSE loss. The rank loss can be described
as:

rank_loss(ŷ, y) =
n∑

i=1

[(ŷI(i) − ŷi)− (yI(i) − yi)] (18)

where I(.) is the result of random shuffling of sequences
1 to n.

3.8 Search Method

As shown in Algorithm 1, we use our predictor to en-
hance the predictor-independent search strategy and



A Neural Architecture Predictor based on GNN-Enhanced Transformer

Table 1: Comparison with other methods on NAS-Bench-101. We calculate Kendall’s Tau by predicting accuracy
of all architectures in NAS-Bench-101. “SE” refers to self-evolution proposed by TNASP.

Training samples 100(0.02%) 172(0.04%) 424(0.1%) 424(0.1%) 4236(1%)
Validation samples 200 200 200 200 200
Test samples all all 100 all all

Neural predictor (Wen et al., 2020) 0.391 0.545 0.710 0.679 0.769
NAO (Luo et al., 2018) 0.501 0.566 0.704 0.666 0.775
ReNAS (Xu et al., 2021) - - 0.634 0.657 0.816
GraphTrans (Wu et al., 2021) 0.330 0.472 0.600 0.602 0.700
Graphormer (Ying et al., 2021) 0.564 0.580 0.596 0.611 0.797
GATES (Ning et al., 2020) 0.605 0.659 0.666 0.691 0.822
GMAE-NAS (Jing et al., 2022) 0.666 0.697 0.788 0.732 0.775
TNASP (Lu et al., 2021) 0.600 0.669 0.752 0.705 0.820
TNASP + SE (Lu et al., 2021) 0.613 0.671 0.754 0.722 0.820
PINAT (Lu et al., 2023) 0.679 0.715 0.801 0.772 0.846
GNET(Node) 0.628 0.730 0.766 0.749 0.834
GNET(Connection) 0.705 0.732 0.770 0.759 0.842

Table 2: Comparison with other methods on NAS-Bench-201. We calculate Kendall’s Tau by predicting accuracy
of all architectures in NAS-Bench-201. “SE” refers to self-evolution proposed by TNASP.

Training samples 78(0.5%) 156(1%) 469(3%) 781(5%) 1563(10%)
Validation samples 200 200 200 200 200
Test samples all all all all all

Neural predictor (Wen et al., 2020) 0.343 0.413 0.584 0.634 0.646
NAO (Luo et al., 2018) 0.467 0.493 0.470 0.522 0.526
GraphTrans (Wu et al., 2021) 0.409 0.550 0.594 0.588 0.673
Graphormer (Ying et al., 2021) 0.505 0.630 0.680 0.719 0.776
TNASP (Lu et al., 2021) 0.539 0.589 0.640 0.689 0.724
TNASP + SE (Lu et al., 2021) 0.565 0.594 0.642 0.690 0.726
PINAT (Lu et al., 2023) 0.549 0.631 0.706 0.761 0.784
GNET(Node) 0.559 0.603 0.693 0.718 0.753
GNET(Connection) 0.578 0.634 0.723 0.762 0.794

use it for architecture search on DARTS search space.
The specific process can be described as follows: use
a pre-trained predictor and randomly update the pop-
ulation using an evolutionary algorithm in each itera-
tion to obtain new architectures. After evaluation with
the predictor, we select Top-K architectures each time
according to the score and add them into population
and the architecture pool. Finally, we train the Top-
10 architectures in the architecture pool on CIFAR-10
dataset to obtain the optimal neural architecture.

4 EXPERIMENTS

We verify the performance of our method on three dif-
ferent search spaces, including NAS-Bench-101, NAS-
bench-201(We use the average of five experimental re-
sults for different random number seeds as the final ex-
perimental result), and DARTS. The fusion methods

of the models we used in the experiments on NAS-
bench-101, NAS-bench-201 and DARTS are Cross-
Attention and the GNN part is composed of GAT. We
compare the performance of two different feature selec-
tion methods in NAS-bench-101 and NAS-bench-201,
but we only compared the performance of two differ-
ent feature fusion methods in Ablation Studies. This is
because the experimental results of the two different
fusion methods are not significantly different. More
settings for model training and search hyperparame-
ters will be explained in the supplementary material.

