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Abstract

Surrogate modeling and active subspaces
have emerged as powerful paradigms in com-
putational science and engineering. Porting
such techniques to computational models in
the social sciences brings into sharp relief
their limitations in dealing with discontinu-
ous simulators, such as Agent-Based Models,
which have discrete outputs. Nevertheless,
prior applied work has shown that surrogate
estimates of active subspaces for such estima-
tors can yield interesting results. But given
that active subspaces are defined by way of
gradients, it is not clear what quantity is be-
ing estimated when this methodology is ap-
plied to a discontinuous simulator. We begin
this article by showing some pathologies that
can arise when conducting such an analysis.
This motivates an extension of active sub-
spaces to discontinuous functions, clarifying
what is actually being estimated in such anal-
yses. We also conduct numerical experiments
on synthetic test functions to compare Gaus-
sian process estimates of active subspaces on
continuous and discontinuous functions. Fi-
nally, we deploy our methodology on Flee,
an agent-based model of refugee movement,
yielding novel insights into which parameters
of the simulation are most important across 8
displacement crises in Africa and the Middle
East.

1 INTRODUCTION

In most fields of science and engineering, cutting edge
mathematical models of phenomena are not suscep-
tible to closed-form mathematical analysis, and must
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instead be studied via numerical simulation. One ap-
proach to conducting such a study is via a sensitiv-
ity analysis, which aims to determine what input pa-
rameters, or combinations thereof, the output of a
simulator is most influenced by. In this article, we
will be concerned with the Active Subspace Method
[Constantine, 2015] (ASM, see Section 3.3), a form of
global sensitivity analysis based on analyzing the gra-
dient of the target function. When the computer sim-
ulation is computationally expensive, a common ap-
proach to studying it is to fit a surrogate model, that
is, to estimate a flexible statistical model to sampled
input-output pairs. Furthermore, some early work
has explored porting these tools to simulators of so-
cial scientific phenomena, such as Agent-Based Mod-
els (ABMs). But ABMs represent the sum of discrete
choices made by individuals, and so are inherently dis-
continuous. Nevertheless, nothing prevents an ana-
lyst from fitting a smooth surrogate model to a dis-
continuous simulator and calculating the surrogate’s
active subspace. For instance, [Notestine, 2022] com-
putes various surrogate estimates of the active sub-
space of an ABM of social unrest, and shows that
useful conclusions can be drawn from such an anal-
ysis. We also find promising results in our case study
on an ABM of forced displacement, where a surrogate
active subspace analysis offers novel conclusions and
improves predictive accuracy. But it’s not clear what
is actually being estimated, since an ABM is not dif-
ferentiable and is almost everywhere constant, so the
“true” active subspace is undefined or 0. We might
hope that another sensitivity analytic framework, like
Sufficient Dimension Reduction (see Section 3.4), can
tell us what’s going on. But our Corollary 1 shows
that this is not the case. In this article, we develop an
extension of active subspaces to certain functions with
jump-discontinuities. We find that asymptotically, a
surrogate active subspace analysis will favor discon-
tinuous directions of variation over continuous ones,
and numerically find that in finite samples, the sam-
ple size implicitly parameterizes a trade-off between
continuous and discontinuous directions of variation.

Though there seems to be significant demand for surro-
gate modeling of discontinuous simulators as evidenced
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by the plethora of applied articles expounding their
usefulness (see Section 3.2), the surrogate methodolo-
gist’s conception of a “black-box” is overwhelmingly a
continuous one. This article aims to play some small
part in filling this methodological gap by making the
following contributions:

1. In Section 2, we show that the use of surrogate
active subspaces on simulators with jump discon-
tinuities can lead to unexpected pathologies.

2. We develop an extension of active subspaces to
discontinuous simulators to explain the observed
pathologies and provide a theoretical basis for sur-
rogate active subspace analysis of discontinuous
simulators in Section 4.

3. Section 5 studies the fitness of various Gaussian
process kernels for estimating the active subspace
of discontinuous functions, finding rougher ones
to be best.

4. In our case study of Section 6, we show that sur-
rogate active subspace analysis can lead to quan-
titative results superior to dimension reduction
which avoids gradients altogether and to mean-
ingful qualitative insights.

Additionally to our main contributions, the patholo-
gies we reveal in surrogate discontinuous active sub-
space analysis open the door for significant future work
which we briefly overview in Section 7.

2 MOTIVATION

We begin this section with an overview of the Flee
ABM, the application that motivated this research.
Subsequently, we present two distressing observations
about the empirical behavior of surrogate sensitivity
analysis on discontinuous functions.

2.1 The Flee Simulator

The 21st century may well experience unprecedented
migration due to the changing climate, both environ-
mental ([Wrathall et al., 2019]) and political (includ-
ing the ongoing mass-displacement events in Ukraine
and Gaza), which motivates the study of human migra-
tion. The Flee simulator1 [Suleimenova et al., 2017] is
an ABM of the journeys of forcibly displaced persons.
Agents are displaced over time and move from pop-
ulated areas to refugee camps and neighboring coun-
tries according to simulation parameters, of which we
study 7 in this article (see Table 1). Beyond these pa-
rameters, Flee also requires a spatial context in which

1Flee is licensed under BSD-3.

Figure 1: The cost surface of the Flee simulator for
fixed seed as two parameters are changed and the oth-
ers remain fixed.

to simulate movement. We study six crises result-
ing in forced displacement provided by Flee, namely
the South Sudanese civil war in 2014, the civil war in
the Central African Republic in 2013, the 2012 Malian
coup d’état, the 2013 escalation of Syria’s civil war, the
Ethiopian civil war of 2020 and the 2015 civil unrest
in Burundi. In each case, the simulator compares its
estimates of displacement with ground truth data and
provides a scalar error estimate. We wish to study the
sensitivity of this error with respect to the model pa-
rameters for each context individually. Figure 1 shows
the prediction error of Flee in the Syria case study
with fixed seed2; the discontinuities are prominent.

Parameter Min Max Default
max move speed 0.0 40000 200
max walk speed 0.0 40000 35

camp move chance 0.0 1.0 0.0
conflict move chance 0.0 1.0 1.0
default move chance 0.0 1.0 0.3

camp weight 1.0 10.0 2.0
conflict weight 0.1 1.0 0.2

Table 1: Flee model parameters.

2.2 Divergence of the Classical Active
Subspace Estimate

Though the notion of an active subspace is not well
defined for functions which are not differentiable such
as ABMs, we might hope that fitting an almost-
everywhere-continuous surrogate would lead to a rea-
sonable estimate. In this section, we consider a 1 di-
mensional test function given by the heaviside step
function centered at 0.5. We interpolate this function
at an evenly spaced grid of an ng = 2k points by simply
drawing a line between subsequent observations (Fig-

2As of writing, the seed cannot be set in Flee without
significantly changing the nature of the simulation (i.e. all
agents behaving identically); this figure is for illustrative
purposes only.
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Figure 2: Top: Piecewise linear interpolant of the
heaviside step function. Bottom: The piecewise lin-
ear estimate of active subspace, which diverges.

ure 2, top). All line segments are of slope zero except
for the center-most segment, which has slope n−1, and
extent 1

n−1 . Hence, if si gives the slope of the ith line
segment, the active subspace of the surrogate is given
by (see Section 3.3) 1

ng−1

∑ng−1
i=1 s2i = 1

ng−1 (ng−1)2 =

ng − 1. We thus see that the active subspace estimate
diverges as ng → ∞ (Figure 2, bottom). It is simple in
this case to normalize by n to avoid divergence, and in
any case, the scaling of the sensitivity analysis is not
important. However, this divergence is indicative of a
deeper issue which can lead to unexpected outcomes,
as we discuss next.

