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Abstract

Uncertainty quantification of neural networks
is critical to measuring the reliability and
robustness of deep learning systems. How-
ever, this often involves costly or inaccurate
sampling methods and approximations. This
paper presents a sample-free moment propa-
gation technique that propagates mean vec-
tors and covariance matrices across a network
to accurately characterize the input-output
distributions of neural networks. A key en-
abler of our technique is an analytic solution
for the covariance of random variables passed
through nonlinear activation functions, such
as Heaviside, ReLLU, and GELU. The wide
applicability and merits of the proposed tech-
nique are shown in experiments analyzing the
input-output distributions of trained neural
networks and training Bayesian neural net-
works.

1 INTRODUCTION

This paper presents an analytic moment propagation
technique to accurately characterize the input-output
distributions of deep neural networks. Neural net-
works have achieved state-of-the-art inference accu-
racy across many problem domains, but their appli-
cation to safety-critical domains like autonomous ve-
hicles, industrial robots, and medicine demands not
only high accuracy but also high reliability and ro-
bustness. Accurate uncertainty quantification in neu-
ral networks enables measurements of reliability and
robustness, since uncertainty quantification gives us a
language in which we can reason about the likelihood
and conditions of failure. Uncertainty quantification
techniques can be used to analyze the robustness of
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trained neural networks to input noise and adversarial
attacks, or to train networks that represent predic-
tive uncertainty to provide well-calibrated confidence
scores and out-of-distribution detection.

Rather than explicitly representing uncertainty, neu-
ral networks are commonly trained to produce point
estimates without rigorous uncertainty quantification.
Although their optimization process has a probabilis-
tic interpretation—e.g., minimizing a cross-entropy
loss function corresponds to maximum likelihood es-
timation under certain conditions (MacKay, 2002)—
networks trained in this way are often poorly cal-
ibrated (Guo et al., 2017) and can perform poorly
against small input perturbations and adversarial at-
tacks (Szegedy et al., 2014; Carlini and Wagner, 2017).

One approach to quantifying uncertainty in neural net-
works is by propagating statistical moments across a
network, from input to output, layer by layer. In the
existing literature, moment propagation has been used
1) to analyze the input-output distributions of any
given (or well-trained) networks (Bibi et al., 2018); 2)
to train probabilistic networks that explicitly model
input uncertainty (Gast and Roth, 2018); and 3)
to train fully Bayesian neural networks (BNNs) that
model both input uncertainty and parameter uncer-
tainty (Wu et al., 2019).

Uncertainty quantification remains a challenging area
of research, because modern neural networks are non-
linear and represent data in high-dimensional spaces.
For moment propagation in particular, interactions be-
tween the outputs of activation functions are challeng-
ing to characterize analytically. The moment propa-
gation techniques proposed in prior work approximate
the covariance between activation variables, as no an-
alytic solution for covariance has been published for
generalized neural network nonlinearities.

In this paper, we address the above problem by deriv-
ing an exact analytic solution for the covariance matrix
of nonlinear activation functions with Gaussian inputs.
Our covariance theorem, presented in Section 3, is a
general solution that can be computed to arbitrary
precision, enabling more accurate and widely applica-
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Figure 1: Moment propagation for a single network
layer with an affine transformation followed by a non-
linear activation function. Layer-by-layer mean and
covariance statistics can be used as a measure of un-
certainty traveling across a network.

ble moment propagation in neural networks. As illus-
trative examples, we show how our solution computes
the covariance for neural networks with Heaviside, rec-
tified linear unit (ReLU), and Gaussian error linear
unit (GELU) activation functions. With these exam-
ples we also derive other activation statistics missing
from the current literature. In Section 4, we demon-
strate the application of these theoretical results to
both the analysis and synthesis of neural networks,
showing in experiments improved accuracy for char-
acterizing input-output distributions of trained neural
networks and for training Bayesian neural networks
(see Table 3). Code to run these experiments is pub-
licly available!.

2 RELATED WORK

Below we discuss related work in the quantification of
neural network uncertainty.

2.1 Uncertainty Propagation

The earliest work on propagating uncertainty through
neural networks appears in research on Bayesian be-
lief networks (Pearl, 1988; Neal, 1992). Frey and Hin-
ton (1999) propose a framework for transformations
of Gaussian variables in nonlinear Gaussian belief net-
works. Gast and Roth (2018) build upon this frame-
work and propose a method to propagate mean and
variance statistics for training neural networks with
assumed density filtering (Boyen and Koller, 1998;
Minka, 2001) and probabilistic output layers. This
prior work models the predictive uncertainty of a neu-
ral network, but is limited by the fact that only vari-
ance, not covariance, is propagated (i.e., only the diag-
onal of a covariance matrix), due to the lack of exact
covariance solutions.

Another application of uncertainty propagation is the
measurement of adversarial robustness, which is com-
monly done by evaluating adversarial accuracy, i.e.,

"https://github.com/omwright /cov-prop-nn

the network test accuracy under selected adversarial
attacks. Evaluating adversarial accuracy is usually
done with attacks that have proven empirically effec-
tive, such as those proposed in Carlini and Wagner
(2017) and Madry et al. (2018). However, because
one must select and implement a particular set of at-
tacks, adversarial accuracy is a coarse and sometimes
misleading measure of robustness (Ding et al., 2019;
Olivier and Raj, 2023). Bibi et al. (2018) propose a
technique to propagate moments through ReLU net-
works via piecewise-linear approximations (PL-DNN)
to give a probabilistic model of noise and adversar-
ial robustness, which they use to measure adversarial
fooling rates and pixel-level noise sensitivity in com-
puter vision problems. The authors give a closed-form
solution for the covariance of Gaussian random vari-
ables passed through a ReLU activation, but only for
zero-mean Gaussians.