4.1 Experiments on NAS-Bench-101

The NAS-Bench-101 search space consists of 423K
unique convolutional architecture and the space is “op-
eration on nodes” (OON). Each architecture is re-
stricted to the cell space. Each cell can have up to
7 nodes and 9 edges. For each node, the candidate



Xunzhi Xiang, Kun Jing, Jungang Xu

(a) normal cell in DARTS (b) reduction cell in DARTS

Figure 3: Our best searched normal cell and reduction cell.

Algorithm 1: GNET Predictor Based NAS
Input: Search space A, well trained predictor

P , the number of iterations T , the
number of architectures selected by
predictor in each iteration K, the
architecture pool S

1 Initialize the population with random
architectures

2 for t = 1 to T do
3 Generate a set of N candidates by

randomly mutating the M high-accuracy
architectures selected by Tournament in
population

4 For each candidate a ∈ N , evaluate its
performance P (a) by predictor P

5 Choose Top-K candidates by P (a) and add
them into population and architecture
pool

6 Remove the oldest individual from
left of population

7 end
8 Train and evaluate the top-10 architectures in

S to acquire their actual performance metrics
on classification tasks.

Output: the architecture a with the best true
performance.

operations include 1x1 convolution, 3x3 convolution,
and 3x3 max pooling. NAS-Bench-101 provides the
validation accuracy and the test accuracy on CIFAR-
10. Following TNASP, we utilize the validation ac-
curacy from a single run as the training target and
apply the mean test accuracy over three runs as the
ground truth accuracy for evaluating the performance
of our predictions. Refer to settings in related works,
we choose 0.02%, 0.04%, 0.1% and 1% of the whole
data in search space to train the model as our training
data. And we choose 100 samples or all data as the test
set. Following existing works, we use Kendall’s Tau to
evaluate the performance of predictors. In this section,
we highlight the distinct roles of the training and test
sets. The training set is utilized to refine the predic-
tor’s ability to accurately forecast architectural scores.

Conversely, the test set serves to evaluate the align-
ment between the predictor’s score prediction distri-
bution across the entire search space and the genuine
performance distribution, with Kendall’s coefficient as
the metric of assessment. This delineation ensures a
rigorous examination of the predictor’s efficacy. All
our experiments are performed on a Tesla V100.
As shown in Table 1, our predictor has significant per-
formance improvements compared to Neural Predic-
tor, NAO, GraphTrans, and Grapher in terms of small
data volumes. Some unsupervised methods, such as
GMAE, use pre-training method to improve predic-
tor performance when the training set is small, but
our method still exceeds them. Although TNASP uses
SE method for intensive training, our model still ex-
ceeds it, which proves that our model has a stronger
ability to obtain architectural representations by us-
ing GNN to generate extra information. With the in-
crease of training data (0.1%, 1%), the performance
of all models has been significantly improved, but our
predictor still maintains the advantage, although the
performance is slightly lower than PINAT , thanks to
Transformer’s powerful long-range modeling capabili-
ties. In Ablation Studies, we use GIN to replace GAT,
which compensates for our slightly lower performance
than PINAT when training data increases.

4.2 Experiments on NAS-Bench-201

The NAS-Bench-201 search space consists of 15625
unique convolutional architectures and the space is
“operation on edges” (OOE). Each architecture is still
restricted to the cell space. Each cell is composed
of 4 nodes and 6 edges. The candidate operations
on each edge include zeroize, skip connection, 1x1
convolution, 3x3 convolution, and 3x3 average pool-
ing. NAS-Bench-201 (Dong and Yang, 2020) provides
three different results of each architecture (CIFAR-10,
CIFAR-100 and ImageNet). And we choose the vali-
dation accuracy and the test accuracy on CIFAR-10.
Similar to the experimental setup on NAS-Bench-101,
we choose 0.5%,1%,3%,5%, and 10% of the whole data
in the search space as our training data to train the
model. And we choose all the data as the test set.