2.3 Contradictory Sensitivity Analyses in a
Mixed Simulator

We now consider the two dimensional function f(x) =
1[x1≥0.5] + 6(x2 − 0.5)2, which varies smoothly along
x2 but has a jump along x1 (see Figure 3, top). We
drawN random points in the unit square and use these
to compute a Gaussian process surrogate estimate of
the diagonal elements of the active subspace matrix
normalized to have norm 1, which are indicators of
variable importance (see Section 3.2). For N ≤ 30, we
see that the analysis consistently reports that x2, the
smooth variable is more important (Figure 3, bottom)
than x1. However, for N ≥ 40, this is reversed. As the
design points are placed closer together, the sensitivity
estimate in the smooth direction stabilizes, while that
in the discontinuous direction diverges. Section 4 de-
velops theory explaining this phenomenon, but we first
catch up on the needed methodological background.
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Figure 3: Top: A function with a discontinuity along
the x1 direction and a smooth quadratic form along
the x2 direction. Bottom: As the sample size increases,
the expected importance of the discontinuous direction
overtakes the continuous one.

3 BACKGROUND

We review surrogate modeling of discontinuous simula-
tors and some concepts from linear sensitivity analysis.

3.1 Surrogate Modeling of Computer
Experiments

The practice of Surrogate Modeling [Conti et al., 2009,
Gramacy, 2020] corresponds to the use of flexible sta-
tistical models to approximate parameterized com-
puter simulations, conceptualized as input-output
maps. In this article, we will be interested in study-
ing surrogates of a black-box function f mapping X ⊆
RP → R. Some of our technical results rely on X be-
ing compact, and in the numerical studies it will be the
unit hypercube [0, 1]P . Conceptually, a statistical sur-
rogate can be any regression model. In practice, com-
monly used surrogates include polynomials, Gaussian
processes [Rasmussen and Williams, 2005] and other
nonparametric models.

3.2 Surrogacy for Discontinuous Simulators

Sometimes, there’s an important and well understood
discontinuity that we’d like our surrogate model to
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preserve. For instance, in aerodynamics, the trans-
sonic barrier leads to completely different dynamics on
one side from the other. [Dupuis et al., 2018] use dif-
ferent surrogates for subsonic and various supersonic
operating conditions to accurately capture the jump
as well as faithfully approximate the truth on either
side. In the case of ABMs, this is due to their being
a model of a sum of discrete choices. In other circum-
stances, the discontinuity can be a nuisance caused
not by an underlying natural phenomenon of interest
but rather due to numerical noise or nonconvergence
of the simulation. In such cases, the hope is rather
that the surrogate will paper over the inadequacies of
the model. Take [Huang et al., 2020], whose simulator
exhibited discontinuous jumps related to tolerance pa-
rameters. Between these two extremes lie a number of
other possible situations. In the domain of Structural
Optimization for Crashworthiness, the simulator stud-
ied by [Niutta et al., 2018] has important discontinu-
ities, but the nature and number of them is not known
a priori. The authors estimate the number and lo-
cation of discontinuities using a combined surrogate
approach. [Gorodetsky and Marzouk, 2014] propose
methodology for estimating the location at which a
jump occurs by examining a polynomial interpolant of
the function. [Audet et al., 2022] propose an approach
for Black-Box optimization under the constraint that
the optimum cannot lie near the unknown locations of
discontinuity.

We see that some authors choose to model piecewise-
discontinuous functions with similarly piecewise-
discontinuous surrogates, while others use a global
smooth surrogate. In this article, we will study the
latter approach, finding both positive and negative
results. Some pathologies of fitting continuous in-
terpolants to discontinuous functions have been long
known, such as the tendency for Fourier approxima-
tions to oscillate when approximating discontinuous
functions, which is known as the Gibbs Phenomenon
[Arfken and Weber, 1972, Chapter 14.5]. Indeed, this
is true of any global smooth approximant to a discon-
tinuous function [Butzer et al., 1987].

3.3 Gradient-Based Global Sensitivity
Analysis

For a smooth function f , the gradient ∇f(x) is a nat-
ural way of quantifying the sensitivity of an output to
an input. One strategy for turning this local estimate
of sensitivity into a global one is to integrate it over
the parameter space: Cf,µ =

∫
X ∇f(x)∇f(x)⊤dµ(x).

Here, µ is a probability measure on the input space.
In the computational engineering literature, this of-
ten goes by the name Active Subspace Method
(ASM) [Constantine, 2015], and such expected gra-

dient outer products have also been called Average
Derivative Functionals in the observational context
[Samarov, 1993]. Examination of the eigendecomposi-
tion of Cf,µ gives important linear combinations of in-
puts, which may be viewed as running a principal com-
ponents analysis on randomly sampled gradients of the
target function. When the gradient of the target func-
tion is available, a Monte-Carlo estimate is straight-
forward to form [Constantine and Gleich, 2014]. Oth-
erwise, the strategy of computing the active sub-
space of a surrogate model can be deployed
[Palar and Shimoyama, 2018]. In the observational
context, [Fukumizu and Leng, 2014] produce a kernel
estimate of the active subspace with respect to the em-
pirical measure of a given sample. [Wycoff et al., 2021]
showed that if the surrogate model is a Gaussian pro-
cess with certain kernel functions, the active subspace
is available in closed form.

3.4 Sufficient Dimension Reduction

Another perspective on linear dimension reduction
is that of Sufficient Dimension Reduction (SDR).
Given a measure µ on x, we say that U is a suf-
ficient reduction if P (y|x) = P (y|Ux) [Cook, 1994],
where U is a matrix with range U (though there are
also slightly different definitions and related concepts
[Adragni and Cook, 2009]). See [Ma and Zhu, 2013]
for a review. One approach to estimating sufficient re-
ductions is Sliced Inverse Regression [Li, 1991], which
splits the response y into bins before taking the mean x
value in each bin and performing PCA on the resulting
matrix.

3.5 Ridge Functions

Related to both active subspaces and SDR is the con-
cept of a ridge function [Logan and Shepp, 1975], that
is, a function f : RP → R which takes x → g(Ax)
with A ∈ RR×P for R < P and g : RR → R. Like
SDR, it encapsulates the idea of relationships which
depend solely on certain input dimensions. By com-
parison, the concept of ASM is fuzzier, allowing some
variation in all directions, but focusing it along certain
ones.

