
Unsupervised Change Point Detection in Multivariate Time Series

Daoping Wu1,2 Suhas Gundimeda3 Shaoshuai Mou4 Christopher J. Quinn1

1Dept. of Computer Science, Iowa State University
2Uber Technologies, Inc.

3School of Industrial Engineering, Purdue University
4School of Aero. and Astronautics, Purdue University

Abstract

We consider the challenging problem of unsu-
pervised change point detection in multivari-
ate time series when the number of change
points is unknown. Our method eliminates
the user’s need for careful parameter tuning,
enhancing its practicality and usability. Our
approach identifies time series segments with
similar empirically estimated distributions,
coupled with a novel greedy algorithm guided
by the minimum description length princi-
ple. We provide theoretical guarantees and,
through experiments on synthetic and real-
world data, provide empirical evidence for its
improved performance in identifying mean-
ingful change points in practical settings.

1 INTRODUCTION

There are many domains where researchers model non-
stationary time series, such as neuroscience (Bassett
and Sporns, 2017), climatology (Mudelsee, 2013), and
economics (Granger and Newbold, 2014). Despite
its prevalence, modeling non-stationary time series is
generally challenging. One approach to model non-
stationary time series is to split up the time series into
multiple parts and fit a stationary model for each part.
While the local problem of fitting each part with a sta-
tionary model may be simple, the global problem of
determining where the change points should be in the
first place makes the problem challenging.

In addition to being directly used for modeling non-
stationary systems, change point detection is also used
as a sub-routine in various applications, like fraud de-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

tection (Murad and Pinkas, 1999), quality control (Bis-
sell, 1969), climate monitoring (Beaulieu et al., 2012),
seizure detection (Schröder and Ombao, 2019) and mo-
tion transition detection (Liu and Chan, 2017).

While there have been many advances, there are a
number of challenges that have limited universal effec-
tiveness of many methods: 1. Existing methods usu-
ally require extensive parameter tuning (Aminikhang-
hahi and Cook, 2017; Truong et al., 2020). Two stan-
dard parameters are the threshold for the hypoth-
esis test and the number of change points. How-
ever, tuning the parameters to an appropriate value
is difficult. 2. Distributional changes could happen
in the mean, variance, or a combination of several
statistics. Some methods only focus on one specific
change. A technique that can comprehensively detect
various statistical changes is in need. 3. Change de-
tection methods generally require additional statistical
assumptions. For example, the Bayesian approach re-
quires the knowledge of prior distribution (Adams and
Mackay, 2007). The Hidden Markov Model method
requires revisiting the same state multiple times. An-
other common assumption is that data in each sta-
tionary subsequence is independent and identically
distributed (Aminikhanghahi and Cook, 2017). The
above settings can be unrealistic for many real-world
systems. 4. Few methods have been designed for mul-
tivariate time series. Existing works usually apply a
univariate method to multivariate time series by aggre-
gating data or statistics (Bardwell et al., 2019), which
can miss changes in inter-dependencies that do not re-
sult in changes in the marginal distributions. 5. Some
methods have high computational complexity.

Our Contribution: In this paper, we propose a
novel multivariate change point detection method to
address the above challenges.

Our method contains two stages. In the first stage,
we cluster parametric distributions fit to data from
sliding windows. For the second stage, we estimate

Unsupervised Change Point Detection in Multivariate Time Series

distributions from the clusters and propose a greedy
algorithm to keep a subset of the clusters and then find
change points between the remaining ones. Our main
contribution lies in the second stage. Our procedures
use the minimum description length (MDL) principle
to guide model selection. The procedure can detect
changes in multivariate time series and, in terms of
computation tractability, can scale to large time series.

Our proposed method addresses the challenges men-
tioned above. Our method has the following desir-
able properties: (A) Less tuning: Our method does
not need to tune a threshold or require the number of
change points to be known. While there are hyper-
parameters, we demonstrate that they are much less
sensitive to performance than the hyper-parameters
other methods require (B) Flexible: Our method can
be specialized to different settings. The data could
be time-dependent, continuous or discrete-valued, not
necessarily from a specific parametric family or have
simplifying properties such as linearity. (C) Multi-
variate: Our method is designed for the multi-variate
setting. It can detect higher-order changes in the dis-
tribution that do not result in marginal changes (i.e.
changes that univariate methods cannot detect). (D)
Scalable: Our algorithm scales to long time series.

1.1 Related Work

We briefly review some key related works.

Among the few multivariate change point detection
methods, SBS (Cho and Fryzlewicz, 2015), DCBS
(Cho, 2016), E-Divisive, and E-Agglomerative (Matte-
son and James, 2014) are modifications of binary seg-
mentation. BOCPDMS (Knoblauch and Damoulas,
2018) is the multivariate version of BOCPD. In addi-
tion to the traditional methods and their extensions,
recent methods include (Davis et al., 2006), which
uses a genetic algorithm, BNB (Hooi and Falout-
sos, 2019), which applies random partitions, and (Wu
et al., 2020), which utilizes clustering sliding windows
and solves an integer linear program. However, it’s im-
portant to note that the mentioned method is specifi-
cally designed for univariate time series.

1.2 Background

We now briefly review the minimum description length
(MDL) principle. For more details, see (Grünwald,
2007). Conceptually, the MDL principle postulates
that the best model for explaining a set of data is the
model that can compress the data the most.

We will use a “two-stage” MDL encoding. Given a
data set D and model class M, we can measure the
coding length CL(D|M) (e.g. number of bits) needed

to encode the data D using the model M ∈ M. The
coding length is commonly measured using negative
log likelihood. We can also measure the coding length
CL(M) needed to encode the model M itself. See Ch.
I.5 in (Grünwald, 2007) for details.

The overall coding length CL(D,M) is the sum of the
two parts, CL(D,M) = CL(D|M)+CL(M). The best
model M∗ ∈ M is the one that minimizes

M∗ = argmin
M∈M

CL(D|M) + CL(M). (1)

2 PROBLEM FORMULATION

We next describe properties of piece-wise stationary
time series and then state our optimization problem.

Let Y1:T := {Y1, Y2, · · · , YT } denote a discrete-
time, d-dimensional Markov order-p time series with
time length T . Let Y denote the alphabet. Let
PY1:T |Y1−p:0

(·|·) denote the joint distribution (density
for continuous Y) of the time series conditioned on
length p history Y1−p:0, with similar notation for
marginal distributions. By the chain rule and the
Markov property, for any realization y1:T ∈ YT and
any history y1−p:0 ∈ Yp, the joint distribution (condi-
tioned on history y1−p:0) can be factorized over time

PY1:T |Y1−p:0
(y1:T |y1−p:0) =

∏T
t=1 PYt|Yt−p:t−1

(yt|yt−p:t−1). (2)

Suppose that the time series’ joint distribution is piece-
wise stationary and parameterized by vectors in a pa-
rameter space Φ. Let τi for i = 1, 2, · · · , k denote the
change points (i.e. the times when the conditional dis-
tribution changes). Let ϕi ∈ Φ denote the parameter
vector for t ∈ (τi−1, . . . , τi − 1). The change point
τi signifies not only that ϕi ̸= ϕi+1 (a necessary con-
dition) but also that DKL(Pϕi ||Pϕi+1) > 0. (In ex-
ponential families, for instance, if the sufficient statis-
tics are linearly dependent, different parameter vectors
could induce the same distribution (see Section 1.5 of
(Lehmann and Casella, 1998).)) For simplicity, we also
denote the endpoints using the τ notation, with τ0 = 1
and τk+1 = T +1. Since between the change points τi
and τi+1, the conditional distribution, parameterized
by ϕi, does not change, we can simplify (2),

PY1:T |Y−p:0
(y1:T |y−p:0) =

k+1∏
i=1

τi−1∏
t=τi−1

Pϕi(yt|yt−p:t−1).

We refer to the period of time from one change point
up to, but not including, the next change point as
an epoch. We denote the lists of changepoints and
parameter vectors as τ = (τ1, · · · , τk) and ϕ =
(ϕ1, · · · , ϕk+1), respectively. We allow repeated mod-
els in non-adjacent epochs, e.g. ϕ2 = ϕ5. We denote

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

the number and set of distinct parameter vectors as k̃
and ϕ̃ = {ϕ̃1, · · · , ϕ̃k̃} respectively.

Let M ⊆ ΦT denote a class of piece-wise stationary
models with Markov order p and parameter space Φ.
Let M(k, τ ,ϕ) ∈ M denote a piece-wise stationary
model with the change point counts, the change point
locations, and parameter vectors explicitly enumer-
ated. Figure 1 (a) depicts a realization of a piece-wise
stationary linear VAR model of length T = 300, with
ϕi = (Ai, µi,Σi) for i = 1, 2, 3 composed of the coeffi-
cient matrix, noise mean vector, and noise covariance
matrix, respectively.

We can consider the following problem outlining our
general goal of fitting a piece-wise stationary model to
the data.

Problem 1. Given a time series realization y1−p:T ∈
YT+p, a model class M, and a loss function L, solve

M∗(k, τ ,ϕ) = argmin
M(k,τ ,ϕ)∈M

k∑
i=1

L(yτi−1:τi−1|ϕi). (3)

Problem 1 can be challenging to solve. We first sim-
plify the problem by estimating single change points,
i.e., k = 1. We will next show how we extend it to
solve the problem when there are multiple unknown
numbers of change points.

3 ESTIMATING SINGLE CHANGE
POINT

In this section, we discuss estimating single change
point when the time series only contains two epochs.
Using the log-likelihood as loss function, existing
methods solve the following problem.

argmax
τ : 1<τ<T

τ∑
t=1

log
Pϕ̂1

(Yt|Yt−p:t−1)

Pϕ̂2
(Yt|Yt−p:t−1)

(4)

Subject to:

ϕ̂1 = argmax
ϕ

τ∑
t=1

logPϕ(Yt|Yt−p:t−1)

ϕ̂2 = argmax
ϕ

T∑
t=τ

logPϕ(Yt|Yt−p:t−1)

The above problem requires solving inner optimiza-
tion for each τ , which is computational prohibitive.
We consider a different problem by presuming that we
have good estimates of Pϕ1

and Pϕ2
before we esti-

mate the change point. We then solve the problem
using known Pϕ̂1

and Pϕ̂2
.

argmax
τ : 1<τ<T

τ∑
t=1

log
Pϕ̂1

(Yt|Yt−p:t−1)

Pϕ̂2
(Yt|Yt−p:t−1)

. (5)

The following theorem states that if the estimated dis-
tribution Pϕ̂i

is close to the true distribution Pϕi and
two true distribution are diverse to a degree, then we
can have a good level of accuracy for the estimated
change point.