A Neural Architecture Predictor based on GNN-Enhanced Transformer

(a) Graph network enhancing strategies (b) Numbers of layers (c) Fusion method
Figure 4: Ablation studies

Table 3: Comparison with other methods on DARTS.
Architecture Top1-Acc(%)
VGG-19 (Simonyan et al., 2015) 95.13
DenseNet-BC (Huang et al., 2017) 96.54
Swin-S (Liu et al., 2021) 94.17
Nest-S (Zhang et al., 2022) 96.97
AmoebaNet-A (Real et al., 2019) 96.66
ENAS (Pham et al., 2018) 97.11
PNAS (Liu et al., 2018) 96.59
GHN (Zhang et al., 2019a) 97.16
D-VAE (Zhang et al., 2019b) 94.80
NGE (Li et al., 2020a) 97.40
BONAS-A (Shi et al., 2020) 97.31
CTNAS (Chen et al., 2021) 97.41
CATE (Yan et al., 2021) 97.45
TNASP (Lu et al., 2021) 97.48
PINAT (Lu et al., 2023) 97.58
GNET 97.61

Table 4: Comparison with other methods on NAS-
bench-301.

Architecture Kendall’s Tau Acc
TNASP (Lu et al., 2021) 51.12 0.9402
GNET 64.41 0.9463

As shown in Table 2, our method outperforms other
methods. When the amount of data is small, our
method exceeds the current SOTA method by 0.03%,
even higher than the TNASP assisted by SE. As
TNASP said, when the number of validation samples
is greater than the training samples, the predictor can
get a larger performance improvement using the SE-
framework. This provides evidence that our model can
learn a very effective representation of the architecture
used for accuracy prediction.

4.3 Experiments on DARTS

The architectures in the DARTS search space are com-
posed of normal cells and reduced cells. Each cell con-
sists of 7 nodes and 14 edges. The DARTS search
space is a large space containing approximately 1018

structures and is also “operation on edges” (OOE).
The candidate operations on each edge include 3×3
and 5×5 separable convolutions, 3×3 and 5×5 dilated
separable convolutions, 3×3 max pooling, 3×3 aver-
age pooling, and skip connection. In order to save the
training cost of supernet (Lu et al., 2021, 2023), we
use the performance of the network architecture on
NAS-bench-301 to approximate its true performance
on CIFAR-10 dataset. Afterward, we sampled the ar-
chitecture from NAS-bench-301 to train our predictor
and apply it in an evolutionary algorithm to search
good architectures in the search space.
As shown in Table 3, we can notice that the best-
searched cells get the highest test accuracy 97.61%,
which implies that our predictor learns the effective
correspondence between architecture and accuracy.
We visualize the best searched-architecture in Figure
3. It can be observed that our reduction cell does not
include pooling operations, which is rare in the archi-
tecture sets searched by other methods. This proves
that our predictor can help search strategies find better
neural architectures. We also compared our method
with TNASP’s performance on NAS-bench-301 using
500 samples as the training set. As shown in Table 4,
our method has significant advantages over TNASP,
which proves that it can adapt to more complex search
spaces to achieve better prediction results.

4.4 Ablation Studies

Different Graph Network Enhance Strategies
We compare different graph network enhancing strate-
gies on NAS-Bench-101. As shown in Figure 4(a),
GAT performs better when data is less, while GIN
performs better when data is more. Three different



Xunzhi Xiang, Kun Jing, Jungang Xu

graph network enhancement methods all significantly
outperform TNASP. This validates the effectiveness
of our approach in enriching neural architecture repre-
sentation by integrating extra features via GNN, high-
lighting its superior performance. Compared with the
SOTA method, our method has an advantage when us-
ing GAT with less training data (0.02%, 0.04%), and
has an advantage when using GIN with more training
data (0.1%, 1%).

Different Numbers of Layers The contribution
of our method lies in its ability to enhance the repre-
sentation of neural architectures by fusing GNN fea-
tures and Transformer features in the fuse block. Here,
we attempt to demonstrate that GNN provides crucial
predictive information and investigate how the selec-
tion of number of layers k affects the results. As shown
in Figure 4(b), when k = 0 , our model is equiva-
lent to a simple transformer. Through the introduc-
tion of GNN, the performance of the predictor has sig-
nificantly improved, which indicates that GNN, when
combined with Transformer, does enhance the repre-
sentation of the neural architecture resulting in a more
robust predictor. We choose 3 as the number of layers
in our predictor because as the number of layers fur-
ther increases, the performance of predictor does not
change much and the calculation time will increase.