4 AN EXTENSION OF THE
ACTIVE SUBSPACE

In this section, we’ll develop an extension of Active
Subspaces to discontinuous functions in order to ex-
plain what is being estimated by the active subspace
of a surrogate model fit to a discontinuous simulator.
The proofs of all results are given in the Supplemen-
tary Materials. Throughout this section, ∥.∥ will re-
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fer to the Euclidean norm, C1 represents the function
space of functions once differentiable on X , Br is the ℓ2
ball of radius r, Γ(x) refers to the special function, and
µ is a probability measure on X and for some results it
will be assumed to have a continuously differentiable
Lebesgue density δ 3. We will consider simulators ab-
stracted mathematically as functions given by the sum
of characteristic functions for sets parameterized by a
differentiable function together with a smooth term,
that is, f(x) =

∑J
j=1 cj1[x∈Sj ] + g(x) where 1[x∈A] is

the function taking value 1 if x ∈ A and zero other-
wise, Sj = {x ∈ X : hj(x) ≤ 0} 4 where hj ∈ C1 for
all j, and g ∈ C1.

Our extension will be built on a continuous analog to a
regression coefficient, intuitively given by the limit of
the OLS estimate based on sampling points uniformly
within a radius r of a given point x as the sample size
tends to infinity.

Definition 1. βr(x) = E
z∈Br

[zz⊤]−1 E
z∈Br

[zf(x+ z)].

To work with βr(x), we will need the following elemen-
tary results (see Supplementary Material), where the
Gamma function arises from the volume of the P -ball:

1.
∫
z∈BP

r
z2i dz = π

P
2 rP+2

2Γ(P+4
2 )

:= ξP r
P+2

2. Ez∈BP
r
[z2i ] =

r2

P+2

This leads to the following result.

Lemma 1. If f consists only of a smooth term g we
have that lim

r→0
βr(x) = ∇f(x). Otherwise, we have

that:

lim
r→0

rβr(x) =

AP

∑
{j:x∈∂Sj}

cj
∇hj(x)

∥∇hj(x)∥2
x ∈ ∪j∂Sj

0 o.w.

(1)

Lemma 1 tells us that βr(x) may be viewed as an ex-
tension of the gradient to possibly discontinuous func-
tions. We next define an integral of this quantity, anal-
ogous to the expected outer product of the gradient in
the smooth case:

Definition 2. Br
f,µ = Ex∼µ[βr(x)βr(x)

⊤].

When the function is indeed smooth, we can recover
the classical active subspace by taking Br

f,µ’s limit.

Theorem 1. If f is once differentiable (i.e. f = g)
then lim

r→0
Br

f,µ = Cf,µ.

3not to be confused with the Dirac delta function, which
does not appear in this article

4Our results hold for Sj defined either by strict or non-
strict inequality, leading to either open or closed sets. For
notational simplicity, we use closed sets throughout.

However, when the function is not smooth, that limit
does not exist. We define our extension of active sub-
spaces to nonsmooth functions as follows:

Definition 3. Bf,µ = lim
r→0

rBr
f,µ.

Next we investigate some properties of Bf,µ which ap-
ply in the general case where f is discontinuous.

Lemma 2. If f(x) is constant along dimension u, and
µ is translation-invariant along u, then u⊤βr(x) = 0.

This lemma shows us that even for finite r, the gra-
dient analogue βr(x) will always point in directions
which the target function vary in. It leads to the be-
low theorem.

Theorem 2. If f(x) = g(Ax) with A ∈ RR×P and
g : RR → R, Range(Br

f,µ) ⊆ Range(A).

This theorem represents our first positive result, show-
ing that ridge functions, including discontinuous ones,
have their ridge structure respected by the extended
active subspace. But the active subspace on contin-
uous functions can tell us more than simply whether
or not a given function has ridge structure or not; it
also gives us the relative importance of different direc-
tions defined in a sum of squares sense. We now turn
to investigating analogous properties of our proposed
extension, starting in one dimension to build intuition.

Lemma 3. If f : R → R is a linear combina-
tion of translated heaviside functions, that is f(x) =∑J

j=1 cj1[x≤τj ], and µ is Lebesgue-continuous with dif-

ferentiable density δ, then lim
r→0

rBr
f,µ = 3

5

∑J
j=1 c

2
jδ(τj).

This lemma shows us that, when properly normalized,
the active subspace extension gives the sum of squared
jumps of a discontinuous function, weighted by the
density of the measure with respect to which it is de-
fined. The following theorem extends this understand-
ing to P dimensions.

Theorem 3. Denoting by BP =
Γ(P

2 +1)2Γ(P+2)
√
πΓ(P+ 5

2 )Γ(
P+3

2 )2
if

the sets Sj are disjoint 5 , then we hve 1
BP

Bf,µ =∑J
j=1 c

2
j

[ ∫
h−1
j (0)

1
∥∇hj(x)∥2

2
∇hj(x)∇hj(x)

⊤δ(x)dSj(x)
]

where Sj is the surface measure on Sj.

Intuitively, the active subspace extension is given by
a weighted sum of an active subspace analogue of the
functions parameterizing the jump points, weighted by
the squared size of the jump and with a degenerate
measure confined to the null-set of hj . However, un-
like the standard active subspace definition, note that
the expression 1

∥∇hj(x)∥2
2
∇hj(x)∇hj(x)

⊤ is invariant

5The expression without the disjointness assumption is
also given in the proof of this theorem in the Supplemen-
tary Material.
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to smooth monotonic transformation to any hj , which
is necessary given that this kind of transformation will
have no effect on f . The following is an immediate
consequence of the fact that the expression in the pre-
ceding theorem does not depend on g, and is our main
negative result.

Corollary 1. For f with both smooth and discontinu-
ous components, the range of Bf,µ does not necessarily
contain the SDR space.

This tells us that the extended active subspace ignores
smooth directions of hybrid smooth-discontinuous
functions. It helps to explain the contradictory behav-
ior we observed when estimating a surrogate’s active
subspace fit to a discontinuous function in Section 2.3.

We now study the limiting behavior of the active
subspace of a Nadaraya–Watson kernel regression
[Simonoff, 2012] with vanishing kernel bandwidth and
a large sample.

Theorem 4. Let m(x) denote the Nadaraya–Watson

kernel estimate using kernel k(x)1,x2) = d(∥x1−x2∥2√
l

)

for decreasing scalar function d. Under regularity con-
ditions enumerated in the supplementary material

lim
l→0

lim
n→∞

√
l

∫
x∈[0,1]P

∇m(x)∇m(x)⊤dµ = CBf,µ (2)

where C is a constant depending only on k and P .

We suspect that a Gaussian process would exhibit sim-
ilar behavior.

Conjecture 1. For suitable kernel functions, the lim-
iting posterior active subspace

lim
l→0

lim
n→∞

√
l

∫
x∈[0,1]P

∇f(x)∇f(x)⊤P (f |Xn,yn)dµ

(3)
is given by CBf,µ, where P (f |Xn,yn) is a Gaussian
process posterior and C is a constant depending only
on the kernel and P .