Theorem 1. ((α, β)-accuracy) For true models
Pϕ1

, Pϕ2
, suppose the data before and after the change

point τ∗ are drawn from Pϕ1
and Pϕ2

respectively.
The MLE τ̂ using Pϕ̂i

satisfies Pr[|τ̂ − τ∗| > α] <

β for any β > 0 and α = 2A2

C2 log 32
3β , where

A=maxt

log Pϕ1
(Yt|Yt−p:t−1)

log Pϕ2
(Yt|Yt−p:t−1)

−mint′
log Pϕ1

(Yt|Yt−p:t−1)

log Pϕ2
(Yt|Yt−p:t−1)

and

C = min{DKL(Pϕ1
||Pϕ̂2

)−DKL(Pϕ1
||Pϕ̂1

),

DKL(Pϕ2 ||Pϕ̂1
)−DKL(Pϕ2 ||Pϕ̂2

)}.

Proof. Our proof closely follows Thm 5 in Cummings
et al. (2018). The detailed proof is presented in the
Appendix.

This motivates us to consider that if we have access
to estimated distributions, as well as the starting and
ending time points of two adjacent epochs in a time
series, we can utilize this information to estimate the
change point between these epochs. Now, we are left
with two even more challenging problems.

• How to obtain a good estimation of true
distribution from observational time series?

• How to solve problem 1 when there are
multiple change points and we do not even
know how many there are?

We next propose a novel greedy search method to solve
the above issues.

4 CHANGE POINTS GREEDY
SEARCH

We next discuss our proposed method. Fig. 1 visually
depicts the major steps of our proposed procedure, ap-
plied to a realization of a piece-wise stationary linear
VAR model. High-level pseudo-code is shown in Algo-
rithm 1.

Our proposed method begins by estimating condi-
tional distributions for various subsequences. See
Fig. 1 (b). We estimate the similarity of the estimated
conditional distributions. We then cluster the condi-
tional distributions (equivalently, the subsequences),
resulting in a (soft) clustering. See Fig. 1 (c). As
shown in Fig. 1 (d), we next estimate a single model
for each cluster.

Unsupervised Change Point Detection in Multivariate Time Series

Cluster

Greedy
Alg

Learn Models MLE

!! !"0 #$#!
(a) A piece-wise stationary time series

(b) Sliding windows

$#" $##

Learn !!!"

(d)

(c) Clusters of sliding windows

Learn !!!#
Learn !!!$
Learn !!!%

!̂!0 $!̂"

(e)

(f) Detection result

%#!"
%#!#

%#!$
%#!%

%#$" %#$# %#$$

Figure 1: Diagram of the main steps of our method. (a) An observed multivariate, piece-wise stationary time
series with unknown distribution and change points. (b) Sliding windows of the time series. (c) sliding windows
clustered based on the similarity of their estimated distributions. Windows with the same color are in the same
cluster. (d) Subsequences extracted from the clusters. Different colors represent different clusters. From each
cluster, we infer a distribution. (e) The set of subsequences is greedily pruned. (f) The final model, the returned
solution of Problem 1.

Our method is designed using the intuition that
the empirical distribution of samples from the same
population should be homogeneous to a certain de-
gree. Although the number and locations of the
change points are unknown, the conditional distribu-
tion Pϕ1(yt|yt−p:t−1) is the same, parameterized by
unknown ϕ1, for the first epoch (from t = 1 up to
the unknown t = τ1). Consequently, if we estimate
parameter vectors for different subsequences of data
for t ∈ 1 : τ1 − 1, in expectation, the estimated pa-
rameter vectors would be close (since they came from
the same generative distribution). It is anticipated
that by merging homogenous windows, we can get
subsequences close to epochs (1st, 3rd and 4th sub-
sequences in Fig. 1 (d)). More importantly, the above
subsequences exhibit a one-to-one mapping to epochs.
Hence, obtaining the subsequences helps to reveal par-
tial information about epochs.

However, not all subsequences are desired. Windows
might contain heterogeneous data. These similar win-
dows might also be merged to be subsequences (2nd
subsequence in Fig. 1 (d)). The existence of such sub-
sequences causes ambiguity. Therefore, the key and
challenging issue is how to efficiently select the cor-
rect subsequences. Due to that, we propose a greedy
algorithm to select the desired subsequences. Our pro-
posed procedure will then decide which clusters to ulti-
mately keep as well as select estimated change points
between those that are kept. That step is shown in
Fig. 1 (e). After which, we have inferred change points
and output a final model.

In the following subsections, we will discuss details of
our proposed procedure and later demonstrate its effi-
cacy on simulated and real-world data.

We informally call the subsequences which mainly con-

Algorithm 1: Main algorithm

Input : Time series Y1:T , Markov order p,
Parameter space Φ, oracle A

Output: Piece-wise stationary model M(k, τ ,ϕ)
Estimate models from sliding windows
Cluster windows by model similarity
Estimate a model for each cluster
Apply Most-likely Mixture Alg to select models
and subsequences
Estimate τ and k using the selected models and
subsequences
Refit model to estimate ϕ using estimated change
points τ̂

tain data from the same epoch to be a pure subse-
quence (1st, 3rd and 4th subsequences in Fig. 1 (d)).
We call the other subsequences mixture subsequences.

We now present how to select pure subsequences.

4.1 Identifying Pure Subsequences

Our selection procedure is guided by the MDL prin-
ciple. Recall that after processing the clustering re-
sult, we have a list of ordered subsequences S =
(s1, s2, · · · , sR) and a corresponding list of models
ϕs = (ϕs1 , ϕs2 , · · · , ϕsR). See Fig. 2(b) for an example.
For any two adjacent subsequences (which in general
overlap), if we estimate that they both are pure and
should be kept, then we will need to estimate a change
point between them. We will discuss the details of our
proposed local search for change points later in Sec-
tion 3. We initially consider that all the subsequences
are pure and find change points between each pair lo-

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

cally. The resulting model is

τ = (τ1, · · · , τR−1)

ϕs = (ϕs1 , · · · , ϕsR)

M = M(R− 1, τ ,ϕs).

(6)

Now we consider removing a subsequence si
from S. We would get a modified list of subse-
quences S′ = S/{si} = (s1, · · · , si−1, si+1, · · · , sR)
and a corresponding list of models ϕs′ =
(ϕs1 , · · · , ϕsi−1 , ϕsi+1 , · · · , ϕsR). This model would
have one less change point, R − 2 total. If we
re-estimate change points locally, then only the
two changepoints bounding si with si−1 and with
si+1, τi−1 and τi respectively, would be removed
and replaced with a new estimated change point τ ′

between si−1 and with si+1. The new model is

τ ′ = (τ1, · · · , τi−2, τ
′, τi+1, · · · , τR)

ϕs′ = (ϕs1 , · · · , ϕsi−1 , ϕsi+1 , · · · , ϕsR)

M ′ = M(R− 2, τ ′,ϕs′).

(7)

The model corresponding to S′ will have one less
change point and, in some cases, one less parameter
vector. We can compare the model (6) for S and the
model (7) for S′ by their overall coding lengths. If
CL(Y1:T ,M

′) ≤ CL(Y1:T ,M), M ′ is a better model
compared with M and then the subsequence si should
be eliminated from the list of subsequences S. Other-
wise, we keep si in the list of. Hence, we can define the
score of a subsequence si as the difference of overall
coding length,

Score(si) =
1

T
(CL(Y1:T ,M)− CL(Y1:T ,M

′)). (8)

If Score(si) ≥ 0, the subsequence si is more likely a
mixture subsequence. Otherwise, si is more likely a
pure subsequence. Note that the score depends on the
reference list of subsequences S. We first derive the
coding length.

Coding Length: The coding length of time se-
ries Y1:T under model M(k, τ ,ϕ) ∈ M can be ap-
proximated by the negative log likelihood (NLL).

CL(Y1:T |M) ≈ −
∑k+1

i=1

∑τi−1
t=τi−1

logPϕi
(Yt|Yt−p:t−1).

See Ch 3.1 in (Rissanen, 1998) for details. The coding
length CL of model M(k, τ ,ϕ) can be decomposed to
several parts (see Appendix for more details),

CL(M(k, τ ,ϕ)) = CL(k) + CL(τ) + CL(ϕ). (9)

First, CL(Y1:T ,M), the overall coding length of data
and model M , is directly derived from (9). We now
consider CL(Y1:T ,M

′), the overall coding length of
data and model M ′. The coding length of data un-
der model M ′ is CL(Y1:T |M ′) ≈ NLL(Y1:T |M ′).

Next, we derive the coding length of model M ′. Ac-
cording to the same decomposition as shown in (9), we
have

CL(M ′) = log (R− 2) + (R− 2) log T +CL(ϕ′
s).
(10)

By rearranging the two parts of the overall coding
length, we compute the score of the subsequence si
as Score(si) = 1

T (CL(Y1:T ,M) − CL(Y1:T ,M
′)) =

1
T (CL(Y1:T |M) − CL(Y1:T |M ′) + CL(M) − CL(M ′)).
See Appendix for formulas. Larger scores indicate a
subsequence is more likely to be a mixture. Given
a list of subsequences S, the most-likely mixture sub-
sequence s∗ ∈ S is the subsequence with the largest
score, s∗ = argmaxs∈S Score(s). In Fig. 2(b), the
scores are written next to the subsequences. Only S2

and S8 have positive scores and S8’s is larger. Thus,
among the subsequences in Fig. 2(b), S8 is the most-
likely mixture subsequence.

4.2 Most-likely Mixture Algorithm

Having a measure for the marginal gain in coding
length by removing an arbitrary subsequence s from
S, we propose our Most-likely Mixture algorithm (out-
lined in Algorithm 2). We first initialize a candidate
list of pure subsequences S using all the subsequences
s ∈ S and compute the score for each. In the example
shown in Fig. 2, there are 9 subsequences after clus-
tering. Fig. 2(b) shows the initial scores computed for
each subsequence. Then, as long the candidate list of
subsequences contains a subsequence s likely to be a
mixture, i.e., Score(s) ≥ 0, we will look for the most-
likely mixture subsequence s∗ and remove it from the
list. In Fig. 2(b), s2 and s8 are both likely to be mix-
ture subsequences. s8 is the most-likely mixture. We
then remove s8 from the list. Every time we delete a
subsequence si ∈ S, we update the score for the re-
maining subsequences. Note we only need to modify
the score for the deleted subsequence’s adjacent subse-
quences (si−1 and si+1) and, if there was exactly one
other sequence sj ∈ S with the same parameter vector
as si, ϕsi = ϕsj , then the score of sj as well. In Fig.
2(c), after we delete s8, we first update the score for its
adjacent subsequence s7 (no need to update score of
s9 as the score of the last subsequence is always fixed
to −∞). We then find there are still two subsequences
s3 and s6 sharing the same parameter vectors with s8
in the list. We do not need to modify them. We repeat
the above procedure until all scores are negative. In
Fig. 2(d), after we delete s2 and update the score for
s3, all scores are negative. We then end the loop.