In other work, Astudillo and da Silva Neto (2011)
and Abdelaziz et al. (2015) combine approximations
with sampling-based methods to propagate uncer-
tainty through networks for automatic speech recog-
nition. Daunizeau (2017) derives accurate approxima-
tions for the mean and variance of the sigmoid and
softmax functions. Seo et al. (2021) show how the dis-
tribution of the penultimate layer of a neural network
can be used for generative modeling and knowledge
distillation.

2.2 Bayesian Neural Networks

Bayesian inference with neural networks was first pro-
posed by MacKay (1992), modeling both input and
parameter uncertainty. Because a BNN computes a
full posterior distribution, it is robust to overfitting
and can quantify predictive uncertainty. However, be-
cause modern neural networks are high-dimensional
and non-convex, computing posterior distributions
incurs a prohibitive computational cost and typi-
cally requires approximative, sampling-based methods
(Graves, 2011; Blundell et al., 2015; Herndndez-Lobato
and Adams, 2015; Kingma et al., 2015).

Due to this cost and difficulty, some approximative
methods avoid directly representing the uncertainty
of the parameters (Gal and Ghahramani, 2016; Mad-
dox et al., 2019). Loquercio et al. (2020) combine the
assumed density filtering approach of Gast and Roth
(2018) with the dropout sampling of Gal and Ghahra-
mani (2016) and apply their framework to autonomous
systems. Most closely related to our work is Wu
et al. (2019), which proposes an alternative, sample-
free approach to Bayesian inference, deterministic vari-
ational inference (DVT), which analytically propagates
the mean and covariance statistics of inputs, activa-
tions, and parameters. To compute the activation co-
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variance matrix, the authors propose closed-form ap-
proximations of the covariance of Heaviside and ReLLU
activations. Mae et al. (2021) build on the approxi-
mations of Daunizeau (2017) and Wu et al. (2019) to
compute uncertainty for dropout-based Bayesian neu-
ral networks. The reliance on activation-specific co-
variance approximations or variance alone limits the
accuracy and applicability of these approaches.

3 MOMENT PROPAGATION

In this section we describe moment propagation in neu-
ral networks and propose an analytic solution. We de-
note scalars, vectors, and matrices by z, x, and X,
respectively. We do not distinguish between random
variables and their instantiations, in part because we
may treat a given variable as random or deterministic
depending upon the context. For economy of notation,
we avoid subscripts and superscripts except when nec-
essary.

3.1 Problem Formulation

Given some uncertainty at the input to a neural net-
work, whether due to noise, adversarial perturbations,
or otherwise—or possibly at some intermediate stage
of the network—our goal is to compute the statistics or
probability distribution of the network output. More
explicitly, we treat inputs probabilistically and propa-
gate their mean and covariance layer by layer, as de-
picted in Figure 1, and use these moments to deter-
mine output (or intermediate) uncertainty. Each layer
¢ in a standard multilayer perceptron takes an input
x(®) € R"™ and is composed of an affine transformation

v = WOx®) | b0

followed by a nonlinear, element-wise activation func-
tion

20 = g® (yu)) ,

The output of the activation function then serves as

the input to the affine transformation of the next layer,
x(+1) = Z(O)

As we will show, we can compute layer-wise mean
and covariance across this structure under certain as-
sumptions, giving us a general, sample-free framework
for propagating uncertainty through neural networks.
This can be used to analyze the robustness of trained
networks (Bibi et al., 2018), or to train probabilistic
neural networks that can represent predictive uncer-
tainty (Hernandez-Lobato and Adams, 2015; Gast and
Roth, 2018; Wu et al., 2019).

3.2 Activation Covariance

To make the problem tractable, we assume that the in-
put to each nonlinearity is Gaussian, y ~ N (uy, 3y).
Herndndez-Lobato and Adams (2015); Bibi et al
(2018); Gast and Roth (2018); Wu et al. (2019) make
similar Gaussian assumptions in their moment prop-
agation algorithms. Herndndez-Lobato and Adams
(2015); Gast and Roth (2018) use assumed density fil-
tering (Boyen and Koller, 1998; Minka, 2001), which
requires parametric distributions like the Gaussian.
Wu et al. (2019) observe that, empirically, for the high
dimensions and conditions typical of practical neural
networks, the Gaussian assumption can be loosely jus-
tified by the central limit theorem, regardless of the
shape of the distribution of x. The Gaussian assump-
tion may also be justified from the principle of maxi-
mum entropy (Jaynes, 2003).

Even if the distribution of the activation input y is
Gaussian, computing the moments of the activation
output z is non-trivial. For the covariance matrix 3,
in particular, no exact solution exists in the literature,
and existing methods use activation-specific approxi-
mations (see, e.g., Bibi et al. (2018); Wu et al. (2019)).
We present a general method to compute the covari-
ance between functions of Gaussian random variables
below in Theorem 1, a complete proof of which can be
found in Appendix A.