5 NUMERICAL STUDY OF
KERNEL ESTIMATES

We now study the capability of Gaussian Process
surrogates to estimate the active subspace of ridge
functions with direction u on two smooth functions
f1(x) = (u⊤x)2 and f2(x) = e−(u⊤x)2 and two
discontinuous functions f3(x) = 1[u⊤(x−0.51)≥0] and
f4(x) = 1

[sin
(

10π
P u⊤(x− 1

2 )
)
≥0]

(visualized in 2D in Fig-

ure 4, top). For each function, with samples sizes N ∈
{50, 100, 150, 200} and in dimensions P ∈ {3, 5, 7},
we fit a Gaussian process with Gaussian, Matérn 5

2 ,

or Matérn 3
2 kernels, which lead to infinitely differen-

tiable, twice differentiable, or once differentiable sur-
rogates, respectively [Williams and Rasmussen, 2006,
Chapter 4] using the defaults of hetGP package’s
mleHomGP. We compute their active subspace using the
R package activegp. Then, we measure the cosine of
the angle between u and the leading eigenvector of the
estimated active subspace matrix, which serves as our
error measure. We repeat the experiment 30 times,
sampling u uniformly at random on the unit P -sphere.

Figure 4 shows the results in dimension 7 (the oth-
ers are qualitatively similar and in the Supplementary
Material). We see that on the smooth functions, the
Gaussian and Matérn 5

2 kernels are better able to ex-
ploit smoothness which leads to better subspace esti-
mates. Conversely, when the function is nonsmooth,
the rougher Matérn 3

2 kernel dominates in terms of er-
ror. Though, strictly speaking, the Matérn covariance
is still “wrong” insofar as the true simulator is not
continuous whereas the surrogate is continuously dif-
ferentiable, it seems that its discontinuous higher order
derivatives still allow it to do a better job matching the
active subspace than smoother kernels.

6 Flee CASE STUDY

In this section we deploy active subspaces to the Flee
ABM (see section 2.1). We generated a sample of
500 randomly distributed points within the parameter
ranges for each of the six case studies and evaluated
Flee at each of the design points. We calculated active
subspace estimates using Matérn 3

2 kernels fit to the
entire dataset, and found that the South Sudan study
had an active subspace of dimension 2, the Mali study
one of dimension 3, and all others one of dimension 1
(Figure 5, bottom).

6.1 Quantitative Prediction Comparison

To quantitatively evaluate the active subspace sen-
sitivity, we compare the performance of predictive
models fit to simulator data, both with and without
“prewarping” [Wycoff et al., 2022] the points with the
active subspace. As predictive models, we consider
K nearest neighbors regression using the caret

[Kuhn and Max, 2008] R package, local approxi-
mate Gaussian processes [Gramacy and Apley, 2015]
using the laGP [Gramacy, 2016] R package, ker-
nel regression using the npregbw command of
the np [Hayfield and Racine, 2008] R package,
and a random forest using the randomForest

[Liaw and Wiener, 2002] library, all using default
parameters.

We fit these models on the raw data as a baseline, and
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Figure 4: Top: Visualizations of test functions in 2D. Bottom: Mean subspace error for Gaussian Process
estimates of the active subspace for various kernel functions. Solid line gives median and dotted lines give 25th
and 75th percentiles.

then compare to several transformations of the input
data. First, by transforming x̃i = Lx, where L = Λ

1
2U

and Bf,µ = UΛU⊤. We also consider truncating the
warped data to a lower dimensional space by taking
only the leading columns of L. We compare this ap-
proach to a projection based on Sliced Inverse Regres-
sion, an SDR method. For truncated active subspace
and SIR, we set the dimension of the reduced space
to that determined by the eigenanalysis of the active
subspace estimated on the full data. We perform 10-
fold CV to estimate predictive accuracy. On KNN and
laGP, the truncated active subspace method tends to
perform best, sometimes tying with the SIR model,
and losing to it on the CAR case study. Furthermore,
it improves over the original KNN by an order of mag-
nitude on South Sudan, Syria, Ethiopia and Burundi.
For the kernel regression on the other hand, methods
that do not truncate seem to do better. The best per-
forming method is more variable with random forests,
though on Burundi and South Sudan case studies the
truncated active subspace provides an advantage.

6.2 Qualitative Findings

Interestingly, we find that the majority of the load-
ings of the first and second eigenvectors tend to map
onto a single variable, with the exception of Bu-
rundi’s second eigenvector (Table 2). We find that
the camp weight variable is most important for the
Mali, Syria, Ethiopia and Burundi case studies, while
conflict weight is most important for the CAR and

Sudan case studies (Table 3).

We compute a projection of the 500 design points using
the first two eigenvectors for each case study, shown
in Figure 5, middle. For South Sudan, Syria, Ethiopia
and Burundi, the surrogate active subspace seems to
capture the majority of the variation in the response.
This is not the case for Mali, which is unsurprising
given the fact that the spectrum of the active subspace
matrix indicated a three dimensional subspace. The
Central African Republic, on the other hand, has sig-
nificant outliers not explained by a higher dimensional
subspace being present. Furthermore, recall that the
quantitative study showed little variation across differ-
ent methods, indicating that linear dimension reduc-
tion may not be suitable for this problem.

Flee has previously been studied via simulation study
[Suleimenova et al., 2021], though of a very different
kind. Whereas that study focused in on parameter
settings very near the actually used parameters, we
have here globally explored the simulator across an
entire range of hyperparameter settings. Though this
gives us a bird’s eye view, it may also make it hard
to see exactly what’s happening the in regions of the
space near the commonly used parameter settings.

7 DISCUSSION

Summary: In this article, we discussed some patholo-
gies associated with surrogate estimation of active
subspaces for functions with smooth and discontinu-
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Figure 5: Flee simulator case study. Top: Active subspace projections of entire data sets. Middle: 10-fold
CV predictive MSE with KNN. Competitors from left to right are KNN with no warping (Ident), with active
subspace rotation only (ASM), with active subspace rotation and truncation (ASMt), and with SIR projection
(SIR); lower is better. Bottom: Eigenvalues of surrogate active subspace matrices for each case study; gaps
between subsequent eigenvalues indicate presence of active subspace.
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1st Eigenvectors:
Param S. Sudan Mali Syria Ethiopia Burundi CAR
MMS 0.01 -0.00 -0.00 -0.00 -0.00 -0.00
MWS -0.01 0.00 0.00 0.00 -0.00 -0.00
CMC 0.00 -0.00 0.00 -0.01 0.00 -0.00

CoMC 0.02 -0.20 -0.00 0.00 -0.00 0.00
DMC -0.01 0.00 -0.00 -0.00 -0.01 -0.00
CW 0.01 0.98 1.00 1.00 1.00 0.00

CoW 1.00 0.00 -0.01 0.03 -0.04 1.00

2nd Eigenvectors:
Param S. Sudan Mali Syria Ethiopia Burundi CAR
MMS -0.01 0.00 -0.04 0.06 -0.09 1.00
MWS 0.01 0.00 0.11 0.05 0.09 0.00
CMC -0.01 0.00 0.05 0.03 -0.36 0.00

CoMC 0.02 0.98 -0.00 0.01 -0.61 -0.00
DMC 0.01 0.00 -0.06 -0.03 0.33 -0.01
CW 1.00 0.20 0.01 -0.03 0.03 0.02

CoW -0.01 0.00 0.99 1.00 0.61 0.00

Table 2: Top two eigenvectors of estimated active
subspace. MMS is Max Move Speed, MWS is Max
Walk Speed, CMC is Camp Move Chance, CoMC is
Conflict Move Chance, DMC is Default Move Chance,
CW is Camp Weight and CoW is Conflict Weight.