Our next theorem presents the theoretical guarantee
for our proposed algorithm, specifically in terms of
change point detection consistency analysis. We ap-

Unsupervised Change Point Detection in Multivariate Time Series

down-
stairs

walk skip jog walk stay upstairs

0 "

(a) A human motion time series

!"
−"$%
−&'
−()%

−(""$

−"%'%

&'

−∞

−∞

!!!" !#
!$

!%

!&

!'

!(

!)0 "

(b) Step 1: Compute the scores for each
subsequence.

!"

−""$%

−"&$
−'(
−%)$

−%""&

−∞

−∞

!!!" !#
!$

!%

!&

!' !(0 "

(c) Step 2: Delete s8. Update the score for
s7

−""#$

−%&
−$'#

−$""(

−∞

−∞

!!
!"

!#
!$

!%

!& !'

−"**

0 "

(d) Step 3: Delete s2. Update the score for
s3. Ends the loop as no positive scores

Figure 2: Implementation of Algorithm 2: (b)(c)(d) are the iteration process of Algorithm 2 working on time
series shown in (a). Each row in (b)(c)(d) represents a cluster and contains one or multiple subsequences with
scores adjacent. The red color indicates the highest score.

Algorithm 2: Most-likely Mixture

Input : The list of subsequences S
Output: The list of pure subsequences S
Initialize S = S ;
Compute Score(s) for s ∈ S ;
while ∃s ∈ S, s.t. Score(s) ≥ 0 do

Find the most-likely mixture subsequence
s∗ = argmaxs∈S Score(s);

Delete s∗ from S, i.e., S = S/{s∗};
Update Score(s) for s ∈ S ;

end

ply the same assumption that has been utilized in prior
studies addressing the analysis of change point detec-
tion Bai and Perron (2003)Truong et al. (2020). We
assume that the time horizon T as well as the epoch
length τi

T goes to infinity. Similarly, we allow the win-
dow size to go to infinity with time horizon T , i.e.,
W = ωT , ω ∈ [0, 1]. Thus, the formed subsequence
has infinite length. Under the ”infinity” setting, by
the consistency of MLE estimator, for each Pϕi

, there
is a Pϕsi

that for ∀ϵ > 0, DKL(Pϕi ||Pϕsi
) < ϵ. This

gives us a trivial result that limT→∞Score(si) < 0.
Our theorem discusses the Score for mixture subse-
quence.

Theorem 2. (Consistency) Given two adjacent
epochs with distributions Pϕ1 and Pϕ2 respectively,
with change point to be τ . Consider a mixture subse-
quence s2 with starting time point a and ending time
point b satisfying a < τ < b. Pϕs2

is learnt from data

Figure 3: Average running times in seconds of our
method (blue; left axis) versus the running time of
the ILP method (red; right axis) for different lengths
of data (horizontal axis), using a 20 core processor.
Window size W = 50. The maximum number of win-
dows m = 2000.

which follows π2Pϕ1
+ (1 − π2)Pϕ2

, where π2 ∈ (0, 1).
Having adjacent subsequences s1 and s3, with Pϕsi

learnt from data which follows πiPϕ1 + (1 − πi)Pϕ2 ,
i = 1, 3 and 0 ≤ π3 < π2 < π1 ≤ 1. As-
sume that DKL(Pϕ1

||Pϕs1
) < DKL(Pϕ1

||Pϕs2
) and

DKL(Pϕ2
||Pϕs3

) < DKL(Pϕ2
||Pϕs2

), we can have

lim
T→∞

Score(s2) > 0.

Proof. The detailed proof is in the Appendix.

Computational Complexity: Figure 3 is a plot of
empirical run-time for our procedure as a function of
the time series length T . We see an approximately lin-
ear relation between running time and the time length.
Details of the experiment are in the Appendix.

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

(a) Coefficient change. The statistic difference
is 0.475.

(b) Coefficient change: The statistic difference
is 0.95.

Figure 4: Example time series with linear coefficient
change.

5 EXPERIMENTS

We next demonstrate the performance of our proposed
method on artificial and real-world data sets.

State of the Art Baselines: We use the follow-
ing baseline methods: Sliding windows (Truong et al.,
2020), binary segmentation (Truong et al., 2020),
dynamic programming (Truong et al., 2020), ILP
method (Wu et al., 2020), BNB (Hooi and Falout-
sos, 2019), BOCPDMS (Knoblauch and Damoulas,
2018), SBS (Cho and Fryzlewicz, 2015), DCBS (Cho,
2016), E-Divisive (Matteson and James, 2014), and E-
Agglomartive (Matteson and James, 2014). Autoplait
(Matsubara et al., 2014) and Fluss (Gharghabi et al.,
2019).

Evaluation: We evaluate the performance using the
precision, recall and F1 score. A true positive (TP) is
identified if at least one estimated change point τ̂ is
within δ time-point distance of a true change point,
i.e, |τ − τ̂ | ≤ δ.

Datasets: We use both artificial and real-world
data. See Fig. 4 and Fig. 5 for examples. We use
artificial data to test different methods’ sensitivity to
changes in different parameters in a (linear) vector au-
toregressive model and in a (non-linear) vector auto-
logistic regressive model. We use the following real-
world data sets: Bee dance (Oh et al., 2008), HASC
(Ichino et al., 2016), Occupancy (Candanedo and Feld-
heim, 2016) and MoCap Lab.

Clustering Algorithm and Window Size: In
this work, we do not propose a specific clustering pro-

(a) Covariance change. The statistic difference
is 2.

(b) Covariance change: The statistic difference
is 4.

Figure 5: Examples of time series with covariance
change.

cedure. We use HDBSCAN McInnes et al. (2017) for
clustering. One desirable property of HDBSCAN for
our purposes is that it does not require a pre-specified
number of clusters to pick.

Window size is the hyperparameter of our method. We
encourage the domain expert to pick the appropriate
window size according to their domain knowledge. In
our experiment, we searched for a range of window
sizes and chose the one with the minimum MDL score.
Details about our method’s sensitivity to window size
are in the Appendix.

5.1 Results

Artificial Data: Fig. 6 shows the F1 scores for the
experiments with artificial data. Each sub-plot corre-
sponds to a different type of change between the pa-
rameter vectors of the two epochs ϕ1 and ϕ2. The
y-axis is the F1 score. Higher F1 scores indicate bet-
ter performance. The x-axis is the difference of the
changing statistic.

The performance of our method is depicted with red
circles and denoted as ‘greedy.’ ILP, the univariate
method in (Wu et al., 2020), is depicted in magenta
squares. The three traditional change point baseline
methods are depicted with blue markers. The state-
of-the-art change point detection methods are depicted
with green markers. Semantic segmentation methods
are depicted with orange markers.

Our method (red circles) achieves performance nearly
as good as ILP (magenta squares) in all the experi-
ments. Our method also outperformed all other base-
lines in all four experiments (Figs. 6(a) to 6(d)). Our

Unsupervised Change Point Detection in Multivariate Time Series

(a) Mean shift (b) Coefficient change

(c) Covariance change (d) Logit change

Figure 6: F1 scores for experiments with artificial
data. ILP is in magenta. Our method is in red and
performs comparably. For two experiments (linear co-
efficient change (b) and covariance change (c)), only
our method and the ILP method were able to identify
the change points.

method slightly outperformed ILP when the data is
nonlinear (Fig. 6(d)).

For changes in a linear VAR coefficient (Fig. 6(b)) and
covariance (Fig. 6(c)), only our method and ILP were
able to reliably detect changes. Fig. 4 shows example
time series for linear VAR coefficient (Fig. 6(b)); the
change in the time series is visually apparent, though
no other baselines successfully detected the change.
Fig. 5 shows example time series for linear VAR co-
variance (Fig. 6(c)); the change in the time series is
less apparent visually, yet our method was nonethe-
less able to reliably detect the change. For changes in
coefficients of a logistic regression model, only a sin-
gle baseline, E-div (green triangles), was able to detect
changes some of the trials, but had substantially worse
performance than our method.

Real-world Data: In Table 1, we summarize the
overall performance of our method and baselines on
the real-world data sets. Performance is measured us-
ing F1 score for four different margin sizes. The preci-
sion and recall are shown in the Appendix in Table 2.
We only include BNB, E-Divisive, BOCPDMS, SBS,
Autoplait, and Fluss as baselines. Each of the remain-
ing baselines (a) could not handle multiple k > 1 un-
known change points, (b) had a high run-time even on
the smallest real-world data set, or (c) both.

The highest F1 score and any lower scores within
5% of the highest score are in bold. We see our
method outperforms all other methods on all of the
real-world data sets, even with larger margins δ al-

(a) Bee dance data 6

(b) HASC data

Figure 7: a. Bee dance data 6 (blue) and detected
change points (vertical red line) by different methods.
The time series in the first, the second, and the third
panels correspond to x, y, sin(θ) in bee dance data.
The change points detected by our method are pre-
sented in the first three panels. From the fourth panel
to the last panel, red vertical lines show the change
points detected by methods E-Divisive, sbs, bocpdms,
bnb, autoplait, and fluss. b. The first panel shows the
3d time series and the change points detected by Alg.
1. Inferred epochs: 1. downstairs 2. walk 3. skip 4.
jog 5. walk 6. stay 7. upstairs. From the second to
the last panel, the vertical red lines show the detection
result of methods of sbs, bnb, autoplait, and fluss.

lowed for declaring a TP.

To better illustrate the performance, we present ex-
amples of detected change points from datasets. The
first three panels of Fig. 7(a) show an example of bee
dance data and detected change points by Alg. 1. The
periods with intensive fluctuations like t = [137, 169]
and [223, 261] represent that the bee is waggling. The
change points detected by Alg. 1 correctly correspond
to the bee’s movement transition time points. Fig.
7(b) shows one example of HASC data. We see there
are several distinct phases in the first panel. The activ-
ities from right to left are going downstairs, walking,
skipping, jogging, walking, staying, and going upstairs.
Our method (detected change points shown in vertical
lines from the first panel) successfully identifies all the
transitions.