Definition 1. A wvector function g : R® — R" is
element-wise independent and identical if

g(y) = [9(v1) 9() g(yn)]

with g : R — R.

Theorem 1. Supposey € R" is a multivariate Gaus-
sian random wvector, y ~ N(u,X), and z = g(y)
is an element-wise independent and identical function
of y. If the mean and variance of any input ele-
ment y; is (pi,02), and any two input elements Yis Uj
are related by Pearson correlation coefficient p;; =
E[(y; — wi)(y; — 1))/ (0:05), then the covariance be-
tween output elements z; and z; is

o0

k k ke
Pij O"Elz; OF Rz,
Cov(z;,zj) = E klj <Uf au[k ]) <U§; au[kj])'
! ! ;

k=1

Corollary 1.1. Given z = g(y), a function of a Gaus-
sian random variable y ~ N (u,0?), the variance of z

8
00

Var(z) =} % (ak 8;E,EZ])2 .

k=1

Theorem 1 is a general solution that can be com-
puted to arbitrary precision. Computing the covari-
ance matrix of z € R™ with a k-th order expansion of
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Theorem 1 has an asymptotic runtime complexity of
O(kn?). Theorem 1 is not limited to any particular ac-
tivation function, assuming only the Gaussianity of the
input and that the activation mean and its derivatives
are well-defined. As we show below in Section 3.3,
we can readily apply Theorem 1 to several common
activation functions and successfully propagate across
network layers.

3.3 Propagation Across a Network Layer

The input and output of a neural network layer are
related by

y=Wx+b (1)
z =g(y) (2)

where g takes the element-wise independent and iden-
tical form given in Definition 1. If the input x has
mean p, and covariance X, the mean and covariance
of y are

py =Wy, +b (3)
, =W, W', (4)

We next compute the mean and covariance of z in
terms of the mean and covariance y, which, together
with Equations (3) and (4) relate the output moments
to the input moments.

For simplicity, consider from z a single element, z =
9(y), y ~ N(u,02). With the standard normal Gaus-
sian probability density function and standard normal
cumulative density function

o) = V%exp{—“j}
B(z) = % [1+erf (\%)]

the mean of the output for Heaviside, ReLU, and
GELU activation functions can be expressed com-
pactly as

Heaviside E[z] =® (g) (5)
ReLU  E[z] = ud (g) + o6 (g) (6)
GELU  E[2] = ud <\/1i7> +

¢1U+2 ()

and the first derivative with respect to u is

Heaviside agj} = %gf) (g) (8)
ReLU agl[f} s (g) 9)
ceo G e () +

(1+ c1f2)3/2¢’ (\/1/::_7> - (10)

Equations (5), (6), and (7) allow us to compute p, in
terms of the moments of y, and with their derivatives
we can apply Theorem 1 to compute 3,. Equations (5)
and (6) can be derived with direct integration (Grad-
shteyn and Ryzhik, 1994), and in the context of neu-
ral networks solutions first appear in Frey and Hinton
(1999). We derive Equation (7), and give formulae
to compute the k-th derivative of Equations (5), (6),
and (7), respectively, in Appendix B.

We again note that Theorem 1 assumes the activation
mean and its derivatives are well-defined, and applies
only to activation functions that take the element-wise
independent and identical form given in Definition 1.
Some activation functions, like the sigmoid, don’t have
a closed-form mean, but accurate approximations ex-
ist (Daunizeau, 2017). We discuss the sigmoid function
in detail in Appendix B.4. Some common output lay-
ers like the softmax function don’t meet the element-
wise independent and identical requirement, but also
do not present a major obstacle since moments can
still be computed for output logits. However, exten-
sions are needed to admit other functions frequently
used at intermediate layers, like pooling and batch nor-
malization. Shriver (2022) shows that such functions
can be refactored into sequences of linear and ReLLU
operations, to which the moment propagation tech-
niques above can be applied. (Convolution, a linear
operation, can be covered straightforwardly by Equa-
tions (3) and (4).) For the case of pooling, Gast and
Roth (2018) approximate the mean and variance with
closed-form approximations. As an alternative, Sprin-
genberg et al. (2015) show that pooling layers can be
replaced with strided convolutions without loss of in-
ference accuracy.

3.4 Propagation Across Neural Networks

Since x(“+1) =z the moment propagation equations

in Section 3.3 yield the following algorithm, versions
of which appear in Frey and Hinton (1999), Gast and
Roth (2018), and Wu et al. (2019):

Algorithm 1 lets us analytically estimate the output
mean and covariance of a neural network in terms of
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Algorithm 1 Neural network moment propagation

1: Get input mean p, and covariance Xy
2: for each network layer do

30 py, Yy < Wp, +b, WE, W'

4:  Compute p,, X, from y ~ N (py, Xy)
5: Hys Xix 4 Py, 2z

6: end for

the input. Output mean and covariance can be used to
analyze the robustness of a neural network to noise, ad-
versarial attacks, and other perturbations, as demon-
strated by Bibi et al. (2018).