S. Sudan Mali Syria Ethiopia Burundi CAR
1 CoW CW CW CW CW CoW
2 CW CoMC CoW CoW CoW - CMC MMS

Table 3: Qualitative Representation of Eigenvectors;
see Table 2 caption.

ities components, and developed an extension of ac-
tive subspaces to explain them. In our case study,
we found that the surrogate active subspace esti-
mates were for the most part axis-aligned. This
was a surprising result; on most case studies to
which active subspaces are deployed, the discov-
ered dimensions are combinations of input parameters
(e.g. [Lukaczyk et al., 2014, Constantine et al., 2016,
Grey and Constantine, 2018]), however, visualization
of the projected design points showed that the active
subspaces did indeed accurately capture variation in
the function, with the exception of the Mali and CAR
case studies, which had too high a dimensional sub-
space or no clear linear subspace, respectively. Fur-
thermore, it was interesting that both the dimension
of the active subspaces and the type of active subspace
varied from case study to case study, even for the same
simulator and set of parameters.

Conclusions: Our numerical and analytic results pro-
vide us with several important conclusions. In study-
ing a simulator with important smooth and discontin-
uous structure, we should keep in mind that by choos-
ing a sample size, we are implicitly choosing a tradeoff
between them, and that for sufficiently large sample
sizes, the smooth directions will be lost. Furthermore,
our analysis, via reasoning by limit arguments, puts
into sharp relief a choice that is made when we do ac-
tive subspaces: by squaring the gradient, we prioritize
sharp jumps over gradual ones, even on fully differ-
entiable simulators. This study also proved the via-
bility of estimating the sensitive directions of a piece-

wise constant discontinuous function using continuous
surrogates, namely Gaussian processes, and our nu-
merical experiments suggest that best accuracy may
be achieved by using minimally differentiable kernels,
namely the Matérn 3

2 . In this article we tried to show
what analysts are actually estimating when doing sur-
rogate ASM on discrete simulators, in effect cautiously
endorsing such analyses. Another reaction might have
been condemnation: why use active subspaces when
there are perfectly good dimension reduction tools not
reliant on gradients? Our case study shows that on
some applications, the ASM does better than SIR, a
tool which does not use gradient structure, lending an
empirical argument for discrete ASM deployment.

Future Work: This work left open some interest-
ing questions, notably Conjecture 1. Additionally,
it would be interesting to determine if it is possi-
ble to evaluate Bf,µ analytically for Gaussian pro-
cess surrogates that are not differentiable in mean
square, such as a Matern 1

2 process. Also, in reveal-
ing some pathologies of the ASM on mixed smooth-
discontinuous simulators, we believe we have opened
the door to future work which allows for explicit set-
ting of a tradeoff between them. One approach would
be a hyperparameter governing the relative strength
of the two, by decomposing sensitivity into smooth
and nonsmooth parts, or by using a different defini-
tion which directly avoids the delineated pathologies.
In clarifying the behavior of surrogate active subspaces
on fully discontinuous simulators, we hope to lend fur-
ther theoretical understanding of future applied case
studies. Finally, an implication of our work is that sur-
rogate active subspaces may be useful in the context
of mostly smooth simulators with unknown disconti-
nuities. Whereas [Gorodetsky and Marzouk, 2014] de-
velop an algorithm for determining where discontinu-
ities occur, this proposed future work would determine
along which directions discontinuities occur simply by
conducting surrogate active subspace analysis on the
simulator with a sufficiently large sample size. Some
work would be required to determine how large is large
enough, and how to best benefit from knowledge of
these directions.
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Supplementary Materials

This document contains full proofs for the results given in the main paper’s Section 4 in its first Section (Ele-
mentary Result 1, Elementary Result 2, Lemma 1, Lemma 2, Theorem 1, Theorem 2, Theorem 3, Theorem 4).
It also contains a two-dimensional numerical illustration of Theorem 3. Finally, it provides an extended version
of Section 5 of the main paper.
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1 Proofs

We begin with a proof of each result. We then provide a numerical illustration of Theorem 3.

Elementary Result 1:
∫
z∈BP

r
z2i dz = π

P
2 rP+2

2Γ(P+4
2 )

:= ξP r
P+2

Proof.
∫
x∈BP

r
x21 =

∫
xi∈[−r,r]

x21
∫
xc∈BP−1√

r2−x2
i

dxcdxi. Since the volume of the ball with radius ρ in dimension

D is π
D
2

Γ(D
2 +1)

ρP , the integral may be re-expressed as: π
P−1

2

Γ(P−1
2 +1)

∫
x∈[−r,r]

x2i (r
2 − x2i )

P−1
2 dxi, and noting that∫

x∈[−r,r]
x2i (r

2 − x2i )
P−1

2 dxi =
√
πrP+2Γ(P+1

2 )

2Γ(P+4
2 )

and that
Γ(P+1

2 )

Γ(P−1
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2 +2)
= 1

Γ(P+4
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yields the answer.

Elementary Result 2:

Ez∈BP
r
[z2i ] =

r2

P + 2
(1)

Proof. Follows from dividing the result in the preceding Elementary Result by the volume of the P -ball.

Lemma 1. 1. If f consists only of a smooth term g we have that lim
r→0

βr(x) = ∇f(x).

2. Otherwise, we have that:

lim
r→0

rβr(x) =

{
AP

∑
{j:x∈∂Sj} cj

∇hj(x)
∥∇hj(x)∥2

x ∈ ∪j∂Sj

0 o.w.
(2)

Proof. Part 1 Expanding f(z) about x and plugging in to our expression gives

E
z∈Br

[zf(z)] = E
z∈Br

[z
(
f(x) +∇f(x)⊤(z− x) + o(r)

)
] = E
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Then βr(x) = E
z∈Br

[zz⊤]−1 E
z∈Br

[zf(x+ z)] = ∇f(x) + o(r).

Part 2

Let us first assume that the target function is a single jump function, namely f(x) = 1{x∈S}. Fix some point
x ∈ ∪j∂Sj and some other point x̃ such that ∥x− x̃∥2 ≤ r.