In Fig. 8, we show examples of MoCap data and de-
tected change points by Alg. 1. Our method success-
fully detected all the significant motion transitions in

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

Table 1: Performance. F1 score.(- indicates the running time lasts more than 48 hours)
Datasets δ Our Method BnB E-Div BOCPDMS sbs Auto-plait fluss

Bee
dance

5 64.5 29.2 32.5 35.6 6.4 10.6 34.2
10 76.8 45.0 52.1 44.0 8.0 15.2 45.8
15 78.7 55.0 70.1 49.2 9.6 16.7 45.8
20 79.6 61.7 79.5 52.4 12.8 18.2 48.3

HASC
50 54.5 10.4 - - 9.3 60.5, 25.9
100 70.3 16.3 - - 14.8 71.1 29.0
150 75.3 23.1 - - 18.5 73.7 31.8
200 76.7 25.7 - - 19.4 74.0 32.8

Occu-
pancy

5 42.9 37.5 14.3 4.7 40.0 0.0 12.5
10 71.4 62.5 14.3 4.7 60.0 12.5 12.5
15 71.4 62.5 14.3 9.3 60.0 12.5 12.5
20 71.4 62.5 14.3 9.3 60.0 12.5 12.5

(a) Subject 86 Trial 2 and detected change points by Alg.
1 (vertical red line).

(b) Subject 86 Trial 8 and detected change points by Alg.
1 (vertical red line).

Figure 8: Identified change points (red) for Mo-
Cap data. (a) Inferred epochs: 1.Walk 2.Squat
3.Run 4.Stand 5.Stretch arms 6.Walk 7.Jump 8.Jump
forward 9.Raise arm 10.Raise arm again 11.Punch
12.Walk. (b) Inferred epochs: 1-2.Walk 3.Squat
4.Twist 5.Roll arms 6.Stand 7.Kick 8.Lean back 9.Run
10.Stand 11.Raise arm 12.Punch 13-14.Walk

subject 86 trial 2 (shown in Fig. 8(a)). In Fig. 8(b),
our method detects two close change points at the first
motion phase change from walk to squat (phase 1 to
2 in 8(b)). Except for the major changes described in
the caption of 8(b), our method also detects two extra
change points at t = 755 and t = 8796. By watching
the video, we see the person makes significant right
turns at the two time points.

6 CONCLUSION

We propose a novel unsupervised change detection
method based on clustering the sliding windows. The

proposed method can be used with a wide range of
parametric families. Our method is easy to use. It
does not require extensive parameter tuning. Our
method is scalable and is designed for multivariate
time series. We provide theoretical analyses for our
method. We conduct extensive experiments to show
that it has good performance in detecting meaningful
change points in real-world data.

References

R. P. Adams and D. J. C. Mackay. Bayesian Online
Changepoint Detection. Statistics, 2007.

D. Agudelo-España, S. Gomez-Gonzalez, S. Bauer,
B. Schölkopf, and J. Peters. Bayesian Online Pre-
diction of Change Points. volume 124 of Proceedings
of Machine Learning Research, pages 320–329, Vir-
tual, 2020. PMLR.

R. Alami, O. Maillard, and R. Feraud. Restarted
Bayesian online change-point detector achieves op-
timal detection delay. In H. D. III and A. Singh,
editors, Proceedings of the 37th International Con-
ference on Machine Learning, volume 119 of Pro-
ceedings of Machine Learning Research, pages 211–
221. PMLR, 13–18 Jul 2020.

S. Aminikhanghahi and D. J. Cook. A survey of
methods for time series change point detection.
Knowledge and Information Systems, 2017. ISSN
02193116. doi: 10.1007/s10115-016-0987-z.

U. Appel and A. V. Brandt. Adaptive sequential seg-
mentation of piecewise stationary time series. In-
formation Sciences, 1983. ISSN 00200255. doi:
10.1016/0020-0255(83)90008-7.

I. E. Auger and C. E. Lawrence. Algorithms for the op-
timal identification of segment neighborhoods. Bul-
letin of Mathematical Biology, 1989. ISSN 15229602.
doi: 10.1007/BF02458835.

J. Bai and P. Perron. Computation and analysis of
multiple structural change models. Journal of Ap-

Unsupervised Change Point Detection in Multivariate Time Series

plied Econometrics, 2003. ISSN 08837252. doi:
10.1002/jae.659.

L. Bardwell, P. Fearnhead, I. A. Eckley, S. Smith, and
M. Spott. Most Recent Changepoint Detection in
Panel Data. Technometrics, 2019. ISSN 15372723.
doi: 10.1080/00401706.2018.1438926.

D. S. Bassett and O. Sporns. Network neuroscience.
Nature neuroscience, 20(3):353–364, 2017.

M. Basseville and A. Benveniste. Sequential Detec-
tion of Abrupt Changes in Spectral Characteris-
tics of Digital Signals. IEEE Transactions on In-
formation Theory, 1983. ISSN 15579654. doi:
10.1109/TIT.1983.1056737.

C. Beaulieu, J. Chen, and J. L. Sarmiento. Change-
point analysis as a tool to detect abrupt climate
variations. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 370(1962):1228–1249, 2012.

A. Bissell. Cusum techniques for quality control. Jour-
nal of the Royal Statistical Society: Series C (Ap-
plied Statistics), 18(1):1–25, 1969.

L. M. Candanedo and V. Feldheim. Accurate occu-
pancy detection of an office room from light, tem-
perature, humidity and co2 measurements using sta-
tistical learning models. Energy and Buildings, 112:
28–39, 2016.

W.-C. Chang, C.-L. Li, Y. Yang, and B. Póczos.
Kernel change-point detection with auxiliary deep
generative models. In International Conference on
Learning Representations, 2019.

H. Cho. Change-point detection in panel data via
double CUSUM statistic. Electronic Journal of
Statistics, 2016. ISSN 19357524. doi: 10.1214/16-
EJS1155.

H. Cho and P. Fryzlewicz. Multiple-change-point de-
tection for high dimensional time series via sparsified
binary segmentation. Journal of the Royal Statisti-
cal Society. Series B: Statistical Methodology, 2015.
ISSN 14679868. doi: 10.1111/rssb.12079.

R. Cummings, S. Krehbiel, Y. Mei, R. Tuo, and
W. Zhang. Differentially private change-point de-
tection. Advances in neural information processing
systems, 31, 2018.

R. Cummings, S. Krehbiel, Y. Lut, and W. Zhang. Pri-
vately detecting changes in unknown distributions.
In ICML, 2020.

R. A. Davis, T. C. Lee, and G. A. Rodriguez-Yam.
Structural break estimation for nonstationary time
series models. Journal of the American Statis-
tical Association, 101(473):223–239, 2006. ISSN
01621459. doi: 10.1198/016214505000000745.

P. Fryzlewicz. Wild binary segmentation for multiple
change-point detection. Annals of Statistics, 2014.
ISSN 00905364. doi: 10.1214/14-AOS1245.

S. Gharghabi, C. C. M. Yeh, Y. Ding, W. Ding, P. Hi-
bbing, S. LaMunion, A. Kaplan, S. E. Crouter,
and E. Keogh. Domain agnostic online seman-
tic segmentation for multi-dimensional time series.
Data Mining and Knowledge Discovery, 2019. ISSN
1573756X. doi: 10.1007/s10618-018-0589-3.

C. W. J. Granger and P. Newbold. Forecasting Eco-
nomic Time Series. Academic Press, 2014.

P. D. Grünwald. The Minimum Description Length
Principle. MIT press, 2007.

B. Hooi and C. Faloutsos. Branch and bor-
der: Partition-based change detection in multivari-
ate time series. In SIAM International Confer-
ence on Data Mining, SDM 2019, 2019. ISBN
9781611975673. doi: 10.1137/1.9781611975673.57.

H. Ichino, K. Kaji, K. Sakurada, K. Hiroi, and
N. Kawaguchi. HASC-PAC2016: Large scale human
pedestrian activity corpus and its baseline recogni-
tion. In UbiComp 2016 Adjunct - Proceedings of
the 2016 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, 2016. ISBN
9781450344623. doi: 10.1145/2968219.2968277.

E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online
algorithm for segmenting time series. In Proceedings
2001 IEEE international conference on data mining,
pages 289–296. IEEE, 2001.

E. J. Keogh, S. Chu, D. M. Hart, and M. J. Paz-
zani. Segmenting time series: A survey and novel
approach. 2002.

J. Knoblauch and T. Damoulas. Spatio-temporal
Bayesian on-line changepoint detection with model
selection. In 35th International Conference on
Machine Learning, ICML 2018, 2018. ISBN
9781510867963.

C. G. Lab. Cmu graphics lab motion capture database.
URL http://mocap.cs.cmu.edu/.

E. L. Lehmann and G. Casella. Theory of point esti-
mation. Springer, New York, NY, 2 edition, 1998.

S. Li, Y. Xie, H. Dai, and L. Song. M-statistic for ker-
nel change-point detection. In Advances in Neural
Information Processing Systems, 2015.

K.-C. Liu and C.-T. Chan. Significant change spotting
for periodic human motion segmentation of cleaning
tasks using wearable sensors. Sensors, 17(1):187,
2017.

Y. Matsubara, Y. Sakurai, and C. Faloutsos. Au-
toPlait: Automatic mining of co-evolving time
sequences. In Proceedings of the ACM SIG-
MOD International Conference on Management

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

of Data, 2014. ISBN 9781450323765. doi:
10.1145/2588555.2588556.

D. S. Matteson and N. A. James. A nonparamet-
ric approach for multiple change point analysis of
multivariate data. Journal of the American Sta-
tistical Association, 2014. ISSN 1537274X. doi:
10.1080/01621459.2013.849605.

L. McInnes, J. Healy, and S. Astels. hdbscan: Hierar-
chical density based clustering. The Journal of Open
Source Software, 2017. doi: 10.21105/joss.00205.

M. Mudelsee. Climate time series analysis, volume 30.
Springer, 2013.

U. Murad and G. Pinkas. Unsupervised profiling for
identifying superimposed fraud. In European Con-
ference on Principles of Data Mining and Knowl-
edge Discovery, pages 251–261. Springer, 1999.

S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert.
Learning and inferring motion patterns using para-
metric segmental switching linear dynamic systems.
International Journal of Computer Vision, 77(1-3),
2008. ISSN 09205691. doi: 10.1007/s11263-007-
0062-z.