3.5 Training Neural Networks

With moment propagation, we can train neural net-
works that achieve high inference accuracy, as with
standard neural network training, and represent out-
put uncertainty due to input uncertainty (Gast and
Roth, 2018; Loquercio et al., 2020). This uncer-
tainty is sometimes defined as aleatoric uncertainty—
uncertainty inherent to the underlying process or sys-
tem. By altering standard output layers and loss
functions—e.g., for regression problems, we can re-
place mean-squared-error loss with a log-likelihood loss
to capture both mean and variance of the output—we
can use moment propagation in a supervised train-
ing regime to characterize the aleatoric uncertainty of
the model’s predictions. In their probabilistic train-
ing, Gast and Roth (2018) and Loquercio et al. (2020)
only model variance for each neuron, i.e., the diago-
nal of the full activation covariance matrix X,. Us-
ing Algorithm 1 will capture the interactions between
a layer’s activation random variables, at the cost of
added computational complexity. For a fuller discus-
sion of training probabilistic networks of this form, we
refer readers to Gast and Roth (2018).

We can also use moment propagation in the training
of fully Bayesian neural networks (Wu et al., 2019).
As discussed in Section 2.2, BNNs represent both
aleatoric uncertainty and epistemic uncertainty—
uncertainty in the model, which can be resolved with
additional training data—Dby attempting to character-
ize the entire predictive distribution instead of learning
a single estimate of network parameters. For a dataset
of D input-output pairs D = {(X(i),z(i))}il, and a
model parameterized by 0, the predictive distribution
is (MacKay, 2002):

plzlx, D) = / p(zlx,0)p(0|D)ds. (1)

Because computing the posterior distribution is in-
tractable for modern neural networks, approxima-
tive methods like Monte Carlo variational inference

(MCVI) are typically used (Graves, 2011; Kingma
et al., 2015; Wu et al., 2019). MCVI methods minimize
the Kullback-Leibler (KL) divergence Dk between a
parameterized distribution g4(@) and the true poste-
rior p(0|D), where ¢ represents the parameters of the
variational distribution. Because the true posterior is
unknown, MCVI methods instead maximize a surro-
gate objective, the evidence lower bound (ELBO):

L(¢) = Eq,0) log p(D|6)] — Dic1 (44(0)[[p(0)) - (12)

By choosing a tractable prior p(@) and variational dis-
tribution g4 (@) such as factorized (i.e., diagonal covari-
ance matrix) Gaussians, one can iteratively optimize
the ELBO with gradient ascent, similar to the pro-
cess of standard neural network training. However, the
first term in Equation (12), sometimes called the re-
construction term, can’t be computed analytically for
modern neural networks, and Monte Carlo sampling is
used instead.

Wu et al. (2019) present an alternative, sample-free
variational inference method, deterministic variational
inference (DVI), which they use to estimate Equa-
tion (12) analytically. DVI uses a version of Algo-
rithm 1 to approximate MCVT in the limit of infinite
samples, s — oco. To propagate through a single net-
work layer with an n x n transform, MCVI has an
asymptotic runtime complexity of O(sn?), and DVI
O(n?). For an affine transformation y = Wx +b, Wu
et al. (2019) show that, under assumptions of indepen-
dence between x, W, b,

Cov(yi, yx) = Cov(b;, by)+
D Elaja)Cov(Wij, Wie)+

i ¢
E[Wi;|E[Wie]Cov(z;, ¢). (13)

Because W and b are often chosen to be fac-
torized Gaussians for tractability, the only difficult
terms to model in Equation (13) are those involving
Cov(z;,x¢). (Cov(Wi;, Wie) = 0 for j # £.) To com-
pute Cov(z;,z,) in Equation (13), Wu et al. (2019)
rely on activation-specific approximations of Heaviside
and ReLU. We can instead apply Theorem 1 at no ad-
ditional asymptotic runtime cost, and extend DVI to
any supported activation function.

4 EXPERIMENTS

In experiments, we numerically assess the accuracy of
Theorem 1 in Section 4.1, apply it to the analysis of
trained neural networks in Section 4.2, and apply it to
training Bayesian neural networks in Section 4.3. Er-
ror analysis in Section 4.1 was performed on an Apple
M1 Max, and subsequent experiments were performed
on an Nvidia Titan RTX GPU.
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Figure 2: The covariance between a bivariate Gaus-
sian passed through a ReLU, calculated numerically,
plotted over input means g1 and po, with fixed input
parameters o1 = 1,02 =1, p = 0.5.
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Figure 3: The (a) maximum and (b) mean abso-
lute error of Theorem 1 applied to a ReLU by Tay-
lor order. Error is determined by comparing against
the numerical calculation depicted in Figure 2, over
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4.1 Error Analysis

Figure 2 shows the covariance of a bivariate Gaussian
passed through a ReLU, calculated numerically. We
can compare this numerical calculation to the ana-
lytic solution of Theorem 1. Figure 3 shows the er-
ror by Taylor order, and Figure 4 compares the the
error with the approximation proposed by Wu et al.
(2019). The Wu et al. (2019) approximation has a
maximum absolute error of 1.160 x 1071, A first-order
approximation of Theorem 1 has a maximum absolute
error of 2.034 x 1072, and a fourth-order approxima-
tion 3.740 x 1074, We can similarly analyze the er-
ror of Theorem 1 applied to other activation functions
for which covariance approximations don’t appear in
previous work, like the GELU or the approximated
sigmoid (Daunizeau, 2017), both shown in Figure 5.
The GELU and sigmoid are discussed more fully in
Appendix B.
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Figure 4: Absolute error for (a) a fourth-order expan-
sion of Theorem 1 applied to a ReLU and (b) the ReLU
approximation proposed by Wu et al. (2019), plotted
over input means p; and pe. Error is determined by
comparing against the numerical calculation depicted
in Figure 2.