By Elementary Result 1, the first term evaluates to 1
ξP rP+2 I, so that βr(x̃) =

1
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We will denote δ = x̃− x.
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The first inner integral is just the volume of the ball and the second is symmetric and vanishes, leaving us with∫
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Γ(P−1
2 + 1)

∇h(x)
∥∇h(x)∥

∫ −lh

sh=−r

sh

(
r2 − s2h

)P−1
2

dsh (9)

=
π

P−1
2

Γ(P+1
2 )

(
− (r2 − l2h)

P+1
2

P + 1

) ∇h(x)
∥∇h(x)∥

. (10)

For the second term of 6, we know that∥∥∥ ∫
{z∈Br:|∇h(x)⊤z|≤|g(z)|}

zdz
∥∥∥
ℓ∞

≤ rµ({z ∈ Br : |∇h(x)⊤z| ≤ |g(z)|}) ≤ r
(
max
z∈Br

|g(z)|rP−1
)
= max

z∈Br

|g(z)|rP

(11)

Combining 10 and 11 and defining C1 = π
P−1

2

Γ(P+1
2 )(P+1)

βr(x̃) =
1

ξP rP+2

[
C1(r

2 − l2h)
P+1

2
−∇h(x)
∥∇h(x)∥

+ o(r)rP

]
(12)

⇐⇒ rβr(x̃) = AP
(r2 − l2h)

P+1
2

rP+1

−∇h(x)
∥∇h(x)∥

+ o(1) (13)

with AP = C1

ξP
=

2Γ(P+4
2 )

√
π(P+1)Γ(P+1

2 )
.

In particular, if x̃ = x then t = 0 and we have:

rβr(x̃) = AP
−∇h(x)
∥∇h(x)∥

+ o(1) . (14)

This establishes the desired result for the case where f is the characteristic function associated with a single set
parameterized by a smooth curve. Now let us consider a general f = g+

∑J
j=1 cj1Sj . Since βr(x) is linear in f ,

we have that:

lim
r→0

rβr(x) = AP

∑
{j:x∈∂Sj}

cj
∇hj(x)
∥∇hj(x)∥

+ o(1) (15)

since the term involving g goes to zero.

Theorem 1. If f is once differentiable (i.e. f = g) and bounded on X , compact, then lim
r→0

Br
f,µ = Cf,µ.

Proof. We need only show that the limit and integral may be interchanged. The assumptions have been made
such that Lebesgue’s Dominated Convergence Theorem applies, taking the dominating function to be the constant
function with constant given by the max of |f | on [0, 1]P .

Lemma 2. If f(x) is constant along dimension u, and µ is translation-invariant along u, then u⊤βr(x) = 0.

Proof. E
z∈Br

[zf(z)]⊤u = E
z∈Br

[f(z)z⊤u] which may be written as
∫
z∈Br

f(z)z⊤udµ. Define z⊤u = xu and the

orthogonal component as zc and denote by [z] the equivalence class of z modulo span(u). Then break up the
integral as

∫[
0
zc

]
∈Br

∫[
zu
zc

]
∈Br

f(z)zu or
∫[

0
zc

]
∈Br

f([z])
∫[

zu
zc

]
∈Br

zu . The proof is concluded by noting that the

inner integral vanishes.
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Theorem 2. If f(x) = g(Ax) with A ∈ RR×P and g : RR → R, Range(Br
f,µ) ⊆ Range(A).

Proof. This follows from Lemma 2 together with the fact that integrating over matrices with a common nullspace
preserves it.

Lemma 3. If f : R → R is a linear combination of translated heaviside functions, that is f(x) =
∑J

j=1 cj1[x≤τj ],

and µ is Lebesgue-continuous with differentiable density δ, then lim
r→0

5r
3 Br

f,µ =
∑J

j=1 c
2
jδ(τj).

Proof. For a given x, if [x− r, x+ r] does not contain any τj , then:

E
z∈Br

[zf(x+ z)] = f(x− r) E
z∈Br

[z] = 0 . (16)

For r < minj1,j2
|τj1−τj2 |

2 , each region [x − r, x + r] can contain at most one τj , and only such regions will
contribute to the integral, such that:∫

x∈[0,1]

βr(x)2dµ =
J∑

j=1

∫ x=τj+r

x=τj−r

βr(x)2δ(x)dx , (17)

where we have assumed for simplicity that there is no τj on the boundary (which would correspond simply to
shifting the function by a constant).

For an individual βr(x), we get that

βr(x) =

∫ r

−r
zf(x+ z)dz∫ r

−r
z2dr

=

∫ r

−r
zf(x+ z)dz

2
3r

3
. (18)

Near x, we can write f(x+ z) = f0 + 1z>τj−x, and simplify the integral in the numerator as∫ r

−r

zf(x+ z)dz = f0

∫ r

−r

zdz +

∫ r

−r

z1z>τj−xdz =

∫ r

τj−x

zdz =
r2 − (τj − x)2

2
. (19)

Thus

βr(x) = c2j
3

4

(1
r
− (τj − x)2

r3
)
. (20)

Now we turn our attention to
∫ x=τj+r

x=τj−r
βr(x)2δ(x)dx. Expanding the density, δ(x) = δ(τj) + δ′(τj)(x− r) + o(r),

and plugging into
∫ x=τj+r

x=τj−r
βr(x)2δ(x)dx yields:

δ(τj)

∫ x=τj+r

x=τj−r

βr(x)2dx+ δ′(τj)

∫ x=τj+r

x=τj−r

βr(x)2(x− τj)dx+ o(r)

∫ x=τj+r

x=τj−r

βr(x)2dx . (21)

Since
∫ τj+r

τj−r

(
1
r −

(τj−x)2

r3

)2
= 16

15r , and
∫ τj+r

τj−r

(
1
r −

(τj−x)2

r3

)2
(x−τj) = 0, the expression resolves to c2jδ(τj)

3
5r +o(r).

Thus limr→0
5r
3

∫
x∈[0,1]

βr(x)2dµ =
∑J

j=1 c
2
jδ(τj).

Theorem 3. Denoting by BP =
Γ(P

2 +1)2Γ(P+2)
√
πΓ(P+ 5

2 )Γ(
P+3

2 )2
and by Sj the surface measure of ∂Sj,

1
BP

Bf,µ =∑J
j=1 c

2
j

[ ∫
h−1
j (0)

1
∥∇hj(x)∥2

2
∇hj(x)∇hj(x)⊤δ(x)dSj(x)

]
.

Proof. Let’s begin again by considering only a single characteristic function f(x) = 1{x∈S}.

We denote F = rβrβ
⊤
r (x)δ(x). Since F = 0 at any x sufficiently far from S,



∫
[0,1]P

F (x)dx =

∫
{x:dist(x,S)≤r}

F (x)dx (22)

Let {Ui, ψi}Ii=1 be an atlas for S. I is finite because S is compact (since it resides in [0, 1]P ).

We define functions Fi, each compactly supported on Ui, such that F =
∑I

i=1 Fi using a partition of unity, and
write:

I∑
i=1

∫
{x:∃x̃∈U,t∈[−r,r] s.t.x=x̃+t

∇h(x̃)
∥∇h(x̃)∥}

Fi(x)dx (23)

=

I∑
i=1

∫
x̃∈Ui

∫
t∈[−r,r]

Fi

(
ψi(x̃) + t

∇h(x̃)
∥∇h(x̃)∥

)
|det∇Ψ(x̃, t)|dtdx̃ (24)

where Ψ(x̃, t) = ψi(x̃) + t ∇h(x̃)
∥∇h(x̃)∥ .