J. Rissanen. Stochastic Complexity in Statistical In-
quiry, volume 15. World Scientific, 1998.

A. L. Schröder and H. Ombao. Fresped: Frequency-
specific change-point detection in epileptic seizure
multi-channel eeg data. Journal of the American
Statistical Association, 114(525):115–128, 2019.

C. Truong, L. Oudre, and N. Vayatis. Selective review
of offline change point detection methods. Signal
Processing, 167:107299, 2020. ISSN 0165-1684. doi:
https://doi.org/10.1016/j.sigpro.2019.107299.

E. S. Venkatraman. Consistency Results in Multiple
Change-Point Problems. Stanford University, 1992.

L. Vostrikova. Detecting “Disorder” in Multidimen-
sional Random Processes. Soviet Mathematics Dok-
lady, 24:55–59, 1981.

D. Wu, S. Gundimeda, S. Mou, and C. J.
Quinn. Modeling Piece-Wise Stationary Time Se-
ries. In ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
- Proceedings, 2020. ISBN 9781509066315. doi:
10.1109/ICASSP40776.2020.9053470.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [No] The real world data is publicly
available. Details on the implementation and
the artificial data are discussed in the supple-
mental material.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

Unsupervised Change Point Detection in Multivariate Time Series

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

7 EXAMPLE OF PIECE-WISE VAR MODEL

Example 1. Consider the following piece-wise linear VAR time series model. Let I2 denote the 2 × 2 identity

matrix. Let A1 = A3 = 0.95I2 A2 =

[
0 0.95

0.95 0

]
, Σ1 = I2, Σ2 = 4I2, Σ3 = 9I2, µ1 = µ2 = µ3 = 0. When

t = 1, 2, · · · , 100, Yt = A1Yt−1 + ϵt, where ϵt ∼ N (µ1,Σ1). When t = 101, 102, · · · , 200, Yt = A2Yt−1 + ϵt, where
ϵt ∼ N (µ2,Σ2). When t = 201, 202, · · · , 300, Yt = A3Yt−1 + ϵt, where ϵt ∼ N (µ3,Σ3). Let ϕi = (Ai, µi,Σi) for
i = 1, 2, 3. Then, M(2, (100, 200), (ϕ1, ϕ2, ϕ3)) is a piecewise stationary model with two change points.

8 CLUSTERING MODELS ESTIMATED FROM SLIDING WINDOWS

As we discussed in Section 4 (see also Fig. 1), we expect that models estimated windows contained within the
same epoch will be similar. Instead of defining a hard threshold to use with the symmetric KL divergence to
decide which distributions came from the same epoch, we propose to use a clustering algorithm for grouping
estimated models, which can account for the global variations of similarity scores. In this work, we do not propose
a specific clustering procedure. In our experiments, we use HDBSCAN (McInnes et al., 2017). One desirable
property of HDBSCAN for our purposes is that it does not require a pre-specified number of clusters to pick.
If a clustering algorithm is used that does, then our procedure could be forked, with parallel instances of our
procedure running, one for each number of clusters. The final models from those parallel instances could then
be compared using overall complexity to select an overall final model.

At first glance, we might hope each cluster corresponds to an epoch in the underlying model. For Example 1’s
realization in Fig. 1 (a), for instance, we might hope that there are exactly three clusters, one for each of the
underlying epochs shown in Fig. 1 (a).

As discussed in Section 4, that does not generally happen. Fig. 1 (c) shows that an extra cluster was found for
the time series in Fig. 1 (c). Specifically, the windows colored green were clustered together, but they contain
data from epoch 1 and epoch 2. However, there is no extra cluster for windows overlapping epochs 2 and 3; so we
cannot simply take every other cluster as matching an underlying epoch. Additionally, if the same conditional
distribution is present in multiple non-adjacent epochs in the underlying model, models from windows that came
from those non-adjacent epochs might get grouped together. An example of a cluster formed from windows
in different epochs is shown in Fig. 2(b), which is from a real-world data set; the third cluster was formed of
windows from three disjoint segments.

We next introduce some terminology and notation for clusters that will describe the later steps in our procedure.
Let nC denote the number of clusters. Let Ci denote the set of windows whose estimated models were grouped to-
gether in cluster i. Let C̃i = ∪wj∈Ciwj denote the set of timestamps covered by at least one window corresponding
to cluster i. For example, in Figure 9, the first cluster C1 contains the first 26 windows, C1 = {ω1, ω2, · · · , ω26}.
With window size W = 30 and stride of 1, C̃1 =

⋃26
i=1{i, i+ 1, · · · , i+W − 1} = {1, 2, · · · , 55}.

For each cluster Ci, we fit a model using data from all times C̃i, ϕCi = A({Yt|t ∈ C̃i}).

We expect the model ϕCi
fit using all times associated with cluster Ci will be similar to, but more accurate than,

the models {ϕw}w∈Ci fit to the individual windows belonging to cluster Ci. Next, using these models {ϕCi}ni=1

fit to whole clusters, we will attempt to estimate which subsets of clusters to keep (as approximate epochs) and
jointly identify corresponding change points between them.

9 ESTIMATING CHANGE POINTS FROM THE CLUSTERED MODELS

When the underlying generative model has non-adjacent epochs with the same parameter ϕ (and thus the same
conditional distribution during those non-adjacent epochs), our procedure may have clusters formed from win-
dows in those non-adjacent epochs. For example, Fig. 2(b) shows the clustering and detection result of human
motion data. Some timestamps from the two walking phases are grouped into the same cluster. Specifically, the
third cluster (third row in subfigures (b)-(d)) is formed by subsequences s3, s6, and s8, where s3 and s6 corre-
sponding to walking and s8 was spurious. We use the term subsequence to refer to (maximal) subsets of windows
within the same cluster whose union forms a sequence. For each cluster Ci, let ri and Si = {si,1, si,2, · · · , si,ri}
denote the number of and set of subsequences in the minimum covering of C̃i, respectively. Thus, if C̃i is a

Unsupervised Change Point Detection in Multivariate Time Series

Figure 9: The heatmap of similarity measures between pairs of sliding windows, indexed by start times. Black
indicates similarity. There is one true change point at τ1 = 50.

subsequence, then ri = 1.

In Fig. 9, we show the heatmap of pairwise similarity of sliding windows and the corresponding clustering result.
The time series has one change point at t = 50. We see that there are three clusters. In this specific example,
each cluster only induces one subsequence. Given the ground truth that the change point is at t = 50, we can
observe two different types of subsequences. Informally, we call a subsequence a pure subsequence if data whose
timestamps in the subsequence is mainly come from the same epoch. Otherwise, we call the subsequence a
mixture subsequence. The first subsequence (1, 2, · · · , 55) is a pure subsequence as the data whose timestamps
from the subsequence is mainly from the first epoch Y0:49. The third subsequence (46, 47, · · · , 100) is also
a pure subsequence as the data is mainly from the second epoch Y50:100. However, the second subsequence
(31, 32, · · · , 75) is a mixture subsequence.

We next enumerate all subsequences by their starting time point. Let R be the total number of all subsequences
induced by all clusters, then we denote S = (s1, s2, · · · , sR) to be the list of all subsequences. The elements are
increasingly ordered by their starting time point. A subsequence si ∈ S if and only if there is one j, r such that
si = sj,r ∈ Sj . Fig. 2(b) shows one example of ordering subsequences. Correspondingly, we denote the list of
parameters affiliated to S as ϕs = (ϕs1 , · · · , ϕsR). If si ∈ Sj , then ϕsi = ϕcj .

The pure subsequences reveal epochs and we will use them to estimate change points. The challenging part lies
in identifying the pure subsequences among all subsequences. In practice, there could be one, multiple, or even
no mixture subsequence between two pure subsequences.

10 CODING LENGTH

Encoding an integer k requires log2 k bits. As τi ≤ T , CL(τ) ≤ k log T . Next, we only need to encode the k̃

unique parameter vectors ϕ̃, so CL(ϕ) = CL(ϕ̃) =
∑k̃

i=1 CL(ϕ̃i). Let ni denote the number of observations to

estimate ϕ̃i using maximum likelihood. Each parameter in ϕ̃i can be encoded using 1
2 log2 ni bits (Grünwald,

2007). Let ∥ϕ∥ denote the cardinality (L0 norm) of a vector ϕ. Then, the coding length CL(ϕ) of the parameters

is CL(ϕ) =
∑k̃

i=1
∥ϕ̃i∥
2 log2 ni.

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

11 SCORE COMPUTATION

The first term can be approximated as the following,

CL(Y1:T |M)− CL(Y1:T |M ′) ≈ −
bi∑

t=ai

logPϕsi
(Yt|Yt−p:t−1) + max

τ ′

bi∑
t=τ ′

logPϕsi+1
(Yt|Yt−p:t−1)

+

τ ′∑
t=ai

logPϕsi−1
(Yt|Yt−p:t−1), (11)

where ai and bi are the starting and ending time points of subsequence si. Eq. (11) is derived from a local
estimation for τ ′. In this greedy search, we always treat the first and the last subsequences are pure subsequences.
Their scores are therefore fixed to −∞.

Next, using (9) and (10) we get

CL(M)− CL(M ′) = log
R− 1

R− 2
+ log T +

(
∥ϕsi∥
2

log ni

)
1ϕsi

̸∈ϕS′ , (12)

where ni is the number of samples used to estimate ϕsi and ∥ϕsi∥ denotes the cardinality (L0 norm) of ϕsi . The
last term in the sum (12) accounts for the situation where a parameter vector is not used by any other sequence
in S′ and thus results in further coding length savings.

12 COMPUTATIONAL COMPLEXITY

Our procedure’s overall complexity depends on the model class M, the model fitting oracle A and the clustering
algorithm. We empirically measure the run-time incurred as a function of the time series length T . With
m = 2000 windows and with M as a linear VAR model class, Fig. 3, we show the linear relation between
running time and the time length. Using a 20 core processor, our method can handle a time series of length
T = 100, 000 in under 40 seconds.

13 RELATED WORK

In this section, we briefly review related works on change point detection and works on semantic segmentation.