Figure 5: Absolute error of a fourth-order expansion of
Theorem 1 applied to (a) a GELU and (b) an approx-
imated sigmoid (Daunizeau, 2017), plotted over input
means 1 and pe and using the fixed input parameters
of Figure 2.

4.2 Characterizing Trained Neural Networks

We study how well moment propagation can character-
ize the input-output distribution of a trained network
by comparing to Monte Carlo estimation.

Following the experiments in Bibi et al. (2018), we
first test our method on synthetic data and networks.
We construct both fully connected and convolutional
networks of varying depth, with ReLU activations
throughout and i.i.d. network parameters generated
with Kaiming initialization (He et al., 2015). Input
data are R'%° for the fully connected networks and
R20%20 for the convolutional networks, and input noise
is represented with a multivariate Gaussian distribu-
tion. In the fully connected networks, each hidden
layer is 100 units. In the convolutional networks, each
convolutional layer is 10 channels with 3 x 3 filter size
and “same” padding to preserve feature map dimen-
sions. The mean is drawn from a standard normal
Gaussian, and the covariance is based on randomly
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Table 1: Tightness measures for synthetic data and networks of varying type and depth, comparing the proposed
moment propagation method to PL-DNN (Bibi et al., 2018). We report the mean and standard deviation of the
ratio of mean estimates /i = fiprc/fta and ratio of variance estimates 052 = &?Mc / 6?4 between the Monte Carlo
and analytic methods, calculated over 200 instances. Ideally the ratio approaches 1+ 0.

Proposed PL-DNN
Network Qh 962 f Q62
FC-4 1.000£0.014 1.010+£0.011 0.999 £0.643 1.155+0.311
FC-8 1.000£0.001 1.016+0.017 1.012+0.169 1.067+0.419
CNN-4 1.001 +0.021 1.007 £0.006 0.997 +0.168 1.222 4+ 0.240
CNN-8 1.000£0.000 1.009+0.007 1.001 £0.026 1.184 4+0.347

Table 2: Tightness measures for a convolutional network trained on MNIST data, comparing the proposed
moment propagation method to PL-DNN (Bibi et al., 2018). For each of the 10 class logits, we report the
mean and standard deviation of the ratio of mean estimates 4 = fiy¢/fia and ratio of variance estimates
Q6% = 6%,5/6% between the Monte Carlo and analytic methods, calculated over 200 instances.

Proposed PL-DNN
Logit f Q62 Qh Q62
0 1.000£0.000 1.001+0.007 1.016+0.102 1.422+0.229
1 1.0014+0.001 1.004=£0.005 0.971+0.185 1.553 +0.254
2 1.001 £0.001 1.009 £0.008 0.998 +£0.267 1.531 +0.222
3 0.999+0.007 1.009+0.008 1.018+0.410 1.512+0.252
4 1.000£0.001 1.00540.006 0.998+0.141 1.383+0.244
5 1.001 +£0.015 1.006 +0.006 0.980+0.696 1.733 +0.267
6 1.001£0.014 1.004+£0.007 0.998+£0.096 1.382+0.217
7 1.000+£0.003 1.009+0.009 0.975+0.178 1.500 %+ 0.161
8 1.000£0.002 1.005+0.006 1.068+0.684 1.453+0.205
9 1.000£0.002 1.004 +£0.005 0.993 +0.043 1.557 +0.297

drawn eigenvalues such that the maximum variance is
1.0. All networks output a single scalar value.

In each experiment, we generate a random mean and
covariance for the input distribution, from which we
draw 7.5 x 10* Monte Carlo samples to pass through
the network and form an estimate of the output mean
and variance. We then analytically propagate the
input mean and covariance using both our proposed
method and the PL-DNN technique proposed in Bibi
et al. (2018). Each experiment is repeated 200 times.

Table 1 shows tightness measures for fully connected
and convolutional networks with 4 and 8 layers (de-
noted as FC-4, FC-8, CNN-4, and CNN-8). The tight-
ness of the analytic methods is measured by taking
the ratio of the Monte Carlo estimates of mean and
variance to the respective analytic estimates. (We use
Q4 to represent the ratio of estimates as one might
use Afi to represent the difference of estimates.) We
see that the proposed method achieves high estimation
accuracy for both mean and variance, with a better

average tightness and lower standard deviation than
PL-DNN. We conjecture that this is because, while
both methods approximate unknown distributions as
Gaussian, PL-DNN approximates the known structure
of the network whereas our method preserves it.

The weights of a trained neural network are not ran-
dom, of course, and training may induce correlations
between network parameters. As in Bibi et al. (2018),
we also compare methods using a network trained on
MNIST data (LeCun and Cortes, 2010) with a con-
volutional architecture based on LeNet (LeCun et al.,
1999). Because our proposed technique doesn’t admit
pooling layers without extension, we replace pooling
layers with strided convolutions (Springenberg et al.,
2015). The network has two convolutional layers with
ReLU activations, each followed by a strided convolu-
tion in place of a pooling layer, then two fully con-
nected layers. The network input is R23%2® corre-
sponding to an image, and the output is a set of 10
logits corresponding to the 10 possible classes. For
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Table 3: Test log-likelihoods for UCI regression datasets. We compare the proposed method to DVI (Wu et al.,
2019) and MCVI, keeping the training routine and model architecture otherwise identical. For each dataset we
report the mean and standard deviation for 20 randomized data splits. A higher test log-likelihood is better,

and best results are in boldface.