We note that |detΨi(x̃, t)| = |detΨi(x̃, t)Ψi(x̃, t)
⊤| 12 = |detψi(x̃)ψi(x̃)

⊤| because ∇x̃ψi(x̃)
⊤∇x̃

∇h(x̃)
∥∇h(x̃)∥ = 0.

Plugging this in and using 13 a few lines later yields:

I∑
i=1

∫
x̃∈Ui

|det∇ψ(x̃)ψ(x̃)⊤| 12
[∫

t∈[−r,r]

Fi

(
ψi(x̃) + t

∇h(x̃)
∥∇h(x̃)∥

)
dt

]
dx̃ (25)

=

I∑
i=1

∫
x̃∈Ui

|det∇ψ(x̃)ψ(x̃)⊤| 12
[
r

∫
t∈[−r,r]

βr(x̃)βr(x̃)
⊤δ(x̃)dt

]
dx̃ (26)

=

I∑
i=1

∫
x̃∈Ui

|det∇ψ(x̃)ψ(x̃)⊤| 12
[
A2

P

∇h(x̃)∇h(x̃)⊤

∥∇h(x̃)∥2
δ(x̃)r

∫
t∈[−r,r]

(r2 − t2)P+1

r2P+4
dt+ o(1)

]
dx̃ (27)

=

I∑
i=1

∫
x̃∈Ui

|det∇ψ(x̃)ψ(x̃)⊤| 12
[
A2

P

∇h(x̃)∇h(x̃)⊤

∥∇h(x̃)∥2
δ(x̃)r

[√
πΓ(P + 2)

Γ(P + 5/2)

r2P+3

r2P+4

]
+ o(1)

]
dx̃ (28)

:=

I∑
i=1

∫
x̃∈Ui

|det∇ψ(x̃)ψ(x̃)⊤| 12
[
BP

∇h(x̃)∇h(x̃)⊤

∥∇h(x̃)∥2
δ(x̃) + o(1)

]
dx̃ (29)

Taking the limit and using the definition of integration over a manifold yields:

lim
r→0

∫
x∈[0,1]P

rβrβ
⊤
r (x)δ(x)dx =

I∑
i=1

∫
x̃∈Ui

|det∇ψ(x̃)ψ(x̃)⊤| 12BP
∇h(x̃)∇h(x̃)⊤

∥∇h(x̃)∥2
dx̃ (30)

= BP

∫
x∈S

∇h(x)∇h(x)⊤

∥∇h(x)∥2
dS(x) (31)

where S is the surface measure of S, and the constant is given by:

BP =
Γ(P2 + 1)2Γ(P + 2)
√
πΓ(P + 5

2 )Γ(
P+3
2 )2

, (32)

which we can verify resolves to 3
5 when P = 1, as Lemma 3 demands.

This establishes the behavior for f given by a single characteristic function. We’d now like to consider f of
the form f = g +

∑J
j=1 cj1Sj

. We will split this into two cases. First, assume that there is a positive r∗ that
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separates the Sj . In such a case, taking r < r∗

2 , we can split the integral into J independent integrals containing
each curve, yielding:

lim
r→0

∫
x∈[0,1]

rβr(x)βr(x)
⊤dµ = BP

J∑
j=1

c2j

∫
x∈S

∇hj(x)∇hj(x)⊤

∥∇hj(x)∥2
δ(x)dSj(x) . (33)

This will also cover the case where the boundaries only intersect briefly by passing through each other, or in any
way such that the surface measure of the intersections are zero.

But in many cases, such as in the Flee example given in this article, we will have edges shared by more than one

Sj (see Figure 1). But if i and j share an edge, we will have that ∇hi(x)
∥∇hi(x)∥ =

∇hj(x)
∥∇hj(x)∥ on that edge. This means

that we have

lim
r→0

rβr(x) = AP

( ∑
{j:x∈Sj}

cj

)
∇hi(x)
∥∇hi(x)∥

⇐⇒ lim
r→0

rβr(x)βr(x)
⊤ = A2

P

( ∑
{j:x∈Sj}

cj

)2
∇hi(x)∇hi(x)⊤

∥∇hi(x)∥2
(34)

where i is any index in {j : x ∈ Sj}.

Now we partition ∪
j∈{1,...,J}

∂Sj into disjoint intervals Ci such that for all x ∈ Ci, there is some fixed index set Ii
such that x belongs to the boundary of every Sj for j ∈ Ii.

This gives us:

lim
r→0

∫
x∈[0,1]

rβr(x)βr(x)
⊤dµ = BP

∑
i

∫
{x∈Ci}

( ∑
{j:x∈Sj}

cj

)2
∇hi(x)∇hi(x)⊤

∥∇hi(x)∥2
δ(x)dSj(x) . (35)

In the event of functions hj which are only piecewise continuous, again as in the Flee simulator, we can apply
the above results on each of the continuous parts and sum.

Theorem 4. Given a dataset U, y = f(U), the NW kernel estimate is m(x) = k(x,U)⊤y
k(x,U)⊤1

. Let k(x1 − x2) =

d
(∥x1−x2∥2√

l

)
be a stationary kernel such that:

1. d is diffeomorphic and decreasing.

2.
∫∞
z=R

d(z) ≤ e
−R2

C for some constant C.

3. d(0) = 1, d(∞) = 0.

4.
∫∞
0

d′( τ√
l
)

τ dτ is finite for sufficiently small l.

The Gaussian kernel is such a kernel. Assume the data U are iid uniformly distributed. Then we have

lim
l→0

lim
n→∞

∫
x∈[0,1]P

√
l∇m(x)∇m(x)⊤dµ = C lim

r→0

∫
x∈[0,1]P

rβr(x)βr(x)
⊤dµ (36)

where C is a constant depending only on k and P .

Proof. If ∇k(x,U) ∈ RN×P is the Jacobian of the kernel, the gradient of the NW predictor is:

∇k(x,U)⊤(k(x,U)⊤1)y − (k(x,U)⊤y)∇k(x,U)1

(k(x,U)⊤1)2
∈ RP . (37)

Reorganizing gives:
(y − v

w1)∇k(x,U)

w
, (38)



where w = k(x,U)⊤1 =
∑N

n=1 k(x,un) and v = k(x,U)⊤y.

Thus, limn→∞
w
n = E

u∼U [0,1]
[k(x,u)] := w0 and limn→∞

v
n = E

u∼U [0,1]
[k(x,u)y(u)] := v0.

lim
n→∞

∑N
i=n

(
y(ui)−

v
N
w
N

)
(x− ui)k(x− ui)

N w
N

(39)

=
Eu∼U [0,1]P [(f(u)− v0

u0
)(x− u)k(x− u)]

w0
=

1

w0

∫
u∈[0,1]P

(f(u)− v0
w0

)(x− u)k(x− u)du . (40)

We now take a change of variables z = x− u, yielding:

1

w0

∫
{z∈RP :z+x∈[0,1]P }

(f(x+ z)− v0
w0

)zk(z)du (41)

=
1

w0

∫
{z∈Br:z+x∈[0,1]P }

(f(x+ z)− v0
w0

)zk(z)du+
1

w0

∫
{z∈RP \Br:z+x∈[0,1]P }

(f(x+ z)− v0
w0

)zk(z)du . (42)

Let us denote N = {z ∈ RP \ Br : z+ x ∈ [0, 1]P }.