Distributional-change detection: The study of distributional change point detection can be categorized
into two main approaches: searching and hypothesis testing (Truong et al., 2020). Traditional searching methods
include binary segmentation (BS) (Vostrikova, 1981; Venkatraman, 1992), sliding windows (SL) (Basseville and
Benveniste, 1983; Appel and Brandt, 1983), and dynamic programming (DP) (Auger and Lawrence, 1989).
Researchers have extended these methods over time. For example, Fryzlewicz proposed the WBS (Fryzlewicz,
2014), which integrates random sampling with binary segmentation to improve estimation consistency. The
well-known Bayesian approach is the BOCPD, which utilizes survival analysis to model the period between two
change points (Adams and Mackay, 2007). Recent methods based on BOCPD include (Agudelo-España et al.,
2020; Alami et al., 2020). Although some of the aforementioned works are general searching methods, they do
not explicitly support multivariate time series.

Semantic segmentation: Semantic segmentation of time series is a research topic related to change point
detection. The goal of semantic segmentation is to find meaningful patterns in complex, real-world data (Keogh
et al., 2001, 2002; Matsubara et al., 2014; Gharghabi et al., 2019). Change point detection, on the other hand,
focuses on identifying changes in the (unknown) generative distribution of observed time series, such as a mean
shift or a change in variance (Li et al., 2015; Chang et al., 2019; Cummings et al., 2020). Despite overlaps,
some researchers suggest the goals of semantic segmentation and change point detection are distinct (Keogh
et al., 2001; Gharghabi et al., 2019). Recently, some methods have proven effective for both problems (Hooi and
Faloutsos, 2019).

Unsupervised Change Point Detection in Multivariate Time Series

14 STATE OF THE ART BASELINES

For the experiments on artificial data (short time series), we extended the univariate procedure proposed in (Wu
et al., 2020) to the multivariate setting (namely by using the same first stage as our method) and referred to it as
‘ILP.’ We also include three traditional change point detection methods: sliding windows, binary segmentation,
and dynamic programming as baselines. For each of those, we use the implementation in the Python package
‘ruptures’ (Truong et al., 2020). Unlike our method, the baselines require the number of change points to be
given as input. We provide the correct number of change points, k = 1, as input. Also, those baselines are
designed for univariate (d = 1) time series. We apply those univariate methods to the bivariate (d = 2) artificial
data by detecting one change point in the two univariate time series. For each experiment, if the two detected
change points are within two timestamps, we consider them as one detected change point (for the bivariate time
series) and keep the one closer to the true change point.

We also use several state-of-the-art multivariate change point detection methods, BNB (Hooi and Faloutsos,
2019), BOCPDMS (Knoblauch and Damoulas, 2018), SBS (Cho and Fryzlewicz, 2015), DCBS (Cho, 2016), E-
Divisive (Matteson and James, 2014), and E-Agglomartive (Matteson and James, 2014). For the above methods,
we use the authors’ implementations. BNB requires the number of change points as input. We set the number
of change points from the ground truth for it. BOCPDMS requires a threshold and other parameters to be set.
The authors of BOCPDMS applied it to the bee dance data set. We use their default parameters with the bee
dance data for real-world data experiments. SBS and DCBS require users to specify the type of changes (mean
or second-order structure change) to be detected. In the experiment with artificial data, we manually set the
type of changes for them using the ground truth. For the experiments with real-world data, we simply set it to
mean change. For other parameters, we use their default setting. For E-Agglomerative, we set segment members
to be 100 uniformly spaced segments up to the time length. For E-Divisive, we use the default settings.

Additionally, we compare the performance of our method with two popular semantic segmentation methods,
Autoplait (Matsubara et al., 2014) and Fluss (Gharghabi et al., 2019). Recall from our discussion of related
work in Section 13 that the goal of semantic segmentation is different. Because they are designed for different
purposes, we do not expect that those methods will necessarily perform well in experiments with artificial data
when epochs’ distributions vary subtly. However, they have been applied to some of the real-world data sets we
use, so we include them along with change point detection methods as baselines.

We use the default setting when running Autoplait. We tune two hyper-parameters in Fluss, the number of
regimes changes, and the subsequence length (similar to our window size but also acts as a constraint that
enforces the minimum distance between adjacent change points). We set the number of regimes change to be 1,
and the subsequence length to be 30 for artificial data. For the real-world data, we set the number of regimes
to be the number of change points from the ground truth. For bee dance data, as the epoch size is small, we set
the subsequence length to be 10. We observe the authors set the subsequence length to be 90 for MoCap data.
We use the same value for the other data sets as well.

15 IMPLEMENTATION DETAILS OF OUR PROCEDURE

15.1 Model Class M, Oracle A, and Clustering Algorithm

In our experiments on artificial and real-world data, for simplicity, we mainly used linear vector auto-regressive
(VAR) models with Markov order p = 1 for the model class M. For one experiment with artificial data, we used
a (non-linear) logistic auto-regressive model with Markov order p = 1. For those two model classes M, we used
model fitting software from the Python libraries statsmodels and SciPy as the oracle A.

15.2 Sliding Windows–Count m and Size W

The number of windows m and window size W are two hyperparameters in our method. While the number of
windows m has a default value of m = T −W +1 (all possible sliding windows of size W), to reduce computation,
the user can use a smaller value of m. For simplicity, we set m = 500.

For the window size W , we do not propose a specific preset value. Many state-of-the-art works require the
user to specify the window size (Li et al., 2015) (Gharghabi et al., 2019). We instead propose to automatically

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

Figure 10: Clustering result for artificial time series with two epochs. The divergence between true distribution
is fixed to be 1. The top figure shows the heatmap of window distance for different window size. The bottom
figure shows the divergence between true and estimated distribution (blue line).

Figure 11: F1 score in different window size for Bee dance data.

select W by independently trying different values and using MDL to guide the selection (namely, whichever W
results in the model with the lowest complexity). If W is too small, the parameters may overfit and/or result
in distributions whose symmetric KL divergences are spuriously high, even for data from the same epoch. If W
is too large, such as larger than some epochs, then there may not be any windows with data exclusively from
shorter epochs, which could be missed.

Since what window sizes would work best will depend on the data set and its underlying generative process,
we propose to search the window size from a bounded range [WMin,WMax] = [15, 400]. Our procedure can be
run in parallel (independently) for different candidate W sizes. Among the models output from those parallel
instances, the model with the smallest overall complexity is selected as the final model. For the sake of reducing
computation, in our experiments on real-world data, when the time series has a time length T longer than 2000,
we only searched 8 sizes for W uniformly spaced up to the WMax. For the experiments on artificial data, due to
the large number of trials we used (16,000 total), we simply fixed the window size to be W = 30.

Fig.10 shows that the estimated distribution is closer to the true distribution when window size grows (epoch
length also grows). For real-world data, Fig. 11 shows that our method is robust to the variation in the window
size.

Unsupervised Change Point Detection in Multivariate Time Series

15.3 Computer System

Our experiments are conducted on Dell compute nodes with two 12-core Intel Xeon Gold “Sky Lake” processors
(24 cores per node) and 96 GB of memory.

16 EVALUATION

To avoid double counts, each estimated change point and each true change point is counted in at most one true
positive. For artificial data, where we know the ground truth change points, we can control δ to satisfy that
relation. The F1 score is defined as the harmonic mean of precision and recall, where precision = # TP

∥τ̂∥ and

recall = # TP
∥τ∥ and ∥·∥ denotes cardinality (L0 norm) of a given vector.

17 ARTIFICIAL DATA – DETAILS

For each artificial data set, we randomly generated ϕ1, the parameter vector for epoch 1. We then generated
ϕ2 so that Pϕ2 was similar to Pϕ1 except for one statistic. For the space Φ of stationary linear VAR models
(Markov order p = 1), we varied (1) a noise mean value and (2) a coefficient. We also (3) varied coefficient and
noise variances, so the joint distribution changed, but the marginal distributions did not. For the space Φ of
stationary logistic VAR models (Markov order p = 1), we varied (4) a coefficient. For each of those changes, we
generated times series that varied in the magnitude of change ∥ϕ1 − ϕ2∥1. The magnitude of the changes was
among 20 uniformly spaced values. For each magnitude, we generated 200 time series. (Thus, 4000 time series
for each of the four types of changes described above).

Fig. 6 shows that only our method and ILP were successful for anything other than a mean shift (with E-div
better than others for logit change, though ours significantly better); Fig. 3 shows that our method is much
faster than ILP.

To visualize the distributional changes, we plot example time series for (2) linear coefficient change in Fig. 4 and
(4) covariance change in Fig. 5. In Fig. 4, the difference between epoch 1 and epoch 2 is visually apparent. In
Fig. 5, the difference between the two epochs is visually less apparent.

18 REAL-WORLD DATA SETS

• Bee dance (Oh et al., 2008): The time series corresponds to bee movement trajectories captured by the
camera. We used six time series, each with dimension d = 3 and with an average time length T ≈ 600.
Fig. 7(a) shows an example time series. Each timestamp is labeled with one of the states: turn right, turn
left, and waggling. The change points are timestamps when the state transition occurs.

• HASC (Ichino et al., 2016): Human motion acceleration data. We used 50 time series (the first 50), each
with dimension d = 3 and an average time length T ≈ 9000. Fig. 7(b) shows an example time series. The
timestamps of different phases of motion, like walking, running, etc., are recorded. The change points are
when the motion changes.

• Occupancy (Candanedo and Feldheim, 2016): The data contains information about temperature, humidity,
light, CO2, and humidity ratio in a room. The dataset contains one time series with dimension d = 5 and
time length T = 2665. Fig. 12(b) shows the time series. Each timestamp is labeled either as being occupied
or empty. We ignore the anomalous phases with less than ten timestamps and consider the true change
points are at t = 195, 1044, 1371, 1400, 1674, and 2479.

• MoCap: Human motion sensor data1. We used two time series, each with dimension d = 4 and an average
time length T ≈ 11, 000. Fig. 8 shows the two time series. The dataset does not have labeled ground truth.
Instead, it provides recorded videos of the participant’s motions. We examine the video to check whether
the change points identified by Alg. 1 is meaningful or not.

We do not preprocess the above data if there is no explicit statement from methods of the states of arts or the
publisher of the data. For example, we do not subsample, rescale or normalize the data.

1http://mocap.cs.cmu.edu/

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

(a) The first panel shows the 3d time series and the
change points detected by Alg. 1. Inferred epochs: 1.
downstairs 2. walk 3. skip 4. jog 5. walk 6. stay
7. upstairs. From the second to the last panel, the
vertical red lines show the detection result of methods
of sbs, bnb, autoplait, and fluss.

(b) The first panel shows the 5d time series and the
change points detected by Alg. 1. Inferred epochs: 1.
occupied 2-3. empty 4. occupied 5. empty 6. occupied
7-8. empty 9. occupied. From the second to the last
panel, the vertical red lines show the detection result
of methods of E-divisive, sbs, bocpdms, bnb, autoplait,
and fluss.