Cross-Attention VS Structure-Aware We com-
pare the two feature fusion methods on NAS-bench-
101. As Figure 4(c) shows, the performance difference
between the two different feature fusion methods is not
significant, but Cross-Attention performs slightly bet-
ter. Compared to TNASP, the experimental results
of these two fusion methods on various benchmarks
significantly leads in performance, which demonstrate
the effectiveness of both feature fusion approaches in
enhancing neural structure representation.

5 CONCLUSION

In this paper, we propose GNET, a Transformer-based
neural architecture performance predictor, which com-
bines GNN and Transformer to enhance the represen-
tation of neural architectures. Specifically, We pro-
pose two feature fusion and two feature selection meth-
ods, all of which outperform the baseline methods.
Among them, the combination of Cross-Attention and
Connection-based exceeds the state-of-the-art method
on several benchmarks. We are sure that our predictor
can be combined with various search strategies, which
will improve the search efficiency and the performance
ceiling of the searched architecture. We believe that
combining GNNs and Transformers to implement pre-
dictors is a promising approach. In future work, we

will further explore the design of more effective fusion
modules to improve the stability and efficiency of the
neural architecture performance predictor.

References

Uri Alon and Eran Yahav. On the bottleneck of graph
neural networks and its practical implications. In
Proceedings of International Conference on Learning
Representations, ICLR, 2021.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and
Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topolog-
ical view. In Proceedings of AAAI Conference on
Artificial Intelligence, AAAI, pages 3438–3445, 2020.

Dexiong Chen, Leslie O’Bray, and Karsten M. Borg-
wardt. Structure-aware transformer for graph rep-
resentation learning. In Proceedings of International
Conference on Machine Learning, ICML, pages 3469–
3489, 2022.

Yaofo Chen, Yong Guo, Qi Chen, Minli Li, Wei Zeng,
Yaowei Wang, and Mingkui Tan. Contrastive neural
architecture search with neural architecture compara-
tors. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR, pages
9502–9511, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
Proceedings of Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-
HLT, pages 4171–4186, 2019.

Xuanyi Dong and Yi Yang. Nas-bench-201: Ex-
tending the scope of reproducible neural architecture
search. In Proceedings of International Conference
on Learning Representations, ICLR, 2020.

Vijay Prakash Dwivedi and Xavier Bresson. A gener-
alization of transformer networks to graphs. CoRR,
2020.

Jiemin Fang, Yuzhu Sun, Kangjian Peng, Qian
Zhang, Yuan Li, Wenyu Liu, and Xinggang Wang.
Fast neural network adaptation via parameter remap-
ping and architecture search. In Proceedings of In-
ternational Conference on Learning Representations,
ICLR, 2020.

William L. Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In Proceedings of Conference on Neural In-
formation Processing Systems, NeurIPS, pages 1024–
1034, 2017.



A Neural Architecture Predictor based on GNN-Enhanced Transformer

Gao Huang, Zhuang Liu, Laurens van der Maaten,
and Kilian Q. Weinberger. Densely connected con-
volutional networks. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition,
CVPR, pages 2261–2269, 2017.

Kun Jing, Jungang Xu, and Pengfei Li. Graph
masked autoencoder enhanced predictor for neural
architecture search. In Proceedings of International
Joint Conference on Artificial Intelligence, IJCAI,
pages 3114–3120, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
Proceedings of International Conference on Learning
Representations, ICLR, 2017.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper
insights into graph convolutional networks for semi-
supervised learning. In Proceedings of AAAI Con-
ference on Artificial Intelligence, AAAI, pages 3538–
3545, 2018.

Wei Li, Shaogang Gong, and Xiatian Zhu. Neural
graph embedding for neural architecture search. In
Proceedings of AAAI Conference on Artificial Intel-
ligence, AAAI, pages 4707–4714, 2020a.