Dataset Method
Name Samples Features Proposed DVI MCVI
boston 506 13 —2.31+0.19 —2.33£0.19 —2.40 £ 0.23
concrete 1,030 8 —2.98 +£0.11 —2.99+0.11 —3.04 £0.10
energy 768 8§ —1.274+0.21 —1.30 £ 0.22 —1.40 4+ 0.18
kin8nm 8,192 8 1.11 £0.03 1.11 £0.03 1.20 + 0.03
naval 11,934 16 5.81 £0.16 5.73 £0.22 5.92 £ 0.24
power 9,568 4 —2.824+0.04 —2.82+0.04 —2.82+0.04
protein 45,730 9 —297+0.01 —2.9740.02 —3.05+0.02
wine 1,588 11 —0.91 £+ 0.07 —0.92 £0.07 —0.94 £0.07
yacht 308 6 —-0.25£0.20 —0.23 +0.22 —0.53 £0.19

each experiment, we represent the input as zero-mean
Gaussian noise with a randomly generated covariance
matrix added to an image M randomly selected from
the MNIST test set. As in the synthetic experiments,
we generate 7.5 x 10* Monte Carlo samples to esti-
mate output mean and variance, analytically propa-
gate input mean and covariance using both the pro-
posed method and PL-DNN, and repeat each experi-
ment 200 times.

Table 2 shows tightness measures for each output logit,
computed in the same manner as in the experiments
on synthetic data. Similarly, the proposed method
achieves a consistently high estimation accuracy for
both mean and variance, with a better average tight-
ness and lower standard deviation than PL-DNN.

4.3 Training Bayesian Neural Networks

In our training experiments, we train small BNNs on
UCI regression datasets (Kelly et al., 2023). We com-
pare different implementations of variational inference:
baseline Monte Carlo variational inference (MCVI),
deterministic variational inference (DVI) as proposed
by Wu et al. (2019), and our version of DVI which uses
Theorem 1 to calculate ReLU covariance more accu-
rately. We manually tune the learning rate, but other-
wise use the same training routine, hyperparameters,
and model architecture across the different datasets
and implementations. The model is heteroskedastic
(i.e., it outputs both a mean and variance) and con-
sists of a single hidden layer of 50 units with fixed
priors and ReLU activations (except for the protein
dataset, for which we use 100 units). Following Wu
et al. (2019), we choose a factorized Gaussian for our
variational distribution (i.e., the covariance matrix of

trainable parameters is diagonal) to reduce compu-
tational complexity. We use the AdamW optimizer
(Loshchilov and Hutter, 2019), the batch size is fixed
at 10 and training is run for 50 epochs (except for
the larger protein dataset, which is run for 25). For
MCVI, the number of Monte Carlo samples is fixed at
10. Each dataset is randomly split into 90% training
data and 10% test data, and each training experiment
is repeated over 20 randomized data splits.

In Table 3 we report the mean and standard deviation
of the best test log-likelihood—the reconstruction term
in Equation (12)—for each dataset and method. On
average, the more accurate covariance calculation from
Theorem 1 modestly improves BNN training, but this
effect is not uniform, and in some cases performance
drops. We conjecture that in such cases the RelLU
covariance approximation used by Wu et al. (2019) is
sufficiently accurate, or that the factorized Gaussian
assumption curbs the impact of accurate covariance
calculations and other aspects of the learning problem
predominate. We also note that the DVI and MCVI re-
sults do not exactly match those reported in Wu et al.
(2019), as we run the training experiments with our
own BNN implementation; we attribute discrepancies
to differences in hyperparameter selection.

5 CONCLUSION

We introduced a general, analytic solution to com-
pute activation covariance and illustrated how this
can propagate moments across layers in neural net-
works. Our experiments confirm the validity of this ap-
proach. Our moment propagation method can be ap-
plied to characterizing the input-output distributions
of trained neural networks and to training probabilis-
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tic neural networks that model predictive uncertainty,
both of which offer a path to neural networks that are
quantifiably reliable and robust.

Prominent research questions remain for successful un-
certainty quantification in neural networks. Investi-
gating the application of Theorem 1 to Laplace ap-
proximation (Daxberger et al., 2021) may be fruitful.
Because computing a covariance matrix is of course
O(n?) in the number of dimensions n, covariance-
based methods still face significant scaling challenges.
Also germane to this work are studying more thor-
oughly the effect of activation covariance, and formu-
lating a theory for the applicability of the Gaussian
approximation.
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A COVARIANCE PROPAGATION, PROOF

We recall Theorem 1 and provide a complete derivation below.