Figure 12: Detected change points (vertical red line) in HASC data (a) and Occupancy data (b)

Figure 13: Bee dance data 6 (blue) and detected change points (vertical red line) by different methods. The time
series in the first, the second, and the third panels correspond to x, y, sin(θ) in bee dance data. The change
points detected by our method are presented in the first three panels (i.e. one set of change points, duplicated
for each time series for visualization). From the fourth panel to the last panel, red vertical lines show the change
points detected by methods E-Divisive, sbs, bocpdms, bnb, autoplait, and fluss.

19 PRECISION AND RECALL

In Table 2, we provide the precision and recall used to derive the F1 score in Table 1.

20 ABLATION STUDY

Without using the search algorithm, we can also estimate change points from every pair of clusters directly.
Table 3 shows our greedy method is effective and necessary to estimate change points.

21 SENSITIVITY ANALYSIS

We now test the sensitivity of our method. We perform common preprocessing techniques to the data, including
adding Gaussian noises, re-scaling, and Z-normalization. Table 4 shows our method is invariant to the above
operations.

We also test the sensitivity of our method on hyperparameters and clustering algorithms. Fig. 10 and Fig. 11
show our method is robust to the variation of window size. Fig. 15 shows our method is robust to the variation
of the clustering algorithm.

Unsupervised Change Point Detection in Multivariate Time Series

(a) Subject 86 Trial 2 and detected change points by
Alg. 1 (vertical red line). Inferred epochs: 1. Walk
2. Squat 3. Run 4. Stand 5. Stretch arms 6. Walk
7. Jump in place 8. Jump forward 9. Raise arm 10.
Raise arm again 11. Punch 12. Walk

(b) Subject 86 Trial 8 and detected change points by
Alg. 1 (vertical red line). Inferred epochs: 1-2. walk
3. Squat 4. Twist 5. Roll arms 6. Stand 7. Kick 8.
Lean back 9. Run 10. Stand 11. Raise arm 12. Punch
13-14. Walk

Figure 14: Identified change points (red) for MoCap time series.

Table 2: Performance. F1 score, (precision, recall).(- indicates the running time lasts more than 48 hours)
Datasets δ Our Method BnB E-Div BOCPDMS sbs Auto-plait fluss

Bee
dance

5 64.5, (72.3, 58.1) 29.2, (28.5, 29.9) 32.5, (32.5, 32.5) 35.6, (45.9, 29.1) 6.4, (50.0, 3.4) 10.6, (46.7, 6.0) 34.2, (33.3, 35.0)
10 76.8, (86.2, 69.2) 45.0, (43.9, 46.2) 52.1, (52.1, 52.1) 44.0, (66.8, 35.9) 8.0, (62.5, 4.3) 15.2, (66.7, 8.5) 45.8, (44.7, 47.0)
15 78.7, (88.3, 70.9) 55.0, (53.7, 56.4) 70.1, (70.1, 70.1) 49.2, (63.5, 40.2) 9.6, (75.0, 5.1) 16.7, (73.3, 9.4) 45.8, (44.7, 47.0)
20 79.6, (89.4, 71.8) 61.7, (60.2, 63.2) 79.5, (79.5, 79.5) 52.4, (67.6, 42.7) 12.8, (100, 6.8) 18.2, (80.0, 10.3) 48.3, (47.2, 49.6)

HASC
50 54.5, (48.7, 61.8) 10.4, (9.8, 11.1) - - 9.3, (31.7, 5.4) 60.5, (77.0, 49.9) 25.9, (24.4, 27.6)
100 70.3, (62.8, 79.7) 16.3, (15.3, 17.3) - - 14.8, (50.8, 8.7) 71.1, (90.4, 58.5) 29.0, (27.3, 30.9)
150 75.3, (67.3, 85.4) 23.1, (21.8, 24.7) - - 18.5, (63.5, 10.8) 73.7, (93.7, 60.7) 31.8, (30.0, 33.9)
200 76.7, (68.6, 87.0) 25.7, (24.2, 27.4) - - 19.4, (66.7, 11.4) 74.0, (94.1, 61.0) 32.8, (30.9, 35.0)

Occu-
pancy

5 42.9, (37.5, 50.0) 37.5, (30.0, 50.0) 14.3, (7.8, 83.3) 4.7, (2.5, 33.3) 40.0, (50.0, 33.3) 0.0, (0.0, 0.0) 12.5, (10.0, 16.7)
10 71.4, (62.5,83.3) 62.5, (50.0, 83.3) 14.3, (7.8, 83.3) 4.7, (2.5, 33.3) 60.0, (75.0, 50.0) 12.5, (10, 16.7) 12.5, (10.0, 16.7)
15 71.4, (62.5, 83.3) 62.5, (50.0, 83.3) 14.3, (7.8, 83.3) 9.3, (5.0, 66.7) 60.0, (75.0, 50.0) 12.5, (10, 16.7) 12.5, (10.0, 16.7)
20 71.4, (62.5,83.3) 62.5, (50.0, 83.3) 14.3, (7.8, 83.3) 9.3, (5.0, 66.7) 60.0, (75.0, 50.0) 12.5, (10, 16.7) 12.5, (10.0, 16.7)

Table 3: Ablation study
Datasets Bee Dance HASC Occupancy

δ 5 10 15 20 50 100 150 200 5 10 15 20
W/O greedy 64.5/61.5 76.8/71.3 78.7/71.3 79.6/71.3 54.5/42.7 70.3/50.3 75.3/51.2 76.7/51.5 42.9/20.0 71.4/33.3 71.4/33.3 71.4/33.3

Table 4: Sensitivity analysis

Datasets Bee Dance HASC Occupancy
δ 5 50 5

Noise-N (0, 1) 64.5 54.5 42.9
Noise-N (0, 4) 64.5 54.5 42.9
Rescaling 64.5 54.5 42.9

Z-normalization 64.5 54.5 42.9

Figure 15: Sensitivity on clustering algorithm using artificial VAR data. The y-axis is the percentage of F1. The
x-axis is the difference of mean µ.

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

22 MISSING PROOFS

22.1 Proof of Theorem 1

22.1.1 Technical Lemmas

We first state a few technical lemmas that will be used in our proof

(Ottaviani’s inequality) For independent random variables U1, · · · , Um for Sk =
∑

i∈[k] Ui for k ∈ [m], and for
λ1, λ2 > 0, we have

Pr[max
1≤k≤m

|Sk| > λ1 + λ2] ≤
Pr[|Sm| > λ1]

1−max1≤k≤m Pr[|Sm − Sk| > λ2]
.

Using Hoeffding’s inequality, we can have the following Corollary. For independent random variables U1, · · · , Um

with mean zero and strictly bounded by an interval length L and for Sk =
∑

i∈[k] Ui for k ∈ [m], and for λ1 > 0

and λ2
2 > 1

2mL2 log 2, we have

Pr[max
1≤k≤m

|Sk| > λ1 + λ2] ≤
2 exp(−2λ2

1/(mL2))

1− 2 exp(−2λ2
2/(mL2))

.

Proof. Since the random variables {Ui} are independent and zero mean, the sum Sm is too, E[Sm] = 0. Thus
Hoeffding’s inequality implies

Pr (|Sm| > λ1) ≤ Pr (|Sm| ≥ λ1)

= Pr (|Sm − E[Sm]| ≥ λ1)

≤ 2 exp

(
− 2λ2

1

mL2

)
. (Hoeffding’s ineq.)

Likewise, the sum Sm − Sk =
∑m

i=k+1 Ui of m − k independent zero mean random variables is also zero mean,
E[Sm − Sk] = 0. Thus, Hoeffding’s inequality implies

Pr (|Sm − Sk| > λ2) ≤ Pr (|Sm − Sk| ≥ λ2)

= Pr (|Sm − Sk − E[Sm − Sk]| ≥ λ2)

≤ 2 exp

(
− 2λ2

2

(m− k)L2

)
(Hoeffding’s ineq.)

< 2 exp

(
− 2λ2

2

mL2

)
. (11)

Since (11) holds for all 1 ≤ k < m (and trivially for k = m in which case Sm − Sk = 0),

max
1≤k≤m

Pr (|Sm − Sk| > λ2) < 2 exp

(
− 2λ2

2

mL2

)
. (12)

Note that the left hand side is a probability, so this bound is only meaningful when

2 exp

(
− 2λ2

2

mL2

)
< 1

⇐⇒ λ2
2 >

1

2
mL2 log 2 (13)

Combining these results and rearranging e.g. for a, b ∈ (0, 1), a ≤ b ⇔ 1
1−a ≤ 1

1−b).

Unsupervised Change Point Detection in Multivariate Time Series

22.1.2 Theorem 1

We first restate Theorem 1 using simplified notation.

Theorem 3. For true models Q0, Q1, data X before change point k∗ are drawn from Q0, data X after change
point k∗ are drawn from Q1. If we have estimated model P0 approximate to Q0 and estimated model P1 approx-
imate to Q1, then the MLE k̂ via P0 and P1 is (α, β)-accurate for any β > 0 and

α =
2A2

C2
log

32

3β
(14)

A = maxx
logP0(x)
logP1(x)

−minx′
logP0(x

′)
logP1(x′) and

C = min {DKL(Q0||P1)−DKL(Q0||P0), DKL(Q1||P0)−DKL(Q1||P1)}.

Proof. We only have incorrect k̂ ̸= k∗ if there exists some k such that the log-likelihood l(k) > l(k∗).

Given some true change-point k∗ and error tolerance α > 0, we can partition the local interval [t1, t2] (i.e.

the feasible region for selecting k̂) via a partitioning of R centered at k∗ with sub-intervals with exponentially
increasing size further out from k∗. We define the partition recursively, as

R0 = [k∗ − α, k∗ + α]

Ri = [k∗ − 2iα, k∗ + 2iα] \ Ri−1 for i = 1, 2, . . . (15)

Equivalently, for i ≥ 1 we can identify Ri as the union of two sub-intervals, with R−
i and R+

i denoting the parts
left and right of k∗ respectively, each of length 2i,

R−
i = [k∗ − 2iα, k∗ − 2i−1α)

R+
i = (k∗ + 2i−1α, k∗ + 2iα]

Ri = R−
i ∪R+

i .