We can bound the second term, denoting the measure with Lebesgue-density k(z) as λ and f∗ the value of f
maximizing |f(x̃)− v0

w0
| for x̃ ∈ [0, 1]P :

∣∣∣∣∣
∫
N
(f(x+ z)− v0

w0
)zk(z)du

∣∣∣∣∣ ≤ |f∗ − v0
w0

|
√
Pλ(N ) ≤ |f∗ − v0

w0
|
√
P

1√
l
e
− lr2

C2
s := C1

1√
l
e
− r2

lC2
s (43)

and since the zk(z) integrates to 0 over the ball, we get:

1

w0

∫
{z∈RP :z+x∈[0,1]P }

(f(x+ z)− v0
w0

)zk(z)du (44)

=
1

w0

∫
{z∈Br:z+x∈[0,1]P }

f(x+ z)zk(z)dz+O(e
− r2

lC2
s ) (45)

We’d like to pick r in terms of l such that as l → 0, r → 0 but r2

l → ∞. One such r = l
1
4 .

By the fundamental theorem of calculus d( t√
l
) = −

∫∞
t

1√
l
d′( τ√

l
)dτ = − 1√

l

∫∞
0
d′( τ√

l
)1[t≤τ ]dτ , so:

∫
{z∈Br:z+x∈[0,1]P }

f(x+ z)zk(z)dz (46)

=
1√
l

∫
{z∈Br:z+x∈[0,1]P }

f(x+ z)z

∫ ∞

0

d′(
τ√
l
)1[t≤τ ]dτdz (47)

=
1√
l

∫ ∞

0

d′(
τ√
l
)

∫
{z∈Br:z+x∈[0,1]P }

f(x+ z)z1
[
∥z∥2√

l
≤τ ]

dzdτ (48)

=
1√
l

∫ ∞

0

d′(
τ√
l
)βτ (x)dτ =

1√
l

∫ ∞

0

d′( τ√
l
)

τ
τβτ (x)dτ . (49)

Thus
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lim
l→0

√
l

∫
{z∈Br:z+x∈[0,1]P }

f(x+ z)zk(z)dz = lim
l→0

lβl(x)

∫ ∞

0

d′( τ√
l
)

τ
dτ := Cd lim

l→0
lβl(x) , (50)

where Cd = liml→0

∫∞
0

d′( τ√
l
)

τ dτ is a constant independent of x. Since the quantities converge pointwise and the
integrand is bounded and over a compact set, we have convergence of the integrals as well up to the constant of
proportionality Cd.

1.1 Numerical Illustration of Theorem 3

In this section, we examine a toy discontinuous function.

Let:

Σ1 =

[
1 0.5
0.5 1

]
(51)

Σ2 =

[
1 −0.2

−0.2 0.5

]
(52)

Then we define three sets:

S1 = {x : (x− 0.1)⊤Σ1(x− 0.1) ≤ 0.005} (53)

S2 = {x : (x− 0.5)⊤Σ2(x− 0.5) ≤ 0.1} (54)

S3 = {x : (x− 0.9)⊤Σ1(x− 0.9) ≤ 0.005} (55)

and subsequently fn = 1[x∈S1] + 1[x∈S2] + 1[x∈S3].
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Figure 1: The discontinuous function fn. The ellipses give the sets Sj .



For this toy example, we will let µ be the Lebesgue measure. Then we can analytically determine the expression:∫
v∈h−1

j (0)

∇h(v)
∥∇h(v)∥

∇h(v)
∥∇h(v)∥

⊤
δ(v)dv (56)

for each of the three characteristic sets. For sets 1 and 3, it is given by per(S1)
Σ1

∥Σ1∥ where ∥.∥ is the induced

norm/2-norm, and per(S1) gives the perimeter of the ellipse. Similarly, per(S2)
Σ2

∥Σ2∥ is the contribution for set

2. Therefore, the analytic solution in this case is proportional to:

Ca =

3∑
j=1

∫
v∈h−1

j (0)

∇h(v)
∥∇h(v)∥

∇h(v)
∥∇h(v)∥

⊤
dv = per(S2)

Σ2

∥Σ2∥
+ 2per(S1)

Σ1

∥Σ1∥
(57)

Ca =

[
2.96 0.72
0.72 2.42

]
(58)

We next build a Monte Carlo estimator of Ex∈[0,1]P [β
r(x)βr(x)⊤] by randomly sampling 50, 000 xm from a

uniform distribution and then sampling 100 points within r = 0.001 (using antithetic sampling) of xm. We use

OLS to estimate βr(xm) and then form Ĉ = 1
M

∑M
m=1 β

r(xm)βr(xm)⊤.

Since we expect them to be only proportional, we compare the relative eigenvalues and the eigenvectors. For
Ca, we get normalized eigenvalues of 1 and 0.5546424 and eigenvectors given by :[

−0.82 0.57
−0.57 −0.82

]
(59)

For Ĉa, we get normalized eigenvalues of 1 and 0.5282942 and eigenvectors given by:[
−0.80 0.59
−0.59 −0.80

]
(60)

These estimates are quite close as predicted.

2 ADDITIONAL EXPERIMENTS

We present an extension of the analysis Section 5 to varying dimensions in Figure 2. We find that the conclusions
do not change as the dimension is varied from 7 to 5 and 3. The gap between methods seems greater in the
smooth case in smaller dimension compared to in larger dimension. For the discontinuous case, the same patterns
are observed across dimensions. We come to the same conclusion as the main text: if we expect to run into a
discontinuous function, the rougher Matérn 3

2 kernel does best on such problems. But it will not be able to take
advantage of smooth changes.
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Dimension = 3
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Figure 2: Gaussian Process estimates of the active subspace; lower is better. Top: Dimension = 3. Middle:
Dimension=5. Bottom: Dimension=9.


	INTRODUCTION
	MOTIVATION
	The Flee Simulator
	Divergence of the Classical Active Subspace Estimate
	Contradictory Sensitivity Analyses in a Mixed Simulator

	BACKGROUND
	Surrogate Modeling of Computer Experiments
	Surrogacy for Discontinuous Simulators
	Gradient-Based Global Sensitivity Analysis
	Sufficient Dimension Reduction 
	Ridge Functions

	AN EXTENSION OF THE ACTIVE SUBSPACE
	NUMERICAL STUDY OF KERNEL ESTIMATES
	Flee CASE STUDY
	Quantitative Prediction Comparison
	Qualitative Findings

	DISCUSSION
	Proofs
	Numerical Illustration of Theorem 3

	ADDITIONAL EXPERIMENTS