Theorem 1. Suppose y € R" is a multivariate Gaussian random vector, y ~ N(u,X), and z = g(y) is an
element-wise independent and identical function of y. If the mean and variance of any input element y; is (u;,02),
and any two input elements y;,y; are related by Pearson correlation coefficient p;; = E[(y; — i) (y; — 15)]/(0505),
then the covariance between output elements z; and z; is

o}

k k ke
Pij O"E[z Ol 2,
: i i

k=1

Proof. With Gaussian random variables, the integrals of interests are (omitting subscripts unless necessary):

Elz] = \/27/_29(1/) eXp{_(yQ;QW}dy (14)

B2 = s [ oo { =0 ey (19
1 o0 oo
Elzizj] = W/oo [m 9(yi)9(y;)
exp{_2(11p2) l(yi ;%Mi) 2y _Z()fj(y] —Hy) ;Jzuj) deidyj. (16)

We recognize the integral in Equation (14) as a convolution in u, and make use of the Fourier transform convo-

lution property. Let G(£) = § {g(u)}, the Fourier transform of g(u). The one-dimensional Fourier transforms of
interest are:

g(m) T G(e)
5 (@*06) (€

exp {—27725202} .

9(n)?
1 R
Woro exp {—02} =
Let H(§) = (G * G) (§). We can express Equations (14) and (15) as inverse Fourier transforms:
Elz] = § ' {G(¢) exp{—-27°¢*0"}} (17)
E[z*] = § ' {H(¢) exp{-27°¢C07}}. (18)

Similarly, we can treat Equation (16) as a two-dimensional convolution and exploit this to determine E[z;z;].
With the two-dimensional Fourier transform of a bivariate Gaussian

1 1 2 2puip; M3
exp{Q( l% pMMJ*F ;

2no054/1 — p? 1—p?) |o; 0i0j o?

i J
we can express Equation (16) as an inverse Fourier transform:

} 3y exp {—272 [€207 + 2p6i650:0, + &oil}

E[ziz;] = Sfl{G(fi)G(fj) exp{—2m?[0? + 2p&i&j0i0; + 12%2]}} (19)
Using Equations (17) and (19), we can then express the covariance Cov(z;, z;) = E[z;2;] — E[z;]E[2;] as
Cov(zi, zj) = 3_1{6’ (&) G (&) exp {—2mEf 0} } [exp {—4n*p&i€0i05} — 1] exp { —2m2EF o’ }

To solve this inverse Fourier transform, we can express exp {—4772,0&5]-01-0]-} — 1 as a Taylor series in p:

Kk
exp {—47T2p§7;£j0'i0j} —1= Z % (—47T2§ifj0i0'j)k
k=1 "
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We then move the summation out of the inverse Fourier operation:
>k
p koo
Cov(z, z;) = Z (—4n’0i0;)" 1{55 fjk G (&) G (&) exp {—2n°E a7 } exp {—271'25]20]2» }

&l
k=1

Then, using the separability property of two-dimensional Fourier transforms:
oo
ot

!
— k!

Cov(z, 2;) =

(—4720:0;) " F {8 G (&) exp {—272€202 )} § 1 {8 G (&) exp {—277€2072} ).

Using the Fourier differentiation property and Equation (17), we see that
1 OFE[z]

k 202 27 §°
£ G(ﬁ)exp{—27r o } (27r\/j1)k o

Hence, the covariance can be expressed as:

B MOMENTS OF COMMON ACTIVATION FUNCTIONS

B.1 Heaviside

The Heaviside step function u(y) is defined as

0 ify<oO
u(y) = .
1 ify>0.

When the input is a Gaussian random variable y ~ A'(u, 02), the mean and variance of z = u(y), first reported
in the context of neural networks by Frey and Hinton (1999), are

Ez] = ® (g) (20)
Var(z) = ® (g) [1 - (g)} (21)

To compute the covariance of the output of a Heaviside step function using Theorem 1, the first few terms of
interest are:
OE[z]
o
o
2
028 E[z] _
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O3E|7] (
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4
048 El] _
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With the probabilist’s Hermite polynomial

terms can be expressed as
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B.2 Rectified Linear Unit

The rectified linear unit (ReLU) is defined as

0 ify<O

ReLU(y) =
eLU(y) {y ify > 0.

When the input is a Gaussian random variable y ~ N(u,0?), the mean and variance of z = ReLU(y), first
reported in the context of neural networks by Frey and Hinton (1999), are

Bl = (2) +00 () (23)
Var(z) = (u* + 0°) @ (;) + pog (g) —E[2]? (24)

To compute the covariance of the output of a ReLU using Theorem 1, the first few terms of interest are:

aaﬁ,il e ()

82E ()
O o (E) o ()
a[m (%)
o (1) [(&) -9 0 (%).

With the probabilist’s Hermite polynomial, terms for k£ > 1 can be expressed as

—0

oA =D Heca (£) o (5). 2

B.3 Gaussian Error Linear Unit
The Gaussian Error Linear Unit (GELU), first proposed by Hendrycks and Gimpel (2016), is defined as
GELU(y) = y®(y)

When the input is a Gaussian random variable y ~ N (i, 0?), the mean of z = GELU(y) is

E[z]ui)(\/ﬁﬁ)+\/lgj02¢<\/li<72)' (26)

Unlike the Heaviside and ReLU moments, Equation (26) does not appear in prior work. We provide a derivation
below.