Then we can bound the probability of the bad events as follows. The event |k̂ − k∗| > α is equivalent to the

event k̂ ∈ ∪i≥1Ri

Pr
(
|k̂ − k∗| > α

)
= Pr

(
k̂ ∈ ∪i≥1Ri

)
≤
∑
i≥1

Pr
(
k̂ ∈ Ri

)
≤
∑
i≥1

Pr
(
k̂ ∈ R+

i

)
+ Pr

(
k̂ ∈ R−

i

)
(16)

We next bound Pr
(
k̂ ∈ R+

i

)
.

For simplicity, we let P0 denote a fixed model with which we evaluate different candidate change-points, though
for each candidate change-point k one could estimate models for each halve (split at k).

We observe that the event

{k̂ ∈ R+
i } = {max

k∈R+
i

ℓ(k) = max
k∈∪i≥0Ri

ℓ(k)}

⊆ {max
k∈R+

i

ℓ(k)− ℓ(k∗) ≥ 0}, (17)

where (17) includes the larger event that the true change-point not as good as some candidate in R+
i (there

could be an even better candidate elsewhere).

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

Now for a candidate k ∈ R+
i , we expand the difference of log-likelihoods ℓ(k)− ℓ(k∗) as

ℓ(k)− ℓ(k∗) =

[
k−1∑
t=t1

logP0(xt) +

t2∑
t=k

logP1(xt)

]

−

[
k∗−1∑
t=t1

logP0(xt) +

t2∑
t=k∗

logP1(xt)

]

=

k−1∑
t=k∗

logP0(xt)−
k−1∑
t=k∗

logP1(xt) (18)

=

k−1∑
t=k∗

logP0(xt)− logP1(xt)± logQ1(xt) (add and subtract a term)

=

k−1∑
t=k∗

−
(
log

Q1(xt)

P0(xt)
− log

Q1(xt)

P1(xt)

)
︸ ︷︷ ︸

Ũt

(19)

where (18) follows since for this case the candidate k ∈ R+
i satisfy k > k∗, so data up to k∗ are modeled the same

and data after k are too, canceling out above. Thus, the only difference to the log-likehoods come from models
used on data at times t ∈ {k∗, k∗ + 1, . . . , k − 1}, we rearrange terms in (19) and we also introduce notation Ũt

for the difference in log-likelihoods for any t ∈ {k∗, . . . ,maxt∈R+
i
t}.

Since data are distributed as xt ∼ Q1 for t ∈ {k∗, . . . , k − 1}, we have that the expected value of Ũt is

E[Ũt] = −EQ1

[
log

Q1(xt)

P0(xt)
− log

Q1(xt)

P1(xt)

]
= −(DKL(Q1||P0)−DKL(Q1||P1)). (20)

Writing Ut = Ũt − E[Ũt], we can express the difference in log-likelihoods as

ℓ(k)− ℓ(k∗) =

k−1∑
t=k∗

Ũt (from (19))

=

(
k−1∑
t=k∗

Ũt − E[Ũt]

)
− (k − k∗)(DKL(Q1||P0)−DKL(Q1||P1))

=

(
k−1∑
t=k∗

Ut

)
− (k − k∗)(DKL(Q1||P0)−DKL(Q1||P1))

(21)

We express the event ℓ(k)− ℓ(k∗) ≥ 0 with {Ut} as

ℓ(k)− ℓ(k∗) ≥ 0

⇐⇒
k−1∑
t=k∗

Ut − (k − k∗)(DKL(Q1||P0)−DKL(Q1||P1)) ≥ 0 (22)

We can bound the probability of the event in (17),

Pr

(
max
k∈R+

i

ℓ(k)− ℓ(k∗) ≥ 0

)

= Pr

(
max
k∈R+

i

k−1∑
t=k∗

Ut − (k − k∗)(DKL(Q1||P0)−DKL(Q1||P1)) ≥ 0

)
(23)

Unsupervised Change Point Detection in Multivariate Time Series

Next, recall that R+
i = (k∗ + 2i−1α, k∗ + 2iα], so for k ∈ R+

i ,

2i−1α < k − k∗ ≤ 2iα ⇐⇒ −2i−1α > −(k − k∗) ≥ −2iα.

Thus,

Pr

(
max
k∈R+

i

ℓ(k)− ℓ(k∗) ≥ 0

)

= Pr

(
max
k∈R+

i

{
k−1∑
t=k∗

Ut − (k − k∗)(DKL(Q1||P0)−DKL(Q1||P1))

}
≥ 0

)

≤ Pr

(
max
k∈R+

i

{
k−1∑
t=k∗

Ut − 2i−1α(DKL(Q1||P0)−DKL(Q1||P1))

}
≥ 0

)

= Pr

(
max
k∈R+

i

{
k−1∑
t=k∗

Ut

}
≥ 2i−1α(DKL(Q1||P0)−DKL(Q1||P1))

)
(24)

With (DKL(Q1||P0)−DKL(Q1||P1)) ≥ C, we have

Pr

(
max
k∈R+

i

ℓ(k)− ℓ(k∗) ≥ 0

)

≤ Pr

(
max
k∈R+

i

{
k−1∑
t=k∗

Ut

}
≥ 2i−1α(DKL(Q1||P0)−DKL(Q1||P1))

)

≤ Pr

(
max
k∈R+

i

{
k−1∑
t=k∗

Ut

}
≥ 2i−1αC

)
.

We recognize that for this case (k ∈ R+
i) since Ũt = log P0(xt)

P1(xt)
, Ũt is bounded in the interval

[minx∈X log P0(x)
P1(x)

, maxx∈X log P0(x)
P1(x)

], and Ut is just translated copy of Ũt to be mean zero, it is also bounded

in an interval of length at most A. Also, R+
i is of length 2iα − 2i−1α = 2i−1α. Invoking Section 22.1.1 with

λ1 = λ2 = 1
22

i−1αC, we have

Pr
(
k̂ ∈ R+

i

)
≤ Pr

(
max
k∈R+

i

ℓ(k)− ℓ(k∗) ≥ 0

)

≤ Pr

(
max
k∈R+

i

{
k−1∑
t=k∗

Ut

}
≥ 2i−1αC

)

≤
2 exp(−2(122

i−1αC)2/(2i−1αA2))

1− 2 exp(−2(122
i−1αC)2/(2i−1αA2))

=
2 exp(−2i−2αC2/A2)

1− 2 exp(−2i−2αC2/A2)

provided α > A2 log 2
2i−2C2

Daoping Wu1,2, Suhas Gundimeda3, Shaoshuai Mou4, Christopher J. Quinn1

The analysis of Pr
(
k̂ ∈ R−

i

)
is similar,

ℓ(k)− ℓ(k∗) =

[
k−1∑
t=t1

logP0(xt) +

t2∑
t=k

logP1(xt)

]

−

[
k∗−1∑
t=t1

logP0(xt) +

t2∑
t=k∗

logP1(xt)

]

=

k∗−1∑
t=k

logP1(xt)−
k∗−1∑
t=k

logP0(xt)

so the analogous Ũt is bounded in the interval [minx∈X log P1(x)
P0(x)

, maxx∈X log P1(x)
P0(x)

] which is of length at most

A. Thus, by symmetry we have the same bound on Pr
(
k̂ ∈ R−

i

)
, so

Pr
(
k̂ ∈ Ri

)
≤ 4 exp(−2i−2αC2/A2)

1− 2 exp(−2i−2αC2/A2)

Note that

4 exp
(
−2i−2αC2/A2

)
1− 2 exp (−2i−2αC2/A2)

≤8 exp
(
−2i−2αC2/A2

)
(25)

=8

(
exp(

−αC2

2A2
)

)2i−1

(26)

Now we sum terms over all i,

∑
i≥1

Pr[max
k∈Ri

ℓ(k)− ℓ(k∗) > 0] ≤ 8
∑
i≥1

(
exp(

−αC2

2A2
)

)2i−1

(27)

≤
∑
i≥1

(
exp(

−αC2

2A2
)

)i

(28)

≤
8 exp

(
−αC2/A2

)
1− exp (−αC2/A2)

(29)

≤ 32

3

(
exp(

−αC2

2A2
)

)
(30)

We now complete the proof.

22.2 Proof of Theorem 2

Proof. Recall that Score(si) = 1
T (CL(Y1:T |M) − CL(Y1:T |M ′) + CL(M) − CL(M ′)). As CL(M) − CL(M ′) =

O(log(T)),

limT→∞
CL(M)−CL(M ′)

T = 0. We then show CL(Y1:T |M)−CL(Y1:T |M′)
T >0. We first decompose the log-likilhood into

Unsupervised Change Point Detection in Multivariate Time Series

two parts

− 1

T

b∑
t=a

logPϕs2
(Yt|Yt−p:t−1)

= − 1

T

(
τ∑

t=a

logPϕs2
(Yt|Yt−p:t−1) +

b∑
t=τ

logPϕs2
(Yt|Yt−p:t−1)

)

We next derive the inequality for each part.

limT→∞ −
1

T

τ∑
t=a

logPϕs2
(Yt|Yt−p:t−1)

= lim
T→∞

1

T

τ∑
t=a

log
Pϕ1(Yt|Yt−p:t−1)

Pϕs2 (Yt|Yt−p:t−1)
− 1

T

τ∑
t=a

logPϕ1(Yt|Yt−p:t−1)

= lim
T→∞

E

(
log

Pϕ1

Pϕs2

)
− 1

T

τ∑
t=a

logPϕ1(Yt|Yt−p:t−1)

= lim
T→∞

DKL(Pϕ1
||Pϕs2

)− 1

T

τ∑
t=a

logPϕ1(Yt|Yt−p:t−1)

> lim
T→∞

DKL(Pϕ1 ||Pϕs1
)− 1

T

τ∑
t=a

logPϕ1(Yt|Yt−p:t−1)

= lim
T→∞

E

(
log

Pϕ1

Pϕs1

)
− 1

T

τ∑
t=a

logPϕ1(Yt|Yt−p:t−1)

= lim
T→∞

1

T

τ∑
t=a

log
Pϕ1(Yt|Yt−p:t−1)

Pϕs1
(Yt|Yt−p:t−1)

− 1

T

τ∑
t=a

logPϕ1(Yt|Yt−p:t−1)

= lim
T→∞

− 1

T

τ∑
t=a

logPϕs1
(Yt|Yt−p:t−1)

Similarly, we have

lim
T→∞

− 1

T

b∑
t=τ

logPϕs2
(Yt|Yt−p:t−1) > lim

T→∞
− 1

T

b∑
t=τ

logPϕs3
(Yt|Yt−p:t−1)

We then have

lim
T→∞

CL(Y1:T |M)− CL(Y1:T |M ′)

T
> 0

which completes our proof.