Zhihang Li, Teng Xi, Jiankang Deng, Gang Zhang,
Shengzhao Wen, and Ran He. GP-NAS: gaussian pro-
cess based neural architecture search. In Proceedings
of IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages 11930–11939, 2020b.

Chenxi Liu, Barret Zoph, Maxim Neumann,
Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan L. Yuille, Jonathan Huang, and Kevin Murphy.
Progressive neural architecture search. In Proceed-
ings of European Conference on Computer Vision,
ECCV, pages 19–35, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
DARTS: differentiable architecture search. In Pro-
ceedings of International Conference on Learning
Representations, ICLR, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. In Proceedings of IEEE Interna-
tional Conference on Computer Vision, ICCV, pages
9992–10002, 2021.

Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and
Ji Liu. TNASP: A transformer-based NAS predic-
tor with a self-evolution framework. In Proceedings
of Conference on Neural Information Processing Sys-
tems, NeurIPS, pages 15125–15137, 2021.

Shun Lu, Yu Hu, Peihao Wang, Yan Han, Jianchao
Tan, Jixiang Li, Sen Yang, and Ji Liu. Pinat: A per-
mutation invariance augmented transformer for nas
predictor. In Proceedings of AAAI Conference on
Artificial Intelligence, AAAI, pages 8957–8965, 2023.

Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu.
Neural architecture optimization. CoRR, 2018.

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong
Chen, and Tie-Yan Liu. Semi-supervised neural ar-
chitecture search. In Proceedings of Conference on
Neural Information Processing Systems, NeurIPS,
2020.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and
Julien Mairal. Graphit: Encoding graph structure in
transformers. CoRR, 2021.

Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang,
and Huazhong Yang. A generic graph-based neu-
ral architecture encoding scheme for predictor-based
NAS. In Proceedings of European Conference on
Computer Vision, ECCV, pages 189–204, 2020.

Kenta Oono and Taiji Suzuki. Graph neural networks
exponentially lose expressive power for node classifi-
cation. In Proceedings of International Conference
on Learning Representations, ICLR, 2020.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V.
Le, and Jeff Dean. Efficient neural architecture search
via parameter sharing. In Proceedings of Interna-
tional Conference on Machine Learning, ICML, pages
4092–4101, 2018.

Ladislav Rampásek, Mikhail Galkin, Vijay Prakash
Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph
transformer. CoRR, 2022.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V. Le. Regularized evolution for image clas-
sifier architecture search. In Proceedings of AAAI
Conference on Artificial Intelligence, AAAI, pages
4780–4789, 2019.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang
Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Self-supervised graph transformer on large-
scale molecular data. In Proceedings of Conference
on Neural Information Processing Systems, NeurIPS,
2020.

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T.
Kwok, and Tong Zhang. Bridging the gap between
sample-based and one-shot neural architecture search
with BONAS. In Proceedings of Conference on Neural
Information Processing Systems, NeurIPS, 2020.



Xunzhi Xiang, Kun Jing, Jungang Xu

Karen Simonyan, Andrew Zisserman, and no name.
Very deep convolutional networks for large-scale im-
age recognition. In Proceedings of International Con-
ference on Learning Representations, ICLR, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of Conference on Neural In-
formation Processing Systems, NeurIPS, pages 5998–
6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceed-
ings of International Conference on Learning
Representations, ICLR, 2018.

Wei Wen, Hanxiao Liu, Yiran Chen, Hai Helen Li,
Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In Proceed-
ings of European Conference on Computer Vision,
ECCV, pages 660–676, 2020.

Colin White, Willie Neiswanger, and Yash Savani.
BANANAS: bayesian optimization with neural archi-
tectures for neural architecture search. In Proceedings
of AAAI Conference on Artificial Intelligence, AAAI,
pages 10293–10301, 2021.

Zhanghao Wu, Paras Jain, Matthew A. Wright, Aza-
lia Mirhoseini, Joseph E. Gonzalez, and Ion Stoica.
Representing long-range context for graph neural net-
works with global attention. In Proceedings of Con-
ference on Neural Information Processing Systems,
NeurIPS, pages 13266–13279, 2021.

Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang,
Shangling Jui, Chunjing Xu, and Chang Xu. Renas:
Relativistic evaluation of neural architecture search.
In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pages 4411–
4420, 2021.

Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang.
CATE: computation-aware neural architecture en-
coding with transformers. In Proceedings of Interna-
tional Conference on Machine Learning, ICML, pages
11670–11681, 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. Do transformers really perform badly for
graph representation? In Proceedings of Conference
on Neural Information Processing Systems, NeurIPS,
pages 28877–28888, 2021.

Chris Ying, Aaron Klein, Eric Christiansen, Este-
ban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture
search. In Proceedings of International Conference on
Machine Learning, ICML, pages 7105–7114, 2019.

Chris Zhang, Mengye Ren, and Raquel Urtasun.
Graph hypernetworks for neural architecture search.
In Proceedings of International Conference on Learn-
ing Representations, ICLR, 2019a.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman
Garnett, and Yixin Chen. D-VAE: A variational au-
toencoder for directed acyclic graphs. In Proceedings
of Conference on Neural Information Processing Sys-
tems, NeurIPS, pages 1586–1598, 2019b.

Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen,
Sercan Ö. Arik, and Tomas Pfister. Nested hierarchi-
cal transformer: Towards accurate, data-efficient and
interpretable visual understanding. In Proceedings of
AAAI Conference on Artificial Intelligence, AAAI,
pages 3417–3425, 2022.

Shenghe Zheng, Hongzhi Wang, and Tianyu Mu.
Dclp: Neural architecture predictor with curriculum
contrastive learning. CoRR, 2023.



Instructions for Paper Submissions to AISTATS 2024:
Supplementary Materials

1 CODE AND DATA

The code of GNET and the datasets are provided as supplementary materials(CODE FOR MODEL). Due to
the page size limitation and the fact that the datasets used in this paper can be easily obtained from GitHub,
only the links to the open-source projects corresponding to the datasets are provided(URL FOR DATASET).
As mentioned in the main text, the results of all comparative experiments come from their original papers, and
the codes and parameters involved are all from corresponding open source projects.

2 COMPLETE METHODS

Due to the page size limitation, we only provide the best model diagram in the main text. As shown in Figure
1, The difference between the two feature fusion methods is that the sources of Q, K, and V are different. The
Cross-Attention-based method uses the features generated by GNN as Q, and the output of Self-Attention as K
and V. The Structure-Aware-based method uses the features of GNN as Q and K at the same time, and uses
the output of Self-Attention only as V. The final performances of the two different methods on NAS-bench-
101 are relatively close, proving that both of our proposed feature fusion methods indeed enhance the graph
representation of neural architectures.
The difference between the two different feature selection methods is that the input to the fuse block is different.
The Node-based method uses the feature e1 of Node embedding as input, while the Connection-based method
takes both the feature e1 of Node embedding and the feature e2 of Connection embedding as input, and finally
splices e1 and the output of the block. The final performances of the two different feature selection methods
are quite different. We analyze that there are two reasons: one is because that the dimension of the feature is
increased after splicing, which increases the parameter amount of the Transformer block and the other reason
is that the single sequence after splicing contains both node features and connection features. The ability to
handle sequences of variable length and to model long-range dependency will be fully utilized.
We introduce the configuration information in our training progress. During training, we set the batch size
to 10, the epoch to 300, the learning rate to 1e-4, and the dimension of encoder output depends on different
methods. Meanwhile, we use an Adam optimizer to optimize the whole network according to the accuracy-rank
task. During testing, we set the batch size to 10240 on both NAS-bench-101 and NAS-bench-201.
In addition, the hyperparameter settings of the predictor in search are given in Table 1.