Proof. The integral of interest is

Elz] = 202

e — )2
\/2;? d(y) exp {(yu)} dy. (27)

With the definition of ®(y) we can separate this into two integrals. The first integral

11 /“ ~(w-m1,
2 \/2770'2 _ooyexp 2(72 y
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evaluates to §. The second integral

1;/‘” ) erf(y) exp{—@—wz}dy

2V2m0? J_ooo V2 202

can be evaluated via Fourier analysis to obtain an exact solution. We recognize that Equation (27) is a convolution
in u and exploit the Fourier convolution property. The Fourier transforms of interest are:

1 —(4n%e? 41 —om2¢2?
3 werf (\'}%) 3, (47 472;;1){ &)

1 R
Wexp{—zg}%exp{ 27'('60'}

In the Fourier domain, our convolution becomes the product of the transforms:
47r2§2 +1
T4m2ez 25

This representation gives us two terms to which we can apply the inverse Fourier transform:

—exp —27r2¢2 o2 3 1 M
p{-2m¢*(1+0%)} \/(1+02¢(\/1+02>

2exp{ 2m°¢* (14 02 } ;/i erf<2(1+2>+\/1+02¢<
ag

exp{—272€%} exp {—27r2£202} = —exp {—27r252(1 + 02)} 5 exp{ 2122 (1+ o )}

= )

Combining all results yields:

el = ) + el (=)

Let & = 0/v/1 + 2. We can rewrite Equation (26) as
E[z] = p® (—au) +aoc¢ (—aﬂ) . (28)
o o

The variance of a GELU doesn’t appear to have a closed-form solution, but can be expressed analytically with
Corollary 1.1. To apply Theorem 1 or Corollary 1.1, the first few terms of interest are:

oo =0 (%) a1 o) o (%)

O () e+ <2—a>]o—¢<‘2’“‘)

= [ oo (2o )
T2 ot [ () (- a?) + (%)2 (7 60) - (4~ 30%)] ()
05858]?;] = oo [_ (%)4 (1-a®) + (%)2 (11— 1002) — 3 (6 — 5042)} (%) 6 (22),
With the probabilist’s Hermite polynomial, we can express terms for k > 1 as
e o i (32) - 0t ()] o (%) =

We note that as ¢ — oo, @ — 1, Equation (28) reduces to Equation (23), and Equation (29) reduces to
Equation (25).
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B.4 Sigmoid

Sigmoid functions frustrate many standard analytical tools, and moments of Gaussian random variables passed
through sigmoid functions do not appear to have closed-form solutions. The logistic sigmoid is defined as

_ 1
T 14e v’

s(y)

For a Gaussian input y ~ N (i, 0?), Daunizeau (2017) proposes the following approximation for the mean of
2 = s(y):

Elz] ~ s (ﬁ) (30)

where o = 0.368 is an empirically derived parameter. We note in passing that the best-fit a is sensitive
to the range of considered input means and variances. For example, we find that « = 7/8, derived from

tanh(y) = erf (@ ), is sometimes a better fit.

Let 8 =1+ ao?. To compute the approximate covariance of the output of a sigmoid function using Theorem 1
and Equation (30), the first few terms of interest are:

OE[z] et/P

o o 5
o B(1+er/B)

= 02EM 2 et/B (_1 + eu/ﬁ)

o B2 (14 en/8)?
8 PRz _ eh/B (1- der/B 62u/ﬁ)
o’ 33 (1+ en/)’
4341@[2} 4eu/ﬁ (fl 4 11et/B —11e20/8 63#/6)
o =0 =
8M4 54 (1 + 6“/5)
5351@[2] 5eu/ﬁ (1 — 26eM/B 1 66e2n/B — 26e31/8 4 e4u/ﬁ)
o = .
o’ 35 (1+ en/5)°

C ADDITIONAL EXPERIMENT DETAILS

For the MNIST experiments discussed in Section 4.2, the architecture of the trained CNN is summarized in
Table 4. As mentioned in Section 4.2, we use strided, activation-less convolutional layers in place of pooling
layers (Springenberg et al., 2015) to apply moment propagation.

A visualization of the ratio of covariance estimates, complementing the ratio of variance estimates 262 = &ﬁ/lc /6%
in Table 2, is shown in Figure 6. Overall, for both the proposed method and PL-DNN, the means are similar to
the mean of the corresponding ratio of variance estimates, but the standard deviations are greater.

Table 4: Model summary for MNIST tightness experiments with stride information.

Layer Type Stride Output Size  Activation
1 Convolutional - 28 x 28 x 32 ReLU
2 Convolutional 2 14 x 14 x 32 None
3 Convolutional - 14 x 14 x 64 ReLU
4  Convolutional 2 7 X7 x 64 None
5 Fully Connected - 1024 ReLU
6 Fully Connected - 10 Softmax

For the UCI regression experiments discussed in Section 4.3, the considered hyperparameters are shown in
Table 5. As noted in Section 4.3 that the hidden-layer width and number of training epochs is 50 except for the
larger protein dataset, for which we use 100 hidden units and and train over 25 epochs.
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Figure 6: Tightness measures of covariance for a convolutional network trained on MNIST data, comparing the
proposed moment propagation method to PL-DNN (Bibi et al., 2018). Complementary to the ratio of variance
estimates 962 = 63,,/6% in Table 2, for the 10 class logits we visualize the (a) mean and (b) standard deviation
of the ratio of covariance estimates using moment propagation, and the (c¢) mean and (d) standard deviation of
the ratio of covariance estimates using PL-DNN, calculated over 200 instances. Lower is better.

Table 5: BNN hyperparameters considered for UCI regression tasks.

Hyperparameter Value

Activation ReLU

Batch size 10

Hidden layers 1

Hidden-layer width  50*

Lambda le—3

Learning rate {1e—3,3e—3,5e—3,7e—3, le—2}
Optimizer AdamW

Training epochs 50*