Table 1: The Hyperparameter Settings of Our Model
Parameter Connection-based Node-based
GNN layers 3 3
layers 3 3
embedding 80 80
fusion block 80 80
self attention 160 80
MLP 160 80

As shown in Table 1, the number of channels in the Self-Attention layer has doubled and the model parameters
of the rest of the layers are the same.

https://github.com/GNET
https://drive.google.com/drive/folders/1T_WlAwr1Cp-C3DEyclITyvUdqY3U8R_q


Manuscript under review by AISTATS 2024

Node 
Embedding

Connection 
Embedding

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Id
en

tit
y

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Id
en

tit
y

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

x N
In

3x3 1x1

pool 1x1

3x3

In

3x3 1x1

pool 1x1

3x3

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar Cr
os

s-
A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar Cr
os

s-
A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

× "

(a) Structure-Aware + Node-based

Node 
Embedding

Connection 
Embedding

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Id
en

tit
y

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Id
en

tit
y

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

x N
In

3x3 1x1

pool 1x1

3x3

In

3x3 1x1

pool 1x1

3x3

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar Cr
os

s-
A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar Cr
os

s-
A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

× "

(b) Cross-Attention + Node-based

Node 
Embedding

Connection 
Embedding

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Se
pa

ra
te

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

Se
pa

ra
te

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

Fe
at

ur
e 

Se
le

ct

Fe
at

ur
e 

Fu
si

one1

e2

Tr
an

sf
or

m
er

 b
lo

ck

M
LP

 D
ec

od
er

Sc
or

e

x N

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar Cr
os

s-
A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

C
on

ca
t

G
N

N

Li
ne

ar
Li

ne
ar

Li
ne

ar Cr
os

s-
A

tte
nt

io
n 

La
ye

rQ

K

V

FF
N

C
on

ca
t

In

3x3 1x1

pool 1x1

3x3

In

3x3 1x1

pool 1x1

3x3

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

e1

e2

× "

(c) Structure-Aware + Connection-based

Figure 1: Complete model



3 RETRAINING SETTINGS ON DARTS

DARTS space is more complex than the search space of NAS-bench-101 and NAS-bench-201. For this reason,
we cannot use Normalization MSE to train predictors, so we consider using rank loss instead. In the search
process, in order to save time and resource consumption, we use the performance of the network architecture on
NAS-bench-301 to approximate its true performance on the CIFAR-10 dataset rather than training a supernet.
Finally, we retrained the best architecture found in the DARTS search space on CIFAR-10 dataset, and the
hyperparameter settings during training follows the DARTS hyperparameter settings shown in Table 2. The
training cost is about 2 GPU-days on a Tesla V100.

Table 2: The Hyperparameter Settings on DARTS
Parameter Connection-based
batch size 96
layers 20
learning rate 0.025
epochs 600
init channels 36
auxiliary weight 0.4
drop path prob 0.2
cutout length 16
grad clip 5

4 ADDITIONAL EXPERIMENTS

4.1 Visualization of Attention Matrix

We compared the attention matrix of TNASP with the attention matrix of our predictor using visualization tools.
The colors from light to dark represent the weight of the attention matrix from large to small, ranging from
1 to 0. Both predictors are trained using 100 neural architectures on NAS-bench-101. As shown in Figure
2, the distribution of attention matrix of TNASP is very uneven, this is because that the simple use of the
Laplacian matrix as location information lacks the ability to make full use of the structural information of neural
architecture. Our method uses GNN to gradually introduce the operation and connection information of the
neural architecture, which not only enhances the sequential modeling ability of the Transformer to the neural
architecture, but also overcomes the inadequacy of GNN’s inability to perform long-distance feature interaction.
It can be seen that there are also extreme points in the attention matrix of the first layer, but in the following
layers, the features gradually concentrate in the output nodes through the information aggregation effect of GNN.
This is more in line with the actual data processing of neural architectures, where the input is passed layer by
layer through the neural network, and the information is finally aggregated to the output.

5 DETAILED EXPLANATIONS OF OVER-SMOOTHING PROBLEM

The reason for over-smoothing is that each convolution operation involves the aggregation of information on
neighbor nodes, and multiple aggregations may lead to the mixing and loss of information. The representation
of nodes will tend to be aggregated, eventually leading to the loss of nodes. Characteristics cannot retain their
original distinctiveness. In the neural architecture, the functions of different alternative operation nodes are
significantly different, so the distinctiveness of the characteristics of different operation nodes must be ensured.



Manuscript under review by AISTATS 2024

(a) First layer of our method (b) Second layer of our method (c) Third layer of our method

(d) First layer of TNASP (e) Second layer of TNASP (f) Third layer of TNASP
Figure 2: Visualization of Attention Matrix


